
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1080/00207160.2014.887201

http://hdl.handle.net/10251/65554

Taylor & Francis: STM, Behavioural Science and Public Health Titles

Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, M.
(2015). Two weighted-order classes of iterative root-finding methods. International Journal of
Computer Mathematics. 92(9):1790-1805. doi:10.1080/00207160.2014.887201.



Two weighted eight-order classes of iterative root-finding methods ∗

Santiago Artidiello1, Alicia Cordero2, Juan R. Torregrosa2 and Maŕıa P. Vassileva1
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Abstract

In this paper we design, by using the weight function technique, two families of iterative schemes with
order of convergence eight. These weight functions depend on one, two and three variables and they are
used in the second and third step of the iterative expression. Dynamics on polynomial and non-polynomial
functions is analyzed and they are applied on the problem of preliminary orbit determination by using a
modified Gauss method. Finally, some standard test functions are to check the reliability of the proposed
schemes and allow us to compare them with other known methods.

Key Words: Nonlinear equation, iterative schemes, optimal methods, weight functions technique, efficiency
index.
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1 Introduction

Nonlinearity appears frequently in real problems, which are modeled by different branches of science and en-
gineering. These models try to simplify the original problems holding their main properties. So, they usually
remain nonlinear. The use of iterative techniques to estimate the solutions of these kind of problems has revealed
itself as a fruitful area of research.

In general, we try to find a simple real solution ξ ∈ I of a nonlinear equation f(x) = 0. The most of the
computationally useful techniques to determine roots can be classified as: (a) iterative methods that require
only functional evaluations of f , and (b) methods whose iterative formula require evaluations of the function and
its derivatives. There are two known simple and effective methods that represent these classes: Steffensen’ and
Newton’s methods, respectively, both with order of convergence two. The search of variants of these methods
with an accelerated convergence and a reduced number of operations and functional evaluations has resulted
in the last decades in multistep methods. These schemes belong to the class of most powerful methods that
overcome the limitations of the methods of a point with respect to the order of convergence and computational
efficiency. This type of iterative methods were extensively studied in Traub’s text, [1] and more recently, in [2].

The most of multistep iterative methods modify Newton’s scheme to solve nonlinear equations with a high-
order of convergence (see [3, 4, 5, 6, 7]). However, they frequently use derivatives, which is a serious disadvantage.
Sometimes, the applications of iterative algorithms that depend on derivatives are restricted in engineering and
science. For these cases, different authors have developed derivative-free iterative methods in numerous papers,
that only need the additional evaluations of the function (see [8, 9, 10, 11]).

In this paper (following the ideas presented in [12] and [13]) we design, in Section 2, two families of iterative
methods belonging to classes (a) and (b), respectively, both of eighth-order of convergence. Their stability
properties are tested on different functions in Section 3. In Section 4, an application is made on the problem
of preliminary orbit determination. This problem is used to test the robustness and efficiency of the proposed
methods, compared with other partners of the same order and with the original scheme used by Gauss and
introduced in [14]. To get this aim, variable precision arithmetics is used to work with a high number of digits
and a very restrictive stopping criterium which are not needed in real cases. Finally, in Section 5 some test
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functions are used to compare the numerical results of our methods with the obtained by other eighth-order
schemes.

2 Design of the families

Let us remember that the iterative expression of Steffensen’s scheme is

xk+1 = xk − f(xk)

f [zk, xk]
,

where zk = xk + βf(xk), f [., .] denotes the usual first-order divided differences and Newton’s one is

xk+1 = xk − f(xk)

f ′(xk)
.

If we compose any of these methods with itself, schemes of order 4 with 4 functional evaluations are obtained
in both cases. That makes them non-optimal, according to the conjecture of Kung-Traub [15].

In double Newton scheme, let us consider a frozen derivative in the second step, obtaining the non-optimal
Traub’s method of order 3 (see [1]). The authors in [13], using the technique of weight functions, got to increase
to four the order of convergence of the Traub’s scheme without adding new functional evaluations. The iterative
expression of the obtained method is

yk = xk − f(xk)

f ′(xk)
,

xk+1 = yk −H(uk)
f(yk)

f ′(xk)
, (1)

where H(uk) represents a real-valued function and uk =
f(yk)

b1f(xk) + b2f(yk)
, being b1 and b2 real parameters.

Now, let us consider the double Steffensen scheme, holding the divided difference in the denominator in the
second step. By using the technique of weight functions, Petković et al. in [12] increase to four the order of
convergence of double Steffensen method without adding new functional evaluations. The iterative scheme of
the resulting method is

yk = xk − f(xk)

f [zk, xk]
,

xk+1 = yk −H(uk, vk)
f(yk)

f [zk, xk]
, (2)

where zk = xk + βf(xk), uk =
f(yk)

f(xk)
and vk =

f(yk)

f(zk)
. Under some conditions on H and for nonzero arbitrary

values of β, (2) is an optimal method of order four.
Following these ideas, we design two classes of three-steps methods, that satisfy the following results. Let

us notice that a particular subclass of the family presented in Theorem 1 was designed by Džunić et al. in [16].

