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This paper presents a group-theoretical vector space model (VSM) that extends the VSM with a
group action on a vector space of the VSM. We use group and its representation theory to represent
a dynamic transformation of information objects, in which each information object is represented by
a vector in a vector space of the VSM. Several groups and their matrix representations are employed
for representing different kinds of dynamic transformations of information objects used in the VSM.
We provide concrete examples of how a dynamic transformation of information objects is performed
and discuss algebraic properties involving certain dynamic transformations of information objects
used in the VSM.
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1. Introduction

Vectors have been widely used in the field of cognitive science [1, 48], machine learn-
ing [13], semantics [38], and information retrieval (IR) [26, 52, 54]. The vector space
model (VSM) [52, 53] is a model based on a vector space, which represents informa-
tion objects (e.g., terms, images, documents, queries, etc.) by vectors in a vector space.
Each dimension of a vector space represents a feature of an information object, cor-
responding to a basis element of a vector space of the VSM [38]. A wide variety of
weighting schemes [5, 8, 34, 55] have been proposed and tested, in which each compo-
nent of an information-object vector reflects the importance of the corresponding feature
of an information-object vector. For the weighted information-object vectors, distance
functions are often used to determine how to measure the similarity between information-
object vectors [62]. One common similarity measure between two information-object vec-
tors is the cosine similarity, measuring the cosine of the angle between two information-
object vectors in a vector space of the VSM [5]. Besides its intuitive nature, the VSM has
also been proven to be effective in IR and relevance ranking [43, 53]. Meanwhile, relevance
in IR is often context-dependent as information may evolve with the user, place, and
time [43–45], which has not been reflected in the classic, standard VSM [34, 52, 54]. Al-
though the VSM incorporating context and its variants have already been researched [43–
45], there is a lack of a systematic approach to representing a dynamic transformation
of information objects used in the VSM. Moreover, to the best of our knowledge, theo-
retical foundations of utilizing group theory for the VSM have not been established. In
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this paper we present a group-theoretical VSM and discuss properties on several types
of dynamic transformations of information-object vectors in a vector space of the VSM.
We also show that some properties are invariant to certain dynamic transformations of
information-object vectors. The rest of this paper is organized as follows. Section 2 gives
a brief overview of the VSM. In Section 3 we present our group-theoretical VSM to rep-
resent a dynamic transformation of information objects used in the VSM. In Section 4
we provide related work and discussion. We give concluding remarks in Section 5. In
Appendix we provide the necessary mathematical background on vector spaces, groups,
and their representations used in this paper.

2. Vector Space Model (VSM)

In this section we give a brief overview of the classical vector space model (VSM) used
in this paper. Vector spaces play an important role in cognitive science [1, 48], seman-
tics [38], pattern classification [13], and information retrieval (IR). In particular, they
are commonly used in IR, where IR concerns with methods and procedures of searching
and obtaining the required information from information resource or corpus [33, 53]. In
IR the Boolean retrieval model [40] poses queries having the form of Boolean expression
of terms, in which each query consists of terms combined with Boolean operators, such
as AND, OR, and NOT. Each document is considered as a set of words in the Boolean
retrieval model [40]. However, the Boolean retrieval model has some limitations, such
as the lack of similarity measure and a document ranking method [54]. In contrast to
the Boolean retrieval model, the VSM has a means to measure the similarity between a
query and information-object vectors and to rank information-object vectors according
to their similarity scores to the query [40, 54].
The VSM has been formalized as a quadruple < B,W,S, F > [38], where B denotes a

set of basis elements of a vector space V of the VSM, W specifies a weight function, S
is a similarity measure that maps a pair of information-object vectors to a scalar-valued
quantity representing their similarity, and F is a transformation that takes one vector
space to another vector space. One of the main purposes of F is to reduce the dimen-
sionality of V [38, 56]. F may also be the identity map that transforms V to itself. Note
that a vector space of the VSM is often considered as a feature space [58]. Therefore, a
wide variety of feature weighting (or scaling) schemes [37] can be inherited, depending
on what kind of a feature space is employed for the VSM.

(1) Basis Elements B : B is a set of basis elements b1, . . . , bn that determine the
dimensionality of a vector space V of the VSM. Each dimension of V represents a
feature of an information object. Each information-object vector v is generated by B,
i.e., v =

∑n
i=1 wibi, where wi’s for i = 1, . . . , n are weights or coefficients. Note that if

B′ is a set of basis elements b′1, . . . , b
′
n of V , then v can also be generated by B′, i.e.,

v =
∑n

i=1w
′
ib

′
i. One basis can be converted into another basis to reflect a contextual

change of information-object vectors, in which a context may refer to the time, space,
semantic of information objects, and so on [43, 45]. It means that a basis of a vector
space in the VSM can be constructed to represent a context [45].

