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Abstract

The Kirchhoff index Kf(G) of a graph G is the sum of resistance distances
between all unordered pairs of vertices, which was introduced by Klein and Randić.
In this paper we characterized all extremal graphs with Kirchhoff index among all
graphs obtained by deleting p edges from a complete graph Kn with p ≤ ⌊n2 ⌋ and
obtained a sharp upper bound on the Kirchhoff index of these graphs. In addition,
all the graphs with the first to ninth maximal Kirchhoff indices are completely
determined among all connected graphs of order n > 27.
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1 Introduction

Let G be a connected graph with vertices labeled as v1, v2, . . . , vn. The distance

between vertices vi and vj , denoted by dG(vi, vj), is the length of a shortest path between
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them. The famous Wiener index W (G) [22] is the sum of distances between all unordered

pairs of vertices, that is, W (G) =
∑

i<j dG(vi, vj).

In 1993, Klein and Randić [17] introduced a new distance function named resistance

distance based on electrical network theory. They viewed G as an electrical network N by

replacing each edge of G with a unit resistor, the resistance distance between vi and vj ,

denoted by rG(vi, vj), is defined to be the effective resistance between them in N . Similar

to the long recognized shortest path distance, the resistance distance is also intrinsic to the

graph, not only with some nice purely mathematical and physical interpretations [17,18],

but with a substantial potential for chemical applications.

In fact, the shortest-path might be imagined to be more relevant when there is corpus-

cular communication (along edges) between two vertices, whereas the resistance distance

might be imagined to be more relevant when the communication is wave- or fluid-like.

Then the chemical communication in molecules is rather wavelike suggests the utility of

this concept in chemistry. So in recent years, the resistance distance was well studied in

mathematical and chemical literatures [1, 2, 4, 8–12].

Analogue to Wiener index, the Kirchhoff index (or resistance index) [4] is defined as

Kf(G) =
∑

i<j

rG(vi, vj).

As a useful structure-descriptor, the computation of Kirchhoff index is a hard problem

[1], but one may compute the specific classes of graphs. Since for trees, the Kirchhoff index

and the Wiener index coincide. It is possible to study the Kirchhoff index of topological

structures containing cycles. Throughout this paper we denote by Pn (resp. Cn, Kn)

denote the path graph (resp. cycle graph, complete graph) on n vertices. Some nice

mathematical results can be found in [20, 24].

All graphs considered in this paper are finite and simple. For two nonadjacent vertices

vi and vj , we use G + e to denote the graph obtained by inserting a new edge e = vi vj

in G. Similarly, for e ∈ E(G) of graph G, let G − e be the subgraph of G obtained by

deleting the edge e from E(G). The complement of graph G is always denoted by G. For

two vertex disjoint graphs G1 and G2, we denote by G1

⋃

G2 the graph which consists

of two connected components G1 and G2. The join of G1 and G2, denoted by G1

∨

G2,
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is the graph with vertex set V (G1)
⋃

V (G2) and edge set E(G1)
⋃

E(G2)
⋃

{uivj : ui ∈

V (G1), vj ∈ V (G2)}. For other undefined notation and terminology from graph theory,

the readers are referred to [5].

For a graph G with vertex set V = {v1, v2, . . . , vn}, we denote by di the degree of

the vertex vi in G for i = 1, 2, . . . , n. Assume that A(G) is the (0, 1)-adjacency matrix

of G and D(G) is the diagonal matrix of vertex degrees. The Laplacian matrix of G

is L(G) = D(G) − A(G). The Laplacian polynomial Q(G, λ) of G is the characteristic

polynomial of its Laplacian matrix, Q(G, λ) = det(λIn − L(G)) =
n
∑

k=0

(−1)kckλ
n−k. The

Laplacian matrix L(G) has nonnegative eigenvalues n ≥ µ1 ≥ µ2 ≥ · · · ≥ µn = 0 [6].

Denote by S(G) = {µ1, µ2, . . . , µn} the spectrum of L(G), i.e., the Laplacian spectrum

of G. If the eigenvalue µi appears li > 1 times in S(G), we write them as µ
(li)
i for the sake

of convenience.

In 1996, Gutman and Mohar [14] obtained the following nice result, by which a relation

is established between Kirchhoff index and Laplacian spectrum:

Kf(G) = n
n−1
∑

i=1

1

µi

(1)

for any connected graphs of order n ≥ 2.

Let G(n) be the set of connected graphs of order n. In this paper, we determined the

first to ninth minimal Kirchhoff indices of graphs from G(n) with n > 9; also characterized

all the graphs from G(n) with n > 27 with the first to ninth maximal Kirchhoff indices.

