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Abstract

Let G be a connected graph. A vertex w strongly resolves a pair u, v of vertices
of G if there exists some shortest u − w path containing v or some shortest v − w

path containing u. A set W of vertices is a strong resolving set for G if every pair
of vertices of G is strongly resolved by some vertex of W . The smallest cardinality of
a strong resolving set for G is called the strong metric dimension of G. It is known
that the problem of computing this invariant is NP-hard. This suggests finding the
strong metric dimension for special classes of graphs or obtaining good bounds on this
invariant. In this paper we study the problem of finding exact values or sharp bounds
for the strong metric dimension of rooted product of graphs and express these in terms
of invariants of the factor graphs.

Keywords: Strong metric dimension; rooted product graphs; strong metric basis; strong
resolving set.
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1 Introduction

A generator of a metric space is a set S of points in the space with the property that every
point of the space is uniquely determined by its distances from the elements of S. Given a
simple and connected graph G = (V,E), we consider the metric dG : V × V → R

+, where
dG(x, y) is the length of a shortest path between x and y. (V, dG) is clearly a metric space. A
vertex v ∈ V is said to distinguish two vertices x and y if dG(v, x) 6= dG(v, y). A set S ⊂ V
is said to be a metric generator for G if any pair of vertices of G is distinguished by some
element of S. A minimum generator is called a metric basis, and its cardinality the metric

dimension of G, denoted by dim(G). Motivated by the problem of uniquely determining
the location of an intruder in a network, the concept of metric dimension of a graph was
introduced by Slater in [23, 24], where the metric generators were called locating sets. The
concept of metric dimension of a graph was introduced independently by Harary and Melter
in [9], where metric generators were called resolving sets. Applications of this invariant to
the navigation of robots in networks are discussed in [13] and applications to chemistry
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in [11, 12]. This invariant was studied further in a number of other papers including for
example, [2, 3, 4, 6, 7, 10, 16, 18, 20, 25, 26, 27, 28]. Several variations of metric generators
including resolving dominating sets [1], independent resolving sets [5], local metric sets [18],
and strong resolving sets [14, 17, 22], etc. have been introduced and studied.

In this article we are interested in the study of strong resolving sets [17, 22]. A vertex
w ∈ V (G) strongly resolves two vertices u, v ∈ V (G) if dG(w, u) = dG(w, v) + dG(v, u) or
dG(w, v) = dG(w, u) + dG(u, v), i.e., there exists some shortest w − u path containing v
or some shortest w − v path containing u. A set S of vertices in a connected graph G is
a strong metric generator for G if every two vertices of G are strongly resolved by some
vertex of S. The smallest cardinality of a strong resolving set of G is called strong metric

dimension and is denoted by dims(G). So, for example, dims(G) = n − 1 if and only if G
is the complete graph of order n. For the cycle Cn of order n the strong metric dimension
is dims(Cn) = ⌈n/2⌉ and if T is a tree with l(T ) leaves, its strong metric dimension equals
l(T )−1 (see [22]). A strong metric basis of G is a strong metric generator for G of cardinality
dims(G).

Given a simple graph G = (V,E), we denote two adjacent vertices u, v by u ∼ v. The
neighborhood of a vertex v of G is NG(v) = {u ∈ V (G) : u ∼ v} and the degree of v is
δG(v) = |NG(v)|. The open neighborhood of a set S of vertices of G is NG(S) =

⋃

v∈S NG(v)
and the closed neighborhood of S is NG[S] = NG(S) ∪ S. The subgraph induced by a set X
will be denoted by 〈X〉. A vertex u of G is maximally distant from v if for every vertex w
in the open neighborhood of u, dG(v, w) ≤ dG(u, v). If u is maximally distant from v and v
is maximally distant from u, then we say that u and v are mutually maximally distant. The
boundary of G = (V,E) is defined as ∂(G) = {u ∈ V : there exists v ∈ V such that u, v are
mutually maximally distant}. For some basic graph classes, such as complete graphs Kn,
complete bipartite graphs Kr,s, cycles Cn and hypercube graphs Qk, the boundary is simply
the whole vertex set. It is not difficult to see that this property holds for all 2-antipodal1

graphs and also for all distance-regular graphs. Notice that the boundary of a tree consists
exactly of the set of its leaves. A vertex of a graph is a simplicial vertex if the subgraph
induced by its neighbors is a complete graph. Given a graph G, we denote by σ(G) the set
of simplicial vertices of G. Notice that σ(G) ⊆ ∂(G).

We use the notion of strong resolving graph introduced in [17]. The strong resolving

graph2 of G is a graph GSR with vertex set V (GSR) = ∂(G) where two vertices u, v are
adjacent in GSR if and only if u and v are mutually maximally distant in G.

There are some families of graphs for which its strong resolving graph can be obtained
relatively easy. For instance, we emphasize the following cases.

• If ∂(G) = σ(G), then GSR
∼= K|∂(G)|. In particular, (Kn)SR ∼= Kn and for any tree T

with l(T ) leaves, (T )SR ∼= Kl(T ).

• For any 2-antipodal graph G of order n, GSR
∼=

⋃

n
2
i=1K2. In particular, (C2k)SR ∼=

⋃k

i=1K2.

• (C2k+1)SR ∼= C2k+1.

1The diameter of G = (V,E) is defined as D(G) = maxu,v∈V {d(u, v)}. We recall that G = (V,E) is
2-antipodal if for each vertex x ∈ V there exists exactly one vertex y ∈ V such that dG(x, y) = D(G).