Theorem 1 Let ξ ∈ I be a simple zero of a sufficiently differentiable function f : I ⊂ R → R on an open interval
I. Let H and G be sufficiently differentiable real functions and x0 be an initial approximation close enough to
ξ. If β = 1 and H and G satisfy H(0) = 1, H ′(0) = 2b1, H ′′(0) = 2b1(2b1 + b2), G(0, 0) = Gv(0, 0) = 1,
Gu(0, 0) = 2b1, Guv(0, 0) = 4b1, Guu(0, 0) = 2b1(3b1 + b2) and |Gvv(0, 0)| < +∞. Then, the method

yk = xk − β
f(xk)

f ′(xk)
,

zk = yk −H(uk)
f(yk)

f ′(xk)
, (3)

xk+1 = zk −G(uk, vk)
f(zk)

f ′(xk)
,
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where uk =
f(yk)

b1f(xk) + b2f(yk)
, being b1 and b2 arbitrary real parameters and vk =

f(zk)

f(yk)
, has order of conver-

gence eight for any value b1 different from zero.

Proof. Let us introduce the Taylor’s series expansion of f and f ′ around ξ

f(xk) = f ′(ξ)

8∑
j=1

cje
j
k +O(e9k) and f ′(xk) = f ′(ξ)

8∑
j=1

(j + 1)cj+1e
j
k +O(e9k),

where cj =
f (j)(ξ)

j!f ′(ξ)
and ek = xk − ξ. Applying these developments on the damped Newton’s method

yk = xk − β
f(xk)

f ′(xk)
= ξ +

8∑
j=1

Aje
j
k +O(e9k),

where A1 = 1 − β, A2 = −2βc2, A3 = 2β(c3 − c22) and A4 = β(4c32 − 7c2c3 + 3c4). Using again Taylor’s series
expansion, we get

f(yk) = f ′(ξ)
8∑

j=1

Bje
j
k +O(e9k),

where B1 = A1, B2 = (β2 − β + 1)c2, B3 = −2β2c22 + (1 − β + 3β2 − β3)c3 and B4 = (1 − β + 6β2 − 4β3 +
β4)c4 + 5β2c32 + β2(3β − 10)c3c2.

Now, the expansion of uk =
f(xk)

b1f(xk) + b2f(yk)
can be calculated and then, a Taylor’s series expression is

obtained for the weight function H(uk) ≈ H(0) +H ′(0)uk + (1/2)H ′′(0)u2
k. So,

zk = yk −H(uk)
f(yk)

f ′(xk)
= ξ +

8∑
j=1

Zje
j
k +O(e9k)

and the error equation of the second step is ezk =
8∑

j=1

Zje
j
k +O(e9k) whose first term depend on the factor

Z1 = (1− β)

[
1−H(0) +

1− β

2(b1 + b2(1− β))2
(−2b1H

′(0) + (β − 1)(2b2H
′(0) +H ′′(0)))

]
.

The condition for obtaining at least convergence order 2 is Z1 = 0, so we need β = 1. Introducing this value

in the error equation of this step we obtain ezk =
8∑

j=2

Z̄je
j
k +O(e9k), where

Z̄2 = (1−H(0))c2, and Z̄3 = 2(1−H(0))c3 − (2− 4H(0) +H ′(0)/b1)c
2
2.

Solving the system of simultaneous equations Z̄2 = 0 and Z̄3 = 0 we get H(0) = 1 and H ′(0) = 2b1. Substituting
these conditions we obtain the error expression

ezk =
1

2b21

(
(4b1b2 + 10b21 −H ′′(0))c22 − 2b21c3

)
c2e

4
k +

8∑
j=5

¯̄Zje
j
k +O(e9k).

From this expression we conclude that the second step of the iterative expression (3) can have convergence

order no more than 4 as b1 ̸= 0. By using again Taylor’s expansion f(z) = f ′(ξ)
8∑

j=4

Dje
j
k + O(e9k), where

D4 = 1
2b21

(
(4b1b2 + 10b21 −H ′′(0))c22 − 2b21c3

)
c2.
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Now, we define the new variable vk =
f(zk)

f(yk)
and the weight function G(uk, vk) ≈ G(0, 0) + Gu(0, 0)uk +

Gv(0, 0)vk + 1
2 (Guu(0, 0)u

2
k +Gvv(0, 0)v

2
k) +Guv(0, 0)ukvk.

Then, as xk+1 = zk −G(uk, vk)
f(zk)

f ′(xk)
we obtain

ek+1 =
1

2b21
(1−G(0, 0))[(4b1b2 + 10b21 −H ′′(0))c22 − 2b21c3]c2e

4
k +

8∑
j=5

Lje
j
k +O(e9k).

If we choose G(0, 0) = 1, the order of convergence will be at least 5. Substituting these condition in the error
equation we obtain the new expression of it

ek+1 =
1

2b31
(2b1 −Gu(0, 0))[(4b1b2 + 10b21 −H ′′(0))c22 − 2b21c3]c2e

5
k +

8∑
j=6

L̄je
j
k +O(e9k).