(2) Weight function W : W is a weight function that maps an information object
to its normalized form that is often represented as a coordinate vector. Each component
of the coordinate vector represents the weight of the corresponding feature of the
information object. W is closely related to feature weighting, which relies on the
type of a feature space. If a vector space V of the VSM is given as an n-dimensional
term space [53], then a query vector Q and a document vector Di are represented
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as Q = (wQ,1, wQ,2, . . . , wQ,n) and Di = (wi,1, wi,2, . . . , wi,n), respectively. Each term
represents each feature of an information object, and each component of an information-
object vector represents the importance of a term in a document or query vector [34].
Note that n distinct terms are considered in an n-dimensional term space. There are a
wide variety of ways to determine the weight of a term in a given information object. The
simplest approach is the frequency weighting [37], in which the weight is simply equal to
the frequency of a feature. A common approach to term-weighting is the tf-idf [34, 40]
method, where the weight of a term in a document vector is determined by the local and
global factor. The local factor (term frequency tfi,j) indicates how often term j appears
in document i, while the global factor (inverse document frequency idfj) indicates how
often term j appears in a document collection [34]. More specifically, the weight of term
j in document i for the tf-idf method is defined as wi,j := tfi,j× idfj = tfi,j× log(N/dfj),
where N is the total number of documents in a document collection and dfj denotes
the number of documents (in a document collection) containing term j [34, 40]. Note
that the inverse document frequency (idfj := log(N/dfj)) assigns a low value to a term
that occurs in a large number of documents, while assigning a high value to a term that
occurs in a small number of documents in a document collection [34]. The interested
reader may also refer to [14, 37, 40] for other term-weighting schemes, such as Entropy
weighting [37] and Logarithmic weighting [14].

(3) Similarity measure S : S is a similarity measure that maps each pair of information-
object vectors to a scalar-valued similarity score. The angle between a pair of
information-object vectors can be used as a simple similarity measure between the
pair of information-object vectors. Specifically, the cosine of the angle can be used as
a numeric similarity measure (i.e., 1.0 for identical vectors while 0.0 for orthogonal
vectors). Furthermore, if two information-object vectors in a vector space R

n of
the VSM are normalized to the unit length, the cosine of the angle between two
information-object vectors is simply the inner product of two information-object
vectors. Now, the cosine similarity between two information-object vectors v1 and v2 is
defined as sim(v1, v2) := (v1 · v2)/(‖v1‖‖v2‖), where v1 · v2 denotes the inner product
of information-object vectors v1 and v2. Therefore, in terms of the cosine similarity
measure, the higher the value of sim(ui, uj), the more similar information-object vectors
ui and uj are. Other methods are also available for the similarity measure based on a
distance function. The interested reader may refer to [63] for further details.

(4) Transformation F : F is a transformation1 that transforms one vector space V
to another vector space V ′.) The main purpose of F is to reduce the dimensionality of
V in such a manner that the dimensionality of V ′ is smaller than the dimensionality of
V . The matrix decomposition techniques are often used for dimensionality reduction
(i.e., singular value decomposition [38] and QR decomposition [5]). In some cases it is
also possible to reduce the dimensionality in the preprocessing steps (e.g., stop word
elimination and stemming [54]). F can also be the identity transformation that maps a
vector space V to itself.

Although the preprocessing and dimensionality reduction steps are often necessary for
the VSM, we omit them in this paper. The interested reader may refer to [5, 38, 54] for
further details. Unless otherwise stated, B denotes a set of basis elements of a given vector
space, W tf-idf, S cosine similarity, and F denotes the identity map in < B,W,S, F >

1Since a transformation F is often used for dimensionality reduction, it is distinguished from an (invertible) linear
transformation in this paper. Note that an invertible linear transformation (i.e., isomorphism [15]) from a vector
space V to itself serves as an element of the general linear group GL(V ) (see Appendix).
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of the VSM used in this paper. We assume that every vector space of the VSM is finite-
dimensional in this paper.

Example 2.1. This example illustrates how the tf-idf weighting method and the cosine
similarity measure of the VSM are applied to document ranking, where each document
and a query are represented by a bag of words (unordered words with duplicates al-
lowed) [58]. The bag-of-words model is widely used in a document and image represen-
tation [19, 20], spam filtering [17], etc. The following figure shows query Q and three
documents D1, D2, and D3, each of which is represented by a bag of words.

Q: {term1 term2}
D1: {term5 term1 term1 term5}
D2: {term2 term3 term3 term6 term4}
D3: {term2 term1 term2}

Figure 1. Bag of words for a query Q and documents D1, D2, and D3.

There are six distinct terms in Figure 1. Table 1 shows term weights for each document
and query using the tf-idf weighting method [26, 40].

Table 1. Term weights for Q, D1, D2, and D3 in Figure 1.

Term weights wi,j := tfi,j × idfj
(tfi,j : term frequency, idfj : inverse document frequency)
Total number of documents N=3, idfj := log(N/dfj)
(dfj : number of documents containing term j)

tfi,j wi,j = tfi,j × idfj
Terms Q D1 D2 D3 dfj N/dfj idfj Q D1 D2 D3

term1 1 2 0 1 2 3/2 0.176 0.176 0.352 0 0.176
term2 1 0 1 2 2 3/2 0.176 0.176 0 0.176 0.352
term3 0 0 2 0 1 3/1 0.477 0 0 0.954 0
term4 0 0 1 0 1 3/1 0.477 0 0 0.477 0
term5 0 2 0 0 1 3/1 0.477 0 0.954 0 0
term6 0 0 1 0 1 3/1 0.477 0 0 0.477 0

Using Table 1, we compute the cosine similarity between Q and Di for 1 ≤ i ≤ 3.

Since ‖Di‖ =
√∑

j w
2
i,j and ‖Q‖ =

√∑
j w

2
Q,j, we have

‖Q‖ =
√
0.1762 + 0.1762 ≈

√
0.062 ≈ 0.249,

‖D1‖ =
√
0.3522 + 0.9542 ≈

√
1.034 ≈ 1.017,

‖D2‖ =
√
0.1762 + 0.9542 + 0.4772 + 0.4772 ≈

√
1.396 ≈ 1.182,

‖D3‖ =
√
0.1762 + 0.3522 ≈

√
0.155 ≈ 0.394.