2 Preliminaries

In this section we will list some known lemmas as necessary preliminaries.

Lemma 2.1. ( [15]) Let G be a graph and G′ = G + e the graph obtained by inserting a

new edge into G. Then we have

µ1(G
′) ≥ µ1(G) ≥ µ2(G

′) ≥ µ2(G) ≥ · · · ≥ µn(G
′) = µn(G) = 0.

Combining Lemma 2.1 and the fact that
n−1
∑

i=1

µi(G+e)−
n−1
∑

i=1

µi(G) = 2, by the equation

(1), the following lemma can be easily obtained.
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Lemma 2.2. ( [20]) Let G be a connected graph with e ∈ E(G) and two nonadjacent

vertices vi and vj in V (G). Then we have

(1) Kf(G− e) > Kf(G) where G− e is connected;

(2) Kf(G) > Kf(G+ e′) where e′ = vivj.

Based on Lemma 2.2 (1), the corollary below follows immediately.

Corollary 2.1. Suppose that G is a connected graph of order n and with m ≥ n edges

and with T as its spanning tree. Then we have Kf(G) < Kf(T ).

Lemma 2.3. ( [21]) Let G be a graph of order n with S(G) = {µ1, µ2, . . . , µn−1, 0}. Then

S(G) = {n− µ1, n− µ2, . . . , n− µn−1, 0}.

Lemma 2.4. ( [17]) Let G be a connected graph. Then we have W (G) ≥ Kf(G), with

equality if and only if G is a tree.

Before listing this problem, we first introduce some necessary notations and definitions.

A vertex v of a tree T is called a branching point if d(v) ≥ 3. A tree is said to be starlike

if exactly one of its vertices has degree greater than two. Let Pn denote the path on n

vertices. By Tn(n1, n2, . . . , nk) we denote the starlike tree which has a vertex v of degree

k ≥ 3 and which has the property

Tn(n1, n2, . . . , nk)− v = Pn1
∪ Pn2

∪ · · · ∪ Pnk
.

This tree has n1+n2+ . . .+nk+1 = n vertices and assumed that n1 ≥ n2 ≥ . . . ≥ nk ≥ 1.

We say that the starlike tree Tn(n1, n2, . . . , nk) has k branches, the lengths of which are

n1, n2, . . . , nk, respectively.

Note that any tree with exactly one branching point is a starlike tree. Assume that

T is a tree of order n with exactly two branching points v1 and v2 with d(v1) = r and

d(v2) = t. The orders of r−1 components, which are paths, of T −v1 are p1, . . . , pr−1, the

order of the component which is not a path of T − v1 is pr = n− p1 − · · ·− pr−1 − 1. The

orders of t − 1 components, which are paths, of T − v2 are q1, . . . , qt−1, the order of the
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T10(5, 3, 1) T9(1
2; 12)

Figure 1: The trees T10(5, 3, 1) and T9(1
2; 12)

component which is not a path of T −v2 is qt = n−q1−· · ·−qt−1−1. We denote this tree

by T = Tn(p1, . . . , pr−1; q1, . . . , qt−1), where r ≤ t, p1 ≥ · · · ≥ pr−1 and q1 ≥ · · · ≥ qt−1.

For convenience, when considering the trees Tn(n1, n2, . . . , nk, . . . , nm) or Tn(p1, . . . , pk,

. . . , pr−1; q1, . . . , qk, . . . , qt−1), we use the symbols nlk
k or plkk (resp. qlkk ) to indicate that

the number of nk or pk (resp. qk) is lk > 1 in the following. For example, T15(2, 2, 3, 3, 4)

will be written as T15(2
2, 32, 4). As another two examples, the trees T10(5, 3, 1) and

T9(1
2; 12) are shown in Figure 1.

In the following lemma the partial result in [19] are summarized.

Lemma 2.5. ( [19]) Suppose that T is a tree of order n ≥ 9. Then we have

W (Pn) > W (Tn(n− 3, 12)) > W (Tn(n− 4, 2, 1)) > W (Tn(1
2; 12)) > W (Tn(n− 5, 3, 1))

> W (Tn(n− 4, 13)) = W (Tn(1
2; 2, 1)) > W (Tn(n− 6, 4, 1)) > W (T ).

Combining Lemmas 2.4 and 2.5, the following corollary can be easily obtained.

Corollary 2.2. Suppose that T is a tree of order n ≥ 9. Then we have

Kf(Pn) > Kf(Tn(n− 3, 12)) > Kf(Tn(n− 4, 2, 1)) > Kf(Tn(1
2; 12)) > Kf(Tn(n− 5, 3, 1))

> Kf(Tn(n− 4, 13)) = Kf(Tn(1
2; 2, 1)) > Kf(Tn(n− 6, 4, 1)) > Kf(T ).