Let us observe that if Gu(0, 0) = 2b1, the term of order 5 vanishes. Again, we substitute this condition in the
error equation and simplifying we obtain

ek+1 =
8∑

j=6

¯̄Lje
j
k +O(e9k),

where ¯̄L6 =
1

4b41
((4b1b2 + 10b21 − H ′′(0))c22 − 2b21c3)[(r1c

2
2 + 2b21(1 − Gv(0, 0))c3]c2 and r1 = 4b1b2(Gv(0, 0) −

1) + 2b21(5Gv(0, 0)− 6) +Guu(0, 0)−Gv(0, 0)H
′′(0). If Gv(0, 0) = 1 and Guu(0, 0) = 2b21 +H ′′(0) the order of

convergence is at least 7 and the error expression obtained ek+1 =
¯̄̄
L7e

7
k +

¯̄̄
L8e

8
k +O(e9k), where

¯̄̄
L7 =

1

4b51
(nc22 − 2b21c3)[r2c

2
2 − (8b31 + 2b21Guv(0, 0))c3)c

2
2.

In order to reach eighth-order of convergence we need
¯̄̄
L7 = 0, that is, Guv(0, 0) = 4b1 and H ′′(0) = 2(2b21+b1b2).

Finally,

ek+1 =
1

2b31
[(3b1 + b2)c

2
2 − b1c3][r3c

2
3 + r4c

4
2 + r5c

2
2c3 − 2b21c2c4]e

8
k +O(e9k),

where r3 = b21(Gvv−2), r4 = 9b21(Gvv−6)+b22(Gvv−2)+2b1b2(3Gvv−13) and r5 = b21(34−Gvv)−2b1b2(Gvv−5)
and the proof of the result is finished.

By choosing different weight functions verifying the conditions imposed in Theorem1, different classes of
methods can be found. Specifically, in the next sections we will use

H(u) = 1 + 2b1u+ b1(2b1 + b2)u
2,

G(u, v) = 1 + 2b1u+ v + b1(3b1 + b2)u
2 + 4b1uv. (4)

Let us note that if b1 = 1 and b2 = −2 then H(u) = 1 + 2u and the first two steps of (3) correspond to the
Ostrowski’s method. In this case function G is G(u, v) = 1 + 2u+ v + u2 + 4uv.

Respect to the class of derivative-free methods, mentioned in the Introduction, and taking into account
Petković ’s idea showed in (2), we establish the following result.

Theorem 2 Let ξ ∈ I be a simple zero of a sufficiently differentiable function f : I ⊂ R → R on an open interval
I and be x0 an initial approximation close enough to ξ. Let H and G be sufficiently differentiable real functions
which satisfy: H(0, 0) = Hu(0, 0) = Hv(0, 0) = 1, Huu(0, 0) = Hvv(0, 0) = 2, Huv(0, 0) = 0, G(0, 0, 0) =
Gu(0, 0, 0) = Gv(0, 0, 0) = Gw(0, 0, 0) = 1, Guu(0, 0, 0) = Gvv(0, 0, 0) = Guw(0, 0, 0) = Gvw(0, 0, 0) = 2,
Guv(0, 0, 0) = 1 and |Gww(0, 0, 0)| < ∞. Then, the method

yk = xk − f(xk)

f [zk, xk]
,

tk = yk −H(uk, vk)
f(yk)

f [zk, xk]
, (5)

xk+1 = tk −G(uk, vk, wk)
f(tk)

f [zk, xk]
,
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where zk = xk + βf(xk), uk =
f(yk)

f(xk)
, vk =

f(yk)

f(zk)
and wk =

f(tk)

f(yk)
, has order of convergence eight for any

value β different from zero and the error equation is

ek+1 = −1

2
ρ2c2(3c

2
2 − c3)((9Gww(0, 0, 0)ρ

2 + 2(−27− 54γ − 28γ2 + γ3) + γ4))c42 + 2ρ(17 + 17γ + 2γ2

− 3Gww(0, 0, 0)ρ)c
2
2c3 + (−2 +Gww(0, 0, 0))ρ

2c23 − 2ρ2c2c4))e
8
k +O(e9k),

where ρ = 1 + γ and γ = f ′(ξ)β.

Proof. By using the Taylor’s series expansion of f(xk) introduced in the previous theorem, we have

zk = ρek + γ

8∑
j=2

cje
j
k +O(e9k).

So,

f(zk) = f ′(ξ)

8∑
j=1

Zje
j
k +O(e9k),

where Z1 = ρ, Z2 = (γ+ ρ2)c2, Z3 = 2γρc22 +(γ+ ρ3)c3 and Z4 = 3γρ2c2c3 + γc2(γc
2
2 +2ρc3)+ (γ+ ρ4)c4; and,

f [xk, zk] =
f(zk)− f(xk)

zk − xk
= f ′(ξ)

1 + 8∑
j=1

Dje
j
k+

+O(e9k),

where D1 = (1 + ρ)c2, D2 = γc22 + (3ρ+ γ2)c3 and D3 = f ′(ξ)(1 + ρ)(2γc2c3 + (2ρ+ γ2)c4).
Therefore, the error at the first step of the method is

eyk
= yk − ξ =

8∑
j=2

Yje
j
k +O(e9k), (6)

where Y2 = ρc2, Y3 = −(2ρ+γ2)c22+(2+3γ+γ2)c3 and Y4 = (4+5γ+3γ2+γ3)c32− (7+10γ+7γ2+2γ3)c2c3+
(3 + 6γ + 4γ2 + γ3)c4.

