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Abstract: In this paper, an adaptive relaxation method and a discontinuity treatmedtex age
proposed to improve thaigital imagedenoising process by using the foudfder partial differential
equation (known athe YK model) first proposed by You and KaveBince the YK model would
generatesome speckles into the denoised imagelaxation methods incorporatednto the model to
reducethe formation of isolated speckles. A additional improvementis employed to handle the
discontinuity on the edges of tlmage. In order to stop the iteration automatically, a control of the
iterationis integratednto the denoising process. Numerical resdémonstrat that such modifications

not only make the denoised image look more natural, but also aetigyleervalue of PSNR.
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1. Introduction

Image denosing, as one of the most important steps in image preprocesing, has drawn
much research interest (see Referenddd10] and the citations thereinMany
researchers proposed a large number of methods to deal with the denoising problem.
One of the mossuccessfumethods up to now is the BM3D model proposein

This model adopts a smlled block matchingechniqueand provides a collaborative
Wiener filtering to achieve excellent denosisng effelcwever, this method requires

prior information of the noisy image, i.e., the stand deviation of the noise, which is
usually unknown when performing denoising tasks. Amongst many image denoising
methods, the use of partial differential equations (PDES) plays a signifitarih the
processdue to its high efficiency wtihout any prior knowledde the literature,
various models that make use of different PDEs were proposed, such as the isotropic
model [11], the anisotropic model [1&hdthe total variational mode[g], [9]). These
models are based on second order PDEs. A more comprehensive list of relevant scond
order modelsan be found if15]. One major weakness of using a second order PDE

is the generation ofa “block effect” [16] in the image In order to overcome this
weakness, You and KaveJi7] utilized the Laplacian operator, instead of the
gradient, of image intensity to establish a fourth order PDE waitractedmuch



attention. Since then fourth order PDEs are widely deedmage denoising[12]-

[15]) and othettasksof image processind16], [17]). Some recent methods include
the fourth order dual method proposed by CRBdJj[the fractional order anisotropic
diffusion in [25 and otherq[26]-[29]). Apart from theabove some researchsing
high-order PDEs for image processingas carried ait in ([30]-[32]). Due to its
complex numerical implementation and enormous computation, it has not been very
widely used in real applications.

Although the model proposed by You and Kawald a significant success in image
processing, it has its intrinsic problems. On one hand, it would bring in isolated white
and black speckles to the denoised image. On the other hand, the method does not
involve an automatic stopping device in the iteration process asdugers have to
choose a maximum number of iteratioaspiricaly. Therefore the quality of the
denoising cannot be fully controlled. In essence, different numbers of itaraten

lead to different results. Consequently, developing a proper contrarafidrs is a
useful and crucial way to achieve an automatic denoising process.

In this paper, in order to address the problems of the YK model, an adaptive
relaxation method is introduced telieve the effect of isolated speckles and a
discontinuity tratment of edges is adopteddiearperthe discontinuity on the edges

of an image. Additioally, a control of the iterativgorocess is employed in the
numerical experiments to make the denoising procas®matic. With these
modifications, the result superior to that obtained by the YK model.

This paper is organized as follows. $ect.2, the YK model is investigated and the
reason for isolated speckleare analysed.As a consequence dhis analysisthe
adaptiverelaxaton method an@dgediscontinuity treatmenare then describedith

the automatic control of iteratiaexplainedin Sect.3. Numerical tests are given in

Sect 4 and conclusionaredrawn inSect.5.

2.The Fourth-Order PDE Model (YK Model)

In the past decade, many researchers proposed various-dodethPDESs for image
denoising. There are some beneiitsising fourthorder PDEs. First, the fourbrder

PDEs can suppss oscillation at high frequerycmore effedvely than the second
order PDEglue to that the evolution of second order PDEs becomes weak in the high

frequency areasSecond, for fouorde PDEs, therés of flexibility in employing



different functional behaviours in the formulation. In this section, an overview of the

YK model is given and the shortcomingfsthis modelareanalysedand discussed.

2.1 An Overview of the YK Model

In 2000, You and Kave[i1] proposed a timelependent fourtorder PDE for image

noise removal which is given by
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where u(x, y,t) is the greylevel function at scalé and u, is a noisyimage. Q is
the image domajnoQ is the boundary of Q andn is the unit vector orthogonal to

the boundary|n this model, You and Kaveddopted the coefficien€(-) used in the

anisotropic diffusion model, i.e.,

c(s?) = (1+ S—sz_
) 2)

where K is a constant dependent onithage.