Let P k
n be the graph obtained by identifying a pendent vertex of a path of length

n− k + 1 with one vertex of a cycle Ck.

Lemma 2.6. ( [24]) For any connected graph G of order n > 3 and with n > 3 edges, we

have

Kf(G) ≤
n3 − 11n+ 18

6

with equality if and only if G ∼= P 3
n .
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Denote by C l
p,q the graph which is formed by two disjoint cycles Cp and Cq linked by a

path of length l (see Figure 2). In [25], the authors determined the graph which maximizes

the Kirchhoff index among all connected graphs of order n with n edges and exactly

two cycles. Recently, Feng, Yu et al. and one of the present authors [13] completely

characterized the extremal graph with maximal Kirchhoff index among all connected

graphs of order n and with n + 1 edges.

· · · · · ·Cp Cq
u vw1 wl−1

C l
p,q

Figure 2: The graph C l
p,q

Lemma 2.7. ( [13]) Let G be a connected graph of order n and with n+1 edges (n ≥ 8).

Then we have

Kf(G) ≤
n3 − 21n+ 36

6

with equality if and only if G ∼= Cn−5
3,3 .

An invariant related to Kirchhoff index is defined [24] as follows: Kfvi(G) =
∑

j 6=i

rG(vi, vj).

In the following lemma a nice formula is presented on Kirchhoff index of a graph with cut

vertices.

Lemma 2.8. ( [25]) Let x be a cut vertex of connected graph G such that G = G1

⋃

G2,

V (G1)
⋂

V (G2) = {x} and |V (Gi)| = ni for i = 1, 2. Then we have

Kf(G) = Kf(G1) +Kf(G2) + (n1 − 1)Kfx(G2) + (n2 − 1)Kfx(G1).

Note that ( [23]) Pn has uniquely the largest Wiener index among all trees of order n.

From Lemma 2.8, the corollary below follows immediatey.

Corollary 2.3. Let G0 be a connected graph with v0 ∈ V (G0) and Tt a tree of order t ≥ 2

with x ∈ V (Tt). Assume that G is a graph obtained by identifying the vertex v0 in G0 with
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x ∈ T and G′ is obtained by identifying v0 ∈ G0 with a pendent vertex of path Pt. Then

Kf(G) ≤ Kf(G′)

with equality holding if and only if G ∼= G′, i.e., Tt
∼= Pt with x being a pendent in Tt.

Lemma 2.9. ( [24]) Among all connected graph of order n with n edges and cycle length

k, the graph P k
n has uniquely the maximal Kirchhoff index.

3 Main results

In this section, we will order all the graphs from G(n) with n being not very small by

their Kirchhoff indices. In what follows, we will deal with the two cases, respectively, for

graphs from G(n) with smaller Kirchhoff indices and with larger Kirchhoff indices.

3.1 The ordering of connected graphs with smaller Kirchhoff

indices

Lukovits et al. [20] showed that, among all connected graphs of order n, Kf(G) ≥ n−1

with equality if and only if G is complete graph Kn. In the following it suffices to order

the graphs from G(n) \ {Kn} by their Kirchhoff indices.

For convenience, for a subgraph G0 of Kn, we denote by Kn −G0 the graph obtained

by deleting all edges of G0 from Kn. From the structure of Kn − G0, we claim that

Kn −G0
∼= Kn−|V (G0)|

⋃

G0. For the consistency of sign, we write G1(n) = Kn and

G2(n) = Kn −K2. Moreover, let G3(n) = Kn − 2K2 and G4(n) = Kn −K1,2. Next we

consider the graphs obtained by deleting three edges from Kn. Assume that

G5(n) = Kn − 3K2; G6(n) = Kn − (K1,2 ∪K2); G7(n) = Kn − P4;

G8(n) = Kn − C3; G9(n) = Kn −K1,3.

In the following theorem the graphs from G(n) with n ≥ 11 and with first to ninth

minimal Kirchhoff indices are completely determined.
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Theorem 3.1. ( [10]) Let n ≥ 11 and G ∈ G(n) but other than any graph from the set

{Gi(n)|i ∈ {1, 2, . . . , 9}}. Then we have

Kf(G) > Kf(G9(n)) > Kf(G8(n)) > Kf(G7(n)) > Kf(G6(n)) > Kf(G5(n))

> Kf(G4(n)) > Kf(G3(n)) > Kf(G2(n)) > Kf(G1(n)).

In view of Theorem 3.1, naturally we will ask a related problem as follows:

For an integer 4 ≤ p ≤
⌊n

2

⌋

, which graph has the extremal Kirchhoff index among all

connected graphs obtained by deleting p edges from Kn?