Let us calculate the Taylor’s expressions for the variables uk = f(yk)
f(xk)

and vk = f(yk)
f(zk)

and the weight function

H around (0, 0)

H(uk, vk) ≈ H(0, 0) +Hu(0, 0)uk +Hv(0, 0)vk +
1

2
Huu(0, 0)u

2
k +

1

2
Hvv(0, 0)v

2
k +Huv(0, 0)ukvk. (7)

Then, the error equation of the second step is

etk = tk − ξ =
8∑

j=2

Rje
j
k +O(e9k), (8)

where R2 = −(−1 +H(0, 0))ρc2 and R3 = −(2ρ +Hv(0, 0) + γHv(0, 0) + γ2 + ρ2Hu(0, 0) −H(0, 0)(4 + 5γ +
2γ2))c22 − (−1 +H(0, 0))(2 + 3γ + γ2)c3. In order to tk reaches fourth-order of convergence, we need to assume
that H(0, 0) = Hu(0, 0) = Hv(0, 0) = 1. With these values,

etk =
8∑

j=4

R̄je
j
k +O(e9k), (9)

where R̄4 = −1
2ρ(r4,1c

3
2 + r4,2c2c3), r4,1 = −2(5ρ + γ2) + hvv(0, 0) + 2huv(0, 0)ρ + huu(0, 0)ρ

2 and r4,2 = 2ρ.
Then,

f(tk) = f ′(ξ)
8∑

j=4

R̄je
j
k +O(e9k). (10)
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Now, we calculate the expression of wk = f(tk)
f(yk)

and the expression of the weight function G(uk, vk, wk) around

(0, 0, 0)

G(uk, vk, wk) ≈ G(0, 0, 0) +Gu(0, 0, 0)uk +Gv(0, 0, 0)vk +Gw(0, 0, 0)wk +
1

2
Guu(0, 0, 0)u

2
k +

1

2
Gvv(0, 0, 0)v

2
k

+
1

2
Gww(0, 0, 0)w

2
k +Guv(0, 0, 0)ukvk +Guw(0, 0, 0)ukwk +Gvw(0, 0, 0)vkwk.

Therefore, the error equation of the method is

ek+1 =
8∑

j=4

Lje
j
k +O(e9k), (11)

where L4 = 1
2 (−1 + G(0, 0, 0))ρ(r4,1c

3
2 + r4,2c2c3). If we assume G(0, 0, 0) = 1, then the fourth-order term

vanishes and L̄5 = 1
2 (−2 +Gu(0, 0, 0) +Gv(0, 0, 0)− γ(1−Gu(0, 0, 0)))ρ(r4,1c

4
2 + r4,2c

2
2c3).

Now, if Gu(0, 0, 0) = Gv(0, 0, 0) = 1, we reach the sixth-order and ¯̄L6 = 1
4ρ(r4,1c

3
2+ r4,2c2c3)((−2(6ρ+γ2)+

2Guv(0, 0, 0)ρ+Gvv(0, 0, 0)+Guu(0, 0, 0)ρ
2+Gw(0, 0, 0)(2(5ρ

2+γ2)−Huu(0, 0)ρ
2−2Huv(0, 0)ρ−Hvv(0, 0))c

3
2−

2(Gw(0, 0, 0)− 1)ρc2c3).
Again, by imposing conditions Guv(0, 0, 0) = 1 +Huv(0, 0), Gw(0, 0, 0) = 1 and Huu(0, 0) = Guu(0, 0, 0), we

obtain order 7 with

¯̄̄
L7 = −1

4

(
ρc22

((
−10 + 2Huv(0, 0) +Hvv(0, 0)− 10γ + 2γHuv(0, 0)− 2γ2 +Guu(0, 0, 0)ρ

2
)
c22 + 2ρc3

)
((32− 10Gvw(0, 0, 0)− 4Huv(0, 0) + 2Gvw(0, 0, 0)Huv(0, 0)− 2Hvv(0, 0) +Gvw(0, 0, 0)Hvv(0, 0)

+48γ − 10γGvw(0, 0, 0)− 6γHuv(0, 0) + 2γGvw(0, 0, 0)Huv(0, 0)− γHvv(0, 0) + 20γ2

−2γ2Gvw(0, 0, 0)− 2γ2Huv(0, 0) + 2γ3 +Guu(0, 0, 0)ρ
2(−2 +Guw(0, 0, 0) +Gvw(0, 0, 0)

−γ + γGuw(0, 0, 0)) +Guw(0, 0, 0)ρ
(
Hvv(0, 0) + 2Huv(0, 0)ρ− 2

(
5 + 5γ + γ2

)))
c22

+2ρ(−4 +Guw(0, 0, 0) +Gvw(0, 0, 0)− 2γ + γGuw(0, 0, 0))c3)) .