The YK model uss a piecewise planar image to approximate an original pure image.
From the aspect of human visualization, a piecewise planar image looks more natural
than the step image which secoodier PDEs emplogd to estimate the original
image This is the reason whiythe YK model can prevetie“block effect” which is
otherwise widely seen in all second order PDE models. In order to understand how
this model works,the one-dimensial PDE of the form shown in Eqfl) is

considered [20], i.e.
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Expanding the right-hand side of E@) [eads to
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where ®,(s°)=2c"(s*)s*+3X's®) and @,(s?)=2c'(s’)s’+c(s?) . The local

2 2
behaviour of Eqn4) depends on the signs @b, and ®@,. If q){(?} ]<0, it
X

2

leads to the second ordpart forward diffusion, ¢therwiseto a second ordepart

2

o

2
backward diffusion. Likewise, if@z[(a u] J>0, Eqgn@) performs the fourtiorder

2 2
forward diffusion, Whereasd){(%J ]<0 ensuresa fourth order backward
X

diffusion.

Nevertheless, this model tends to leave the resulting images with isolated mehite a
black speckles (See Fid()). These speckles can be featured as the pixels which are
either much lighter omuch darker than their neighbouring pixels. You and Kaveh
thought that the piecewise planar images have weaker masking capabilitstepan
images used in anisotropic diffusihl]. More specific reasons of this problem are
explained inf21]. To understand the reaspacontrolprocess is applied on the black
point (denoted athe central point) in FidL(c) and its four neighbouring points.

centralpoint
(@) —(b) (©)

Fig. 1 Isolated speckles in the denoisathge obtained by YK model. (a) is the image with 10 dB

Gaussian noise, (b) is the denoised image by the YK model and (c) is thdrzobthe squar@ixel

shown in (b)

The changes of values of intensitlythe central poirabove its four neighbouring

points are shown in Fi@.
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Fig. 2 Change of intensity around isolated ddes C, W, E, N, S denotes the central point and its
four neighbouring points in Fig. d)
Fig. 2 exhibits the fact that the intensity of the central point increasesenhark

whereas the intensity of the neighbouring points either decr§asiess on the north

and south of the central point) or fluctuates slightly. As a result, the difeenenquxée
intensity between the central point and its neighbouring points becomes bigger and
bigger as the iteration goes on. On the other hand, fron2Figshould be noted that

the value of the intensitgf the central poinexceed25 which is the extreme value
when storing an image. Thus, if the image is stored at this current iteratiominbhe p
would be cast to black point. The same case applies to the white points. From the
above discussion, the reasons of isolated specklesecamimarsed as

1) The intensity of some points is changing more quickly than their neighbouring
points or they change in different ways, i.e., the intensity of the central point
increases, whereas intensities of its neighbouring points decrease.

2) The intensities of some points are not in the range [0, 255] for avgleg
image of an image used in computesion.

2.2 Implementation of the YK model

Before introducing the relaxation method into the iterative processing of khe Y
model, the discretisation of the YK model is simply decribed below.
Firstly, EQn (L) can be rewritten as:

ou 2
—=_V
ot 9,



g=c(Vu|Vu.

Suppose the size of image i$hxJh  where h means the grid size of

diseretizationliscretsation,  Atis the temporal step siz&he discresationprocess

can be applied as following steps.

Step 1: Calculate VU .

2..n n n n
V' =u,,. +u i1

DU Ut U U AU 20,121 = 0,1,2;-

I

With thesymmetric boundary conditions

n
U

n n

_ n
- l"IO,j ! lJI +1,j

:ul i

n n n n
U _ 1 =Uo U, =U

Step 2: Calculate functiony,
n 2,.n 2,,n
9 =c(V ui,j)v U ;-
Step 3: Calculate Vg,

" 4ag". o +ag" .+a" .—4q9".
Vzgirjj _ 9ty g;'{12+1 9179, 101,21, 0123

with symmetric boundary conditions
gfl,j = 93,,-,9."+1,j = 9|n,j
9" 1=000.1= 0
Step 4: Calculate the iterative equation
+1 2
'l = - AtVEg?).

Step 5: Go to Step 1 if the prassigned number of iteration is not completed

3. An improved Fourth-Order PDE Denoising Method

3.1 An Adaptive Relaxation Method

Relaxation methodsare- were establishedin numerical schemes in many areas

involving the solutions of simultaneous equations and systems of inequalities
resulting from discretisation schemégelaxationcan be applied to any systems of

linear or nonlinear equations to speedanpestimation to an exact solution. The basic



idea is to guess a solution and obtain an improved approximation sutietleatoris
reduceduntil it is less than some specified tolerang4.