Since Q ·Di =
∑

j wQ,jwi,j, we have

Q ·D1 = 0.176 × 0.352 ≈ 0.062,
Q ·D2 = 0.176 × 0.176 ≈ 0.031,
Q ·D3 = (0.176 × 0.176) + (0.176 × 0.352) ≈ 0.093.

Now, the cosine similarity measure between query Q and document Di
1 for 1 ≤ i ≤ 3

are computed as follows:

1By a slight abuse of notation, we use a document (respectively, a query) and its document vector (respectively,
query vector) with the same notation in this paper. The distinction is clear from the context.
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sim(Q,D1) = (Q ·D1)/(‖Q‖‖D1‖) ≈ 0.062/(0.249 × 1.017) ≈ 0.245,
sim(Q,D2) = (Q ·D2)/(‖Q‖‖D2‖) ≈ 0.031/(0.249 × 1.182) ≈ 0.105,
sim(Q,D3) = (Q ·D3)/(‖Q‖‖D3‖) ≈ 0.093/(0.249 × 0.394) ≈ 0.949.

For the given query Q, D3 shows the highest rank with sim(Q,D3) ≈ 0.949,
while D2 shows the lowest rank with sim(Q,D2) ≈ 0.105. Therefore, according to the
cosine similarity measure, document D3 is the most similar to query Q, while document
D2 is the least similar to query Q.

3. Group Actions on a Vector Space of the VSM

In this section we use several groups to represent dynamic transformations of information
objects. We show that some properties are preserved for certain dynamic transforma-
tions, in which those dynamic transformations of information objects are represented by
a group action on a vector space of the VSM. For the bag-of-words model, we assume
that although the content of an information object can be changed by a dynamic trans-
formation, no term can be introduced during a dynamic transformation of information
objects. We first describe how an orthogonal group acts on a vector space V = R

n of the
VSM.
For each n, the set of all n×n orthogonal matrices with real entries forms a subgroup of

GL(n,R), denoted by O(n,R), in which a square matrix M is called orthogonal if M⊤ =
M−1 [22]. A linear transformation T : Rn → R

n is called an orthogonal transformation on
R
n if its transformation matrix in the standard (ordered) basis is an orthogonal matrix

with real entries [3]. Orthogonal matrices include rotation and permutation matrices [3].

Proposition 3.1. Let V = R
n be a vector space of the VSM. If O(n,R) acts on V by

matrix multiplication, then it preserves the cosine similarity between information-object
vectors in V .

Proof. By the definition of the orthogonal group, if O(n,R) acts on V by matrix multipli-
cation, we haveMv1 ·Mv2 = (Mv1)

⊤Mv2 = v⊤1 M
⊤Mv2 = v⊤1 v2 = v1·v2 forM ∈ O(n,R)

and v1, v2 ∈ V . Since (Mv)⊤(Mv) = v⊤v, we have ‖Mv‖ = ‖v‖ for v ∈ V . Therefore, an
orthogonal matrix preserves both the inner product and the length of information-object
vectors. It follows that for information-object vectors u, v ∈ V and g ∈ O(n,R), we have
sim(gu, gv) = (gu · gv)/(‖gu‖‖gv‖) = (u · v)/(‖u‖‖v‖) = sim(u, v).

Example 3.1. (Householder matrix [6, 29]) Consider a reflection linear operator R ∈
GL(V ) of a vector space V = R

n of the VSM that reflects each information-object vector
through the vector hyperplane that is orthogonal to a unit vector u. The transformation
matrix [R] of the linear operator R with respect to the standard (ordered) basis of Rn is
called a Householder matrix, and is given by I−2uu⊤. Let H denote [R]. Since HH⊤ = I
(see [6]), we have H ∈ O(n,R).
For instance, suppose that we have six terms (i.e., term1, term2, term3, term4, term5,

and term6) and three documents (i.e., D1, D2, and D3) as shown in Table 1. The 6× 3
term-by-document matrix D is denoted as follows:

D =




0.352 0 0.176
0 0.176 0.352
0 0.954 0
0 0.477 0

0.954 0 0
0 0.477 0



.
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Each column corresponds to a document Dj , while each row corresponds to a term
termi. Each element dij in D represents the term weight of termi associated with docu-

ment Dj. Let u = [−
√
2/2,

√
2/2, 0, 0, 0, 0]⊤ and select the vector hyperplane of R6 that

is orthogonal to u. Then, the Householder matrix H ′ is computed as follows:

H ′ =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



.

Now, the transformation of D by H ′ is computed as follows:

D′ = H ′D =




0 0.176 0.352
0.352 0 0.176
0 0.954 0
0 0.477 0

0.954 0 0
0 0.477 0



.

The first column of D′ represents the transformation of D1 by H ′, the second column
of D′ the transformation of D2 by H

′, and the third column of D′ represents the transfor-
mation of D3 by H ′. It basically replaces term1 with term2, and vice versa1, in D1, D2,
and D3. Since H

′ ∈ O(6,R), the cosine similarity among D1, D2, and D3 are preserved
among H ′D1, H

′D2, and H
′D3 by Proposition 3.1.

