
ar
X

iv
:1

30
4.

65
14

v1
 [

m
at

h.
N

A
]

 2
4

A
pr

 2
01

3
August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–16

RESEARCH ARTICLE

A minimal communication approach to parallel time integration

Andrew T. Barker∗

Max Planck Institute for Dynamics of Complex Technical Systems, D-39106 Magdeburg,

Germany

(Received 00 Month 200x; in final form 00 Month 200x)

We explore an approach due to Nievergelt of decomposing a time-evolution equation along
the time dimension and solving it in parallel with as little communication as possible between
the processors. This method computes a map from initial conditions to final conditions locally
on slices of the time domain, and then patches these operators together into a global solution
using a single communication step. A basic error analysis is given, and some comparisons are
made with other parallel in time methods. Based on the assumption that parallel computation
is cheap but communication is very expensive, it is shown that this method can be competitive
for some problems. We present numerical simulations on graphics chips and on traditional
parallel clusters using hundreds of processors for a variety of problems to show the practicality
and scalability of the proposed method.

Keywords: parallel in time, parareal, domain decomposition, parallel computing

AMS Subject Classification: 65L05, 65M55, 65Y05, 65Y10

1. Introduction

Consider two different computations.

Use forward Euler to advance a single scalar ODE by a billion timesteps, (1)

and

Use forward Euler to advance a billion uncoupled ODEs by one timestep. (2)

Implemented in the standard, straightforward way, the problems (1) and (2) require
about the same number of floating point operations. However, each operation in
(1) depends on the one before it, while the operations of (2) can all be performed
independently. In particular, (1) relies on the clock speed of a single processor, while
(2) depends on the number of processors. Hardware is moving in the direction of
increased concurrency and parallelism, and computational science is moving with
it, so that processing units are proliferating and becoming very cheap, while clock
speed will remain expensive.
The catch in the description of (2) is the word “uncoupled.” For useful problems

in scientific computing, problems are rarely completely uncoupled, which means
that different parallel processes will have to communicate somehow. That leads us

∗Email: barker@mpi-magdeburg.mpg.de.

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 200x Taylor & Francis
DOI: 10.1080/0020716YYxxxxxxxx
http://www.informaworld.com

http://arxiv.org/abs/1304.6514v1

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

2 A. T. Barker

to consider a third class of problem, namely

Add a billion numbers, each in distinct (and distant) physical locations. (3)

In addition to the floating point operations, problems of type (3) require a great
deal of communication, which is already expensive on current hardware. On future
hardware we anticipate that this cost will be the dominant one, and that good
algorithms will avoid problems of this type as much as possible.
In this paper we take these trends in hardware seriously, perhaps even taking

them to an extreme. In particular, we assume that computations of type (2) are
not just very cheap but essentially free. We assume that problems of type (1) are
more expensive. Most importantly, we assume that problems of type (3), namely
communication, are very expensive, so expensive that we will do a thousand or a
million problems of type (2) in order to avoid doing one problem of type (3).
In 1964 Nievergelt presented an approach to the solution of time-dependent dif-

ferential equations that divides the time domain into slices which are assigned to
different processors [20]. His approach never attracted much attention because of
its high computational cost in terms of floating point operations, but we revisit it
here with an eye toward communication cost instead, a factor which was not pre-
dicted to be important when Nievergelt was writing. We present three numerical
examples for this method (which we believe are the first actual parallel implemen-
tations of the method), and we argue that the Nievergelt approach minimizes total
communication among all parallel in time algorithms.
The basic idea of the Nievergelt approach is to construct a propagation operator

on each slice, that is, a map from initial conditions to final conditions, in a way
that is embarrassingly parallel but requires a great deal of computation. These
maps are composed with a single reduce operation of type (3) at the very end of
the computation. As presented here this method has only limited applicability and
in particular is difficult to apply to large systems of nonlinear equations. However,
because of its simplicity and its lack of communication, we present it as an instruc-
tive example of what kinds of algorithms will minimize communication in future
computing environments where parallel computations will become much cheaper
in comparison to communication.

2. Some context

Most parallel algorithms for evolution equations exploit parallelism in space, often
with very impressive speedup and scalability. Here we focus on parallelism in time,
and in particular we will focus on applications where the computational resources
are abundant and total time to solution is the primary concern.
One way to exploit parallel computation in the time integration is to use a

predictor–corrector framework where the correctors run in parallel one or more
steps behind the predictors [2]. The primary purpose of parallelism in this case is
to improve the accuracy of the time integration rather than to speed it up, and
this method is not suitable for use on a large number of processors.
Some methods based on the matrix exponential are well-suited to parallelism

and require minimal communication between processors. One early effort in this
direction is from Gallopoulos and Saad [7], who describe a parallel Krylov sub-
space method for approximating the matrix exponential. A more recent approach
is the paraexp method of Gander and Güttel for linear initial value problems with
constant coefficients [11], which uses a time-domain decomposition together with
a “near-optimal exponential propagator” to parallelize the solve, with results that