2In fact, according to [17] the strong resolving graph G′

SR of a graph G has vertex set V (G′

SR) = V (G)
and two vertices u, v are adjacent in G′

SR if and only if u and v are mutually maximally distant in G. So,
the strong resolving graph defined here is a subgraph of the strong resolving graph defined in [17] and it can
be obtained from the latter graph by deleting its isolated vertices.
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A set S of vertices of G is a vertex cover of G if every edge of G is incident with at least
one vertex of S. The vertex cover number of G, denoted by α(G), is the smallest cardinality
of a vertex cover of G. We refer to an α(G)-set in a graph G as a vertex cover of cardinality
α(G). Oellermann and Peters-Fransen [17] showed that the problem of finding the strong
metric dimension of a connected graph G can be transformed to the problem of finding the
vertex cover number of GSR. The following result will be an important tool of this article.

Theorem 1. [17] Let G be connected graph. A set W ⊂ V (G) is a strong metric generator

for G if and only if W is a vertex cover for GSR.

It was shown in [17] that the problem of computing dims(G) is NP-hard. This suggests
finding the strong metric dimension for special classes of graphs or obtaining good bounds
on this invariant. An efficient procedure for finding the strong metric dimension of distance
hereditary graphs was described in [15]. In this paper we study the problem of finding exact
values or sharp bounds for the strong metric dimension of rooted product of graphs and
express these in terms of invariants of the factor graphs. Notice that the metric dimension
of rooted product graphs has been recently studied in [28].

Figure 1: The rooted product graphs P4 ◦ C3 and C3 ◦v P4, where v has degree two.

A rooted graph is a graph in which one vertex is labeled in a special way so as to
distinguish it from other vertices. The special vertex is called the root of the graph. Let G
be a labeled graph on n vertices. Let H be a sequence of n rooted graphs H1, H2,...,Hn.
The rooted product graph G(H) is the graph obtained by identifying the root of Hi with
the ith vertex of G [8]. In this paper we consider the particular case of rooted product
graph where H consists of n isomorphic rooted graphs [21]. More formally, assuming that
V (G) = {u1, ..., un} and that the root vertex of H is v, we define the rooted product graph
G ◦v H = (V,E), where V = V (G)× V (H) and

E =
n
⋃

i=1

{(ui, b)(ui, y) : by ∈ E(H)} ∪ {(ui, v)(uj, v) : uiuj ∈ E(G)}.

Note that for any x ∈ V (G) the subgraph Hx = 〈{x}×V (H)〉 of G ◦v H is isomorphic to H .
Given x ∈ V (G), v ∈ V (H) and B ⊂ V (G)× V (H) we will denote by Bx the set of element
of B whose first component is x, i.e., Bx = B ∩ ({x} × V (H)).

If H is a vertex transitive graph, then G ◦v H does not depend on the choice of v, up to
isomorphism. In such a case we will denote the rooted product by G ◦ H . Figure 1 shows
the case of the rooted product graphs P4 ◦ C3 and C3 ◦v P4, where v has degree two. We
also recall that the corona product G ⊙ H is defined as the graph obtained from G and H
by taking one copy of G and n copies of H and joining by an edge each vertex from the
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ith-copy of H with the ith-vertex of G. If G and H are connected graphs of order n ≥ 2, H
is a connected graph of order t ≥ 2, then we note that the corona product graph G ⊙H is
a particular case of a rooted product graph, i.e., G⊙H ∼= G ◦v (K1 +H), where v denotes
the vertex of K1. Metric dimension and strong metric dimension of corona product graphs
were studied in [27] and [14], respectively.

We emphasize that given a, b ∈ V (G) and x, y, v ∈ V (H) it follows, dG◦vH((a, x), (a, y)) =
dH(x, y) and if a 6= b, then dG◦vH((a, x), (b, y)) = dH(x, v) + dG(a, b) + dH(v, y).

This article is composed by two main sections. In Section 2 we obtain closed formulae
for the strong metric dimension of some classes of rooted product graphs while Section 3 is
devoted to obtain tight bounds for the strong metric dimension of rooted product graphs.

2 Closed formulae

We start by stating the following easily verified lemmas.

Lemma 2. Let G and H be two connected graphs. Let a, b ∈ V (G), a 6= b, x, y, v ∈ V (H)
and let M(v) be the set of vertices of H which are maximally distant from v. Then (a, x)
and (b, y) are mutually maximally distant vertices in G ◦v H if and only if x, y ∈ M(v).

Proof. (Sufficiency) Suppose that (a, x) and (b, y) are not mutually maximally distant ver-
tices inG◦vH . So, there exists a vertex (a, x′) ∈ NG◦vH(a, x) such that dG◦vH((a, x

′), (b, y)) >
dG◦vH((a, x), (b, y)), or there exists (b, y′) ∈ NG◦vH(b, y) such that dG◦vH((a, x), (b, y

′)) >
dG◦vH((a, x), (b, y)). We consider, without loss of generality, that (a, x′) ∈ NG◦vH(a, x) and
dG◦vH((a, x

′), (b, y)) > dG◦vH((a, x), (b, y)). So we have,

dH(x
′, v) = dG◦vH((a, x

′), (b, y))− dG(a, b)− dH(v, y)

> dG◦vH((a, x), (b, y))− dG(a, b)− dH(v, y)

= dH(x, v).

Thus, dH(x
′, v) > dH(x, v). Since x′ ∈ NH(x) and x ∈ M(v), we have a contradiction.

(Necessity) Let us suppose that x /∈ M(v). So, there exists x′′ ∈ NH(x) such that
dH(x

′′, v) > dH(x, v). Thus, dG◦vH((a, x), (b, y)) = dH(x, v)+dG(a, b)+dH(v, y) < dH(x
′′, v)+

dG(a, b)+dH(v, y) = dG◦vH((a, x
′′), (b, y)). Hence, there exists a vertex (a, x′′) ∈ NG◦vH((a, x))

such that dG◦vH((a, x), (b, y)) < dG◦vH((a, x
′′), (b, y)), which is a contradiction since (a, x) and

(b, y) are mutually maximally distant.

