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Abstract

The elliptic Monge-Ampère equation is a fully nonlinear partial differential equation which
has been the focus of increasing attention from the scientific computing community. Fast three
dimensional solvers are needed, for example in medical image registration but are not yet avail-
able. We build fast solvers for smooth solutions in three dimensions using a nonlinear full-
approximation storage multigrid method. Starting from a second-order accurate centered finite
difference approximation, we present a nonlinear Gauss-Seidel iterative method which has a
mechanism for selecting the convex solution of the equation. The iterative method is used as an
effective smoother, combined with the full-approximation storage multigrid method. Numerical
experiments are provided to validate the accuracy of the finite difference scheme and illustrate
the computational efficiency of the proposed multigrid solver.

Keywords: Monge-Ampère equation; nonlinear Partial Differential Equations; finite difference
method; Gauss-Seidel iteration; FAS multigrid method.

1 Introduction

The elliptic Monge-Ampère equation

{

det(D2u(x)) = f(x), x ∈ Ω ⊂ R
d

u is convex

with f > 0, where D2u is the Hessian of the function u, is a fully nonlinear partial differential
equation (PDE) which has been the focus of increasing attention from the scientific computing
community [37, 15]. It is the prototypical fully nonlinear elliptic PDE, with connections to dif-
ferential geometry [39]. As tools for solving the equation have become more effective, the PDE
has appeared in more applications, including the reflector design problem [32], the optimal trans-
portation problem [3], and parameter identification problems in seismic signals [14]. In this paper,
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we focus on building fast solvers for the PDE in the three dimensional case. Our interest in this
case stems from the image registration problem [25, 24, 23, 22], where current imaging resolution
requires more effective solvers than are currently available.

There are two regimes to consider when solving the problem. In the regime where solutions
are smooth, many approaches can lead to numerical methods which converge in practice. These
include finite differences [10, 27, 36], finite elements [6, 7, 17, 29], spectral methods [34], and Fourier
integral formulations [41].

In the second regime, where solutions are singular, standard methods either break down com-
pletely or become extremely slow [2]. In order to compute singular solutions, the theory of viscosity
solutions can be used to build convergent monotone finite difference methods [1]. Monotone schemes
require using wide stencils, which have a directional resolution parameter, in addition to a spatial
discretization parameter. As a result, they are generally less accurate than second order in space.
On the other hand, they are stable in the maximum norm, and can be solved by a (slow) forward
Euler method, with an explicit CFL condition [30]. Refinements of the monotone method result
in faster solvers [19] and higher accuracy [20]. The fast solvers employed were an exact Newton’s
method (with an explicitly computed Jacobian) and a direct linear solver in two dimensions [20].
The initial guess for Newton’s method used one step of an iterative solver from [2], which also re-
quired a single solution of a Poisson equation. Computations were performed in three dimensions,
but the direct linear solvers were too costly for larger sized problems.

A significant challenge in computing solutions of the Monge-Ampère equation is the need to
enforce an additional constraint that the solution be convex; without this, the solution is not unique.
In two-dimensions, for example, the Monge-Ampère equation will typically have two solutions: one
convex and one concave. The situation becomes more complicated at the discrete level. For a two-
dimensional problem with N discretization points, a finite difference scheme will typically admit
2N different solutions [15]. In three-dimensions, the problem becomes still more complicated. In
two-dimensions, the correct solution can be selected by choosing the solution that has a positive
Laplacian. This is equivalent to selecting the smallest root of a quadratic equation. This structure
was exploited by the Gauss-Seidel and iterative Poisson methods developed in [2]. However, in
three-dimensions, positivity of the Laplacian (sum of the eigenvalues of the Hessian) and the Monge-
Ampère operator (product of the eigenvalues) is not enough to guarantee convexity (positivity of
all three eigenvalues). Using monotone schemes, convexity can be enforced by separately computing
the positive and negative parts of various second directional derivatives.

In this paper, we focus on fast solution methods for the three-dimensional Monge-Ampère
operator, with a given source function which is positive and continuous in a convex domain Ω ⊂ R

3,

det(D2u(x, y, z)) = f(x, y, z) > 0, for (x, y, z) in Ω (1.1)

with a given Dirichlet boundary condition

u = g, on ∂Ω (1.2)

and the additional global constraint
u is convex,

which is necessary for ellipticity and uniqueness. We record the the explicit form of the operator in
three dimensions as follows

det(D2u) = uxxuyyuzz + 2uxyuyzuxz − uxx(uyz)
2 − uyy(uxz)

2 − uzz(uxy)
2.
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We note that the convexity constraint is formally equivalent to the condition that the Hessian of
the solution is positive definite,

D2u > 0.

We assume also that that boundary data g is consistent with the restriction of a convex function
to the boundary. These conditions on the data, along with strict convexity of the domain, are
enough to ensure that solutions are classical (twice continuously differentiable) [9]. For simplicity
of computations, we work with square domains, which allow for the possibility of singular solutions,
however, using known solutions avoids this problem.

Without additional difficulties, the method developed in this paper can also be applied to the
two-dimensional problem

uxxuyy − (uxy)
2 = f(x, y) in Ω. (1.3)

The objective of this work is to build fast solvers for the three-dimensional elliptic Monge-
Ampere equation. We focus on the Dirichlet problem in the smooth solution regime, where the
simple narrow stencil finite difference methods can be used. The goal is to build an effective, fast,
scalable solver that can be used in applications. It is not trivial to build a multigrid solver in this
setting–naive implementations of multigrid will fail. For example, the commonly suggested strat-
egy [38] of performing a few Newton iterations to approximately solve the corresponding nonlinear
scalar equations at each grid point would not lead to a convergent FAS multigrid solver for our
problem. This is because such a method has no mechanism for selecting the correct, convex so-
lutions. We introduce such a selection mechanism, which leads to an effective multigrid method.
However, when the equation becomes degenerate (corresponding to non-strictly convex solutions,
which can arise when the right hand side f(x) = 0), the method presented here breaks down. This is
likely related to the loss of uniform ellipticity of the equation, and the loss of strict convexity of the
solution [2]. In this setting, wide-stencil finite difference methods are typically needed to guarantee
convergence to weak solutions [18, 28]. A possible work around is to combine monotone (or filtered)
schemes with a multi grid method. For now, we restrict our attention to smooth solutions, where
the method presented in this paper is effective.