Before solving the above problem, we need a related lemma as follows:

Lemma 3.1. ( [7]) Let G be a connected graph with at least one edge. Then

µ1(G) ≤ max
vivj∈E(G)

|Ni ∪Nj | (2)

where Ni is the neighbor set of vertex vi ∈ V (G) . This upper bound for µ1(G) does not

exceed n.

In the following theorem we will give a complete solution of this problem for the

minimal case.

Theorem 3.2. For any integer 2 ≤ p ≤
⌊n

2

⌋

and any graph G obtained by deleting p

edges from Kn, we have

Kf(G) ≥ n− 1 +
2p

n− 2
(3)

with equality holding in (3) if and only if G ∼= Kn − pK2.

Proof . Denote by µi with i = 1, 2, . . . , n the non-increasing Laplacian eigenvalues of G.

By Lemma 2.3, we have µi = n− µn−i for i = 1, 2, . . . , n− 1. Since G is the complement

graph of G , we have m = p with 2 ≤ p ≤
⌊

n
2

⌋

, where m is the number of edges in G.

Since

m = p ≤
⌊n

2

⌋

,

G must be a disconnected graph. Let k be the number of connected components in G.

Also let ni and mi be the number of vertices and number of edges in the i-th component

8



of G such that n1 ≥ n2 ≥ · · · ≥ nk−1 ≥ nk . Thus we have

k
∑

i=1

ni = n and
k

∑

i=1

mi = m = p.

From the above, it follows that

p =

k
∑

i=1

mi ≥

k
∑

i=1

(ni − 1) = n− k, that is, k ≥ n− p.

Therefore there are at least n− p Laplacian eigenvalues which are zero in G , that is,

µi = 0, i = p+ 1, p+ 2, . . . , n. (4)

Using the above, we get
n−1
∑

i=1

µi =

p
∑

i=1

µi = 2p. (5)

Since G is disconnected, by Lemma 3.1, we have

µi ≤ n− 1, i = 1, 2, . . . , n− 1.

Now we have

Kf(G) =
n−1
∑

i=1

n

µi

=
n−1
∑

i=1

n

n− µn−i

as µi = n− µn−i

= n− 1− p+

p
∑

i=1

n

n− µi

by (4)

≥ n− 1− p+
p2

p
∑

i=1

n− µi

n

by AM and HM inequality (6)

= n− p− 1 +
p

1− 2/n
as

p
∑

i=1

µi = 2p

= n− 1 +
2p

n− 2
.
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First part of the proof is done.

Now suppose that the equality holds in (3). Then all inequalities in the above argument

must be equalities. From the equality in (6), we get

n

n− µ1

=
n

n− µ2

= · · · =
n

n− µp

, that is, µ1 = µ2 = · · · = µp .

Using (5), from the above, we get

µ1 = µ2 = · · · = µp = 2.

From the above, we conclude that each connected component (ni ≥ 2) is isomorphic

to K2, otherwise, the largest Laplacian eigenvalue in G is µ1 ≥ 3, a contradiction. Hence

G ∼= pK2 ∪ (n− 2p)K1 = pK2 ∪Kn−2p , that is, G ∼= Kn − pK2 .

Conversely, let G be isomorphic to the graph Kn−pK2 . Then the Laplacian spectrum

of G is

S(G) = {n(n−p−1) , (n− 2)(p), 0} .

Hence the equality holds in (3).

Lemma 3.2. ( [21]) Let G be a simple graph on n vertices which has at least one edge.

Then

µ1 ≥ ∆+ 1 , (7)

where ∆ is the maximum degree in G . Moreover, if G is connected, then the equality

holds in (7) if and only if ∆ = n− 1.

Let a1, a2, . . . , an be positive real numbers. We define Ak to be the average of all

products of k of the ai’s, that is,

A1 =
a1 + a2 + · · ·+ an

n

A2 =
a1a2 + a1a3 + · · ·+ a1an + a2a3 + · · ·+ an−1an

1
2
n(n− 1)

...

An−1 =
a2 . . . an−1 an + a1a3 . . . an−1 an + · · ·+ a1a2 . . . an−2 an + a1a2 . . . an−1

n

An = a1a2 . . . an .
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Hence the AM is simply A1 and the GM is A
1/n
n . The following result generalize this:

Lemma 3.3. (Maclaurin’s Symmetric Mean Inequality [3]) For positive real numbers

a1, a2, . . . , an,

A1 ≥ A
1/2
2 ≥ A

1/3
3 ≥ . . . ≥ A

1/(n−1)
n−1 ≥ A1/n

n .