Lemma 3. Let G and H be two connected nontrivial graphs. Let v, x, y be vertices of H such

that x, y 6= v. For every vertex a of G we have that (a, x) and (a, y) are mutually maximally

distant vertices in G ◦v H if and only if the vertices x and y are mutually maximally distant

in H.

Proof. The result follows directly from the fact that for every vertex c of G and every vertex
z 6= v of H we have that w ∈ NH(z) if and only if (c, w) ∈ NG◦vH(c, z) and also that
dG◦vH((a, x), (a, y)) = dH(x, y) for every x, y of H .

Lemma 4. Let H be a connected graph, let v ∈ V (H) and let M(v) be the set of vertices of

H which are maximally distant from v. Then M(v) ⊆ ∂(H).
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Proof. Let u ∈ M(v). If v is not maximally distant from u, then there exists a vertex
y1 ∈ N(v) such that d(y1, u) > d(v, u). So u is maximally distant from y1. By repeating
this argument, since H is finite, we will find a vertex yi such that yi and u are mutually
maximally distant. Therefore, u ∈ ∂(H).

Proposition 5. Let G be a connected graph of order n ≥ 2 and let H be a connected graph.

(i) If v ∈ ∂(H), then ∂ (G ◦v H) = V (G)× (∂(H)− {v}).

(ii) If v 6∈ ∂(H), then ∂ (G ◦v H) = V (G)× ∂(H).

Proof. Let (x, y) and (x′, y′) be two mutually maximally distant vertices in G ◦v H . Since
(V (G)× {v}) ∩ ∂ (G ◦v H) = ∅, it follows y, y′ 6= v. We differentiate two cases.

Case 1: x = x′. By Lemma 3 we conclude that (x, y) and (x′, y′) are mutually maximally
distant in G ◦v H if and only if y and y′ are mutually maximally distant in H .

Case 2: x 6= x′. By Lemma 2 the vertices (x, y) and (x′, y′) are mutually maximally
distant in G ◦v H if and only if y, y′ ∈ M(v). Note that, by Lemma 4, y, y′ ∈ ∂(H).

According to the above cases we conclude that if (x, y) ∈ ∂(G◦vH), then y ∈ ∂(H)−{v}.
Moreover, if y ∈ ∂(H)− {v}, then for every x ∈ V (G) we have (x, y) ∈ ∂(G ◦v H).

Therefore, if v ∈ ∂(H), then ∂ (G ◦v H) = V (G)× (∂(H)− {v}) and if v 6∈ ∂(H), then
∂ (G ◦v H) = V (G)× ∂(H).

Proposition 6. Let G be a connected graph of order n ≥ 2 and let H be a connected graph.

(i) If v ∈ σ(H), then σ (G ◦v H) = V (G)× (σ(H)− {v}).

(ii) If v 6∈ σ(H), then σ (G ◦v H) = V (G)× σ(H).

Proof. Note that (x, v) is not simplicial in G ◦v H . Since the following assertions are equiv-
alent, the result immediately follows.

• The vertex (x, y) ∈ V (G)× (V (H)− {v}) is simplicial in G ◦v H .

• For x ∈ V (G) and y 6= v the vertex (x, y) is simplicial in Hx.

• The vertex y ∈ V (H)− {v} is simplicial in H .

Theorem 7. Let G be a connected graph of order n ≥ 2 and let H be a connected graph

such that ∂(H) = σ(H).

(i) If v ∈ ∂(H), then dims(G ◦v H) = n(|∂(H)| − 1)− 1.

(ii) If v 6∈ ∂(H), then dims(G ◦v H) = n|∂(H)| − 1.

Proof. Since ∂(H) = σ(H), as a direct consequence of Proposition 5 and Proposition 6 we
obtain that if v 6∈ ∂(H), then ∂ (G ◦v H) = V (G)×∂(H) = σ (G ◦v H) and if v ∈ ∂(H), then
∂ (G ◦v H) = V (G) × (∂(H) − {v}) = σ (G ◦v H) . Hence, if v 6∈ ∂(H), then (G ◦v H)SR ∼=
Kn|∂(H)| and, if v ∈ ∂(H), then (G ◦v H)SR ∼= Kn(|∂(H)|−1). Therefore, the result follows by
Theorem 1.

We emphasize the following particular cases of Theorem 7.
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Corollary 8. Let G be a connected graph of order n ≥ 2.

(i) For any complete graph of order n′, dims(G ◦Kn′) = n(n′ − 1)− 1.

(ii) For any tree T with l(T ) leaves,

dims(G ◦v T ) =







n(l(T )− 1)− 1, if v is a leaf of T ,

n · l(T )− 1, if v is an inner vertex of T .

(iii) Let G′ be a connected graph of order n′ and let H = G′ ⊙ (
⋃r

i=1Kti), where r ≥ 2,
ti ≥ 1. Then

dims(G ◦v H) =







n
∑r

i=1 ti − n− 1, if v ∈
⋃r

i=1 V (Kti),

n
∑r

i=1 ti − 1, if v ∈ V (G′).

Theorem 9. Let G be a connected graph of order n ≥ 2 and let H be a connected graph

such that HSR
∼=

|∂(H)|
2
⋃

i=1

K2. Let v ∈ V (H) and let M(v) be the set of vertices of H which

are maximally distant from v. Let i(v) be the set of isolated vertices of the subgraph of HSR

induced by M(v).