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics 3

show good speedup on up to eight processors. A similar method is due to Hochbruck
and Ostermann [15], where again a linear initial value problem can be split into
several independent problems, where the division is based on quadrature of the
variation-of-constants formula. These approaches depend on the matrix exponen-
tial, so that they are not suitable for problems with a coefficient that varies in
time, while we will see that the Nievergelt approach is suitable for such a problem.
Similarly, the contour integral quadrature approach of Sheen et. al. [21] relies on
the Laplace transform and so cannot be used with varying coefficients, and in addi-
tion this method is restricted to parabolic problems. The similar Dunford-Cauchy
integral approach to approximating the matrix exponential in [13] has similar re-
strictions. We also mention that none of the above papers include numerical results
on more than eight parallel processors.
The parareal scheme has been applied on a large number of processors, is suit-

able for non-constant coefficient problems, and has been used very effectively to
get speedup for a variety of time-dependent problems [12, 16, 18]. In this approach
the time domain is split into subintervals which are each assigned to processors. An
iteration involving a fine time-stepping scheme (which determines the desired ac-
curacy) and a coarse scheme (which facilitates fast transfer of information between
subdomains) is repeated until the error is small. The parareal methodology has
been applied to many types of problems with great success, including for problems
in structural and fluid dynamics in [4] and [6], for an ocean model in [17], and for
reaction–diffusion problems in [3], among many other practical and more theoret-
ical studies. The computational cost of the parareal method can be impressively
reduced by combining it with the Spectral Deferred Correction method, but this
does nothing to reduce the cost of communication [19].
The approach of Nievergelt that we discuss here is similar to the parareal method

in terms of the target applications, namely small systems of differential equations
integrated over a very long time interval where spatial parallelization is not easy,
but computational resources are abundant. However, the Nievergelt approach re-
quires the same amount of communication as a single iteration of the parareal
method, measured in terms of total amount of data communicated (or in terms of
number of sends and receives). Although minimal communication is our main goal,
we also note that this method will not require a coarse propagator, something that
is not always easy to construct. Finally, the parareal algorithm as well as many
of the matrix exponential or Laplace transform based approaches work relatively
poorly or not at all for hyperbolic problems [4, 8, 10], while we will see that the
Nievergelt approach behaves well for the wave equation.
The price we pay for all of these good properties is that the computational

cost of Nievergelt is very high when measured simply in terms of floating point
operations. However, almost all of the computations can be done in parallel, so
given our (admittedly extreme) assumptions on the computational environment,
the Nievergelt approach is competitive for some problems.
In the next section we approach questions of accuracy and scalability in the

context of a very simple numerical model problem in order to clarify the properties
of the Nievergelt method. Then in section 4 we present some results on graphics
processing units, for which the Nievergelt algorithm is well suited, and discuss the
costs and potential parallel speedup of the method in more depth. In Section 5,
we take a slightly more theoretical look at the method and provide some error
analysis. We apply the method to some larger and slightly more realistic problems
on standard parallel hardware in Section 6, and we end with some concluding
remarks.

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

4 A. T. Barker

Table 1. Errors for the Nievergelt algorithm on four time domains,

with different discretization sizes in time ∆t and varying number M

of Chebyshev interpolation in the initial value space, using backward

Euler.
M

∆t 3 4 5 6 7

0.01 0.0681 0.0201 0.0274 0.0278 0.0278
0.005 0.0511 0.00751 0.0138 0.0141 0.0141
0.0025 0.0422 0.00098 0.00672 0.00700 0.00698
0.001 0.0370 0.00293 0.00254 0.00280 0.00278
0.0001 0.0339 0.00526 0.000050 0.000296 0.000278

3. A simple example

To make the discussion concrete, consider the model nonlinear initial value problem

y′ = y2, y(0) = 1, (4)

which has exact solution

y =
1

1− t
.

We will avoid the singularity at time t = 1 and consider this problem on the time
interval T = [0, T] with final time T = 1/2. We assume the quantity of interest is
simply y(T) and we calculate all our (absolute) errors with respect to that.
Now we subdivide T into subparts Tj = [Tj−1, Tj], j = 1 . . . N where T0 =

0, TN = T . On each part Tj we consider an initial value problem

y′ = y2, y(Tj−1) = λj−1 (5)

on Tj. Of course in general λj−1 is unknown, so we conceptually solve the problem
for all possible λj−1, constructing not just a scalar value y(Tn) but a mapping φj

that takes initial values to final values.
We assume λj−1 is known to lie in some range Ξ = [a, b]. We call Ξ the initial

value space and sample points inside Ξ to get a discrete set Ξh. Then, for each
ξ ∈ Ξh we run the initial value problem (5). When the initial value λj−1 becomes
known (communicated to us from the previous processor in the final step of the
algorithm), we use interpolation to calculate λj.
To understand how the interpolation process affects accuracy, we represent the

initial value space Ξ = [0, 2] as a Lagrange interpolant on the M Chebyshev nodes
in this interval. We present some accuracy results in Table 1. Intuitively we wish
to balance the time–discretization errors with interpolation errors that are of the
same order to get an efficient method. Since Chebyshev interpolation is spectrally
accurate, we see in Table 1 that we need just 5 or 6 Chebyshev points is enough to
get 10−4 accuracy. Also see Figure 1, which shows the component of error related
to interpolation as the time integration proceeds. We remark that the number of
subdomains N does not significantly affect these results.
For comparison we also solve this problem using a parareal method [18]. The

parareal algorithm proceeds by iteratively applying the correction equation

λk+1
j+1 = Gj

∆T (λ
k+1
j) + gj∆t(λ

k
j)−Gj

∆T (λ
k
j), (6)

where λk
j is the initial value for time slice (or processor) j in iteration k, g∆t is a

standard time stepping method with a short timestep, and G∆T is a (cheap) coarse
time stepping method with larger timestep ∆t. To understand the two compared