One approach is to use Newton’s method with an iterative solver [31]. For example, the Newton-
Multigrid method arises when a linear multigrid algorithm is used to approximately solve the lin-
earized Jacobian system. A disadvantage of Newton’s method is that it requires a good initial guess,
which should typically be convex [27]. We instead choose to treat the non-linearity directly using
the linear multigrid framework and coarse-grid correction, which leads to the most common nonlin-
ear multigrid method—the full approximation scheme (FAS) [4, 5, 8, 38, 33]. For the FAS multigrid
to be effective as an iterative method, it requires an effective smoother (or relaxation) scheme such
as a nonlinear Gauss-Seidel iteration, which must eliminate the high frequency components of the
approximation errors at the current fine level. Once the FAS V-cycle iteration is established, the full
multigrid (FMG) technique, based on nested iterations, can be exploited to obtain a good initial
guess for the fine-grid problem.

In this work we develop a FMG-FAS multigrid algorithm for the 3D Monge-Ampère equation.
The method is based on a nonlinear Gauss-Seidel iteration that includes a mechanism for select-
ing the convex solution. As a noticeable advantage over the above mentioned Newton-Multigrid
method, the FMG-FAS multigrid algorithm usually has better global convergence properties. This
is particularly the case for the Monge-Ampère equation since the Newton-Multigrid approach does
not have any way to select the correct, convex solution. The FMG-FAS multigrid typically has
a lower memory requirement as well since there is no need to compute and store the Jacobian
matrices [38].
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There are very few published works devoted to designing fast nonlinear solvers, particularly
for larger problem sizes in three dimensions. The multigrid method was used as a preconditioner
for a Newton-Krylov iteration in [10, 13] in two and three dimensions up to grids of size 1283,
which took approximately five minutes using eight processors. For the applications considered in
that work, solutions of the Monge-Ampère equation would typically be close to u = |x|2/2, which
led naturally to a good initialization of Newton’s method. In this paper, we approach the problem
using the nonlinear full approximation scheme (FAS) multigrid method, which will not require an
accurate initialization. Although the FAS multigrid methods are popular and widely used in many
disciplines involving nonlinear PDEs, such as variational image registration models [12], the only
references we found on applying FAS multigrid method to the Monge-Ampère equation were two-
dimensional simulations in a master’s thesis [35]. Besides, an adaptive FAS multigrid algorithm
based on a continuation method was developed in [11] for solving a 2D balanced vortex model. It
is worthwhile to point out that the reported computational CPU time does not scale linearly with
respect to the degrees of freedom (see e.g. Table 5.1 in [35]), which motivates us to look further
into the efficiency of the FAS multigrid implementations. In addition, we are mainly interested in
solving three dimensional (3D) Monge-Ampère equation, which is well-known to be much more
difficult [7].

This paper is organized as follows. In the next section, we present a discretization of the PDE
using second-order centered finite differences and propose a nonlinear Gauss-Seidel iterative method
for solving the discretized system. The method extends the two-dimensional Gauss-Seidel method
of [2]; in our case, we need to solve a cubic rather than a quadratic equation. In Section 3, we
introduce a full multigrid method based on the FAS V-cycle algorithm, where the nonlinear Gauss-
Seidel iterations function as a smoother. In Section 4, numerical results for several two- and three-
dimensional examples are reported, which demonstrate the accuracy, mesh independent conver-
gence, and linear time complexity of our proposed FMG-FAS multigrid solver. Finally, the paper
ends with several concluding remarks in Section 5.

2 A nonlinear Gauss-Seidel iteration in 3D

This section is motivated by the two-dimensional explicit finite difference method in [2] where
second derivatives are discretized using standard centered differences on a uniform Cartesian grid.
There a Gauss-Seidel iteration is constructed by selecting the smaller root of a point-wise defined
quadratic equation over each grid point. The resulting method is formally second order accurate
provided the solution is regular enough. In the following, we will develop a similar Gauss-Seidel
iteration for the three-dimensional case, where we have to handle a cubic equation at each grid
point.

Let N > 0 be a positive integer. We discretize the space domain Ω = [0, 1]3 uniformly into

Ωh = {(xi, yj, zk) | xi = ih, yj = jh, zk = kh; i, j, k = 1, . . . , N}

with a uniform mesh step size h = 1/N . Let ui,j,k be the discrete approximation of u(xi, yj, zk).
Notice that the values of ui,j,k with i ∈ {0, N} or j ∈ {0, N} or k ∈ {0, N} are directly specified by
the Dirichlet boundary conditions. Hence, we only need to set up finite difference approximations
for all the interior grid points. We employ the second-order accurate centered finite difference
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approximations [26] for all the second-order derivatives as follows.

uhxx(xi, yj , zk) =
1

h2
(ui+1,j,k + ui−1,j,k − 2ui,j,k) , (2.1)

uhyy(xi, yj , zk) =
1

h2
(ui,j+1,k + ui,j−1,k − 2ui,j,k) , (2.2)

uhzz(xi, yj , zk) =
1

h2
(ui,j,k+1 + ui,j,k−1 − 2ui,j,k) , (2.3)

uhxy(xi, yj , zk) =
1

4h2
(ui+1,j+1,k + ui−1,j−1,k − ui−1,j+1,k − ui+1,j−1,k) , (2.4)

uhxz(xi, yj , zk) =
1

4h2
(ui+1,j,k+1 + ui−1,j,k−1 − ui−1,j,k+1 − ui+1,j,k−1) , (2.5)

uhyz(xi, yj , zk) =
1

4h2
(ui,j+1,k+1 + ui,j−1,k−1 − ui,j+1,k−1 − ui,j−1,k+1) . (2.6)

Using these approximations, we can construct the discrete Hessian

D2uh =





uhxx uhxy uhxz
uhxy uhyy uhyz
uhxz uhyz uhzz



 .