(i) If v 6∈ ∂(H), then dims(G ◦v H) =
n(|∂(H)|+ |M(v)| − |i(v)|)− |M(v)|+ |i(v)|

2
.

(ii) If v ∈ ∂(H), then dims(G ◦v H) =
n(|∂(H)|+ |M(v)| − |i(v)|)− |M(v)|+ |i(v)| − 2

2
.

Proof. Let V (G) = {x1, x2, ..., xn} be the vertex set of G and let B be a vertex cover for
(G◦vH)SR. First we note that by premiss for every a ∈ ∂(H) there exists exactly one vertex
a′ ∈ ∂(H) such that a and a′ are adjacent in HSR. We consider the set i′(v) ⊂ ∂(H) defined
in the following way: a′ ∈ i′(v) if and only if there exists a ∈ i(v) such that a and a′ are
mutually maximally distant in H . Note that |i′(v)| = |i(v)| and, if v ∈ ∂(H) and v, v′ are
mutually maximally distant, then v ∈ i′(v) and v′ ∈ i(v). Also, since there are no edges in
HSR connecting vertices belonging toM(v)∪i′(v) to vertices belonging to ∂(H)−M(v)∪i′(v),
by Lemmas 2 and 3 we conclude that there are no edges in (G ◦v H)SR connecting vertices
belonging to V (G)× (∂(H)− (M(v)∪ i′(v)) to vertices belonging to V (G)× (M(v)∪ i′(v)).
With this idea in mind, we proceed to prove the results.

In order to prove (i) we consider that v 6∈ ∂(H). Note that in this case by Proposition
5 (ii), ∂(G ◦v H) = V (G)× ∂(H). By Lemma 3 we have that for every mutually maximally
distant vertices a, a′ ∈ ∂(H)− (M(v)∪ i′(v)) and every j ∈ {1, ..., n} the vertices (xj , a) and
(xj , a

′) are mutually maximally distant in G ◦v H and, as a consequence, (xj , a) 6∈ B if and
only if (xj , a

′) ∈ B. Thus, the subgraph of (G◦vH)SR induced by V (G)×(∂(H)−M(v)∪i′(v))
is composed by n

2
(|∂(H)| − |M(v)| − |i′(v)|) components isomorphic to K2.

On the other hand, by Lemma 2 we have that (xj , a), (xk, a) are mutually maximally
distant in G ◦v H , for every a ∈ M(v) and j 6= k. Thus, if (xj , a) 6∈ B for some j, then
(xk, a) ∈ B for every k 6= j. Moreover, as above, Lemma 3 allows us to conclude that given
two mutually maximally distant vertices a, a′ ∈ M(v)∪ i′(v) it follows that (xj , a) 6∈ B if and

6



only if (xj , a
′) ∈ B. Thus, B contains exactly (n − 1)|M(v) + |M(v)∪i′(v)|

2
vertices belonging

to V (G)× (M(v) ∪ i′(v)). Therefore,

|B| =
n(|∂(H)| − |M(v)| − |i(v)|)

2
+ (n− 1)|M(v)|+

|M(v)|+ |i(v)|

2

=
n(|∂(H)|+ |M(v)| − |i(v)|)− |M(v)|+ |i(v)|

2

The proof of (i) is complete.
From now on we suppose v ∈ ∂(H). Note that in this case by Proposition 5 (i) we have

∂(G◦vH) = V (G)×(∂(H)−{v}). To prove (ii) we proceed by analogy to the proof of (i). In
this case we obtain that the subgraph of (G◦vH)SR induced by V (G)×(∂(H)−(M(v)∪i′(v))
is composed by n

2
|∂(H)−M(v)∪i′(v)| = n

2
(|∂(H)|−|M(v)|−|i(v)|) components isomorphic to

K2 andB contains exactly (n−1)|M(v)|+ |(M(v)−{v′})∪(i′(v)−{v})|
2

= (n−1)|M(v)|+ |M(v)|+|i(v)|−2
2

vertices of G ◦v H belonging to V (G)× (M(v) ∪ (i′(v)− {v})). Thus,

|B| =
n(|∂(H)| − |M(v)| − |i(v)|)

2
+ (n− 1)|M(v)|+

|M(v)|+ |i(v)| − 2

2

=
n(|∂(H)|+ |M(v)| − |i(v)|)− |M(v)|+ |i(v)| − 2

2
.

The proof of (ii) is complete.

We conjecture that if v 6∈ ∂(H), then i(v) = i′(v) = ∅. In order to show a particular case
of Theorem 9 where i(v) 6= ∅ we consider the graph H shown in the left hand side of Figure
2 where ∂(H) = {a, a′, b, b′, v, v′}, M(v) = i(v) = {a, v′} and i′(v) = {a′, v}. In the case
of the graph H shown in the right hand side of Figure 2 we have ∂(H) = {a, a′, b, b′, v, v′},
M(v) = {a, a′, v′}, i(v) = {v′} and i′(v) = {v}. In both cases

B = (V (G)− {un})× (M(v) ∪ {b}) ∪ {(un, a), (un, b)}

is a strong metric basis of G ◦v H for any graph G with vertex set V = {u1, u2, ..., un}.

Figure 2: In left hand side graph i(v) = {a, v′} and i′(v) = {a′, v}. In right hand side graph
i(v) = {v′} and i′(v) = {v}.

Corollary 10. Let G be a connected graph of order n ≥ 2 and let H be a connected 2-

antipodal graph of order n′. Then dims(G ◦H) = nn′

2
− 1.
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Theorem 11. Let Ct be a cycle of order t ≥ 3. For any connected graph G of order r ≥ 2,

dims(G ◦ Ct) = r

⌈

t

2

⌉

− 1.