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics 5

0.0 0.1 0.2 0.3 0.4 0.5�7.0

�6.5

�6.0

�5.5

�5.0

�4.5

�4.0

�3.5

�3.0

0.0 0.1 0.2 0.3 0.4 0.5	7.0

6.5

�6.0

�5.5

5.0

�4.5

�4.0

�3.5

�3.0

Figure 1. The error of the Nievergelt approach with ∆t = 10−4 on a log scale on the vertical axis plotted
against time on the horizontal axis. The solid line is the error with plain backward Euler timestepping
and no parallel framework, while the dotted line shows the error using M = 6 Chebyshev points. The left
figure has 3 parallel time intervals, and the right has 4 parallel time intervals. The interpolation does add
to the error, but the amount is comparable to the original time discretization error.

Table 2. Errors for the Nievergelt approach and the

parareal approach, with ∆t = 0.0001 and various num-

bers of processors N . For Nievergelt we use M = 6

Chebyshev nodes for interpolation. Both approaches use

backward Euler for the fine time discretization, and the

parareal results also use backward Euler with ∆T = 0.1

for the coarse propagator.
parareal parareal parareal

N Nievergelt k = 2 k = 3 k = 5

1 2.77e-4 2.77e-4 2.77e-4 2.77e-4
2 8.50e-4 2.77e-4 2.77e-4 2.77e-4
4 2.83e-4 9.46e-3 7.41e-5 2.77e-4
8 2.79e-4 1.27e-2 2.50e-4 2.77e-4
16 2.72e-4 3.18e-3 2.13e-4 2.77e-4
32 2.54e-4 9.49e-4 2.68e-4 2.76e-4
64 2.16e-4 4.36e-4 2.73e-4 2.74e-4

algorithms visually, see Figures 2 and 3, where we present the scheduling of the
Nievergelt and parareal algorithms as in the figures in [19]. Here we have made
an analogy between the fine propagator of parareal and the construction of the
map from initial to final conditions in the Nievergelt approach, but we should
note that this latter operation is much more expensive (by a constant factor of
M). However, like the fine propagation of parareal, the construction of this map
is embarrassingly parallel, requiring no synchronization. Also, we have compared
the coarse propagator of parareal to the interpolation in Nievergelt. These are
quite different operations, and it is not obvious exactly how their costs compare,
but they play similar roles in the algorithm. It is clear from these figures that
Nievergelt involves significantly fewer communications, especially as the number of
parareal iterations increases.
The results of the comparison are given in Table 2. Here we use backward Euler

as both the fine and coarse propagator, with fine discretization size ∆t and coarse
discretization size ∆T , and k represents the number of parareal iterations used.
More iterations gives better accuracy, but recall that each iteration of parareal
requires as much communication as the entire Nievergelt algorithm, and in Table
2 we see that even for this simple problem it usually takes a few iterations to get
to discretization error.
To end this section we summarize the Nievergelt approach in pseudocode in

Figure 4.

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

6 A. T. Barker

processor

time

0 1 2 3 4 5

Figure 2. Timing and communication in the Nievergelt approach. In this figure the gray squares represent
construction of the propagation operator (usually done by timestepping across Tj with several different
initial conditions), the black squares represent computing the interpolation of this operator at an initial
condition communicated from the previous processor, and white circles are communication steps. Compare
with Figure 3.

processor

time

0 1 2 3 4 5

Figure 3. Timing and communication in the parareal method. In this figure the gray squares represent
action of the fine level timestepping scheme, the black squares represent the action of the coarse timestep-
ping scheme, and white circles are communication steps. This figure shows k = 3 iterations of parareal.
Compare with Figure 2.

Table 3. Time to solution in microseconds and speedup of

the GPU implementation of the Nievergelt method as com-

pared to a simple serial implementation on the CPU.
∆t N M Ttotal Tcpu/ Ttotal Testimate

2−14 32 4 193.6 2.2 200.4
2−14 64 4 187.5 2.3 202.5
2−14 128 4 208.4 2.0 237.3
2−15 32 5 253.7 3.3 261.2
2−15 64 5 228.5 3.8 233.0
2−15 128 5 257.8 3.4 252.5
2−16 32 7 388.3 4.4 443.7
2−16 64 7 338.9 5.0 324.2
2−16 128 7 392.0 4.3 298.1

4. A graphics card implementation and cost model

One possible use case for the Nievergelt method is on general purpose graphical
processing units, which are highly parallel and energy efficient computing units
that are widely and cheaply available due to their use in gaming hardware. Ef-
fectively using this hardware is a challenge because they are most efficient when

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics 7

Given. An initial value problem y′ = f(t, y(t)), y(0) = y0, a
sample Ξh of the initial value space, a final time T , and N
processors.
Initialize. Let Tj = jT/N and assign the interval [Tj−1, Tj] to
processor j.
Computation phase.

for each processor j:
for each ξk ∈ Ξh:

solve y′ = f(t, y(t)), y(Tj−1) = ξk
let λk

j = y(Tj)
construct approximating function φ(ξ) such that

φ(ξk) = λk
j .