The set of all n × n invertible diagonal matrices with real entries forms a subgroup
of GL(n,R) [49], which is denoted by D(n,R) in this paper. We first describe a scaling
matrix [7]. A scaling matrix is a diagonal matrix, in which each element in the main
diagonal represents a scaling factor si for the i-th coordinate axis. If si > 1, it represents
a dilation transformation in the direction of the i-th coordinate axis. If 0 < si < 1, it
represents a contraction transformation in the direction of the i-th coordinate axis. If
si = −1, it represents a reflection transformation in the direction of the i-th coordinate
axis. Note that if a scaling matrix has no zero in its main diagonal, it is invertible.
We say that a linear operator T : V → V is diagonalizable scaling linear operator if

there exists an (ordered) basis of V with respect to which the transformation matrix of
T is an invertible scaling matrix.

Proposition 3.2. Let V be an n-dimensional vector space over R of the VSM. If D(n,R)
acts on V by matrix multiplication, d ∈ D(n,R) represents a transformation matrix of a
diagonalizable scaling linear operator of V .

Proof. By the definition of D(n,R), d ∈ D(n,R) is a diagonal matrix. Since D(n,R)
is a subgroup of GL(n,R), d ∈ D(n,R) is invertible. It follows that its determinant is
not zero. Therefore, each di in the main diagonal of d is not zero and may represent a
scaling factor in the direction of the i-th coordinate axis. It follows that d is an invertible

1For a further consideration of a permutation of the basis vectors, consider a symmetric group Sn acting on a
vector space V = R

n. Let B = {b1, . . . , bn} be a basis of V . Then, Sn acts on V by g(
∑

i cibi) =
∑

i cibg(i) for
g ∈ Sn, ci ∈ R, and

∑
i cibi ∈ V . See [2, 15] for further details.
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scaling matrix that represents a transformation matrix of a diagonalizable scaling linear
operator of V with respect to a given basis of V .

Example 3.2. Each component of an information-object vector can be varied by change
of context (e.g., a time-dependent document collection [16, 47]). This example shows the
systematic way of changing weights using an invertible scaling matrix. The 6 × 3 term-
by-document matrix D in Example 3.1 was given as:

D =




0.352 0 0.176
0 0.176 0.352
0 0.954 0
0 0.477 0

0.954 0 0
0 0.477 0



.

Suppose that an invertible scaling matrix S is given below:

S =




2 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



.

Then, the transformation of D by S is computed as follows:

D′′ = SD =




0.704 0 0.352
0 0.528 1.056
0 1.908 0
0 0.477 0

0.954 0 0
0 0.477 0



.

The first column of D′′ represents the transformation of D1 by S, the second column of
D′′ the transformation of D2 by S, and the third column of D′′ represents the transfor-
mation of D3 by S. By means of the scaling matrix S, the weight of term1 and the weight
of term3 in a document collection are multiplied by two, while the weight of term2 in
a document collection is multiplied by three. The weight of term4, the weight of term5,
and the weight of term6 are invariant under S.

Proposition 3.3. Let V be an n-dimensional vector space over R of the VSM. A square
matrix s ∈ GL(n,R) has n linearly independent eigenvectors if and only if it represents
a diagonalizable scaling linear operator of V .

Proof. (⇒)
Assume that a square matrix s ∈ GL(n,R) has n linearly independent eigenvectors.
Since s ∈ GL(n,R) by assumption, s is invertible. It follows that the determinant of s
is not zero. Since s has n linearly independent eigenvectors by assumption and similar
matrices have the same determinant, s is diagonalizable to an invertible diagonal matrix
s′ ∈ D(n,R) by Theorem A.21 and Lemma A.2. Therefore, by Theorem A.3 and Propo-
sition 3.2, it represents a diagonalizable scaling linear operator of V .

1See Appendix for Theorem A.1–A.4 and Lemma A.1–A.3.
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(⇐)
If s ∈ GL(n,R) represents a diagonalizable scaling linear operator of V , then it is diago-
nalizable by Theorem A.3. Therefore, s ∈ GL(n,R) has n linearly independent eigeven-
vectors by Theorem A.2.

Remarks. The above proof of Proposition 3.3 involves Theorem A.3, which in turn
involves a change of basis of a vector space. In [41–45] context is modeled by a basis
of a vector space of the VSM. By Proposition 3.3, a certain type of invertible linear
operators of a vector space of the VSM can be simplified to a type of diagonalizable
linear operators by means of a change of context if context is modeled by a basis of a
vector space of the VSM.

Similarly to the above proposition, we have the following lemma by Lemma A.1.

Lemma 3.1. Let V be an n-dimensional vector space over R of the VSM. If s ∈ GL(n,R)
is symmetric, it represents a diagonalizable scaling linear operator of V .

In Example 3.1 we considered a Householder matrix H given by I − 2uu⊤, where
u is a unit vector orthogonal to the selected vector hyperplane. Since (I − 2uu⊤)⊤ =
I⊤ − 2(u⊤)⊤(u⊤) = I − 2uu⊤, it is symmetric. Since the determinant of a householder
matrix is −1 [29], we have H ∈ GL(n,R). Therefore, by Lemma 3.1, H may represent a
diagonalizable scaling linear operator of V = R

n.

Example 3.3. Suppose that a feature space V = R
4 of the VSM has four features

(location1, location2, height, and brightness) and some normalized feature vectors. Let
B = {e1, e2, e3, e4} denote the standard (ordered) basis of R4. Now, four features in the
feature space are interpreted in such a manner that e1 := location1, e2 := location2, e3 :=
height, and e4 := brightness. Suppose also that the transformation matrix [T ]B of a
linear operator T : V → V with respect to B is given as follows.