Finally, conditions Guu(0, 0, 0) = Guw(0, 0, 0) = Gvw(0, 0, 0) = 2, Huv(0, 0) = 0 and Hvv(0, 0) = 2, allows us to
gain eighth-order with the following error equation

ek+1 = −1

2
ρ2c2(3c

2
2 − c3)((9Gww(0, 0, 0)ρ

2 + 2(−27− 54γ − 28γ2 + γ3) + γ4))c42 + 2ρ(17 + 17γ + 2γ2

− 3Gww(0, 0, 0)ρ)c
2
2c3 + (−2 +Gww(0, 0, 0))ρ

2c23 − 2ρ2c2c4))e
8
k +O(e9k)

and the proof is finished.

Remark 1 The families of three-point methods (3) and (5) require four functional evaluations and have order
of convergence eight. Therefore, these families are optimal in the sense of the Kung-Traub conjecture and have
computational efficiency index 81/4 ≈ 1.6818.

In this case, some of the functions H and G satisfying conditions of Theorem 2 are

H(u, v) = 1 + u+ v + u2 + v2,

G(u, v, w) = 1 + u+ v + w + u2 + v2 + uv + 2(vw + uw). (12)

In the following sections we are going to use the elements of the families (3), for b1 = 1 and b2 = 0, and (5)
obtained by choosing the weight functions (4) and (12). These elements of the class will be denoted by M18
and M28, respectively.

3 Dynamical aspects

The dynamical properties of the rational function associated to an iterative method acting on a polynomial give
us important information about numerical features of the method as its stability and reliability (see [17]).
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The dynamical behavior of the orbit of a point on the complex plane can be classified depending on its
asymptotic behavior. In this way, a point in the Riemann sphere z0 ∈ Ĉ is a fixed point of R if R(z0) = z0. A
fixed point is attracting, repelling or parabolic if |R′(z0)| is less than, greater than or equal to 1, respectively.
Moreover, if |R′(z0)| = 0, the fixed point is superattracting.

If z∗ is an attracting fixed point of the rational function R, its basin of attraction A(z∗) is defined as the
set of pre-images of any order such that

A(z∗f ) =
{
z0 ∈ Ĉ : Rn(z0) → z∗, n → ∞

}
.

The set of points whose orbits tends to an attracting fixed point z∗f is defined as the Fatou set, F(R). The
complementary set in the Riemann sphere, the Julia set J (R), is the closure of the set consisting of its repelling
fixed points, and establishes the borders between the basins of attraction.

For the representation of the convergence basins of every iterative procedure we have used the software
described in [18]. In order to draw the dynamical planes, each point of the complex plane is considered as
a starting point of the iterative scheme and it is painted in different colors depending on the point which it
has converged to (the roots of the polynomial are marked in the figures by white stars). The figures has been
generated for values of z0 in [−2, 2] × [−2, 2], with a mesh of 800 × 800 points and 80 iterations per point.
Depending on the number of iterations needed to converge, the color of the starting point will be brighter (less
iterations) or darker (more iterations). We will represent the dynamical behavior of the mentioned elements of
the two suggested classes, (3) and (5), for low-degree polynomials and non-polynomial functions, showing their
stability and the amplitude of the convergence regions in these cases.

IRe{z}
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(a) x2 − 1

IRe{z}
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(b) x3 − 1

Figure 1: Dynamical planes for the scheme M18

When M18 is considered, we observe in Figure 1 the basin of attraction of the different roots of low-degree
polynomials. It is possible to observe some regions of slow convergence, in form of ”flowers”, whose petals make
narrower while the convergence is slower. The black point in the center of the flowers correspond to regions of
no convergence. The observed dynamical planes define wide amplitudes for the different basins of the roots.

If we consider now the rational function associated to the element of family (5) and analyze its dynamical
behavior, we find that there exist black regions in the dynamical planes (see Figure 2) whose orbits do not tend
to any of the roots, but to the infinity. So, the are wide regions of no convergence. Moreover, it can be observed
that the amplitude of the convergence regions is narrower in some cases. Nevertheless, the convergence improves
when β is closer to zero than when it is near one.

In Figure 3, we show the dynamical planes corresponding to function f(x) = 10xe−x2 −1 in [−2, 2]× [−2, 2],
where two simple roots appear. These planes have been obtained by using Newton, M18 and M28 methods.
In all cases, it can be observed that wide regions of non convergence appear. Some of them are due to poles
of the function f . We observe that the behavior of the proposed methods is not very different from the one of
Newton’s scheme.
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Figure 2: Dynamical planes for the method M28
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Figure 3: Dynamical planes for function 10xe−x2 − 1

4 Preliminary orbit determination

A classical reference in preliminary orbit determination is F. Gauss (1777-1855), who deduced the orbit of the
minor planet Ceres, discovered in 1801 and afterwards lost. The calculation of its trajectory by means of the
procedure designed by Gauss and the re-discovering in following Gauss’ calculations, marked the international
recognition of Gauss and his work.