Equality holds if and only if a1 = a2 = · · · = an.

Theorem 3.3. For any integer 2 ≤ p ≤ ⌊n
2
⌋ and any graph G obtained by deleting p

edges from Kn, we have

Kf(G) ≤ n− 1− p+
n

n− p− 1
+

(p− 1) δ nn−p−1 (n− 1)p−2

t(G)
, (8)

where t(G) is the number of spanning trees in G and δ is the minimum degree in G.

Moreover, the equality holds in (8) if and only if G ∼= Kn −K1, p.

Proof . For the sake of consistency, µi with i = 1, 2, . . . , n, m, mi and ni are similarly

defined as that in the proof of Theorem 3.2. Then we claim that G has exactly n − p

components of order n and with p edges. It follows that

µi = 0, i = p+ 1, p + 2, . . . , n, that is, µi = n, i = 1, 2, . . . , n− p− 1. (9)

Moreover, we have
p

∑

i=1

µi = 2p. (10)

Now we assume that G =
n−p
⋃

i=1

Hi and ∆ is the maximum degree in G. Then, by

Lemmas 3.1 and 3.2, we have

∆ + 1 ≤ µ1 = max
1≤i≤n−p

µ1(Hi) ≤ p+ 1. (11)

Putting n = p − 1 and ai = n − µi+1, i = 1, 2, . . . , p − 1 in Lemma 3.3, we get

A1 ≥ A
1/(p−2)
p−2 , that is,

p
∑

i=2

(n− µi)

p− 1
≥









∏p
i=2 (n− µi)

p
∑

i=2

1
n−µi

p− 1









1/(p−2)

. (12)
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It is well known that

t(G) =
1

n

n−1
∏

i=1

µi .

Since n− µn−1 = µ1 ≥ ∆+ 1 and n−∆− 1 = δ, we have

p
∏

i=2

(n− µi) =

p
∏

i=2

µn−i =

∏n−1
i=1 µi

∏n−p−1
i=1 µi · µn−1

≥
n t(G)

nn−p−1 δ

and
p
∑

i=2

(n− µi)

p− 1
=

n(p− 1)− (2p− µ1)

p− 1
≤ n− 1 as µ1 ≤ p+ 1.

Using the above result in (12), we get

p
∑

i=2

1

n− µi

≤
(p− 1)

∏p
i=2 (n− µi)

(n− 1)p−2

≤
(p− 1) (n− 1)p−2 δ nn−p−1

n t(G)
. (13)

Therefore, we have

Kf(G) =

n−1
∑

i=1

n

µi

=

n−1
∑

i=1

n

n− µn−i

as µi = n− µn−i

= n− 1− p+

p
∑

i=1

n

n− µi

by (9)

≤ n− 1− p+
n

n− p− 1
+

p
∑

i=2

n

n− µi

by (11) .

Using (13) in the above, we get the required result in (8). First part of the proof is

done.

Now suppose that the equality holds in (8). Then all inequalities in the above argument

must be equalities. From the equality in (12), we get µ2 = µ3 = · · · = µp, by Lemma 3.3.

From the equality in (13), we get µ1 = p + 1. Using (10) with the above results, we

get µ2 = µ3 = · · · = µp = 1. Thus we must have G is tree K1, p and all the remaining

12



n− p− 1 components are trivially K1’s. Equivalently, we deduce that G = Kn −K1, p.

Conversely, let G ∼= Kn − K1, p . Then we have µ1 = µ2 = · · · = µn−p−1 = n,

µn−p = µn−p+1 = · · · = µn−2 = n − 1 and µn−1 = n − p − 1. Also we have t(G) =

(n− p− 1)nn−p−2 (n− 1)p−1 and δ = n− p− 1. Now,

n− 1− p +
n

n− p− 1
+

(p− 1) δ nn−p−1 (n− 1)p−2

t(G)

= n− p− 1 +
n

n− 1
(p− 1) +

n

n− p− 1

= Kf(Kn −K1,p) .

This completes the proof.

The following lemma was implicitly proved in [16].

Lemma 3.4. ( [16]) Let G be a connected graph obtained by deleting p ≤ n−1 edges from

the complete graph Kn. Then we have

t(G) ≥ nn−p−2(n− 1)p−1(n− p− 1) , (14)

with equality holding if and only if G ∼= Kn −K1,p.

Combining Lemma 3.4 and Theorem 3.3, we can easily deduce the following corollary.

Corollary 3.1. For any integer 2 ≤ p ≤ ⌊n
2
⌋ and any graph G obtained by deleting p

edges from Kn, we have

Kf(G) ≤ n− 1− p+
n

n− p− 1
+

n (p− 1) δ

(n− 1)(n− p− 1)
, (15)

where δ is the minimum degree in G. Moreover, the equality holds in (8) if and only if

G ∼= Kn −K1, p.

