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ABSTRACT

Considered here is an efficient technique to compute approximate profiles of solitary
wave solutions of fractional Korteweg-de Vries equations. The numerical method
is based on a fixed-point iterative algorithm along with extrapolation techniques
of acceleration. This combination improves the performance in both the velocity
of convergence and the computation of profiles for limiting values of the fractional
parameter. The algorithm is described and numerical experiments of validation are
presented. The accuracy attained by the procedure can be used to investigate ad-
ditional properties of the waves. This approach is illustrated here by analyzing the
speed-amplitude relation.
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1. Introduction

The paper is concerned with the computation of solitary wave solutions of the frac-
tional Korteweg-de Vries (fKdV) equation

ut + upux − (Dαu)x = 0. (1)

In (1), u = u(x, t) is a real-valued function of x ∈ R, t ≥ 0, p ∈ N, α ∈ R and Dα

stands for the linear operator represented by the symbol

(̂Dαg)(ξ) = β(ξ)ĝ(ξ), β(ξ) = |ξ|α, (2)

where

ĝ(ξ) =

∫
∞

−∞

g(x)e−iξxdx, ξ ∈ R

is the Fourier transform, defined on the space of squared integrable functions g ∈
L2(R). Equation (1) is relevant as a dispersive and nonlinbear perturbation of Burgers’
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inviscid equation. The parameters α and p govern, respectively, the dispersion and the
nonlinear effects and in this sense (1) is suitable to investigate the relations between
nonlinearity and dispersion that lead to different dynamics, such as existence and
stability of solitary waves, blow-up phenomena, etc, [23]. The case α = 2 corresponds
to the classical Korteweg-de Vries (KdV, when p = 1) and generalized Korteweg-de
Vries (gKdV, when p ≥ 2) equations, while α = 1 leads to the Benjamin-Ono (BO)
equation and generalized (gBO) versions.

The parameters α and p also determine several mathematical properties of the
initial value problem for (1), (2). The main results on well-posedness in the literature
concern the case p = 1, for which the Cauchy problem, when α ≥ 1, is proved to have
global solutions in suitable functional spaces, [19]. When −1 < α < 0, suitable smooth
initial data lead the corresponding solution to blow up at finite time, [23]. As far as
the case 0 < α < 1 is concerned, see [26] for local well-posedness results. Global weak
solutions, without uniqueness, in

L∞(R,Hα/2(R)) = {v : R → Hα/2(R)/max
t∈R

||v(t)||Hα/2(R) <∞},

for initial data in the Sobolev space Hα/2(R) (with the usual norm || · ||Hα/2(R), are
proved to exists in [36] (see also [26]) for α > 1/2. Also, Klein and Saut, [23] conjecture
several cases of blow-up with different structure: first, no hyperbolic blow-up (blow-up
of the spatial gradient with bounded sup-norm) exists; when 1/2 < α < 1, the solution
is global; when 1/3 < α < 1/2, there is a sort of nonlinear dispersive blow-up, [28–30],
and, finally, blow-up of different type occurs when 0 < α < 1/3.

On the other hand, at least formally, the following quantities are preserved by
smooth enough, decaying solutions of (1)

C(u) =

∫
∞

−∞

u(x, t)dx,

M(u) =

∫
∞

−∞

u2(x, t)dx,

M(u) =

∫
∞

−∞

(
1

2
|Dα/2u(x, t)|2 −

1

(p+ 1)(p + 2)
up+2(x, t)

)
dx. (3)

The quantity (3) is well defined when α ≥ 1/3 and provides a Hamiltonian structure
to (1), see [23] for the case p = 1 and [5] for p > 1.