Communication phase.

for each processor j:
receive λj−1 from previous processor
calculate λj = φ(λj−1)
send λj to the next processor

Figure 4. The minimal communication Nievergelt approach in pseudocode.

Table 4. Approximate measures of parameters in cost

models (7), (8), in microseconds, computed as a least–

squares fit from the same computational experiments

used to make Table 3
cost symbol value
advance one timestep (GPU) τF 0.040
apply the Nievergelt map τN 0.701
GPU overhead τK 137.
advance one timestep (CPU) τcpu

F
0.051

the computational task can be broken down into very many independent threads,
which is precisely what the Nievergelt algorithm does. In Table 3 we show the
speedup of using the parallel capabilities of the GPU over the same computation
performed in serial on the CPU, with times recorded in microseconds, for the non-
linear scalar initial value problem, for various timestep sizes ∆t. We partition the
time interval into N time slices, for each of which we compute the map from initial
to final conditions independently. For each of the N time slices we propagate M
initial conditions so that we can use MN completely independent threads on the
GPU. The computation is finished by doing some cheap interpolation on the CPU.
We are using backward Euler for the timestepping and Chebyshev interpolation
with M nodes (chosen to insure that the total error in the Nievergelt method is
comparable to time discretization error) and doing all computations in single preci-
sion. In each case the error for the Nievergelt implementation is comparable to the
discretization error due to timestepping. The timing results include all the time re-
quired to allocate memory, build the initial value arrays, transfer data to and from
the GPU, and to perform the interpolation that evaluates the map from initial to
final conditions. The CPU and GPU tests are run on the same machine, which has
a six core AMD Opteron CPU and an nVidia Tesla C2075 GPU. This experiment
demonstrates the potential for using the inherent parallelism of the graphics card
to solve the problem faster than is possible with the CPU of the same machine,
even though many more floating point operations are required.
One possible model for the cost (in terms of time to solution) for the Nievergelt

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

8 A. T. Barker

method using the GPU implementation is

CG =
Mn

N
τF +NτN + τK (7)

where τF is the time to advance a single timestep using backward Euler for a single
initial value problem, τN is a measure of the cost of applying the map that has been
constructed (the final communication and interpolation step), and τK represents
some fixed GPU startup costs. Predicting the time to solution for the experiments
in Table 3 using parameter values from Table 4 shows good agreement, as you can
see in the last column of Table 3.
The corresponding serial cost is simpler, given by

CC = nτ cpuF . (8)

The speedup CC/CG can then be written

CC

CG
=

nτ cpuF

MnτF/N +NτN + τK
≈

NnκF
Mn+N2κN

. (9)

where we have ignored the lower order term τK because we are interested in the
extreme case of large n and N and we have defined κF = τ cpuF /τF and κN = τN/τF .
In order to balance time discretization with interpolation errors, we will assume
M ≈ nα for α < 1. In fact in model problem with Chebyshev interpolation we
could choose M ≈ log(n) but we will not assume we have such an exponentially
convergent scheme in general. Then if for fixed problem size n we choose N2 ≈
κ−1
N nα+1 we get

CC

CG
≈

κ
−1/2
N n(3+α)/2κF
nα+1 + nα+1

=

(

κF

2κ
1/2
N

)

n(1−α)/2

which implies that for α < 1, the larger the problem is, the more speedup we can
get.
Similar to the cost model analysis of a parareal–type method in [4, Section 3], we

see that the traditional parallel efficiency for our method is not as good as usual
space–based parallelism. However, the goal is to make the best use of an available
GPU that otherwise would not be doing useful work, and we see that it is possible
to get speedup in this case.

5. Error analysis

Nievergelt proves some error bounds on his approach in [20], using forward Euler
and linear interpolation. We want to say something about the error in a slightly
more abstract setting, with correspondingly abstract assumptions.
To begin, fix j and consider the interval Tj = [Tj−1, Tj]. Let gj be the exact

solution operator that maps an initial condition at t = Tj−1 to a final condition at

t = Tj, and let gj∆t be a standard time-discretization method that approximates
gj . We will assume that our problem is well posed in the sense that gj is Lipschitz
as a function of the initial conditions,

|gj(ξ1)− gj(ξ2)| ≤ K|ξ1 − ξ2|, ξ1, ξ2 ∈ Ξ. (10)