3.2 The ordering of connected graphs with larger Kirchoff in-

dices

In this subsection we will determine the graphs from G(n) (n > 27) with first to ninth

largest Kirchhoff indices. Considering Lemma 2.2 (1) and Corollary 2.2, we find that the
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path Pn has the largest Kirchhoff index among all graphs from G(n). Before stating our

main result, we first prove a lemma below.

Lemma 3.5. For any connected graph G of order n and with m > n + 1 edges, there

exists a connected graph G1 of order n and with n+1 edges such that Kf(G1) > Kf(G).

Proof . For any connected graph G of order n withm > n+1 edges, choosing and deleting

one non-cut edge from G, we can get a connected graph G′ of order n with m− 1 edges

and Kf(G′) > Kf(G) by Lemma 2.2 (1). Repeating the above process by m−n−1 times,

we can obtain a connected graph G1 of order n with n+ 1 edges and Kf(G1) > Kf(G),

completing the proof of this lemma.

Now we denote by Qk
n (see Figure 3 for the case when k = 3) the graph obtained by

attaching a pendent edge to the unique neighbor of the pendent vertex in P k
n−1. Let R3

n

be a graph, shown in Figure 3, which is obtained by attaching a pendent edge to the

vertex with the distance 2 from the pendent vertex in P 3
n−1. A graph CQ3

n is obtained

by attaching a pendent edge to a vertex of C3 in Q3
n−1 with degree 2. Let C3(k1, k2) be

a graph obtained attaching a path of length k1 to one vertex of C3 and a path of length

k2 to another vertex in C3. Denote by C3(k1, k2, k3) a graph obtained by attaching three

paths of lengths k1, k2 and k3, respectively, to three vertices of C3. In the following we

define two sets of graphs:

H(n) =
{

P 3
n , Q

3
n, R

3
n, C3(1, n− 4), C3(2, n− 5), CQ3

n

}

,

T 0(n) =
{

Pn, Tn(n− 3, 12), Tn(n− 4, 2, 1), Tn(1
2; 12), Tn(n− 5, 3, 1), Tn(1

2; 2, 1)
}

.

· · · · · · · · · · · ·

Q3
n R3

n

Figure 3: The graphs Q3
n and R3

n

It is not difficult to verify that any spanning tree of the graphs C3(1, 1) and C3(1, 1, 1)

must be in the set T 0(n).
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Lemma 3.6. Let G be a connected graph of order n (n ≥ 10) with n edges and maximum

degree ∆ ≥ 3, cycle length k > 4. Then G has a spanning tree T with T /∈ T 0(n).

Proof . Assume that G contains a cycle Ck as a subgraph. According to the value of ∆,

we divide into the following two cases.

Case 1. ∆ ≥ 4.

In this case, we choose G − e where e is on the cycle in G but not incident with the

vertex of degree ∆ in it. Then G−e is a spanning tree of G with maximum degree ∆ ≥ 4.

Then G− e /∈ T 0(n), since any tree in T 0(n) has maximum degree 3.

Case 2. ∆ = 3.

Assume that v is a vertex in Ck of degree 3 in G. Note that k ≥ 5 from the condition

in this lemma. Now we choose an edge e = v1v2 on the cycle Ck in G such that v1 and

v2 are all in the distance as large as possible from the vertex v. Since k ≥ 5, we have

dG(v, v1) ≥ 2 and dG(v, v2) ≥ 2. Then G− e is a spanning tree of G with G− e /∈ T 0(n),

since neither of neighbors of v are pendent vertices.

Lemma 3.7. Let G /∈ H(n) be a connected graph of order n (n ≥ 8) with n edges

and maximum degree ∆ ≥ 3, cycle length k = 3. Then G has a spanning tree T with

T /∈ T 0(n).

Proof . For the case ∆ > 3, from a similar reasoning as that in Case 1 in the proof

of Lemma 3.6, our result follows immediately. Therefore it suffices to consider the case

∆ = 3. Assume that C3 = v1v2v3v1 in G. Next we deal with the following three cases.

Case 1. There is only one vertex, say v1, of C3 in G with degree 3.