[T ]B =




3 1 0 0
1 3 0 0
0 0 1 0
0 0 0 1


 .

Since [T ]B is an invertible and symmetric matrix, it is diagonalizable to an invertible
diagonal matrix in D(4,R) by Lemma A.1 and A.2. In other words, there is a transition
matrix P from an ordered basis B′ = {e′1, e′2, e′3, e′4} to B = {e1, e2, e3, e4} such that
[T ]B′ = P−1[T ]BP is an invertible diagonal matrix, i.e., [T ]B′ ∈ D(4,R). By using the
diagonalization procedure (see [3]), we have

P =




1/
√
2 −1/

√
2 0 0

1/
√
2 1/

√
2 0 0

0 0 1 0
0 0 0 1


 and [T ]B′ =




4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


 .

It follows that e′1 = 1/
√
2e1 − 1/

√
2e2, e

′
2 = 1/

√
2e1 + 1/

√
2e2, e

′
3 = e3, and e

′
4 = e4.

Therefore, [T ]B′ ∈ D(4,R) is a transformation matrix of a diagonalizable scaling linear
operator of V with respect to B′ by Proposition 3.2.

Let B(n,R) be the set of all n × n invertible upper triangular matrices with real
entries. B(n,R) forms a subgroup of GL(n,R), called the standard Borel subgroup [2] of
GL(n,R).
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Let V = R
n be a vector space of the VSM and B = {e1, . . . , en} be its fixed standard

(ordered) basis. Then, there is an ascending chain of subspaces {0} ⊂ V1 = R ⊂ V2 =
R
2 ⊂ · · · ⊂ Vn−1 = R

n−1 ⊂ Vn = R
n, in which each Vi for 1 ≤ i ≤ n is spanned by

basis elements e1, . . . , ei. This ascending chain is called the standard complete flag [2]
of V = R

n. The following proposition describes that if information-object vectors in
V = R

n are transformed by an n× n invertible upper triangular matrix m ∈ B(n,R), it
preserves the standard complete flag of V = R

n.

Proposition 3.4. Let V = R
n be a vector space of the VSM and let {0} ⊂ V1 = R ⊂

V2 = R
2 ⊂ · · · ⊂ Vn−1 = R

n−1 ⊂ Vn = R
n be the standard complete flag of V = R

n.
Then, gVi = Vi for 1 ≤ i ≤ n, where g ∈ B(n,R) is an n× n invertible upper triangular
matrix with real entries.

Proof. It follows immediately from the fact that the standard Borel subgroup B(n,R) of
GL(n,R) stabilizes the standard complete flag of V = R

n (see [2] for further details).

Remarks. In IR high-dimensional information-object vectors in a vector space of
the VSM are often projected into a low-dimensional subspace in order to improve
computational efficiency [58]. Now, consider information-object vectors in a vector space
Vn = R

n of the VSM and project them into a subspace Vi (1 ≤ i ≤ n) of Vn = R
n. By

Proposition 3.4, the projected information-object vectors are transformed and remained
in that subspace by a linear operator of Vn = R

n if the transformation matrix of the
linear operator with respect to the standard (ordered) basis is an invertible upper
triangular matrix with real entries.

For instance, if document D3 in Example 3.1 is transformed by t ∈ B(6,R), it still
resides in the subspace spanned by the basis element corresponding to term1 and the
basis element corresponding to term2. This is not the case if document D3 is transformed
by, let us say, a 6 × 6 invertible lower triangular matrix formed by replacing the (3, 1)-
entry of the 6× 6 identity matrix with 1.
We next describe the dual space of a vector space V over R of the VSM. Each

information-object vector in V may associate with a scalar-valued quantity. For instance,
if a bag of words consists of terms involving product or service items in a recommender
system [23, 36, 60], each term may associate with a cost (e.g., purchase price). Now,
consider the query and documents in Figure 1, where the vector space of the VSM is
V = R

6. Let B = {u1, . . . , u6} be an ordered basis of R
6. Those six terms are in-

terpreted in such a manner that u1 := term1, . . . , u6 := term6. Using the frequency
weighting scheme, we have Q = u1 + u2, D1 = 2u1 + 2u5, D2 = u2 + 2u3 + u4 + u6,
and D3 = u1 + 2u2. We now consider the dual space V̂ of a vector space V of the VSM.
Suppose that the costs involving each term are 3 for u1 and 4, 5, 6, 6 and 7 for u2, u3,
u4, u5, and u6, respectively. An important linear functional in the dual space V̂ of V is
φ = 3û1 + 4û2 +5û3 +6û4 +6û5 + 7û6, in which < φ, u1 >= 3, < φ, u2 >= 4, and so on.
By pairing φ with a term, the cost of the term is restored. Similarly, by pairing φ with
an information-object vector, the total cost of the information-object vector is obtained.
For instance, the total cost of D2 is < φ,D2 >= 4 + 2 × 5 + 6 + 7 = 27. The following
proposition describes the relationship between the representation ρ : G → GL(V ) of G

and the dual representation ρ̂(g) = [ρ(g−1)]⊤ : V̂ → V̂ of G used in the VSM.