The so-called Gauss’ method is based on the rate y between the triangle and the ellipse sector defined by
two position vectors, from astronomical observations. This proportion is related with the geometry of the orbit
and the observed position by

y = 1 +X(l + x), (13)

where

l =
r1 + r2

4
√
r1r2 cos (

ν2−ν1

2 )
− 1

2
, x = sin2 (

E2 − E1

4
),

and

X =
E2 − E1 − sin (E2 − E1)

sin3 (E2−E1

2 )
.

The angles Ei, νi, i = 1, 2, are the eccentric and true anomalies, respectively, associated to the observed positions
−→r1 and −→r2 (let us denote by ri the modulus of vector −→ri , i = 1, 2).

Equation (13) is, actually, the composition of the First Gauss Equation

y2 =
m

l + x

and the Second Gauss Equation
y2(y − 1) = mX,

8



where m =
µτ2

[2
√
r1r2 cos (

ν2−ν1

2 )]3
, µ is the gravitational parameter of the motion and τ is a modified time

variable.
The original iterative procedure used to solve the nonlinear Gauss equation (13) is the Fixed Point method

(see, for example, [14]) and is described in the following scheme:

(i) From the initial estimation y0 = 1, x0 = m
y2
0
− l is obtained (it is possible to calculate m and l from the

observed positions −→r1 and −→r2 and the time τ .

(ii) From x0 and

cos (
E2 − E1

2
) = 1− 2x0, sin (

E2 − E1

2
) = +

√
4x0(1− x0),

we calculate E2 − E1. Then, we obtain X0 =
E2 − E1 − sin (E2 − E1)

sin3 (E2−E1

2 )
.

(iii) By using the combined Gauss equation (13)

y1 = 1 +X0(l + x0),

a new iteration is calculated and the process start again.

The iterative process follows as described above, getting new estimations of the ratio, until it does not vary
within a given tolerance. Once the method has converged, the semi-major axis a, can be calculated by means
of equation

y =

√
µp · τ

r2r1 sin (ν2 − ν1)
=

√
µ · τ

2
√
a
√
r2r1 sin (

E2−E1

2 ) cos (ν2−ν1

2 )
,

from the last estimations of ratio and difference of eccentric anomalies, and the last phase is then initiated, to
determine velocity and orbital elements.

Let us note that the initial estimation used is good only if the observations are close in time, so it is a
weakness implicit in Gauss method. Indeed, the original fixed point scheme, with linear convergence, has been
improved by the recent optimal high-order schemes. In particular, we are going to apply the proposed optimal
eight-order methods, joint with some existing schemes of the same rate of convergence, in order to get an efficient
modified-Gauss procedure of preliminary orbit determination, by solving the combined Gauss equation (13),
with y = 1 as an initial estimation.

All the iterative schemes introduced in the following are optimal in the sense of Kung-Traub’s conjecture
and have been designed with the weight-function technique, so they are fully comparable with the new ones
designed in this paper. Let us refer now to the procedure that Kim present in [4]: a three-step eighth-order
method, whose iterative expression is

yk = xk − f(xk)

f ′(xk)
,

zk = yk − 1 + uk + 2/3u2
k

1− uk − 2u2
k

f(yk)

f ′(xk)
, (14)

xk+1 = zk − 1− 2uk + vk
1− 3uk − 2vk

f(zk)

f ′(xk) + f [yk, xk, zk](zk − xk)
,

where uk = f(yk)
f(xk)

, vk = f(zk)
f(xk)

and f [·, ·, ·] denotes the divided difference of order two. We will denote this scheme

by K8.
Another recent eighth-order method has been developed by Khan et. al. in [5]. Its iterative expression is:

yk = xk − f(xk)

f ′(xk)
,

zk = yk − f(xk)
2

f(xk)2 − 2f(xk)f(yk) + f(yk)2
f(yk)

f ′(xk)
, (15)

xk+1 = zk − 1

1 + v2k

f(zk)

K − C(yk − zk)−D(yk − zk)2
,
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where vk = f(zk)
f(xk)

, K = f [yk, zk], H = f [xk, yk], C = H−K
(xk−yk)(xk−zk)

−D(xk + yk − 2zk), D = f ′(xk)−H
(xk−yk)(xk−zk)

−
H−K

(xk−zk)2
and f [·, ·] denotes the divided difference of order 1. In the following, we will denote this method by F8.

The third scheme that we will use to compare with, denoted by D8, was obtained by Dz̆unić and Petković
in [19]. It is based on Ostrowski’s fourth-order scheme (see [20]) and its iterative expression is

yk = xk − f(xk)

f ′(xk)
,

zk = yk − f(xk)

f(xk)− 2f(yk)

f(yk)

f ′(xk)
, (16)

xk+1 = zk − (1 + wk)(1 + 2vk)

1− 2uk − u2
k

f(zk)

f ′(xk)
,

where uk = f(yk)
f(xk)

, vk = f(zk)
f(xk)

and wk = f(zk)
f(yk)

.