In general, relaxation methods are used to control the variatioappfoximate
solutions betweenonsecutivaterations. As mentioned i8ect.2, speckles appear in
the numerical solution process because pixel intensities of some pointsaagngh

too fast. Therefore, it is reasonable to employ a relaxation method in the pobcess
denoising wherusing the YK model. In this paper, an adaptive relaxation method is
proposed taelieve the generation of speckles in the YK model. Sitlemisolated
speckles are local extreme values, such as b3 neighbourhood, an isolated
point-detectionschemewhich is developed in Se8.2is addedto the algorithm when
relaxation method is applied. The adaptive relaxation method can be explained as

follows.

Supposeu” is the iterative solution othe discrete approximation of Eqd)(at time

t = nAt, where At means the time step size of the iteratiéor a point peQ,
U, andu . are the maximum and minimum intensity values afdeleted

neighbourhood of p (i.e. neighbourhood of p without p). Let u and

globalmax

u be the global maximum and minimum vadud the imageu. Then define

globalmin

globalmax=0.9-u and globalmin=1.2Uym, - If U efu,u;] or

globalmax

up & [globalmin, globalmax] , then one has
ar =A@t Ay, (5)
Herehere 1:[0,+x]—[0,1] is a monotonically nowecreasing function witregard

to the number ofiteratiorss e.g., A(n) =1-e"%°™_ If the intensity of the central
point in a 3byx-3 window changes significantly, it can kestrainedoy using Eqn§)

to avoid too rapia variation leading to divergence of the iterative scheme. The result
obtained by the adaptive rekiton method for Fig1(@@) is shown in Fig3(@@). It can

be £en from the result that the intensities along the edges are not contifbus.
may be due to the local character of the relaxation method. Therafdig;ontinuity
treatmenfor edges isieeded which is proposed $ect.3.2 The aim of this treatment

is to make the edges look more natural in an iméglewing the denoising

procedure.
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Fig. 3 Resultsof using relaxatioimethods(a) and (b) are the denoised images by the YK model

without and with discontinunity treatment, respectively

3.2 The Discontinuity Treatment

To handle the discontinuity die-edges, the first step is to detect the discontinous
pixel pointsalong he edges. In the literature, the mask below is useectmgnse the
discontinuous points around the edges[23],

\Nl W2 W3

W, Wy W, |,

W, Wy W,

The response, R, of the mask applied at any point in an image is given by

=, (6)
where u, is the intensity of the pixelt positioni in the mask abovand w is the
weighted coefficient of the masketection of thediscontinuous points on which the
mask is centeredccursif

IR>T. (")

HereT is a nonnegative threshold. The underlying idea of this method is to make use
of the intensity difference, which is determined by the thresAgldetween an
isolated point and its neighbouring points.

After detecting the discontilous points on the edges, in order to restore better values
of the pixels at such points, the tgpd edgeswvherethese points are located need to
be examinedFor simplicity, only four simple types of edges are to be taken into
consideration, including horizontal edges, vertical edges, and incuhges oriented

at 45° and -45° directions. The corresponding masks are shown as below [23]:



-1-1-1 -1 2 -1 112 2 -1
2 2 2 124 12 4 1241
-1-1-1 -1 2 -1 2 11 112
@ (b) © (d)
Fig. 4 Edgedetectordetectve masks corresponding to the horizontal, vertical, 45°-db€ directions
Four different masks are proposed here to restore the diseounsipixel points on
edges defined in the above modes respectively (SeeS)idHere the weighted
coefficients are chosen such that the central point takes the most weight and then the
points along the edge which the central point legait. Other points take the same
but the least weight. For example, if a discamus pixel point is located on a
horizontal edge, then the template to be usediis Fig. 5(a). The resulof using the
relaxation methodbgethemwith the discontinuity treatment is shown in Fago).
0.05 0.05 0.0 0.05 0.2 0.0 0.05 0.05 0.2 0.2 0.05 0.0
02 03 02 0.05 0.3 0.0 0.05 0.3 0.0 0.05 0.3 0.0
0.05 0.05 0.0 0.05 0.2 0.0 0.2 0.05 0.0 0.05 0.05 0.2
@ (b) © ©)