Then the discrete form of the elliptic Monge-Ampère equation in the interior of the domain reads

{

det(D2uhi,j,k) = fi,j,k

D2uhi,j,k > 0.
(2.7)

Inserting the approximations into equation (2.7) at each interior grid point (xi, yj, zk) leads to a
cubic polynomial P3(ui,j,k;u) with respect to ui,j,k

P3(ui,j,k;u) :=− 8u3i,j,k + 4(a+ b+ c)u2i,j,k + 2(r2 + s2 + t2 − ab− ac− bc)ui,j,k

+ (abc− at2 − bs2 − cr2 + 2rst− h6fi,j,k) = 0, (2.8)

where we use the notation

a = (ui+1,j,k + ui−1,j,k),

b = (ui,j+1,k + ui,j−1,k),

c = (ui,j,k+1 + ui,j,k−1),

r =
1

4
(ui+1,j+1,k + ui−1,j−1,k − ui−1,j+1,k − ui+1,j−1,k) ,

s =
1

4
(ui+1,j,k+1 + ui−1,j,k−1 − ui−1,j,k+1 − ui+1,j,k−1) ,

t =
1

4
(ui,j+1,k+1 + ui,j−1,k−1 − ui,j+1,k−1 − ui,j−1,k+1) ,

and fi,j,k = f(xi, yj, zk).
The above finite difference approximations (2.8) are intentionally formulated as a cubic equation

of ui,j,k at the current node (xi, yj, zk) by assuming its neighboring nodes are fixed. The nonlin-
ear Gauss-Seidel iteration follows from iteratively solving the cubic equation sequentially over all
grid points in a lexicographic order. The so-called red-black ordering with better smoothing and
parallel properties is usually recommended for 2D problems, but it is of limited advantage [40] to
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our 3D scheme involving a total of 19 points. In this case, four or more colors are necessary to
fully parallelize the updating order [21], which is not further pursued in the current paper. The
Dirichlet boundary conditions (1.2) are enforced at the boundary grid points during the iteration.
However, we also need to determine which root of the cubic is to be selected in order to ensure local
convexity of the discrete solutions. In the 2D case, the corresponding approach leads to a quadratic
equation [2], and selection of the smallest root yields the convex solution. This rule is not directly
applicable for the cubic equation arising in 3D, which may have either one or three real roots. As
we are only interested in real-valued solutions, we simply select the smallest of all the real roots;
that is

un+1

i,j,k = min
{

real roots of P3(· ;un)
}

. (2.9)

These roots can either be computed exactly or approximately using a root-finding algorithm.
Fixed points of this scheme are equivalent to solutions of the Monge-Ampère equation (2.7),

which is justified in Theorems 2.1-2.2. In particular, we emphasize that the fixed point of this scheme
is guaranteed to be discretely convex. This provides a clear advantage over Newton’s method,
which must be coupled to a sufficiently accurate initial guess in order to prevent convergence to an
incorrect, non-convex solution.

Theorem 2.1. Let u be a solution of the discrete Monge-Ampère equation (2.7). Then u is a fixed
point of (2.9).

Proof. Consider a fixed location (xi, yj , zk) in the grid. Since ui,j,k satisfies the discrete Monge-
Ampère equation, it automatically satisfies the cubic equation P3(ui,j,k;u) = 0 as well. It remains
to show that ui,j,k is the smallest real root of this cubic.

One possibility is that the cubic equation has only a single real root, in which case this must
coincide with the real-valued ui,j,k.

The other option is that the cubic equation has three real roots, v1 ≤ v2 ≤ v3. We remark that
using the notation defined above, the discrete Hessian corresponding to each of these roots can be
written as

D2(uh; vm) =







ah−2vm
h2 uhxy uhxz
uhxy

bh−2vm
h2 uhyz

uhxz uhyz
ch−2vm

h2






, m = 1, 2, 3 (2.10)

where the off-diagonal elements do not depend on the value of vm. This is a symmetric real-valued
matrix, and therefore has real eigenvalues.

Now suppose that λ is any eigenvalue of D2(uh; v1) with eigenvector x. Then we can compute

D2(uh; vm)x =

(

D2(uh; v1) +
2(v1 − vm)

h2
I

)

x =

(

λ+
2(v1 − vm)

h2

)

x.

Thus

λ+
2(v1 − vm)

h2
≤ λ

is an eigenvalue of D2(uh; vm), with equality only if v1 = vm. In particular, the eigenvalues of the
discrete Hessian are decreasing functions of the root v.

Since by assumption, the discrete Monge-Ampère equation has a root that yields a positive-
definite Hessian, at least one of the roots v1, v2, v3 will yield three positive eigenvalues. As the
eigenvalues are decreasing in v, the smallest root v1 must yield three positive eigenvalues.
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Suppose now that another root vm > v1 also produces positive eigenvalues. Since both v1, vm
satisfy the discrete Monge-Ampère equation at (xi, yj, zk), we have

fi,j,k = λ1(D
2(uh; vm))λ2(D

2(uh; vm))λ3(D
2(uh; vm))

< λ1(D
2(uh; v1))λ2(D

2(uh; v1))λ3(D
2(uh; v1))

= fi,j,k.

This is a contradiction, which means that the smallest real root v1 is the only root that yields three
positive eigenvalues.

We conclude that the smallest real root of the cubic is the root that corresponds to the convex
solution of the discrete Monge-Ampère equation (2.7).

Theorem 2.2. Let u be a fixed point of (2.9). Then u is a solution of the discrete Monge-Ampère
equation (2.7).

Proof. Consider any fixed grid point (xi, yj, zk). By the definition of the polynomial P3(·;uh), the
fixed point ui,j,k satisfies det(D2uhi,j,k) = fi,j,k. It remains to show that the discrete Hessian D2uhi,j,k
is positive definite.

Consider the symmetric real-valued matrix

M =







ah

h2 uhxy uhxz
uhxy

bh

h2 uhyz
uhxz uhyz

ch

h2






, (2.11)

which has three real eigenvalues λ1 ≤ λ2 ≤ λ3.
We also define

D2(uh; v) = M − 2v

h2
I, (2.12)

which has eigenvalues λm − 2v
h2 , m = 1, 2, 3. We note that zeros of the polynomial P3(v;u

h) are
equivalent to roots of

Q(v) ≡ det(D2(uh; v)) − fi,j,k =

(

λ1 −
2v

h2

)(

λ2 −
2v

h2

)(

λ3 −
2v

h2

)

− fi,j,k = 0.

We record the fact that

Q

(

h2

2
λ1

)

= −fi,j,k < 0, Q

(

h2

2

(

λ1 − f
1/3
i,j,k

)

)

≥ 0.

By the Intermediate Value Theorem, there exists some real root v∗ ∈
[

h2

2

(

λ1 − f
1/3
i,j,k

)

, h
2

2
λ1

)

. By

definition, ui,j,k is the smallest real root and thus

ui,j,k ≤ v∗ <
h2

2
λ1.

Then the eigenvalues of the discrete Hessian D2(uh;ui,j,k) are given by

λm − 2ui,j,k
h2

> λm − λ1 ≥ 0, m = 1, 2, 3

and the discrete Hessian is positive definite.
We conclude that all fixed points correspond to solutions of the discrete Monge-Ampère equa-

tion.