An additional, relevant point on the dynamics of (1) concerns the existence and
stability of solitary wave solutions. They are solutions of the form u(x, t) = φ(x− ct)
for some speed c > 0 and profile φc = φc(X) with φc(X) → 0 as |X| → ∞. Substituting
into (1) and integrating once, the profile φc must satisfy

Dαφc + cφc −
φp+1
c

p+ 1
= 0. (4)

Some known results on existence and stability of solutions of (4) are now summarized.
For the case p = 1, solitary waves are proved to exist when α > 1/3, [13–15], with an
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asymptotic decay as 1/x1+α, |x| → ∞; orbital stability, [4, 17], for α > 1/2 is proved
in [26], while some spectral instability analysis can be obtained from [5, 22, 32]. In
the case p > 1, as mentioned in [5] (see also references therein), existence of solutions
of (4) holds for α > 1 and any p, with orbital stability when p < 2α. For 0 < α < 1,
existence can be derived for 1 < p < 2α/(1−α), [6, 41, 42]. Results on orbital stability
when 1/2 < α < 1, p < 2α, as well as a linear instability criterium, can be seen in [5].

Since no explicit formulas for solitary wave solutions of (1) are, except in the clas-
sical cases α = 1, 2, unknown, then some numerical method for the generation of
approximate profiles is required. In this sense, Klein and Saut, [23], solve numerically
(4) for p = 1 to construct approximate solitary wave profiles. The numerical method
to this end is based on transforming (4) into the corresponding algebraic equations for
the Fourier transform of the profile, which are iteratively solved by Newton iteration.
The procedure is implemented by approximating each profile with a trigonometric in-
terpolant polynomial on a long enough interval, in such a way that the Newton method
is applied to the system for the corresponding Fourier components. As mentioned in
[23], the algebraic decrease of the modulus of the Fourier coefficients, due to the loss
of smoothness of the periodic approximations of the profiles at the boundary of the
computational domain (the solitary wave profile decreases slowly at infinity) leads to
a slow convergence of the iteration. This is addressed by taking a large computational
domain and a high number of Fourier modes. The resolution is also performed by using
GMRES, [35], to compute iteratively the inverse of the Jacobian matrix.

In this paper, an alternative to construct numerically solitary wave profiles of (4)
is proposed. The technique was successfully applied to the numerical generation of
periodic traveling wave solutions of the fKdV equation in [3]. The main points of this
approach here are the following:

• The method is also based on the implementation of (4) in Fourier space for the
periodic approximation on a long enough interval.

• The algebraic system for the discrete Fourier coefficients of the trigonometric
interpolant is however iteratively solved by the Petviashvili method, [34], a fixed
point type algorithm which may overcome some of the limitations of the Newton
iteration.

• In order to improve the slow convergence due to the periodic approximation,
the Petviashvili method is complemented with the use of acceleration techniques
based on extrapolation, [38, 39], which have shown a relevant performance in
the numerical generation of solitary waves, [2].

The main contributions are the following:

• The combination of the Petviashvili method with extrapolation improves the
computation of the solitary wave profiles. The improvement is observed in mainly
two points: the first one is that the method is able to generate numerical pro-
files for limiting values of α. A second point of improvement is found in the
efficiency, since with a high number of Fourier modes and on a long interval, the
extrapolation technique accelerates the convergence in a relevant way.

• These new advantages can be used to study computationally additional proper-
ties of the waves, such as the speed-amplitude relation.

• The method can also be applied to compute approximate solitary wave solutions
of other generalizations of (1) of the form, [5]

ut + (f(u))x − (Mu)x = 0, (5)
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where M is a linear, pseudo-differential operator associated to a continuous,
even, real-valued Fourier symbol β(ξ) and f is a smooth, nonlinear, real-valued
function. A relevant example of (5) is the extended Whitham equation, [11, 24,
25], for which

β(ξ) =
(
1 + γ|ξ|2

)1/2
(
tanh ξ

ξ

)1/2

, f(u) =
u2

2
. (6)

In (6), the parameter γ ≥ 0 controls the surface tension effects in the model. The
case γ = 0 leads to the classical Whitham equation, [31, 43]. The computation
of traveling-wave solutions of equations of the form (5), kncluding the extended
Whitham equation (6), has been made in the literature with different techniques,
see e. g. the references in [3] and, more recently, the method introduced and
performed in [21], based on continuation with spectral projection.