Proof. Let V (G) = {x1, x2, ..., xr} and V (Ct) = {y0, y1, ..., yt−1} be the vertex sets of G and
Ct, respectively. We assume y0 ∼ y1 ∼ ... ∼ yt−1 ∼ y0 in Ct and from now on all the
operations with the subscripts of yi are done modulo t. Since Ct is a vertex transitive graph,
we can take without loss of generality v = y0 as the root of Ct.

If t be an even number, then Ct is 2-antipodal. So the result follows by Corollary 10.
Now let t be an odd number. Note that exactly two vertices y⌈ t

2⌉
and y⌊ t

2⌋
are maximally

distant from v in Ct. So, from Lemma 2 we have that every vertex (xi, yl) is mutually
maximally distant from (xj , yk) in G ◦Ct, with j 6= i and l, k ∈

{⌈

t
2

⌉

,
⌊

t
2

⌋}

. Moreover, from
Lemma 3 we have that for every i ∈ {1, 2, ..., r}, (xi, yk) is mutually maximally distant from
(xi, yk+⌊ t

2⌋
) and (xi, yk+⌈ t

2⌉
) in G ◦ Ct with k ∈ {1, 2, ...,

⌊

t
2

⌋

− 1,
⌈

t
2

⌉

+ 1, ..., t − 1}. Also,

the vertex (xi, y⌊ t
2⌋
) is mutually maximally distant from (xi, yt−1) and the vertex (xi, y⌈ t

2⌉
)

is mutually maximally distant from (xi, y1). Thus, we obtain that the graph (G ◦ Ct)SR is
isomorphic to a graph with set of vertices U∪(

⋃r

i=1 Vi) where 〈U〉 is isomorphic to a complete
r-partite graph K2,2,...,2 and for every i ∈ {1, ..., r}, 〈Vi〉 is isomorphic to a path graph Pt−1.
Notice that the leaves of Pt−1 belong to U , so for every i ∈ {1, ..., r}, |Vi ∩U | = 2. Thus, we
have the following:

dims(G ◦ Ct) = α((G ◦ Ct)SR)

= α(〈U〉) + (r − 1)α(Pt−3) + α(Pt−1)

= 2(r − 1) + (r − 1)
t− 3

2
+

t− 1

2

= r

⌈

t

2

⌉

− 1.

The proof is complete.

We recall that the clique number of a graph H , denoted by ω(H), is the number of
vertices in a maximum clique in H . Two distinct vertices x, y are called true twins if
NH [x] = NH [y]. We say that X ⊂ V (H) is a twin-free clique in H if the subgraph induced
by X is a clique and for every u, v ∈ X it follows NH [u] 6= NH [v], i.e., the subgraph induced
by X is a clique and it contains no true twins. We say that the twin-free clique number

of H , denoted by ̟(H), is the maximum cardinality among all twin-free cliques in H . So,
ω(H) ≥ ̟(H).

Theorem 12. [14] Let G be a connected graph of order r. Let H be a graph of order t and
maximum degree ∆. If ∆ ≤ t− 2 or r ≥ 2, then dims(G⊙H) = rt−̟(H).

Given a vertex v of a graph H , we denote by H − v the graph obtained by removing v
from H . Now, if v is a vertex of H of degree n− 1, then the rooted product graph G ◦v H is
isomorphic to the corona product graph G⊙(H−v). So, as a direct consequence of Theorem
12 we obtain the following result.

Corollary 13. Let G be a connected graph of order r ≥ 2. Let H be a connected graph of

order t ≥ 2 and let v be a vertex of H of degree t−1. Then dims(G◦vH) = r(t−1)−̟(H−v).
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The next result gives the exact value for the strong metric dimension of G⊙H when H
is a triangle free graph.

Theorem 14. [14] Let G be a connected graph of order r and let H be a triangle free graph

of order t ≥ 3 and maximum degree ∆. If r ≥ 2 or ∆ ≤ t− 2, then

dims(G⊙H) = rt− 2.

As a direct consequence of Theorem 14 we have the following.

Corollary 15. Let G be a connected graph of order r ≥ 2. Let H be a connected graph of

order t ≥ 2 and let v be a vertex of H of degree t−1. If H− v is a triangle free graph. Then

dims(G ◦v H) = r(t− 1)− 2.

As the next theorem shows, the strong metric dimension of G ⊙ H depends on the
diameter of H .

Theorem 16. [14] Let G be a connected graph of order r. Let H be a graph of order t and
maximum degree ∆.

(i) If H has diameter two and either ∆ ≤ t− 2 or r ≥ 2, then

dims(G⊙H) = (r − 1)t+ dims(H).

(ii) If H is not connected or its diameter is greater than two, then

dims(G⊙H) = (r − 1)t+ dims(K1 +H).

Therefore, as a consequence of Theorem 16 we obtain the following result for G ◦v H .

Corollary 17. Let G be a connected graph of order r ≥ 2. Let H be a graph of order t ≥ 2
and let v be a vertex of H of degree t− 1.

(i) If H − v has diameter two, then

dims(G ◦v H) = (r − 1)(t− 1) + dims(H − v).

(ii) If H − v has diameter greater than two, then

dims(G ◦v H) = (r − 1)(t− 1) + dims(H).

The strong metric dimension of G⊙H depends on the existence or not of true twins in
H . In this sense, the following result was presented in [14].

Theorem 18. [14] Let G be a connected graph of order r and let H be a graph of order t.
Let c(H) be the number of vertices of H having degree t− 1.

(i) If H has no true twins and r ≥ 2, then

dims(G⊙H) = rt− ω(H).
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(ii) If the only true twins of H are vertices of degree t− 1 and r ≥ 2, then

dims(G⊙H) = rt+ c(H)− 1− ω(H).

Our next result is an interesting consequence of Theorem 18.