7



3 FAS multigrid method

The drawback of directly using the nonlinear Gauss-Seidel iteration is that the number of iterations
required for convergence increases with the number of discretization points, so the total solution
time grows super-linearly with the number of variables. However, the nonlinear Gauss-Seidel iter-
ation can be used as an effective smoother, which makes it particularly effective when combined
with the nonlinear multigrid method that follows.

In this section, we introduce the standard nonlinear FAS multigrid method for solving our dis-
cretized nonlinear problem. As a highly efficient iterative algorithm, the FAS multigrid method is
a nonlinear generalization of the linear multigrid algorithm, which typically has optimal computa-
tional complexity for linear elliptic PDEs. The FAS multigrid method provides a powerful approach
for handling nonlinear equations without the need for the global linearization required by Newton’s
method. Unlike with Newton’s method, there is typically no need to initialize the solver with a
very good initial guess. Below, we briefly describe the FAS multigrid algorithm as well as its FMG
version based on the standard textbooks [5, 8, 38, 33].

For a general nonlinear system that is discretized using the fine mesh-size h

Sh(wh) = bh,

one V-cycle FAS multigrid iteration is recursively defined in Algorithm 1 [8, 38, 33].

Algorithm 1 FAS multigrid V-cycle iteration (with H = 2h)

Steps wh := FAS(h, Sh, w
0
h, bh)

– IF (h == h0)
(1) Approximately solve: Sh0

(wh0
) = bh0

– ELSE
(2) Pre-smooth ν1 times: wh := smooth

ν1(Sh, w
0
h, bh)

(3) Restriction residual: rH := IHh (bh − Sh(wh))

(4) Initialize coarse guess: uH := IHh wh, wH := ĨHh wh

(5) Define coarse r.h.s.: bH := SH(wH) + rH
(6) Recursion: uH := FAS(H,SH , uH , bH)
(7) Prolongation: δh := IhH(uH −wH)
(8) Correction: wh := wh + δh
(9) Post-smooth ν2 times: wh := smooth

ν2(Sh, wh, bh)
– ENDIF

(10) RETURN wh.

In a single FAS V-cycle iteration, the fine-grid solution first undergoes a small number of
smoothing iterations. Following this, the solution and residual are restricted to a coarser grid
(H = 2h) using two (possibly different) restriction operators(IHh , ĨHh ). A new V-cycle iteration
is then performed on this coarser level, with this procedure proceeding recursively until the grid
reaches the coarsest level h0 ≫ h. At the coarsest level, the underlying problem size has become so
small that it can be (approximately) solved using a very small number of Gauss-Seidel iterations.

Computing the solution on the coarser level H leads to a coarse approximation of the solution.
A prolongation operator (IhH) transfers this approximation to the fine grid, which provides a coarse
grid correction in the fine grid solution. The fine grid solution is further corrected using a small
number of smoothing iterations.

As suggested in [38], the approximation restriction operator ĨHh is chosen as straight injec-
tion. Depending on the application, there are many possible choices for IHh and IhH . For a better
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computational efficiency, we choose to use the residual restriction operator IHh from half-weighting
averaging [38] with the following stencil form

IHh =
1

12









0 0 0
0 1 0
0 0 0





H

h





0 1 0
1 6 1
0 1 0





H

h





0 0 0
0 1 0
0 0 0





H

h





and the prolongation operator IhH from trilinear interpolation [38] with a corresponding stencil form

IhH =
1

64









1 2 1
2 4 2
1 2 1





h

H





2 4 2
4 8 4
2 4 2





h

H





1 2 1
2 4 2
1 2 1





h

H





Other types of IHh and IhH are also available when better accuracy is required.
We also note that a straightforward definition of the coarse grid operator SH is possible by

simply using the discretized equations with a coarser step size H. This is the most common choice
for a fully structured mesh. We point out that the so-called Galerkin coarse grid operator, which
constitutes a core component of the popular linear algebraic multigrid, is not easily used with the
nonlinear FAS multigrid framework [38].
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Figure 1: The smoothing effect of our nonlinear Gauss-Seidel iterations with Example 1. Left: the
initial oscillating error is chosen to be sin(πx) sin(πy) sin(πz) + 0.5 sin(15πx) sin(15πy) sin(15πz)
with a maximum norm 1.4712. Right: after 2 Gauss-Seidel iterations, the approximation error
becomes smooth with a maximum norm 0.7538. Both error surface plots are only snapshots at
z = 1/2 for better visualization.

The last but most crucial component of the method is an effective smoother smooth, whose
major function is to eliminate the high-frequency components of the approximation errors. As a
standalone solver, the chosen smoothing iteration may converge very slowly as the mesh refines.
This is the case for the nonlinear Gauss-Seidel iteration developed in the previous section. However,
because it damps the high frequency components of the error, it will serve as an effective smoother
smooth in Algorithm 1. Such a smoothing property is numerically illustrated in Figure 1, which
shows that two iterations seem to be sufficient to dramatically smooth out high-frequency errors.
This is unsurprising given that the classical linear Gauss-Seidel iteration has been widely recognized
as a benchmark smoother in the linear multigrid method. In practice, one or two pre- and post-
smoothing iterations typically give the best overall performance. More pre- and post-smoothing
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iterations could be helpful when the smoothing effect of the smoother is weak or degraded by the
possible singular solutions.

The efficiency of the above FAS multigrid iterative solver can be further improved when its
initial guess is derived from the idea of nested iteration, which leads to the most efficient full
multigrid (FMG) algorithm [8, 38, 33]. The FMG algorithm based on above the FAS V-cycle
multigrid iteration is recursively defined in Algorithm 2.

Algorithm 2 FMG-FAS algorithm (with H = 2h)

Steps wh := FMG(h, Sh, bh)

– IF (h == h0)
(1) Approximately solve: Sh0

(wh0
) = bh0

– ELSE

(2) Restriction: bH := ĨHh bh
(3) Recursion: wH := FMG(H,SH , bH)

(4) Cubic interpolation: wh := ÎhHwH

(5) FAS V-cycle iteration: wh := FAS(h, Sh, wh, bh)
– ENDIF

(6) RETURN wh.