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics 9

We evaluate gj∆t for many initial conditions in order to construct an interpolating

function φj
∆t which approximates the map gj∆t using some standard interpolation

technique. (The map gj∆t in turn approximates the exact operator gj , which is
of course what we really want.) Denote the true solution at t = Tj−1 by λ∗

j−1,
but of course we will instead have an approximation to this value communicated
from a previous processor, denoted by λj−1. We will also use g and g∆t without
superscripts to denote propagators on the whole time interval T = [T0, TN], and
φ∆t will be the Nievergelt method used over the entire time domain (including
several interpolations).
We begin our analysis by considering the error at the end of the fixed time

domain Tj:

|φj
∆t(λj−1)− gj(λ∗

j−1)| ≤ |φj
∆t(λj−1)− gj∆t(λj−1)|+ |gj∆t(λj−1)− gj(λj−1)|

+ |gj(λj−1)− gj(λ∗
j−1)|, (11)

where the first term is recognized as a standard interpolation error, the second
term is a standard time discretization error, and the third term depends on how
accurately the solution was computed on the previous time-slice Tj−1. Beginning
with this last term and using (10), we have

|gj(λj−1)− gj(λ∗
j−1)| ≤ K|λj−1 − λ∗

j−1| = K|φj−1
∆t (λj−1)− gj−1(λ∗

j−2)|,

which contains exactly the same type of expression as (11), so that we can use it
recursively to get an expression for the final error,

|φN
∆t(λN−1)− gN (λ∗

N−1)| ≤ NK

(

max
j

|φj
∆t(λj−1)− gj∆t(λj−1)|

+ max
j

|gj∆t(λj−1)− gj(λj−1)|

)

.

We will require that our time discretization method satisfies

|gj∆t(λj−1)− gj(λj−1)| ≤ C1
1

N
O(∆tk), (12)

where C1 is independent of the time interval Tj − Tj−1 and k is the order of error
in the underlying time discretization method,

|g∆t(λ
∗
0)− g(λ∗

0)| ≤ D1(T)O(∆tk).

The standard error bounds for many time discretization methods (including linear
multistep methods) have D1 growing exponentially with the length of the time
interval that we are integrating over, so that (12) is not hard to satisfy [1, 14].
The analogous condition for the interpolation is easy to state but perhaps harder

to interpret. It is

|φj
∆t(λj−1)− gj∆t(λj−1)| ≤ C2

1

N
O(∆ξℓ), (13)

where ℓ again represents the order of error of the underlying interpolation on the

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

10 A. T. Barker

initial value space:

|φ∆t(λ
∗
0)− g∆t(λ

∗
0)| ≤ D2(T)O(∆ξℓ).

Here we are assuming that the interpolating function to the time discretization
operator is more accurate if the time integration is over a short interval than if it is
over a long interval (cf. [20]). If we use polynomial interpolation, standard results
give us

|φj
∆t(λj−1)− gj∆t(λj−1)| ≤ C3∆ξp+1max

ξ∈Ξ

∣

∣

∣

∣

∣

∂p+1gj∆t(ξ)

∂ξp+1

∣

∣

∣

∣

∣

,

where p is the order of the polynomial. The quantity in absolute value can be
interpreted as the D2(T) above, and in general can be expected to grow very
quickly in T , so that (13) is also a very plausible assumption for a wide range of
problems—in particular it certainly holds for our simple model problem (4) with
linear interpolation.
We put these simple results together in the following

Theorem 5.1 Under the assumptions (10), (12) and (13), we have

|φj
∆t(λj−1)− gj(λ∗

j−1)| ≤ O(∆ξℓ) +O(∆tk), (14)

and in particular if we balance interpolation and time discretization errors, the

Nievergelt approach recovers the error of the underlying time discretization.

For linear differential equations, the solution is also linear as a function of its
initial condition, so that the interpolation error can be made zero using only enough
points to construct a basis for the initial condition space, as shown in [20]. In the
remainder of the paper we will focus on this simpler case.
We close this section with a few comments on the cost required to achieve this er-

ror. The Nievergelt algorithm is very computationally costly in conventional terms.
In a sense, we trade off everything else against communication costs, assuming those
to be dominant. The result is that floating point operation counts and storage costs
are very high. For example, when applied to a nonlinear PDE discretized with r
unknowns, the initial value space will have dimension r. If you sample uniformly
in this high–dimensional space, with ℓ points for each of the r unknowns, then the
total number of operations to construct the propagation operator (or storage to
store the final conditions) will grow as ℓr. If parallel operations are truly free we
may be willing to pay this cost, or in some cases we may be able to sample much
more efficiently than uniformly.
In addition to the computational cost, in many dimensions the choice of how

to sample the initial value space and how to perform the interpolation step is not
straightforward. If some suitable interpolation can be applied, than the Nievergelt
method can in principle be applied and will result in parallel speedup, but in many
cases this will not be practical and some other algorithm must be sought.
However, in the remainder of this paper we will consider linear problems, where

the storage and cost issues can be greatly reduced and the interpolation issue
disappears completely. In particular, if after space discretization we have the system

d

dt
y = A(t)y + b(t), (15)