Corollary 19. Let G be a connected graph of order r ≥ 2. Let H be a connected graph of

order t ≥ 2 and let v be a vertex of H of degree t− 1. Let c(H− v) be the number of vertices

of H − v having degree t− 2.

(i) If H − v has no true twins, then

dims(G ◦v H) = r(t− 1)− ω(H − v).

(ii) If the only true twins of H − v are vertices of degree t− 2, then

dims(G ◦v H) = r(t− 1) + c(H − v)− 1− ω(H − v).

3 Tight bounds

Lemma 20. Let G and H be two connected graphs. Given x ∈ V (G), v ∈ V (H) and a

strong metric basis B of G ◦v H let Bx = B ∩ ({x} × V (H)) and let M(v) be the set of

vertices of H which are maximally distant from v. Then the following assertions hold.

(i) |Bx| ≥ dims(H)− 1.

(ii) If Bx ⊃ {x} ×M(v), then |Bx| ≥ dims(H).

(iii) If v does not belong to any strong metric basis of H, then |Bx| ≥ dims(H).

Proof. First we consider a pair (x, y), (x, y′) of adjacent vertices in (Hx)SR, where y, y′ 6= v.
Since B is a vertex cover of (G◦vH)SR, either (x, y) ∈ Bx or (x, y

′) ∈ Bx. Thus, Bx∪{(x, v)}
is a vertex cover of (Hx)SR. Note that (x, v) 6∈ ∂(G◦v H) and, as a consequence, (x, v) 6∈ Bx.
Hence, |Bx|+ 1 = |Bx ∪ {(x, v)}| ≥ dims(Hx) = dims(H). Therefore, (i) follows.

Now we suppose Bx ⊃ {x} × M(v). If (x, y) and (x, v) are adjacent in (Hx)SR, then
y ∈ M(v). So the edge {(x, y), (x, v)} of (Hx)SR is covered by (x, y) ∈ Bx. Thus, Bx is a
vertex cover of (Hx)SR and, as a result, |Bx| ≥ dims(H). Therefore, (ii) follows.

Finally, suppose that v does not belong to any strong metric basis of H . Since the
function f : {x}×V (H) → V (H), where f(x, y) = y, is a graph isomorphism andBx∪{(x, v)}
is a strong metric generator for Hx, the set

A = f(Bx ∪ {(x, v)}) = {v} ∪ {u : (x, u) ∈ Bx}

is a strong metric generator for H . Thus, since v does not belong to any strong metric
basis of H , |A| > dims(H). Taking into account that (x, v) 6∈ Bx we obtain |Bx| = |Bx ∪
{(x, v)}| − 1 = |A| − 1 ≥ dims(H). The proof is complete.

Theorem 21. Let G be a connected graph of order n ≥ 2 and let H be a connected graph.

(i) If v ∈ V (H) belongs to a strong metric basis of H, then

n · dims(H)− 1 ≤ dims(G ◦v H) ≤ (|∂(H)| − 1)(n− 1) + dims(H)− 1.
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(ii) If v ∈ V (H) does not belong to any strong metric basis of H, then

n · dims(H) ≤ dims(G ◦v H) ≤







|∂(H)|(n− 1) + dims(H), if v 6∈ ∂(H),

(|∂(H)| − 1)(n− 1) + dims(H), if v ∈ ∂(H).

Proof. Let W be a strong metric basis of H such that v ∈ W and let B be a strong metric
basis of G ◦v H . Since v belongs to a metric basis of H , we have v ∈ ∂(H). Suppose
there exists x ∈ V (G) such that (x, u) 6∈ Bx for some u ∈ M(v). By Lemma 20 (i) we
obtain |Bx| ≥ dims(H)− 1. Moreover, by Lemma 2 we have that for x′ ∈ V (G)− {x} and
u′ ∈ M(v) the vertices (x, u) and (x′, u′) are mutually maximally distant in G ◦v H . Hence,
since (x, u) 6∈ Bx and B is a vertex cover of (G ◦v H)SR, for every x′ ∈ V (G)− {x} we have
Bx′ ⊃ {x′} ×M(v). So, according to Lemma 20 (ii) we have |Bx′ | ≥ dims(H). Therefore,

dims(G ◦v H) = |B| = |Bx|+
∑

x′∈V (G)−{x}

|Bx′| ≥ n · dims(H)− 1.

On the other hand, since v ∈ ∂(H), Proposition 5 (ii) leads to ∂ (G ◦v H) = V (G) ×
(∂(H)−{v}). We will show that S = ∂ (G ◦v H)−P is a vertex cover for (G ◦vH)SR, where
P = {a} × (∂(H)−W ∪ {v}) and a ∈ V (G). Let (x, y) and (x′, y′) be two adjacent vertices
in (G ◦v H)SR. If x 6= a or x′ 6= a, then (x, y) ∈ S or (x′, y′) ∈ S. Now let, x = x′ = a.
Since Ha

∼= H and W is a vertex cover for H , {a} ×W is a vertex cover for Ha and, as a
consequence, (x, y) ∈ {a} ×W ⊂ S or (x′, y′) ∈ {a} ×W ⊂ S. Hence, S is a vertex cover
for (G ◦v H)SR. Therefore,

dims(G ◦v H) ≤ |S| = (|∂(H)| − 1)(n− 1) + dims(H)− 1.

The proof of (i) is complete.
From now on we assume that v does not belong to any strong metric basis of H . The

lower bound of (ii) is a direct consequence of Lemma 20 (iii). Suppose v 6∈ ∂(H). In this
case, by Proposition 5 (i) we conclude ∂ (G ◦v H) = V (G)×∂(H). By analogy with the proof
of the upper bound of (i) we show that S ′ = ∂ (G ◦v H)−P ′ is a vertex cover for (G◦vH)SR,
where P ′ = {a} × (∂(H)−W ′), a ∈ V (G) and W ′ is a strong metric basis of H . Hence,

dims(G ◦v H) ≤ |S ′| = |∂(H)|(n− 1) + dims(H).