In Algorithm 2, no initial guess is required at the finest level h, but we do need an initial guess at
the coarsest level h0 if we are going to solve the coarsest nonlinear system Sh0

(wh0
) = bh0

using our
Gauss-Seidel iteration. Fortunately, the coarsest nonlinear system has a very small dimension with
effectively one unknown on a 3×3×3 grid, the remaining values being determined by the Dirichlet
boundary conditions. Thus it is easy to obtain a good approximate solution no matter what initial
guess is used. In our implementation, we simply take the initial guess at the coarsest level h0 to be
identically zero. Often, a cubic interpolation ÎhH will be used in the above FMG algorithm so that
one full FMG iteration can deliver an approximation with the desired discretization accuracy. This
is useful if the underlying FAS V-cycle multigrid iteration converges satisfactorily, as is the case
for Poisson equation solvers [38]. Due to the strong nonlinearity of our problem, we do not expect
one FMG sweep to be sufficient. However, it does provide a very good initial guess for the FAS
V-cycle multigrid iterations. In both algorithms, the coarse level problem is solved approximately
by performing just one nonlinear Gauss-Seidel iteration.

4 Numerical examples

In this section, we test our FAS multigrid algorithm using several examples available in the liter-
ature. All simulations are implemented using MATLAB on a laptop PC with Intel Core i3-3120M
CPU@2.50GHz and 12GB RAM. The CPU time (in seconds) is estimated by MATLAB’s built-in
timing functions tic/toc. We apply one FMG iteration as an initialization step. Due to the nonlin-
earity, this initialization step is necessary for ensuring mesh-independent convergence of the FAS
algorithm. For each FAS V-cycle, we perform only two pre-smoothing and two post-smoothing
Gauss-Seidel iterations, The coarsest level (h0 = 1/2) problem is approximately solved using only
one Gauss-Seidel iteration. Numerical simulations indicate that the FMG-FAS algorithm has almost
the same efficiency using more accurate solvers at the coarsest level.

At the l-th iteration, let ulh denote the computed approximation of solution and rlh be the
corresponding residual vector. We use the pre-specified reduction in the relative residuals as the
stopping criterion

‖rlh‖2
‖r0h‖2

≤ 10−6,
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where ‖·‖2 denotes the discrete L2 norm. Our numerical simulations show that the chosen tolerance
10−6 is sufficient to achieve the level of discretization error. Let uh denote the computed solution
approximated at the last iteration. We first compute the infinity norm of the approximation error

Error(h) = ‖uh − u‖∞

and then estimate the experimental order of accuracy by computing the logarithmic ratios of the
approximation errors between two successive refined meshes, i.e.,

Order = log2

(

Error(2h)

Error(h)

)

,

which should be close to two provided that the scheme delivers a second-order accuracy.
In most cases, only one FMG iteration is needed for convergence. In special cases, we may need

a few extra multigrid V-cycle iterations to fulfill the above convergence criterion. In 3D problems,
using two pre- and post-smoothing steps, the computational cost of one FAS V-cycle is about 32/7
the cost of a single Gauss-Seidel iteration on the finest mesh. One FMG-FAS iteration costs roughly
5 times the cost of a single Gauss-Seidel iteration on the finest mesh if we ignore the additional
cost of restriction and interpolation.

When we use the nonlinear Gauss-Seidel iterations as a standalone solver, it is challenging
to pick a good initial guess such that the iteration converges quickly. For the purpose of simple
comparison, we always choose the slightly perturbed solution 1.01u as the initial guess for the
nonlinear Gauss-Seidel solver, where u is the analytic solution. Even using this impractical initial
guess, the Gauss-Seidel solver cannot compete with the efficiency of the FMG-FAS method. The
3D numerical comparison between the standalone Gauss-Seidel solver and the FMG-FAS method
is given in subsection 4.2.

4.1 Two dimensional examples

We begin by applying the corresponding 2D version of our FMG-FAS method using the nonlinear
Gauss-Seidel iteration developed in [2] as the smoother. The scheme involves a 9-point stencil, and
we test the Gauss-Seidel smoother using the red-black ordering and the plain lexicographic ordering,
respectively. The FMG-FAS multigrid method delivers a far better computational efficiency then
the results of [2], which used the Gauss-Seidel iteration as a standalone solver. In particular, the
computation time scales almost linearly with respect to the degrees of freedom, which is verified
by a consistent fourfold increase in the CPU time (in seconds) as the step-size h is halved.

Example 1. Let Ω = (0, 1)2. Choose

f(x, y) = (1 + x2 + y2) exp(x2 + y2)

such that an analytic solution is

u(x, y) = exp(
x2 + y2

2
).

Example 2. Let Ω = (0, 1)2. Choose

f(x, y) =
1

√

x2 + y2

such that an exact solution is

u(x, y) =
2
√
2

3
(x2 + y2)3/4.

11



Example 3. Let Ω = (0, 1)2. Choose

f(x, y) =
2

(2− x2 − y2)2

such that an exact solution is
u(x, y) = −

√

2− x2 − y2.

Table 1: Results for Example 1, 2, and 3 with the FMG-FAS algorithm (red-black ordering).
Example 1 Example 2 Example 3

N Error Order Iter CPU (s) Error Order Iter CPU (s) Error Order Iter CPU (s)
128 4.5e-06 – 1 0.1 3.8e-05 – 1 0.1 8.9e-03 – 2 0.1
256 1.1e-06 2.0 1 0.1 1.3e-05 1.5 1 0.1 6.4e-03 0.5 2 0.2
512 2.8e-07 2.0 1 0.3 4.7e-06 1.5 1 0.3 4.5e-03 0.5 1 0.3
1024 7.0e-08 2.0 1 1.0 1.7e-06 1.5 1 1.1 3.2e-03 0.5 1 1.1
2048 1.7e-08 2.0 1 3.6 5.9e-07 1.5 1 4.0 2.3e-03 0.5 1 3.8
4096 4.3e-09 2.0 1 16.2 2.1e-07 1.5 1 16.5 1.6e-03 0.5 1 18.0
8192 1.0e-09 2.1 1 67.1 7.4e-08 1.5 1 69.1 1.1e-03 0.5 1 70.3

Table 2: Results for Example 1, 2, and 3 with the FMG-FAS algorithm (lexicographic ordering).
Example 1 Example 2 Example 3

N Error Order Iter CPU (s) Error Order Iter CPU (s) Error Order Iter CPU (s)
128 5.1e-06 – 1 0.1 4.3e-05 – 1 0.1 8.9e-03 – 3 0.1
256 1.3e-06 2.0 1 0.2 1.5e-05 1.5 1 0.3 6.3e-03 0.5 2 0.2
512 3.3e-07 2.0 1 0.8 5.4e-06 1.5 1 0.9 4.4e-03 0.5 1 0.8
1024 8.2e-08 2.0 1 3.2 1.9e-06 1.5 1 3.27 3.2e-03 0.5 1 3.1
2048 2.1e-08 2.0 1 12.7 6.8e-07 1.5 1 12.9 2.2e-03 0.5 1 12.6
4096 5.1e-09 2.0 1 53.2 2.4e-07 1.5 1 54.6 1.6e-03 0.5 1 53.5
8192 1.3e-09 2.0 1 245.6 8.5e-08 1.5 1 259.4 1.1e-03 0.5 1 250.7