Finally, we will also compare our new schemes with the method designed by Soleymani et al. in [21] (denoted
by S8), also initialized with Ostrowski’s procedure,

yk = xk − f(xk)

f ′(xk)
,

zk = yk − f(xk)

f(xk)− 2f(yk)

f(yk)

f ′(xk)
, (17)

xk+1 = zk − f(zk)

2f [yk, xk]− f ′(xk) + f [zk, xk, xk](zk − yk)

(
1 + wk + 2vk − 2u3

k +
2

5

f(zk)

f ′(xk)

)
,

where uk = f(yk)
f(xk)

, vk = f(zk)
f(xk)

and wk = f(zk)
f(yk)

.

In the numerical test made, variable precision arithmetics has been used, with 4000 digits of mantissa in
Matlab R2011b. Some reference orbits have been used in the test, that can be found in [14]. As orbital elements
of each one of the test orbits are known, the vector position in the instants t1 and t2 have been re-calculated
with 3998 exact digits. Then, our aim is gain from these positions, the orbital elements, with a precision as
high as possible:

• Test Orbit I has the position vectors

r⃗1 ≈ [2.46080928705339, 2.04052290636432, 0.14381905768815]

and
r⃗2 ≈ [1.98804155574820, 2.50333354505224, 0.31455350605251],

measured in Earth radius (e.r.) at the instants t1 = 0 and t2 = 0.01044412000000 julian days (J.D.).
The orbital elements corresponding to the geometry of the orbit are the semimajor axis a = 4 e.r., the
eccentricity e = 0.2, the epoch of the perigee T0 = 0h0m0s, and the Euler angles which fit the orbit in
space are the Right Ascension of the ascending node, Ω = 30o, the argument of the perigee ω = 10o and
the inclination of the orbit i = 15o.

• Test Orbit II. Position vectors and times:

r⃗1 ≈ [−1.75981065999937, 1.68112802634201, 1.16913429510899] e.r., t1 = 0 J.D.,

r⃗2 ≈ [−2.23077219993536, 0.77453561301361, 1.34602197883025] e.r., t2 = 0.01527809 J.D.,

Orbital elements: Ω = 80o, ω = 60o, i = 30o, a = 3 e.r., e = 0.1, T0 = 0h0m0s.

• Test Orbit III. Position vectors and times:

r⃗1 ≈ [0.41136206679761,−1.66250000000000, 0.82272413359522] e.r., t1 = 0 J.D.,

r⃗2 ≈ [0.97756752977209,−1.64428006097667,−0.04236299091612] e.r., t2 = 0.01316924 J.D.,

Orbital elements: Ω = 120o, ω = 150o, i = 60o, a = 2 e.r., e = 0.05, T0 = 0h0m0s.
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By using these test positions vectors and times, we will consider that the solution provided by Newton’s
scheme with a required accuracy of 10−3998 is the exact solution yex. Then we will compare the exact error
at the first three iterations of the proposed eighth-order method M8 and the known schemes K8, F8, D8 and
S8. We also include, in Tables 1 to 3, the computational order of convergence (COC) (see [22]), in order to
check the computational efficiency of the schemes related to their theoretical rate of convergence. This index is
evaluated by the formula

COC ≈ log |(xk+1 − ξ)/(xk − ξ)|
log |(xk − ξ)/(xk−1 − ξ)|

.

Scheme Fixed Point K8 F8 D8 S8 M18
|y1 − yex| 0.006399 8.572e-25 1.717e-18 1.459e-24 1.2369276e-24 1.244e-24
|y2 − yex| 8.157e-5 8.642e-200 2.389e-96 1.105e-197 2.503241e-198 2.636e-198
|y3 − yex| 1.03e-6 9.217e-1600 1.246e-485 1.198e-1582 7.043196e-1588 1.075e-1587
COC 1.0 8.0 5.0 8.0 8.0 8.0

Table 1: Comparison of modified-Gauss schemes for Reference Orbit I

The different test orbits have been chosen with an important property: the increasing angle ν2 − ν1. It
measures the spread in the observations and, by the design of Gauss’ procedure, it induces instability in the
system when it gets higher. The difference between the true anomalies of the observations is, for the test orbits
I to III, ν2 − ν1 = 12.23o, ν2 − ν1 = 22.06o and ν2 − ν1 = 31.46o, respectively. It can be observed in Tables
1 to 3 that, when the spread of the observations increases, the precision obtained in the calculations per step
reduces in the same rate for any eighth-order method.

Scheme Fixed Point K8 F8 D8 S8 M18
|y1 − yex| 0.02314 4.650e-18 1.327e-13 4.57e-18 3.8834479e-18 2.425e-18
|y2 − yex| 0.001055 1.053e-143 8.253e-70 1.216e-143 2.8055145e-144 4.214e-146
|y3 − yex| 4.652e-5 7.296-1149 7.694e-351 3.061e-1148 2.0814831e-1153 3.508e-1168
COC 1.0 8.0 5.0 8.0 8.0 8.0

Table 2: Comparison of modified-Gauss schemes for Reference Orbit II

It is clear that the application of high-order schemes to the problem of preliminary orbit calculation by
Gauss procedure gets an important success, as the gain in speed and the precision obtained in the calculations
are increased. Nevertheless, the behavior of all the high-order schemes are not the same. The great complexity
of the calculations involved in the problem and the own stability of each iterative scheme are important factors
to take into account: let us note that Khan’s procedure is not appropriated for this particular problem, as it
converges more slowly than the rest of scheme, being a good method with theoretical order of convergence eight.