In this case, we choose the edge e = v2v3 in C3. Then G− e is a spanning tree of G, in

which the vertex v1 is still of degree 3. Thus we have G−e ≇ Pn. If G−e ∼= Tn(n−3, 12),

then the super graph G obtained by inserting the edge e into Tn(n − 3, 12) is just P 3
n ,

contradicting the fact that G /∈ H(n). Therefore G − e ≇ Tn(n − 3, 12). By a similar

reasoning, we can conclude that G−e ≇ Tn(1
2; 12) for the edge e ∈ E(G) defined as above

from the condition that G ≇ Q3
n. Moreover, if G − e ∼= Tn(1

2; 2, 1) for the edge e in the

triangle in G and not incident with the vertex v in it, then we claim that G ∼= R3
n. This

is impossible because of the fact that G /∈ H(n). Therefore, we have G− e /∈ T 0(n).

15



Case 2. There are exactly two vertices, say v1 and v2, of C3 in G with degree 3.

In this case, without loss of generality, we assume that the eccentricity of v1 is not

more than that of v2 in G. Let e = v2v3. Then G − e is a spanning tree in G. Since

G ≇ C3(1, n − 4), we deduce that G − e ≇ Tn(n − 4, 2, 1). Similarly, we have G − e ≇

Tn(n− 5, 3, 1) from the condition G ≇ C3(2, n− 5). Moreover, G− e ≇ Tn(1
2; 2, 1), since

G ≇ CQ3
n. Note that, in G − e, there are at least two pendent vertices at the distance

d ≥ 2 to v1 with degree 3. Therefore we have G− e /∈ T 0(n) as desired.

Case 3. All the vertices of C3 in G are of degree 3.

Assume that v1 has the smallest eccentricity among all the vertices of C3 in G. Let

e = v2v3. Then G− e is a spanning tree of G such that v1 is of degree 3 in it. Moreover,

G− e /∈ T 0(n), since there are at least three pendent vertices at the distance at least 2 to

v1 in G− e. This completes the proof for this case, ending the proof of this lemma.

Theorem 3.4. Let n > 27. Then we have

Kf(Pn) > Kf(Tn(n− 3, 12)) > Kf(P 3
n) > Kf(Tn(n− 4, 2, 1)) > Kf(Tn(1

2; 12)) > Kf(Q3
n)

> Kf(Tn(n− 5, 3, 1)) > Kf(Tn(n− 4, 13)) = Kf(Tn(1
2; 2, 1)) > Kf(Cn−5

3,3 ).

Proof . In view of Corollary 2.2 and Lemma 2.6, considering Lemma 2.2 (2), we claim

that the remaining is only to prove the following inequalities:

Kf(P 3
n) > Kf(Tn(n− 4, 2, 1)), (16)

Kf(Q3
n) > Kf(Tn(n− 5, 3, 1)), (17)

Kf(Tn(1
2; 2, 1)) > Kf(Cn−5

3,3 ). (18)

From Lemma 2.4 and the results in [19], we have

Kf(Tn(n− 4, 2, 1)) =

(

n+ 1

3

)

− 2n+ 8 =
n3 − 13n+ 48

6
,

Kf(Tn(n− 5, 3, 1)) =

(

n + 1

3

)

− 3n+ 15 =
n3 − 19n+ 90

6
,

Kf(Tn(1
2; 2, 1)) =

(

n + 1

3

)

− 3n + 11 =
n3 − 19n+ 66

6
.
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By Lemmas 2.6 and 2.7, we arrive at the following results:

Kf(P 3
n) =

n3 − 11n+ 18

6
, Kf(Cn−5

3,3 ) =
n3 − 21n+ 36

6
.

Some straightforward calculations show the validity of inequalities (16) and (18) for

n > 27.

Setting T ′ = Tn−2(n− 5, 12) and applying Lemma 2.8 to the vertex of degree 3 in C3

of Q3
n, we have

Kf(Q3
n) = Kf(C3) +Kf(T ′) + 2Kfx(T

′) + (n− 2)Kfx(C3)

= 2 +
(n− 2)3 − 7(n− 2) + 18

6

+2
[

1 + 2 + 3 + · · · · · ·+ (n− 5) + 2(n− 4)
]

+
4

3
(n− 3)

=
n3 − 17n+ 36

6
.

It can be easily checked that
n3 − 17n+ 36

6
>

n3 − 19n+ 90

6
when n > 27, i.e., the

inequality (17) holds if n > 27. This completes the proof of this theorem.

Now we define a new set of graphs as follows:

G0(n) = T 0(n)
⋃

{

Tn(n− 4, 13), P 3
n , Q

3
n, C

n−5
3,3

}

.

In the following theorem we order the graphs from G(n) with first to tenth largest

Kirchhoff indices.

Theorem 3.5. Let G be any graph from G(n) \ G0(n) with n > 27. Then we have

Kf(Pn) > Kf(Tn(n− 3, 12)) > Kf(P 3
n) > Kf(Tn(n− 4, 2, 1)) > Kf(Tn(1

2; 12)) > Kf(Q3
n)

> Kf(Tn(n− 5, 3, 1)) > Kf(Tn(n− 4, 13)) = Kf(Tn(1
2; 2, 1)) > Kf(Cn−5

3,3 ) > Kf(G).