For simplicity, we combine the results of Examples 1, 2, and 3 in Tables 1 and 2. The CPU times
manifest the desired linear time complexity of our FMG-FAS algorithm. The non-smoothness of the
solution in Examples 2 and 3 degrade the second-order accuracy of the approximations to O(h3/2)
and O(h1/2), respectively. Our algorithm seems to be able to effectively and efficiently handle
this type of mildly singular solution. It also shows that the red-black ordering has slightly better
approximation accuracy as well as superior computational efficiency due to the faster vectorization
in MATLAB implementation.

Although we notice in our numerical experiments that only one iteration is sufficient to ob-
tain the same approximation errors in infinity norm, for singular solutions (not even in H2(Ω)),
additional FAS V-cycle iterations may be needed (e.g. in Example 3) to fulfill the given stopping
criterion based on residual norm reduction in discrete L2 norm. Nevertheless, in all non-degenerate
(f > 0) examples we considered, we recovered linear computational complexity as the mesh was
refined. In the fully degenerate setting (f = 0), the ellipticity of the PDE breaks down, and the
multigrid approach may become less effective in accelerating the convergence of the Gauss-Seidel
iteration. In that case, the deterioration of our algorithm is associated with the possible failure
of the corresponding finite difference approximations, which are not provably convergent, and can
break down in the singular case.
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4.2 Three dimensional examples

Next we turn our attention to numerically solving the three-dimensional Monge-Ampère equation
using the Gauss-Seidel iteration and the FMG-FAS method developed in this paper.

Example 4 [18]. Let Ω = (0, 1)3. Choose

f = (1 + x2 + y2 + z2) exp

(

3(x2 + y2 + z2)

2

)

such that the exact solution is

u = exp(
x2 + y2 + z2

2
).

In Table 3 we report the relative residual norms, infinity norm of errors, iteration numbers, and
CPU times of the FMG-FAS algorithm and the Gauss-Seidel solver, respectively. The ‘Error’ col-
umn and ‘Order’ column show that the central finite difference discretization indeed achieves the
expected second-order accuracy in the maximum norm. The ‘Iter’ column implies that our FMG-
FAS algorithm possesses a mesh-independent convergence. More specifically, here ‘Iter’=1 implies
that only one FMG iteration is sufficient to fulfill our stopping criteria; no futher V-cycles are nec-
essary. The achieved relative residual norms (column ’RelRes’) turns out to be much lower, thanks
to the fast convergence of the FMG algorithm. We can do a simple calculation to see that one FMG
iteration indeed costs about 5 Gauss-Seidel iterations. Consider the mesh size N = 32, one Gauss-
Seidel iteration takes about 324.6/867 ≈ 0.4 second and hence one FMG iteration should require
approximately 5 × 0.4 = 2.0 seconds, which is almost exactly what we achieved in our algorithm.
The ‘CPU’ column indicates that our FMG-FAS algorithm has a roughly linear time complexity
since the CPU time increases by eight times as the mesh size h = 1/N is halved.

On the other hand, the nonlinear Gauss-Seidel iterations as a standalone solver requires an
increasing number of iterations as the mesh size decreases, which is expected. Even starting with
an artificial initial guess that is impractically close the desired true solution, the nonlinear Gauss-
Seidel iteration still does not produce sufficiently accurate approximations using the same stopping
criterion (compare the row with N = 32). It is also interesting to notice that the relative residuals
(column ‘RelRes’) of the Gauss-Seidel solver are much larger than that of the FMG-FAS algorithm.

For comparison, Table 4 also lists the results reported in [19] and [7], where a wide-stencil hybrid
finite difference (FD) solver and two finite element (FE) approximations were used for the same test
problem. We mention that the results in [7] made use of a Newton solver, which required a good
initial guess that was obtained by the vanishing moment method [16]. Though we can not fairly
compare the CPU times directly as they were computed on different machines, it is clear that the
FMG-FAS method is the only one that scales linearly with the number of degrees of freedom. The
accuracy of the FMG-FAS approach is also competitive. As a whole, our FMG-FAS method appears
superior than both the wide-stencil finite difference solvers and the finite element approximations
for this type of simple problem with a sufficiently smooth solution.

We also mention that when N = 128, the second order accuracy is no longer observed. This is
due to the limitations of machine precision and round-off errors during the computation. We note
that the discretized Monge-Ampère operator involves division by h6 ≈ 2×10−13 when N = 128. We
could get around this using higher precision arithmetic. However, the global error is now 6× 10−6,
which is small. The key is that we are able to resolve the data, which necessitates solving on large
grids, and the resulting accuracy is sufficient for the applications we have in mind.

Example 5. Let Ω = (0, π)3. Choose

f = (sin(x) + 1)(sin(y) + 1)(sin(z) + 1)
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Table 3: Results for Example 4 with the FMG-FAS algorithm and the Gauss-Seidel solver.
FMG-FAS Gauss-Seidel

N DOFs RelRes Error Order Iter CPU (s) RelRes Error Order Iter CPU (s)

8 216 3.1e-07 1.2e-03 – 1 0.1 9.3e-07 1.2e-03 – 72 0.4
16 2744 9.5e-09 2.7e-04 2.1 1 0.2 9.9e-07 3.0e-04 2.0 270 11.5
32 27000 2.1e-10 5.7e-05 2.3 1 2.0 1.0e-06 8.1e-05 1.9 867 324.6
64 238328 4.1e-12 1.4e-05 2.0 1 16.9
128 2000376 5.2e-13 6.2e-06 1.2 1 136.9

Table 4: Reported results for Example 4 from [19] and [7].

Wide-stencil FD [19] FE (quadratic) [7] FE (cubic) [7]

N DOFs Error CPU (s) h DOFs Error CPU (s) DOFs Error CPU (s)

8 343 1.51e-02 0.04 1/4 1581 9.12e-03 3.89 4952 4.14e-04 28.78
12 1331 1.40e-02 0.10 1/8 12611 2.29e-03 38.55 40985 5.71e-05 140.52
16 3375 1.29e-02 0.71 1/12 42798 4.49e-04 140.89 140861 7.52e-06 874.57
22 9261 1.21e-02 6.72 1/16 99436 2.73e-04 355.78 329244 6.36e-06 2758.98
32 29791 1.11e-02 86.63 1/20 195110 1.21e-04 803.47

such that an exact solution is

u = − sin(x)− sin(y)− sin(z) + (x2 + y2 + z2)/2.