Fig. 5 Discontinuous point restored masia@responding to the horizonal, vertical, 45° afg

directions

3.3 A Control of Iteration

In numerical analysis, theilnorm is often used to control the convergence, that is
[36],

un _ un—l

_ n n-1y 2
. _\/iz ) -u"MHi<e,

e
where Q is the problem domain and ¢ is thetolerance usually set as 10However,
this norm is not usually employed in image processing. In the literaturé,payosrs
simply set the number of iteratisras an inpuf[4], [11], [12], etc.), and some papers
proposed different criteria according to their specific mof&1$, [38]). Therefore, it
is sensible to find certain quantity to control the numberitdration. As mentioned
in Sect.2, with the iterationproceeding the asymptoticvalue of Vu lies close to
zerg as t — oo, which meansV?u could be used téerminatethe iteration. In this

paper, the average value &f°u over all pixels isproposed to control the iteration

process.
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(8)

In order to investigate the featsref |, the relationship betweem and the number

of iteration is studied using the YK model. Here the image in Kay and two other

benchmarking images in Fig are used for testing.
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Fig. 7 Two benchmarking images with 10dB Gaussian ndeelLena, (b) Camera

Fig. 6(@) shows that after certain number of iterafothe value of| becomes

constant. Furthermore, by comparing .Fégg) and Fig 6(b), it is easily obtained that

whenthe values of PSNR reach their peak, valuesioftend to becomeonstant.

Therefore, it is reasonable &ssumehat when the value of is nearlyconstantthe

value of PSNR is most likely to bleigh. Based on this analysis, the following

condition is proposed to control the iteration:

10
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Here ¢ is atolerance which can be choder different applications.
4. Numerical Tests

4.1 Algorithm Description

Suppose the size of image lix Jh, where h means the grid size of discretization,

At is the temporal step siz8tandard finite difference notation for the discretisation
is used in the description of the algorithfime improved algorithm can be described
as below:

1. Initial noisyimage u°, Set n:=0and 1°:=0;

2. Calculate VAu" and V?gV= 2V(c( ") 2u”);
3. Calculateu™ =u" — AtV?g";

4.1f u"¢[u or u" ¢[globalmax, globalmin],u** =(1 A(R))u™ A(nu";

max? l'Imin]

I”ﬁ+1_|n

5.calculate 1™, If > ¢, goto 6, else goto 7;

6. update n:=n+1, goto 2;

7. Use the discontinuity treatment 8ect.3.2 to restore the discontilous points on
the edges.

Remarks:

a: The discregedform of the Laplacian is computed as below:

n n
i .

n n n
VZU-n. _ ui+l,j + ui—l,j + ui ,j+1+ ui j-1" 4u

1] h2

b: The symmetric condition is usetbng the boundary:

n n n n H

U, =Ugj Uy =U )= 0,123
n n n n H

U =Uo U, =U, 1=012:1.

c. u,,andu, are the local maximum and minimum values of a 3 by 3

neighbourhood of the current point;
d: globalmax andglobalmin are the 90% of globathaximum and minimum values in
the current image;

e A(n)=1-e";

11



f: INnEqn @), £=10C;
g: the mask used in EqB)(is

-1-1-1
-1 8 -1
-1-1-1

h:  Eqn ) is modified as|R|> global _max or |R|< global _min and the values of

globalmax andglobalmin are the same as those in Remark

4.2 Numerical Experiments

In this experiment, the fourtbrder PDE model for imaggenoising proposed by You
and Kaveh (YK model) and the fowtinder PDE model with the relaxation method
and the discontinuity treatmefAYK) are tested

To make the results mombvious several images with different simple edges are
designedto test tle performance of théAYK model when coming across the

discontinuityatthe edges.

12
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Fig. 8 A set of experiments by using the YK model and the proposed ntalaimn (a): Three test
images with 10 dB Gaussian noise, Column (b): The corresponding denoised byahe YK model,
Column (c): The corresponding dermdsimages byhe-propesedYK model

From Fig 8, it can be seen that no matter what kind of edgespresentthe YK
model cannot handle them well and the isolated speckles exist btita flat area
near the edgeand on the edges. Especially for the circle image, @ftecessing
processedy the YK model, although the noise in the flat area is removed, there are
many speckles generated around threles. However, the resulting images in Fig
8(c) shows that theAYK model not only removes noise efficiently, but also succeeds
in avoiding the speckles and preserves edges better than the YK model.
In order to verify the validity of the proposed model, experiments including two
groups of 1D signals and -D images shown in Figy areconducted in the following
section The WYK model proposed in [28 used for conparison.
For the 1D signal demonstrationniorder to compare the similarityetween the
denoised signal artthe original signal quantitatively, thie;-norm defined as below is
employed in this paper,

Error = [|f(x) — g(x)|dx,

13



wheref(x) andg(x) mears the original and denoised signals. The two groupsof 1-

signals experiments are shown in.Mgvith the corresponding error measurement in

Tablel.