Finally, for the case v ∈ ∂(H) we have ∂ (G ◦v H) = V (G)×(∂(H)−{v}) and proceeding
by analogy with the proof of the upper bound of (i) we show that S ′′ = ∂ (G ◦v H)−P ′′ is a
vertex cover for (G ◦v H)SR, where P ′′ = {a} × (∂(H)−W ′′), a ∈ V (G) and W ′′ is a strong
metric basis of H . Thus, in this case

dims(G ◦v H) ≤ |S ′′| = (|∂(H)| − 1)(n− 1) + dims(H).

The proof of (ii) is complete.

As Corollary 8 shows, the bounds of Theorem 21 (i) are tight and the upper bound
dims(G ◦v H) ≤ |∂(H)|(n− 1) + dims(H) of Theorem 21 (ii) is tight. To show the tightness
of the upper bound dims(G ◦v H) ≤ (|∂(H)| − 1)(n − 1) + dims(H) we consider the graph
J shown in Figure 3. Notice that any strong metric basis of J is formed by the vertices y2,
y4 and three vertices of the set {y1, y3, y5, x6}.
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Figure 3: The graph J and its strong resolving graph JSR.

Remark 22. Let G be a connected graph of order n. Let v be the vertex of the graph J
denoted by w. Then dims(G ◦v J) = (∂(J)− 1)(n− 1) + dims(J).

Proof. Let V = {u1, u2, ..., un} be the set of vertices of G. From Figure 3 we have that
there exits six vertices y1, y2, y3, y4, y5 and x6 which are maximally distant from v. So, by
using Lemma 2, we have that every two vertices (ui, y), (uj, y

′) ∈ V × {y1, y2, y3, y4, y5, x6},
where i 6= j, are mutually maximally distant. Moreover, by Lemma 3 for every two mutually
maximally distant vertices z, z′ in J we have that (ui, z), (ui, z

′) are mutually maximally
distant in G ◦v J for every vertex ui of G. Thus, (G ◦v J)SR is isomorphic to K6n. Therefore,
dims(G ◦v J) = 6n− 1 = (∂(J)− 1)(n− 1) + dims(J).

To see the tightness of the lower bound of Theorem 21 (ii) we define the family F
of graphs H containing a vertex of degree one not belonging to any strong metric basis
of H . We begin with the cycle Ct, where t is an odd number such that t ≥ 5, with set
of vertices X = {x1, x2, ..., xt}. To obtain a graph Ht,p,r ∈ F we add the sets of vertices
Y = {y}, W = {w1, w2, ..., wp} and Z = {z1, z2, ..., zr}, where p, r ≥ 1, and edges yxt,
x1xt−1, x⌊ t

2⌋
wi, for every i ∈ {1, 2, ..., p}, and x⌈ t

2⌉
zj , for every j ∈ {1, 2, ..., r}. Notice that

vertices of Y ∪ W ∪ Z have degree one in Ht,p,r and they are mutually maximally distant
between them. Also, for any vertex a ∈ NHt,p,r

(x1), dHt,p,r
(a, zj) ≤ dHt,p,r

(x1, zj), where j ∈
{1, 2, ..., r}. Similarly, for any vertex b ∈ NHt,p,r

(xt−1), dHt,p,r
(b, wi) ≤ dHt,p,r

(xt−1, wi), where
i ∈ {1, 2, ..., p}. Moreover, we can observe that xk and x

k+⌊ t
2⌋

are mutually maximally distant

for every k ∈ 2, 3, ...,
⌊

t
2

⌋

− 1. So, (Ht,p,r)SR is formed by
⌊

t
2

⌋

− 1 connected components,
that is,

⌊

t
2

⌋

− 2 connected components isomorphic to K2 and also, a connected component
isomorphic to a graph with set of vertices Y ∪ W ∪ Z ∪ {x1, xt−1} where 〈Y ∪ W ∪ Z〉
is isomorphic to K|Y ∪W∪Z|, x1 is adjacent to every vertex zj , j ∈ {1, 2, ..., r}, and xt−1 is
adjacent to every vertex wi, i ∈ {1, 2, ..., p}. Notice that every α((Ht,p,r)SR)-set is formed only
by the vertices of W ∪ Z and one vertex from each subgraph isomorphic to K2. Therefore,

dims(Ht,p,r) =
t− 5

2
+ p+ r

and y is a vertex of degree one not belonging to any strong metric basis of Ht,p,r. The graphs
H9,3,4 and (H9,3,4)SR are shown in Figure 4.
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Figure 4: The graphs H9,3,4 and (H9,3,4)SR. The set S = {w1, w2, w3, w4, z1, z2, z3, x2, x3} is
a strong metric basis of H9,3,4.

Remark 23. Let G be a connected graph of order n. Let v be the vertex of degree one not

belonging to any strong metric basis of the graph Ht,p,r ∈ F . Then

dims(G ◦v Ht,p,r) = n

(

t− 5

2
+ p+ r

)

= n · dims(Ht,p,r).