In Table 5 we report the relative residual norms, infinity norm of errors, iteration numbers, and CPU
times of the FMG-FAS algorithm and the Gauss-Seidel solver, respectively. Again, we observed the
similar excellent performance of our FMG-FAS algorithm against with the nonlinear Gauss-Seidel
solver.

Table 5: Results for Example 5 with the FMG-FAS algorithm and the Gauss-Seidel solver.
FMG-FAS Gauss-Seidel

N RelRes Error Order Iter CPU (s) RelRes Error Order Iter CPU (s)

8 6.8e-08 1.7e-02 – 2 0.1 9.2e-07 1.7e-02 – 82 0.4
16 2.1e-08 3.3e-03 2.4 1 0.2 9.8e-07 4.3e-03 2.0 296 12.9
32 2.7e-10 8.1e-04 2.0 1 2.0 1.0e-06 1.1e-03 2.0 954 356.2
64 3.7e-12 2.1e-04 2.0 1 16.4
128 4.8e-13 5.2e-05 2.0 1 134.1

Example 6 [7]. Let Ω = (0, 1)3. Choose

f = (1/16)(x2 + y2 + z2)−3/4

such that an analytic solution is

u = (1/3)(x2 + y2 + z2)3/4.

In Table 6 we report the relative residual norms, infinity norm of errors, iteration numbers, and
CPU times of the FMG-FAS algorithm and the Gauss-Seidel solver, respectively. In constrast to
the previous two examples, the solution to this problem is not smooth as there is a singularity at
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the origin. Nevertheless, our central finite difference scheme still approximates the solutions with
a reasonable O(h3/2) accuracy in the infinity norm. Similarly, our FMG-FAS algorithm greatly
outperforms the nonlinear Gauss-Seidel solver.

Table 6: Results for Example 6 with the FMG-FAS algorithm and the Gauss-Seidel solver.
FMG-FAS Gauss-Seidel

N RelRes Error Order Iter CPU (s) RelRes Error Order Iter CPU (s)

8 2.7e-07 5.3e-04 – 1 0.1 9.7e-07 4.0e-04 – 86 0.4
16 1.1e-08 2.1e-04 1.4 1 0.2 9.9e-07 1.4e-04 1.5 312 13.2
32 4.8e-10 7.4e-05 1.5 1 2.0 9.9e-07 5.1e-05 1.5 925 345.8
64 2.0e-11 2.6e-05 1.5 1 16.4
128 1.2e-12 9.3e-06 1.5 1 133.9

Example 7 [18]. Let Ω = (0, 1)3. Choose

f(x, y) = 3(3 − x2 − y2 − z2)−5/2

such that an analytic solution is

u = −
√

3− x2 − y2 − z2.

In Table 7 we report the relative residual norms, infinity norm of errors, iteration numbers, and
CPU times of the FMG-FAS algorithm and the Gauss-Seidel solver, respectively. This example is
more challenging due to the unbounded gradient at the boundary. The ‘Error’ column shows our
scheme has a roughly O(h1/2) accuracy in the infinity norm, which is consistent with the error in
standard discretizations for the two-dimensional version of this example [2]. Obviously, our FMG-
FAS algorithm requires significantly less CPU time than the Gauss-Seidel solver. We note that the
slightly better accuracy achieved by the Gauss-Seidel solver is due to the unrealistic initial guess
used.

Table 7: Results for Example 7 with the FMG-FAS algorithm and the Gauss-Seidel solver.
FMG-FAS Gauss-Seidel

N RelRes Error Order Iter CPU (s) RelRes Error Order Iter CPU (s)

8 1.7e-07 1.4e-03 – 1 0.1 8.9e-07 1.4e-03 – 75 0.4
16 2.1e-08 1.4e-03 0.0 1 0.2 9.7e-07 1.4e-03 0.0 266 12.2
32 2.7e-08 4.3e-03 -1.7 1 2.0 9.9e-07 1.1e-03 0.3 854 320.2
64 4.9e-09 2.2e-03 1.0 1 16.3
128 1.7e-09 1.6e-03 0.4 1 133.1

5 Conclusions

In this paper, we presented a fast method for solving the three-dimensional elliptic Monge-Ampère
equation, focusing on the Dirichlet problem and smooth solutions. We combined a nonlinear Gauss-
Seidel iterative method with a standard centered difference discretization. The Gauss-Seidel iter-
ation was then used as an effective smoother, in combination with a nonlinear full approximation
scheme (FAS) multigrid method. Two and three dimensional numerical examples were computed to
demonstrate the computational efficiency of the proposed multigrid method, and comparison was
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made with other available approaches. In particular, we show that the computational cost of the
method scales approximately linearly. Computations on a recent laptop allowed for grid sizes of
1283 in less than three minutes. More importantly, since the methods scale well, implementation
on more powerful computers will lead to a feasible approach to solving problems with the larger
resolutions that occur in, for example three dimensional image registration

Future work will be to extend these ideas to filtered almost-monotone finite differences schemes
in order to build solvers that apply to the singular solutions that can occur in applications. We
would also like to extend the method to the Optimal Transportation problem with applications to
three dimensional image registration, or to parameter identification.

Acknowledgments

The authors would like to thank the two anonymous referees for their valuable comments and
suggestions that have greatly contributed to improving the original version of this manuscript. The
first author gratefully acknowledges the support and hospitality provided by the IMA during his
participation in the IMA’s New Directions Short Course on “Topics on Control Theory”, which
took place from May 27 to June 13, 2014.

References

[1] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear
second order equations. Asymptotic Anal., 4(3):271–283, 1991.

[2] J.-D. Benamou, B. D. Froese, and A. M. Oberman. Two numerical methods for the elliptic
Monge-Ampère equation. M2AN Math. Model. Numer. Anal., 44(4):737–758, 2010.

[3] J.-D. Benamou, B. D. Froese, and A. M. Oberman. Numerical solution of the optimal trans-
portation problem using the Monge-Ampère equation. J. Comput. Phys., 260:107–126, 2014.

[4] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp.,
31(138):333–390, 1977.