Proposition 3.5. Let V be a vector space over R of the VSM and V̂ be the dual space
of V . Let ρ : G → GL(V ) be a representation of G and let ρ̂ : G → GL(V̂ ) be the dual

representation of G to ρ : G→ GL(V ) acting on V̂ given by

ρ̂(g) = [ρ(g−1)]⊤ : V̂ → V̂ .
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Then, < ρ̂(g)(v̂), ρ(g)(v) >=< v̂, v > for all g ∈ G, v ∈ V , and v̂ ∈ V̂ .

Proof. See Lemma A.3.

Example 3.4. Let V = R
2 be two dimensional vector space with standard (ordered)

basis elements e1 = [1, 0]⊤ and e2 = [0, 1]⊤, and let V̂ be the dual space of V with ordered
basis elements ê1 and ê2 selected by Theorem A.4. Let u be an information-object vector
in V and ψ be a linear functional in V̂ such that u = e1 + e2 and ψ = 2ê1 +4ê2. We use
the frequency weighting scheme for u and ψ. Therefore, the document corresponding to
u consists of the term corresponding to e1 and the term corresponding to e2. Similarly, ψ
can be interpreted in such a manner that the cost of the term corresponding to e1 is 2 and
the cost of the term corresponding to e2 is 4. The total cost of u is obtained by pairing
ψ with u, that is, < ψ, u >=< 2ê1 + 4ê2, e1 + e2 >= 6. Let ρ : D(2,R) → GL(2,R)

be a matrix representation of D(2,R) associated with V such that ρ(g) =

(
1 0
0 2

)
for

g ∈ D(2,R). Then, ρ(g) transforms u = e1 + e2 into u′ = e1 + 2e2. We see that u′ now
consists of a single e1 and two e2’s. Let ρ̂ : D(2,R) → GL(2,R) be the dual matrix

representation of D(2,R) associated with V̂ as shown in Proposition 3.5. We then have

ρ̂(g) = [ρ(g−1)]⊤ =

(
1 0
0 1/2

)
that satisfies < ρ̂(g)(ψ), ρ(g)(u) >=< ψ, u >. Note that

ρ(g), ρ̂(g) ∈ D(2,R) for g ∈ D(2,R). Now, ρ̂(g) transforms ψ = 2ê1 + 4ê2 into ψ′ =
2ê1 + (4/2)ê2 = 2ê1 + 2ê2. This means that the cost of the term corresponding to e2 has
to be reduced to the half of the original cost of the term corresponding to e2 so that the
value of < ψ, u > is invariant, i.e., < ρ̂(g)(ψ), ρ(g)(u) >=< ψ′, u′ >=< ψ, u >.

4. Related Work and Discussion

The proper representation of information objects plays an important role in information
retrieval (IR), since without it, we cannot expect the good retrieval performance.
This paper has assumed that information objects are represented by vectors in a vector

space of the VSM and that certain types of transformations of information objects are
well-defined by linear transformations of a vector space of the VSM. The results shown in
this paper are concerned with the representation of information objects involving several
types of transformations in a vector space of the VSM for the purpose of information
retrieval (IR), semantics, etc.
By using group representation theory and linear algebra, this paper provides the math-

ematical foundation of vector space representation of information objects under group
actions, allowing the known group-theoretical results to be adapted for vector space rep-
resentation of information objects used in IR, semantics, etc.
We have discussed several groups of invertible linear transformations on a vector space

of the VSM in previous sections.
In [41–45] context change is modeled by linear transformations from one basis to an-

other in a vector space of the VSM, in order to reflect the information needs evolving
with users, time, spaces, etc.
Permutation transformations using permutations of vector coordinates on a word

space [51] in order to capture and encode word-order information are discussed in [51].
Unitary transformations [28, 59] on a Hilbert vector space [31] used in IR are discussed

in [59], in which a Hilbert vector space is a complete inner product space [31].
In [59] the notions of quantum mechanics (QM) [18], such as state vector [18], observ-

able [18, 59], superposition [4], and uncertainty [4, 18], are translated into the notions of
IR, intending to apply some of the known theorems (e.g., Gleason’s theorem [59]) of QM
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to the IR context. In that book a document is represented by a vector in a Hilbert vec-
tor space, while relevance is represented by a Hermitian operator [59] that encapsulates
the uncertainty involving relevance. (The interested reader may also refer to [61] for the
geometry of conceptual space using vector spaces and quantum theory.)
The dual space model for semantic relations and compositions is discussed in [57],

which consists of a domain space and a function space for two distinct similarity mea-
sures. However, it does not involve any dual space of linear functionals on a vector space.
Meanwhile, the dual space of linear functionals on a vector space is involved in Dirac
notation [18, 59] that is used for relevance feedback [26] and ostensive retrieval [59] in
IR (see [59]).
Although group representation theory involving tensor product [15] of vector spaces

are well-studied in mathematics [22], we have not considered any tensor product of vector
spaces for semantics in terms of group representation theory in this paper. In computa-
tional and mathematical linguistics [10, 57, 58] the vector space tensor product is often
used to model compositionality [46] (see [24, 25] also for tensor-based compositionality).
In [9, 10] a compositional distributional model of meaning [9, 10] using category the-
ory [39] is discussed, where tensor product is employed for the composition of meanings
and types. In that framework VSMs are used for distributional theory of meaning [11],
and Pregroups [9] are used for a compositional theory for grammatical types [10]. (Both
the category of vector spaces and the category of Pregroups are examples of compact
closed categories [39]. The interested reader may refer to [10] for further details.) We
leave it as our future work to consider tensor product representation of certain informa-
tion objects under group actions for the purpose of IR, semantics, machine learning [13],
etc.