Proof . By Theorem 3.4, it suffices to prove that Kf(G) < Kf(Cn−5
3,3 ) for any graph

G ∈ G(n) \ G0(n) with n > 27.

If G ∈ G(n)\G0(n) has m > n+1 edges, by Lemma 3.5, we conclude that there exists

a connected graph G1 of order n and with n + 1 edges such that Kf(G) < Kf(G1). By
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Lemma 2.7, we have Kf(G) < Kf(G1) ≤ Kf(Cn−5
3,3 ). Clearly, for any connected graph

G of order n and with n+ 1 edges, Kf(G) < Kf(Cn−5
3,3 ) from Lemma 2.7, again.

Now we only need to consider the connected graphs of order n and with m ≤ n edges.

In the case when m = n − 1 with n > 27, for any graph G /∈ T 0(n)
⋃

{Tn(n − 4, 13)} of

order n and with n− 1 edges, i.e., G is a tree, by Corollary 2.2 and Lemma 2.8, we have

Kf(G) ≤ Kf(Tn(n− 6, 4, 1))

=

(

n+ 1

3

)

− 4n+ 24

=
n3 − 25n+ 144

6

<
n3 − 21n+ 36

6

= Kf(Cn−5
3,3 ).

Now we focus on the case when m = n. Combining Lemma 3.6 and Corollaries

2.1 and 2.2, we find that, when n > 27, for any connected graph G of order n and

with n edges, maximum degree ∆ ≥ 3 and cycle length k > 4, we have Kf(G) ≤

Kf(Tn(n − 6, 4, 1)) < Kf(Cn−5
3,3 ). By Lemma 2.9, we have Kf(G) ≤ Kf(P 4

n) for any

connected graph G of order n and with n edges and cycle length 4. From Lemma 3.7,

Corollaries 2.1 and 2.2, we have Kf(G) ≤ Kf(Tn(n − 6, 4, 1)) < Kf(Cn−5
3,3 ) for any

graph G /∈ H(n) of order n with n edges, cycle length 3 and maximum degree ∆. Thus

the remaining for this case is to show that Kf(G) < Kf(Cn−5
3,3 ) for any graph G from

the set {R3
n, P

4
n , Cn, C3(1, n − 4), C3(2, n − 5), CQ3

n}. From Corollary 2.3, Kf(CQ3
n) <

Kf(C3(1, n − 4)). Note that Kf(P 3
n) =

n3 − 11n+ 18

6
and Kf(Pn) =

n3 − n

6
( [19]).

Applying Lemma 2.8 to the vertices in C3 of C3(1, n− 4), C3(2, n− 5), respectively, with

degree 3 and a smaller eccentricity, we have

Kf(C3(1, n− 4)) =
n3 − 27n+ 82

6
, Kf(C3(2, n− 5)) =

n3 − 25n+ 88

6
,

both of them is less than
n3 − 21n+ 36

6
= Kf(Cn−5

3,3 ). Moreover, we have Kf(CQ3
n) <

Kf(Cn−5
3,3 ). By the formula

Kf(P l
n) =

n3 − 2n

6
+

(1 + 2n)l

4
+

l3

4
−

(3 + 2n)l2

6

18



in [24], we can get

Kf(P 4
n) =

n3 − 22n+ 54

6
<

n3 − 21n+ 36

6
= Kf(Cn−5

3,3 ) when n > 27.

Also from [24], we have Kf(Cn) =
n3 − n

12
. Therefore it follows that

Kf(Cn) =
n3 − n

12

<
n3 − 21n+ 36

6

= Kf(Cn−5
3,3 ) as n3 − 41n+ 72 > 0 when n > 27.

Finally, setting T ′′ = Tn−2(n− 6, 2, 1), by the application of Lemma 2.8 to the vertex, say

x, of degree 3 on the triangle C3 of R3
n, we have

Kf(R3
n) = Kf(C3) +Kf(T ′′) + (n− 3)Kfx(C3) + 2Kfx(T

′′)

= 2 +
(n− 2)2 − 13(n− 2) + 48

6
+

4

3
(n− 3)

+2
[

1 + 2 + · · ·+ (n− 5) + (n− 4) + (n− 5)
]

=
n3 − 23n+ 66

6
.

Obviously, we conclude that

Kf(R3
n) =

n3 − 23n+ 66

6
<

n3 − 21n+ 36

6
= Kf(Cn−5

3,3 ) if n > 27.

Thus we complete the proof of this theorem.
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