Scheme Fixed Point K8 F8 D8 S8 M18
|y1 − yex| 0.05052 6.249e-14 9.195e-11 2.6e-14 2.1653574e-14 4.962e-15
|y2 − yex| 0.004936 2.263e-109 1.888e-54 1.753e-112 3.3635496e-113 7.299e-119
|y3 − yex| 0.0004492 6.695e-873 6.897e-273 7.503e-898 1.1401025e-903 1.6e-949
COC 1.0 8.0 5.0 8.0 8.0 8.0

Table 3: Comparison of modified-Gauss schemes for Reference Orbit III

Let us note that the precision of the orbital elements calculated with the third estimation provided by any
eighth-order method is total, as all the 4000 decimal digits of the solution considered as exact are reached with
only three iterations.
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5 Numerical results

In this section we show the convergence behavior of the proposed methods M18 and M28. In the numerical
test made, variable precision arithmetics has been used, with 4000 digits of mantissa in Matlab R2010a. In
our numerical experiments we compare our schemes with Newton’s method (NM), Steffensen’s method (SM),
Ostrowski’s method (OM), and several iterative procedures, quoted below.
KWM [3]

yk = xk − f(xk)

f ′(xk)
,

zk = yk −H1
f(yk)

f ′(xk)
,

xk+1 = zk −
[
(1 +H1)

2
+ (1 + 4H1)H2

] f(zk)

f ′(xk)
,

where H1 = f(xk)
f(xk)−2f(yk)

and H2 = f(zk)
f(yk)−3f(zk)

.

CTVM [7]

yk = xk − f(xk)

f ′(xk)
,

zk = yk −H
f(yk)

f ′(xk)
,

xk+1 = uk − 3
uk − zk
yk − xk

f(zk)

f ′(xk)
,

where H = f(xk)
f(xk)−2f(yk)

, uk = zk − (H + T/2)2 f(zk)
f ′(xk)

and T = f(zk)
f(yk)−2f(zk)

.

ZLHM [8]

yk = xk − f(xk)

f [xk, zk]
, zk = xk + γf(xk),

uk = yk − f(yk)

f [yk, xk] + f [yk, xk, zk](yk − xk)
,

xk+1 = uk − f(uk)

f [uk, yk] + f [uk, yk, xk](uk − yk) + f [uk, yk, xk, zk](uk − yk)(uk − xk)
,

SKM [11]

yk = xk − f(xk)

f [xk, zk]
, zk = xk − f(xk),

uk = yk −H
f(xk)

f [xk, zk]
,

xk+1 = uk −G
f(uk)

f [xk, zk]
,

where H = 1 + w1(xk) + w2(xk), w1(xk) = f(yk)
f(xk)

, w2(xk) = f(yk)
f(zk)

, G = g1 + g2 + g3, g1 = 1 + (2 −
f [xk, zk])w1(xk) + (1 − f [xk, zk])w1(xk)

2, g2 = (4 − f [xk, zk](6 + f [xk, zk](−4 + f [xk, zk])))w1(xk)
3, g3 =

w3(xk) + w3(xk)
2 + (4− 2f [xk, zk])w4(xk), w3(xk) =

f(uk)
f(yk)

and w4 = f(uk)
f(zk)

.

Table 4 shows the expression of the test functions, the roots with sixteen significant digits and the initial
approximation x0 which is the same for all methods. Displayed in Table 5 is the number of iterations (It), the
computational order of convergence (COC), the absolute value of the function |f(xk)| at the last iteration and
root obtained at each method ξ.

These numerical results shown are in accordance with the efficiency analysis the show in Theorem 1 and
Theorem 2 presented in Section 2. Both the numerical results, such as the dynamic analysis show that derivative-
free methods are more sensitive to the initial approximation comparing them with those that use derivatives.
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Table 4: Test functions and their roots

Test functions Roots Starting points

f1 =
√
x4 + 8 sin

(
π

x2+2

)
+ x3

x4+1 −
√
6 + 8

17 ξ1 = −2 x0 = −1.8

ξ2 ≈ −1.149212674609088
f2 = x exp(x2)− sin(x2) + 3 cos(x) + 5 ξ ≈ −1.201576112092293 x0 = 2

f3 =
√
x2 + 2x+ 5− 2 sin(x)− x2 + 3 ξ1 ≈ +2.3319676558839640 x0 = 1

ξ2 ≈ −2.573166514902827
f4 = x4 + sin

(
π
x2

)
− 5 ξ1 ≈ +1.414213562373095 x0 = 2

ξ2 ≈ −1.414213562373095

f5 =
(
sin(x)− x

2

)2
ξ = 0 (double root) x0 = 0.5
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