Proof. Let V be the vertex set of G and let Ht,p,r ∈ F with set of vertices W ∪X ∪ Y ∪ Z,
where W = {w1, w2, ..., wp}, X = {x1, x2, ..., xt}, Y = {y} and Z = {z1, z2, ..., zr}. Since
every vertex u ∈ W ∪ Z is maximally distant from v, by Lemma 2, we have that every two
different vertices (x, y), (x′, y′) ∈ V × (W ∪ Z), x 6= x′, are mutually maximally distant.
Moreover, by Lemma 3 for every two mutually maximally distant vertices vi, vj in Ht,p,r we
have that (u, vi), (u, vj) are mutually maximally distant in G ◦v Ht,p,r for every vertex u of
G. Thus, (G ◦v Ht,p,r)SR is formed by n t−5

2
+ 1 connected components, i. e., n t−5

2
connected

components isomorphic to K2 and one connected component isomorphic to a graph G1 with
set of vertices V × (W ∪Z ∪ {x1, xt−1)} where 〈V × (W ∪Z)〉 is isomorphic to Kn|W∪Z| and
for every u ∈ V , (u, x1) is adjacent to every vertex (u, zj), j ∈ {1, 2, ..., r}, and (u, xt−1) is
adjacent to every vertex (u, wi), i ∈ {1, 2, ..., p}. Since in G1 every vertex of 〈V × (W ∪ Z)〉
has a neighbor not belonging to V × (W ∪ Z) we have that α(G1) = n|W ∪ Z|. Therefore,
we obtain that

dims(G ◦v Ht,p,r) = α((G ◦v Ht,p,r)SR) = n|W ∪ Z|+ n
t− 5

2
= n

(

t− 5

2
+ p+ r

)

.

According to the Remark 23 we have that for every graph H ∈ F and any connected
graph G of order n, dims(G ◦v H) = n · dims(H) where v is the vertex of degree one not
belonging to any strong metric basis of the graph H .

The next result from [19] will be useful to prove Proposition 25.

Lemma 24. [19] For every connected graph G, dims(G) ≥ |σ(G)| − 1.

Proposition 25. Let G be a connected graph of order n ≥ 2 and let v be a vertex of a graph

H. If v does not belong to the boundary of H and there exists a vertex different from v, of
degree one in H, not belonging to any strong metric basis of H, then

dims(G ◦v H) ≥ n(dims(H) + 1)− 1.
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Proof. Let w be a vertex of degree one in H not belonging to any strong metric basis of H .
Notice that the vertices of the set A = {(ui, w) : i ∈ {1, 2, ..., n}} are also vertices of degree
one in G ◦v H . Thus, they are simplicial vertices and from Lemma 24 we have that at least
all but one vertices of A belongs to every strong metric basis of G ◦v H . Thus,

dims(G◦vH) = α((G◦vH)SR) ≥ nα(〈∂(H)〉)+|A|−1 = nα(HSR)+n−1 = n(dims(H)+1)−1.

As the following remark shows, the above bound is tight.

Remark 26. Let G be a connected graph of order n. Let v be the vertex of the graph

Ht,p,r ∈ F adjacent to the vertex of degree one not belonging to any strong metric basis of

Ht,p,r. Then

dims(G ◦v Ht,p,r) = n

(

t− 5

2
+ p+ r + 1

)

− 1 = n(dims(Ht,p,r) + 1)− 1.

Proof. Let V be the vertex set of G. Now, according to the construction of the family
F , let the graph Ht,p,r with set of vertices W ∪ X ∪ Y ∪ Z, where W = {w1, w2, ..., wp},
X = {x1, x2, ..., xt}, Y = {y} and Z = {z1, z2, ..., zr}. Since every vertex y ∈ W ∪ Y ∪
Z is maximally distant from v, by Lemma 2, we have that every two different vertices
(x, y), (x′, y′) ∈ V × (W ∪ Y ∪ Z), x 6= x′, are mutually maximally distant. Moreover,
by Lemma 3 for every two mutually maximally distant vertices vi, vj in Ht,p,r we have that
(u, vi), (u, vj) are mutually maximally distant inG◦vHt,p,r for every vertex u ofG. Thus, (G◦v
Ht,p,r)SR is formed by n t−5

2
+ 1 connected components, that is, n t−5

2
connected components

isomorphic to K2 and one connected component isomorphic to a graph G1 with set of vertices
V × (W ∪ Y ∪ Z ∪ {x1, xt−1)} where 〈V × (W ∪ Y ∪ Z)〉 is isomorphic to Kn|W∪Y ∪Z| and
for every u ∈ V , (u, x1) is adjacent to every vertex (u, zj), j ∈ {1, 2, ..., r}, and (u, xt−1) is
adjacent to every vertex (u, wi), i ∈ {1, 2, ..., p}. Notice that α(G1) = n|W ∪ Y ∪ Z| − 1.
Therefore, we obtain that

dims(G◦vHt,p,r) = α((G◦vHt,p,r)SR) = n|W∪Y ∪Z|−1+n
t− 5

2
= n

(

t− 5

2
+ p+ r + 1

)

−1.

References

[1] R. C. Brigham, G. Chartrand, R. D. Dutton, and P. Zhang, Resolving domination in
graphs, Mathematica Bohemica 128 (1) (2003) 25–36.
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[14] D. Kuziak, I. G. Yero, and J. A. Rodŕıguez-Velázquez, Strong metric dimension of
corona product graphs and join graphs. Discrete Applied Mathematics. (2012) In press.

[15] T. R. May and O. R. Oellermann, The strong dimension of distance-hereditary graphs,
JCMCC 76 (2011) 59–73.

[16] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Computer Vision Graph-

ics and Image Processing 25 (1984) 113–121.

[17] O. R. Oellermann and J. Peters-Fransen, The strong metric dimension of graphs and
digraphs, Discrete Applied Mathematics 155 (2007) 356–364.

[18] F. Okamoto, B. Phinezyn, and P. Zhang, The local metric dimension of a graph. Math-

ematica Bohemica 135 (3) (2010) 239–255.
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