Original Signal

L L L I L
o 20 40 21} a0 100 120 140 160 180
1

(@)
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I 1 I 1 I
i} 20 40 &0 a0 100 120 140 180 180

200
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il I 1 1 I
] 20

! I I ! 1
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100 =
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] 20 40 &0 a0 00 120 140 160D 180 200
t
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Fig. 9 1-D signaldemonstrationThe first columnincludesrethe original signal a, itsorresponding
noisy signal, the denoised signals by the YK model, the WYK maated, the AYK model,

respectively. The second colurareis the original signal b and the denoised results

From this demonstration, it can be seen that all three fourth BMdEr models can
remove the noise from the signal, although some details are lost, more or less. By
comparing the results, one can observe that, for signal a, the performance of these
three models are almost the same. For signal b, the AYK model providesdhe
result, whether whatevein the flat area(t € [0,50], small oscillation in the YK
model) or in the noisy area € [51,100], small oscillation in the YK and WYK
models). In sucha case, the AYK model performs better than the YK and WYK

models. The error measurement showmaible 1 can also draw the same conclusion.

15



Table 1 Error measurement fd¥ig. 9

Signal a b

Model

Noisy signal 25.64 243.15
Y-K model 24.59 140.44
WYK model 23.22 134.35
AYK model 23.61 97.15

The 2D image demonstration usthe two benchmarking images, Lena and Camera
to test the performance amongst the three models mentioned. adluezveerror

measurement used for2image experiments is PSNR which is defined as below.

255x 255
1 WoH [ R
W x H Zi:lezl[l(l'J)_u(I’J)]

where W and H are the width and height of an image investigated, respectively

PSNR=10- log,

I(i,j) and u(i, j) are the grey values corresponding the original pure image and the

restored image.

(@) (b)

16



(e) (f)

Fig. 10 Denoised resultga) and i) are the results by the YK modet) énd (d) are th results by the
WYK mode] (e) and (f) are the results by the AYK model.

The value of the threshold in three modelsbove is chosen as 10 and the time step
At =0.25. As seen irFig. 10, theAYK model can play a good role in removing noise
and the isolated speckles producedh®sy YK model are diminished. From the results
given by the ¥K model, one can see that although noise is removed, some isolated
speckles arérought in. The WYK model, on one hand, performs noise removal and
keeps more details than theKYmodel. On the other hand, it still leads to isolated
speckles. However, it relieves this symptom to some extent. The AYK model not only
removes noise from the image, but also avoids isolated speckles successfully
Comparing with the results given by the WYK model, it leads to more detaildriost.

17



the following sectionmore objective information is provided to compare the two
algorithms.

Fig. 11 provides the PSNR comparison amongst three models, which shows that the
WYK and AYK models present better PSNR values thak iviodel and irthe long

term, the AYK model degdes the image more slowly than the WYK an&KY

model.

33 T T T T T T T T T
¥-K model

—— =YW K model
i = AYK model

PSNR

% 1 I I 1 I I 1 1 I
0 a0 100 150 200 240 300 350 400 440 a00

iteration

33 T T T T T T T T T
— Y-k model

32

—— —WYK model

AN K rmodel

FShR

a0 100 160 200 280 300 350 400 450 A00
iteration

(a) (b)
Fig. 11 The variation of PSNR(a) with the image Lena, (b) with the image Camera
From these two graphs, at the beginning of the process, the values of PSNR almost
overlap since the value df is small at first. After that, the performance of the
proposed method is much better than that of the YK model. The value of PSNR
remainshigherand alsarequiresa fewer number of iteratiantoyield a higher value
of PSNR.

18
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5. Conclusion

In this paper, an adaptive relaxation method and a discontinuity treasment
proposed to improve thgerformance of the YKnodel With such modificatios, on
one hand, not onlthe noise from an imageay be removedore efficiently, but also

it preserves the YK modeal favourableproperties, e.g, the reduction of staircasing
effect presenting in the second order PDE models. On the other thandplated
speckles brought in by the YK modeéhnish In addition, the proposed method can
preserve more detaitsf the original imagend protect the edges well which is one of
the main purposes of image denoisirignally a stopping control othe iterative
processis proposed to make the algorithm automatibich may begeneralised to

other PDE modelfr image denoising.
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