5. Conclusions

Although group theory is a major area of research in mathematics, few researches have
been done how it is utilized for the VSM. This paper discussed certain dynamic transfor-
mations of information objects used in the VSM by means of group-theoretical methods.
In our framework an information object is considered as a dynamic entity rather than a
static one, where a dynamic transformation of information objects is represented by an
element of a group of invertible linear operators on a vector space of the VSM. Several
groups act on a vector space V of the VSM by means of their matrix representations, in
order to perform a dynamic transformation of information-object vectors systematically.
We also showed how the dual space V̂ of V can be employed for the existing VSM. We
leave it as an open question to allow other groups that are not discussed in this paper
to act on a vector space of the VSM and to derive the useful properties involving some
dynamic transformations of information objects used in the VSM.

Appendix. Vector Spaces, Groups, and Representations

In this section we summarize the necessary mathematical background used in this paper.
The definitions and results in this section are found in [2, 3, 7, 12, 15, 21, 22, 27, 30–
32, 35, 49, 50]. We assume that the reader has some familiarity with linear algebra.
A group (G, · ) is a nonempty set G, closed under a binary operation ·, such that the

following axioms are satisfied: (i) (a·b)·c = a·(b·c) for all a, b, c ∈ G, (ii) there is a unique
element e ∈ G, called the identity element of G, such that for all x ∈ G, e ·x = x · e = x,
(iii) for each element a ∈ G, there is an element a−1 ∈ G such that a · a−1 = a−1 · a = e.
A group G is abelian if its binary operator · is commutative such that a · b = b · a for all
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a, b ∈ G.
Let In = {1, 2, . . . , n}. The group of all bijections In → In, whose binary operation is

function composition, is called the symmetric group on n letters and is denoted by Sn.
Let G be a group and H be a nonempty subset of a group G. If H is a group under

the restriction to H of the binary operation of G, then H is called a subgroup of G.
Let (G, · ) and (G′, ◦ ) be groups. A map φ : G→ G′ is a homomorphism if φ(x · y) =

φ(x) ◦ φ(y) for all x, y ∈ G.
A ring is a nonempty set R together with two binary operations + , × : R × R →

R (called addition and multiplication) such that: (i) (R, +) is an abelian group, (ii)
(a × b) × c = a × (b × c) for all a, b, c ∈ R, (iii) a × (b + c) = (a × b) + (a × c) and
(a + b) × c = (a × c) + (b × c). In addition, (iv) if a × b = b × a for all a, b ∈ R,
then R is said to be a commutative ring, (v) if R contains an element 1R such that
1R × a = a× 1R = a for all a ∈ R, then R is said to be a ring with unity.
If (R, + , × ) is a ring and (G, · ) is a group, we also write ab rather than a × b for

a, b ∈ R, and write ab rather than a · b for a, b ∈ G, respectively.
An element x in a ring R with unity is said to be left (respectively, right) invertible if

there exists an element z (respectively, y ∈ R) in a ringR such that zx = 1R (respectively,
xy = 1R). An element x ∈ R that is both left and right invertible is said to be a unit.
A ring R with unity 1R 6= 0 in which every nonzero element is a unit is called a division

ring. A field is a commutative division ring.
Let R be a ring. A (left) R-module is an additive abelian group M together with a

scalar multiplication defined by a function R ×M → M such that for all r, s ∈ R and
a, b ∈ M : (i) (rs)a = r(sa), (ii) (r + s)a = ra+ sa, (iii) r(a+ b) = ra+ rb. In addition,
if R is a ring with unity and 1Ra = a for all a ∈M , then M is a unitary R-module.
If R is a field, a unitary R-module M is called a vector space M over R.
In the remainder of this paper G denotes a group, K a field, and V denotes a finite-

dimensional vector space unless otherwise stated.
Let V , W be vector spaces over K. A function T : V → W is a linear transformation

from V to W provided that for all x, y ∈ V and k ∈ K: (i) T (x+ y) = T (x) + T (y), (ii)
T (kx) = kT (x). A linear transformation from V to itself is also called a linear operator
of V .
A (left) action of a group G on a set X is a function G×X → X (given by (g, x) 7→ gx)

such that for all x ∈ X and g1, g2 ∈ G: (i) ex = x, (ii) (g1g2)x = g1(g2x). When such an
action is given, we say that G acts (left) on the set X.
The general linear group GL(n,K) is the group of all invertible n × n matrices with

entries from K under matrix multiplication. An n × n matrix is invertible if and only if
its determinant is not zero. Alternatively, the general linear group of V is the group of
all invertible linear transformations from V to V and is denoted by GL(V ). (If V is a
finite n-dimensional vector space, then GL(n,K) and GL(V ) are isomorphic as groups.
See [15] for details.)
The general linear group GL(n,K) and its subgroups act on V = R

n by matrix mul-
tiplication, considering each vector in V as a column matrix. (That is, if M ∈ GL(n,K)
and x ∈ V , (M,x) 7→Mx.)
A linear representation of G is a group homomorphism ρ : G → GL(V ) from G into

GL(V ). Similarly, a matrix representation of G is a group homomorphism ρ′ : G →
GL(n,K) from G into GL(n,K).
Suppose G acts on a vector space V over K. The action of G on V is called linear if

the following conditions are met: (i) g(v +w) = gv + gw for all g ∈ G and v,w ∈ V , (ii)
g(kv) = k(gv) for all g ∈ G, k ∈ K, and v ∈ V . If G acts on V linearly, then V itself is
called a representation of G, and write gv or g · v for ρ(g)(v) .
Let V be a vector space over R. An inner product for V is a function ( , ) from
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V × V into R which satisfies the following for all x, y, z ∈ V and for all k ∈ R: (i)
(kx + y, z) = k(x, z) + (y, z), (ii) (x, y) = (y, x), (iii) (x, x) ≥ 0, (iv) if (x, x) = 0, then
x = 0.