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics 11

Table 5. Time to solution in

seconds for the model prob-

lem (17) using various num-

bers of processors N . Here

∆t = 0.005 and ∆x = 0.1, we

are propagating from t = 0 to

t = 10 using backward Euler

for timestepping.
N Ttotal Tcomm

1 0.2870 —
2 1.0547 1.71e-4
4 0.5264 4.13e-4
8 0.2637 4.51e-4
16 0.1322 2.38e-4
32 0.06730 6.16e-4
64 0.03453 6.71e-4
128 0.01763 6.13e-4

then the solution is an affine function of the initial condition y0. With M points in
the spatial discretization, then y0 =

∑M
j=1 yjej for the unit basis vectors ej , and we

can solve (15) once with a zero initial condition and solve a homogeneous version
of (15) M times, once for each basis vector. This can be done with no knowledge
of the true initial condition coefficients yj. Then we reconstruct the solution

y = g∆t(0) +

M
∑

j=1

yjg∆t(ej). (16)

We use the notation g∆t (rather than φ∆t) because there is no need for interpolation
in this linear setting and this technique introduces no additional error beyond
rounding error.

6. The heat equation and wave equation

Having examined the Nievergelt approach numerically on a simple scalar initial
value problem and done some analysis, we now turn to some results for slightly
more complicated problems. First we consider the variable coefficient heat equation

∂y

∂t
=

(

1 +
1

4
sin(t)

)

∂2y

∂x2
+ b(t), x ∈ [0, 1] (17)

in one dimension with homogeneous Dirichlet boundary conditions and with b(t)
and the initial conditions chosen so that the true solution is given by

y = cos(t) sin(πx).

We note that (17) has a nonconstant coefficient and so that methods on exponential
quadrature or Laplace transforms [13, 15, 21] and the paraexp method [11] are not
applicable.
After discretization in space using standard centered finite differences and M

spatial points, (17) can be written in the form (15). On each parallel time slice we
solve this problem M +1 times with different initial conditions (and with b(t) 6= 0
only once) and reconstruct the solution using (16) and a single communication
step.
Some numerical results are shown in Table 5, where we can see a speedup of about

15. Note that we are able to get this speedup partially because we are willing to
accept poor spatial resolution. If more points in space are required, we will need

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

12 A. T. Barker

Table 6. Parareal comparison to Table 5, with ∆t = 0.005,∆T = 0.1, and propagating to a

final time of 10.
k = 2 k = 3 k = 4 k = 8

N Ttotal Tcomm Ttotal Tcomm Ttotal Tcomm Ttotal Tcomm

2 0.3047 2.79e-5 0.4533 4.20e-5 0.6028 4.89e-5 1.204 1.06e-4
4 0.1500 2.88e-4 0.2250 5.48e-4 0.2994 4.72e-4 0.5986 8.81e-4
8 0.07744 6.22e-4 0.1152 7.53e-4 0.1533 6.56e-4 0.3054 1.03e-3
16 0.04020 1.35e-3 0.05938 1.87e-3 0.07721 5.66e-4 0.1543 7.54e-4
32 0.02163 1.72e-3 0.03119 1.57e-3 0.04093 1.85e-3 0.07940 1.56e-3

Table 7. Time to solution

in seconds for the model

problem (17) using various

numbers of processors N .

Here ∆t = 0.001 and ∆x =

0.05, we are propagating

from t = 0 to t = 10

using backward Euler for

timestepping.
N Ttotal Tcomm

1 1.641 —
2 12.309 4.84e-4
4 6.112 2.26-3
8 3.068 1.11e-2
16 1.530 4.92e-3
32 0.7748 1.12e-2
64 0.3859 1.57e-3
128 0.1939 6.07e-4
256 0.0984 4.37e-4

Table 8. Time to solution in

seconds for the model prob-

lem (17) using various num-

bers of processors N . Here

∆t = 0.0005 and ∆x = 0.01,

propagating from t = 0 to

t = 10, using backward Eu-

ler for timestepping.
N Ttotal Tcomm

1 16.166 —
32 45.593 0.230
64 22.901 0.140
128 11.867 0.203
256 6.130 0.361
512 3.118 0.0963
1024 1.595 0.0780

Table 9. Timing comparisons between parareal and the Nievergelt minimal communication

method. Here ∆t = 0.005 and we use backward Euler and include an artificial communication

delay of 0.001 seconds for every receive. The parareal method uses ∆T = 0.1.
Nievergelt k = 2 k = 4 k = 8

N Ttotal Tcomm Ttotal Tcomm Ttotal Tcomm Ttotal Tcomm

1 0.2870 —
2 1.0690 4.31e-3 0.3251 2.37e-2 0.6349 3.25e-2 1.4513 7.98e-2
4 0.5360 7.82e-3 0.1680 1.76e-2 0.3568 5.66e-2 0.7220 1.21e-1
8 0.2834 1.89e-2 0.1105 3.38e-2 0.2049 5.41e-2 0.4199 1.16e-1
16 0.1500 1.73e-2 0.07022 3.18e-2 0.1347 5.85e-2 0.2512 9.97e-2
32 0.08318 1.64e-2 0.05538 3.55e-2 0.1067 6.75e-2 0.2002 1.23e-1
64 0.04521 1.15e-2 0.04460 3.44e-2 0.08416 6.43e-2 0.1645 1.25e-1

many more processors to see speedup, but there is no real barrier to doing this
provided the processors are available. Scaling results for a parareal implementation
of this problem are shown in Table 6. See also Tables 7 and 8 which achieve similar
speedups for larger problems with more processors.
Comparisons of the communication times in Tables 5 and 6 show that we do not,

in fact, live in a world where parallel floating point operations are free compared
to communication time, and the Nievergelt algorithm is competitive with parareal
only if we require an unrealistically large number of parareal iterations. In Table
9 we simulate additional latency by enforcing a delay of one millisecond for every