[5] A. Brandt and O. Livne. Multigrid Techniques: 1984 Guide with Applications to Fluid Dy-
namics, Revised Edition. Classics in Applied Mathematics. SIAM, 2011.

[6] S. C. Brenner, T. Gudi, M. Neilan, and L.-y. Sung. C0 penalty methods for the fully nonlinear
Monge-Ampère equation. Math. Comp., 80(276):1979–1995, 2011.

[7] S. C. Brenner and M. Neilan. Finite element approximations of the three dimensional Monge-
Ampère equation. ESAIM Math. Model. Numer. Anal., 46(5):979–1001, 2012.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM, Philadelphia,
PA, 2000.

[9] L. Caffarelli, L. Nirenberg, and J. Spruck. The Dirichlet problem for nonlinear second-order
elliptic equations. I. Monge-Ampère equation. Comm. Pure Appl. Math., 37(3):369–402, 1984.

[10] L. Chacón, G. L. Delzanno, and J. M. Finn. Robust, multidimensional mesh-motion based on
Monge-Kantorovich equidistribution. J. Comput. Phys., 230(1):87–103, 2011.

16



[11] Y. Chen and S. R. Fulton. An adaptive continuation-multigrid method for the balanced vortex
model. J. Comput. Phys., 229(6):2236–2248, 2010.

[12] N. Chumchob and K. Chen. A robust multigrid approach for variational image registration
models. J. Comput. Appl. Math., 236(5):653–674, 2011.

[13] G. L. Delzanno, L. Chacón, J. M. Finn, Y. Chung, and G. Lapenta. An optimal robust
equidistribution method for two-dimensional grid adaptation based on Monge–Kantorovich
optimization. Journal of Computational Physics, 227(23):9841–9864, 2008.

[14] B. Engquist and B. D. Froese. Application of the Wasserstein metric to seismic signals.
Communications in Mathematical Sciences, 12(5), 2014.

[15] X. Feng, R. Glowinski, and M. Neilan. Recent developments in numerical methods for fully
nonlinear second order partial differential equations. SIAM Rev., 55(2):205–267, 2013.

[16] X. Feng and M. Neilan. Mixed finite element methods for the fully nonlinear Monge-Ampère
equation based on the vanishing moment method. SIAM J. Numer. Anal., 47(2):1226–1250,
2009.

[17] X. Feng and M. Neilan. Vanishing moment method and moment solutions for fully nonlinear
second order partial differential equations. Journal of Scientific Computing, 38(1):74–98, 2009.

[18] B. D. Froese and A. M. Oberman. Convergent finite difference solvers for viscosity solutions
of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal.,
49(4):1692–1714, 2011.

[19] B. D. Froese and A. M. Oberman. Fast finite difference solvers for singular solutions of the
elliptic Monge-Ampère equation. J. Comput. Phys., 230(3):818–834, 2011.

[20] B. D. Froese and A. M. Oberman. Convergent filtered schemes for the Monge-Ampère partial
differential equation. SIAM Journal on Numerical Analysis, 51(1):423–444, 2013.

[21] M. M. Gupta and J. Zhang. High accuracy multigrid solution of the 3D convection-diffusion
equation. Appl. Math. Comput., 113(2-3):249–274, 2000.

[22] E. Haber and J. Modersitzki. Image registration with guaranteed displacement regularity.
International Journal of Computer Vision, 71(3):361–372, 2007.

[23] E. Haber, G. Pryor, J. Melonakos, A. Tannenbaum, et al. 3d nonrigid registration via optimal
mass transport on the GPU. Medical image analysis, 13(6):931–940, 2009.

[24] E. Haber, T. Rehman, and A. Tannenbaum. An efficient numerical method for the solution of
the L2 optimal mass transfer problem. SIAM Journal on Scientific Computing, 32(1):197–211,
2010.

[25] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent. Optimal mass transport for registration
and warping. International Journal of Computer Vision, 60(3):225–240, 2004.

[26] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM, Philadelphia, PA, USA, 2007.

[27] G. Loeper and F. Rapetti. Numerical solution of the Monge-Ampère equation by a Newton’s
algorithm. C. R. Math. Acad. Sci. Paris, 340(4):319–324, 2005.

17



[28] T. S. Motzkin and W. Wasow. On the approximation of linear elliptic differential equations by
difference equations with positive coefficients. Journal of Mathematics and Physics, 31(1):253–
259, 1952.

[29] M. Neilan. Quadratic finite element approximations of the Monge-Ampère equation. Journal
of Scientific Computing, 54(1):200–226, 2013.

[30] A. M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation
and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B, 10(1):221–
238, 2008.

[31] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several vari-
ables. SIAM, Philadelphia, PA, 2000.

[32] C. R. Prins, J. H. M. Ten Thije Boonkkamp, J. van Roosmalen, W. L. Ijzerman, and T. W.
Tukker. A Monge-Ampère-solver for free-form reflector design. SIAM J. Sci. Comput.,
36(3):B640–B660, 2014.

[33] Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, PA, 2003.

[34] L.-P. Saumier, M. Agueh, and B. Khouider. An efficient numerical algorithm for the L2 optimal
transport problem with periodic densities. IMA J. Appl. Math., 80(1):135–157, 2015.

[35] A. K. Soin. Multigrid for Elliptic Monge-Ampère Equation. Master’s thesis, University of
Waterloo, Waterloo, Ontario, Canada, 2011.

[36] M. M. Sulman, J. F. Williams, and R. D. Russell. An efficient approach for the numerical
solution of the Monge-Ampère equation. Appl. Numer. Math., 61(3):298–307, 2011.

[37] E. Tadmor. A review of numerical methods for nonlinear partial differential equations. Bull.
Amer. Math. Soc. (N.S.), 49(4):507–554, 2012.

[38] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press Inc., San Diego,
CA, 2001.

[39] N. S. Trudinger and X.-J. Wang. The Monge-Ampere equation and its geometric applications.
Handbook of geometric analysis, 1:467–524, 2008.

[40] J. Zhang. Fast and high accuracy multigrid solution of the three-dimensional Poisson equation.
J. Comput. Phys., 143(2):449–461, 1998.

[41] V. Zheligovsky, O. Podvigina, and U. Frisch. The Monge-Ampère equation: Various forms and
numerical solution. Journal of Computational Physics, 229(13):5043–5061, 2010.

18


	1 Introduction
	2 A nonlinear Gauss-Seidel iteration in 3D
	3 FAS multigrid method
	4 Numerical examples
	4.1 Two dimensional examples
	4.2 Three dimensional examples

	5 Conclusions