Theorem A.1 ([31]). The equation

(x, y) =

n∑

k=1

xkyk,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n defines an inner product on R

n.

Let ‖v‖ = (
∑n

i=1 v
2
i )

1

2 , where v = (v1, . . . , vn) ∈ R
n. Then, the geometric interpretation

of (u, v) is (u, v) = ‖u‖‖v‖cos θ, where θ is the angle between u and v. For an inner
product on V = R

n, we write u · v rather than (u, v)
If we change an ordered basis B = {b1, . . . , bn} of an n-dimensional vector space V to

the new ordered basis B′ = {b′1, . . . , b′n}, then a vector v has old coordinate matrix [v]B
and a new coordinate matrix [v]B′ , respectively. It is related to the equation [v]B = S[v]B′ ,
where S is called the transition matrix from B′ to B. If X and Y are square matrices
(i.e., n× n matrices), then Y is similar to X if there is an invertible matrix P such that
Y = P−1XP .
Let M = (aij) be an n × n matrix. The main diagonal of M consists of the entries

aii for 1 ≤ i ≤ n. A matrix D is called diagonal if its non-zero entries appear only on
the main diagonal. A matrix U is called upper triangular if all entries of U lying below
the main diagonal are zero. A matrix L is called lower triangular if all entries of L lying
above the main diagonal are zero.
A square matrix M is called diagonalizable if it is similar to a diagonal matrix.
A linear operator T of V is called diagonalizable if there exists an (ordered) basis of V

with respect to which the transformation matrix of T is a diagonal matrix.
A square matrix is called symmetric if A = A⊤.
Let V be a vector space over K. If T is a linear operator of V , a nonzero vector v ∈ V

satisfying Tv = λv for some λ ∈ K is called an eigenvector of T . The following theorem
describes the fundamental fact of a diagonalizable matrix.

Theorem A.2 ([3]). An n× n matrix M with real entries is diagonalizable if and only
if M has n linearly independent eigenvectors.

Lemma A.1 ([3, 7]). Every symmetric matrix with real entries is diagonalizable.

Lemma A.2 ([3, 7]). Similar matrices have the same determinant.

Given a linear operator T : V → V , the following theorem describes how the transfor-
mation matrix of a linear operator of V changes as we change a basis.

Theorem A.3 ([3]). Let T : V → V be a linear operator of V and let B and B′

be both bases for V . Then, [T ]B and [T ]B′ are similar, where [T ]B (respectively, [T ]B′)
denotes the transformation matrix of T with respect to B (respectively, B′). Specifically,
[T ]B′ = S−1[T ]BS, where S is the transition matrix from B′ to B.

Let V be a vector space over R, and R be a one-dimensional vector space over itself.
Let HomR(V,R) be the set of all linear transformations from V to R. This set, denoted

by V̂ , forms a vector space over R, which is called the dual space of V . Elements of V̂
are called linear functionals.

Theorem A.4 ([15]). If B = {v1, . . . , vn} is a basis of a vector space V over R, define

v̂i ∈ V̂ for each i ∈ {1, . . . , n} by its action on the basis B in such a manner that
v̂i(vj) = δij for 1 ≤ j ≤ n, where δij for 1 ≤ j ≤ n denotes 0 ∈ R if i 6= j and 1 ∈ R if
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i = j. Then, V̂ is a vector space over R with basis B̂ = {v̂1, . . . , v̂n}.

There is a (bilinear) natural pairing < ·, · > between V̂ and V defined by < φ, v >
def
=

φ(v) for φ ∈ V̂ and v ∈ V . (If A denotes a linear operator of V and A⊤ denotes its dual

or transpose operator of V̂ , (A⊤φ)(v) = φ(Av) for φ ∈ V̂ , v ∈ V [27].)

Let V̂ = HomR(V,R) be the dual space of V and let ρ : G→ GL(V ) be a representation

of G. The dual representation ρ̂ : G→ GL(V̂ ) to ρ : G→ GL(V ) is the representation of

G acting on V̂ given by ρ̂(g) = [ρ(g−1)]⊤ : V̂ → V̂ , where ρ̂(g) is the transpose of ρ(g−1).
The following lemma describe the relationship between a representation ρ : G →

GL(V ) of G and the dual representation ρ̂ : G→ GL(V̂ ) of G.

Lemma A.3 ([22]). < ρ̂(g)(v̂), ρ(g)(v) >=< v̂, v > for all g ∈ G, v ∈ V , and v̂ ∈ V̂ .

The definition of the dual representation is such that the following diagram com-
mutes [22]:

V
φ−−−−→ R

g

y
yg

V −−−−→
gφ

R

Therefore, (gφ)(v) = gφ(g−1v) for all g ∈ G and v ∈ V . Since gx = x for all x ∈ R,
we have (gφ)(v) = gφ(g−1v) = φ(g−1v). Since φ(g−1v) = ((g−1)⊤φ)(v), we have gφ =
(g−1)⊤φ, which corresponds to the above definition.
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