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

International Journal of Computer Mathematics 13

Table 10. Time to solution

for model problem (18) with

M = 40 Chebyshev points,

integrating to a final time of

16.
N Ttotal Tcomm

1 3.193 —
2 64.950 0.0782
4 32.453 0.00122
8 16.334 0.0907
16 8.163 0.0416
32 4.124 0.00121
64 2.061 0.0299
64 2.049 0.0288
128 1.039 0.0223
256 0.552 0.0620

message that is received from another processor, and it is clear that in this simu-
lated high-latency environment the additional communication steps of the parareal
method are a drawback, especially for problems where a large number of iterations
might be required. As parallel computations become cheaper relative to communi-
cation, the Nievergelt approach becomes more and more promising in comparison
to the parareal method.
The parareal algorithm is reported to work relatively poorly for second–order

problems and for hyperbolic problems [4, 8–10], and many of the other time-parallel
methods we considered in the introduction are restricted to parabolic problems
[7, 15, 21]. As our final numerical example we consider the Nievergelt method
applied to these types of problems. In [8, 9], a version of the parareal algorithm
for second–order and hyperbolic algorithms is presented—however, this method
requires the communication of more initial conditions from more distant processors
(not just the immediately preceding time slice), and so is not competitive in trying
to minimize communication.
We will use an example problem from [22], Program 19, which is the wave equa-

tion

∂2y

∂t2
=

∂2y

∂x2
, x ∈ [0, 1] (18)

with homogeneous Dirichlet boundary conditions and with the initial conditions
such that the solution is a single peaked wave propagating to the left. This problem
is discretized in space with a spectral method on Chebyshev points, and time-
stepping is with the explicit second-order leapfrog method. We will use a varying
number M of spatial points but always choose a timestep of ∆t = 8/M2 to satisfy
a CFL condition. See [22] for details for this model problem.
The time-domain decomposition proceeds much as it did for the heat equation,

the only important difference being that we have two initial conditions (data from
the previous timestep and the step before that) to deal with and to transfer from
subdomain to subdomain. This has the effect of doubling the initial value space,
that is, if we haveM = 80 spatial points, we need to propagate 160 initial conditions
to get the full map from initial conditions to final conditions.
Numerical results are shown in Tables 10 and 11.

7. Conclusion

We have examined the method of Nievergelt for the parallel solution of time-
dependent problems, a method which essentially builds the time propagation op-
erator on each time-slice in parallel with no knowledge of the initial conditions.

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

14 A. T. Barker

Table 11. Time to solution

for model problem (18) with

M = 80 Chebyshev points,

integrating to a final time of

20.
N Ttotal Tcomm

1 9.058 —
16 90.969 0.399
32 45.673 0.291
64 22.845 0.150
128 11.454 0.104
256 5.809 0.211
512 3.030 0.212

It is clear from a viewpoint of counting arithmetic operations that the Nievergelt
approach is not efficient, and it may never be suitable for nonlinear problems
with a large number of degrees of freedom. However, we are moving to a future
where computational cores are essentially free—hundreds of them may be sitting
unused on your desktop, and if there is any way to use them profitably it may be
worthwhile even if the efficiency is poor. In addition, for some applications the total
time to solution is the only concern, and the amount of computational resources
spent is less important. It is this kind of hardware environment and these kind of
applications that the parareal algorithm was invented to deal with. The Nievergelt
method compares well to the parareal algorithm but has the important advantage
of always requiring less communication, and it is applicable to more situations than
methods based on exponential quadrature or Laplace transforms.
In our work above, we have shown speedup of 3 on 32 processors for a scalar

ODE problem, a speedup of 10 on 1024 processors for a variable coefficient heat
equation and speedup of 5 on 256 processors for a wave equation. These results are
somewhat worse than those in published parareal implementations, but roughly
comparable. The original parareal paper [16] predicted speedups of 8 to 18, and in
[17] the authors get speedup of 5 or 6 on 200 processors. The best speedups in [4]
and [5] are from 4 to 6. For the different paraexp method, speedups are reported
to be from 4 to 6 [11]. In addition to speedup on traditional parallel clusters, we
have seen that implementing the Nievergelt algorithm on a GPU provides modest
speedup, with this case being of particular interest because many computational
scientists will have a GPU sitting idle in their desktop while they wait for a CPU
to compute their results.
The assumptions that we are using in this work, namely that parallel computa-

tion is so cheap as to be nearly free when compared to communication costs, are not
satisfied on traditional parallel machines. However, to some extent this assumption
holds on modern graphics hardware, and we have shown that algorithms can be
designed for a future world where this kind of pattern is more common. Even if
the very high computational and storage costs of the Nievergelt method make it
impractical in many cases, we argue that something like it could influence at least
part of the design of future parallel methods and that understanding this extreme
case may point the way to exploiting future hardware where communication costs
dominate computational costs. Aside from the model problem at the beginning,
we have focused on linear problems, because in this case it is easier to construct
and represent the map from initial conditions to final conditions. In the general
nonlinear case, using this map will require approximating it and using some high-
dimensional interpolation scheme, which may be prohibitively expensive. However,
there is no additional communication necessary for nonlinear problems.
We have divided our time domain into slices and assigned each slice to a single

processor on a parallel machine, but it is worth noting that there is a great deal
more parallelism inherent in the problem than we have exploited. The map from

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

REFERENCES 15

initial to final conditions is constructed by integrating in time a large number of
initial conditions given by some discretization of the initial condition space, and in
principle each of these time integrations could be done on a separate processor or
processing core in parallel. The lack of need for synchronization in the whole algo-
rithm (except at the final step) suggests the possibility of a distributed computing
model for some applications.
There are several possible directions for future research. One is to combine the

Nievergelt approach with a parareal method in some way, to get a balance of the
communication costs versus the greatly added computation of Nievergelt. Another
is to do more realistic nonlinear problems so as to more carefully consider the
role of interpolation in the method. Ongoing research is to combine the traditional
parallel implementation with the GPU implementation to see the potential of the
method on heterogeneous systems.

Acknowledgements

This work was supported in part by the U.S. National Science Foundation un-
der Grant Number DMS-07-39382. Computational resources were provided by the
Louisiana Optical Network Initiative and the Stellar Group at the Center for Com-
putational Technology at Louisiana State University.

References

[1] K.E. Atkinson, An introduction to numerical analysis, Wiley (1989).
[2] A.J. Christlieb, C.D. MacDonald, and B.W. Ong, Parallel high-order integrators, SIAM J. Sci. Com-

put. 32 (2010), pp. 818–835.
[3] M. Duarte, M. Massot, and S. Descombes, Parareal operator splitting techniques for multi-scale re-

action waves: numerical analysis and strategies, Math. Model. Numer. Anal. 45 (2011), pp. 825–852.
[4] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility stud-

ies for fluid, structure, and fluid–structure applications, Int. J. Numer. Meth. Engng. 58 (2003), pp.
1397–1434.

[5] C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, Time-parallel implicit integrators for the
near-real-time prediction of linear structural dynamic responses, Int. J. Numer. Meth. Engng. 67
(2006), pp. 697–724.

[6] P.F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the Navier-
Stokes equations, in Domain Decomposition Methods in Science and Enginnering, e.a. Timothy
J. Barth, ed., Lecture Notes in Computational Science and Engineering, vol. 40, Springer, 2005,
pp. 443–440.

[7] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation meth-
ods, SIAM J. Sci. Stat. Comput. 13 (1992), pp. 1236–1264.

[8] M. Gander and M. Petcu, Analysis of a modified parareal algorithm for second-order ordinary differ-
ential equations, AIP Conference Proceedings 936 (2007), pp. 233–236.

[9] ———, Analysis of a Krylov subspace enhanced parareal algorithm for linear problems, ESAIM Proc.
25 (2008), pp. 114–129.

[10] M.J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems using characteristics,
Bol. Soc. Esp. Mat. Apl. 42 (2008), pp. 5–19.

[11] M.J. Gander and S. Güttel, Paraexp: A parallel integrator for linear initial-value problems, SIAM J.
Sci. Comput. (2013), p. to appear.

[12] M.J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM
J. Sci. Comput. 29 (2007), pp. 556–678.

[13] I.P. Gavrilyuk and L. Makarov, Exponentially convergent algorithms for the operator exponential
with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal. 43 (2005),
pp. 2144–2177.

[14] P. Henrici, Discrete variable methods in ordinary differential equations, Wiley (1961).
[15] M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for parabolic problems, Appl.

Numer. Math. 53 (2005), pp. 323–339.
[16] J.L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps pararéel, C.R.

Acad. Sci. Paris 332 (2001), pp. 661–668.
[17] Y. Liu and J. Hu, Modified propagators of parareal in time algorithm and application to Princeton

Ocean model, Int. J. Numer. Meth. Fluids 57 (2008), pp. 1793–1804.
[18] Y. Maday and G. Turinici, The parareal in time iterative solver: a further direction to parallel imple-

mentation, in Domain Decomposition Methods in Science and Engineering, e.a. Timothy J. Barth,
ed., Lecture Notes in Computational Science and Engineering, vol. 40, Springer, 2005, pp. 441–448.

August 21, 2021 15:7 International Journal of Computer Mathematics minimal

16 REFERENCES

[19] M.L. Minion, A hybrid parareal spectral deferred corrections method, Comm. App. Math. and Comp.
Sci. 5 (2010), pp. 265–301.

[20] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7 (1964),
pp. 731–733.

[21] D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations
based on Laplace transformation and quadrature, IMA J. Numer. Anal. 23 (2003), pp. 269–299.

[22] L.N. Trefethen, Spectral Methods in MATLAB, SIAM (2000).