The technique can also be applied to study the solitary wave solutions of
fractional BBM type equations

ut + ux + (f(u))x + (Mu)t = 0,

with M and f defined as in (5), see [5].

The structure of the paper is as follows. In Section 2 the numerical method to compute
approximate solitary profiles, based on the Petviashvili method and accelerating tech-
niques, is described, along with some implementations details. The purpose of Section
3 is two-fold: a first group of experiments validates the efficiency of the method and
studies its performance. This is used, in a second part, to analyze computationally
additional properties of the solitary waves. The illustration is focused on the speed-
amplitude relation and its dependence on the parameters α and p.

2. Numerical generation of solitary waves

2.1. The Petviashvili method

In order to describe the numerical method to compute solitary waves of (1), observe
that (4) can be written in the form

Lφ = N (φ), L = Dα + c, N (φ) =
φp+1

p+ 1
, c > 0. (7)

Note now that the nonlinear term N is homogeneous of degree p+1, in the sense that

N (λu) = λp+1N (u), λ, u ∈ R. (8)

Thus, differentiating (8) with respect to λ and evaluating at λ = 1, we have

N ′(u)u = (p+ 1)N (u), u ∈ R. (9)
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On the other hand, the operator L is invertible for c > 0 and if φ = φc satisfies (7)
then, using (9), we have

L−1N ′(φc)φc = (p+ 1)L−1N (φc) = (p+ 1)φc.

This means that φc is an eigenfunction of the iteration operator L−1N ′(φc) with
eigenvalue p+1 > 1. Therefore, for a given initial φ0, the classical fixed point iteration

Lφn+1 = N (φn), n = 0, 1, . . .

will not be, in general, convergent. An alternative iterative method of fixed-point type
is the Petviashvili method, [34], which is formulated as

m(φn) =
(Lφn, φn)

(N (φn), φn)
, (10a)

Lφn+1 = m(φn)
ǫN (φn), n = 0, 1, . . . , (10b)

for some parameter ǫ. The term (10a) is called the stabilizing factor. The convergence
of (10) for equations of the form (1) was studied in [33]. Pelinovsky and Stepanyants
prove the convergence for 1 < ǫ < (p+2)/p, under some hypotheses on the spectrum of
the linearized operator L−N ′(φc) at the profile φc, with the fastest rate of convergence
given by ǫ∗ = (p + 1)/p. The inclusion of the stabilizing factor modifies the spectrum
of L−1N ′(φc) in such a way that the eigenvalue λ = p+1 becomes, for the values of ǫ
considered, an eigenvalue of the iteration operator of (10) at φc with magnitude below
one (and which is equals zero in the case of choosing ǫ = ǫ∗). The rest of the spectrum
is preserved, see [1] and references therein.

The implementation of (10) is typically carried out by Fourier pseudospectral ap-
proximation, [1, 2]. Let us consider the periodic problem of (7) on a sufficiently long
interval (−l, l). This is discretized by a uniform grid xj = −l+jh, j = 0, . . . , N−1, h =
2l/N , in such a way that (7) can be approximated by the discrete system

Lh = Nh(φh), (11a)

Lh = γcIN +Dα
N , Nh(φh) =

φh.
p+1

p+ 1
, (11b)

where φh is a N -vector approximation to the profile φ at the collocation points xj , IN
is the N ×N identity matrix and Dα

N defined as the N ×N matrix

Dα
N = F−1

N Λα
NFN ,

with FN the discrete Fourier transform matrix on CN and Λα
N the N × N diagonal

matrix with diagonal entries of the form |kπ/l|α, k = 0, . . . , N − 1, [8, 10]. The dot
in (11b) stands for the Hadamard product. Finally, system (11a) is implemented for

the discrete Fourier coefficients, φ̂h = (1/N)FNφh, of φh and the resulting algebraic
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system is iteratively solved with the discrete version of (10)

m(φn) =

∑N−1
k=0 (c+ |kπ/l|α) |φ̂n(k)|

2

∑N−1
k=0 N̂ (φn)(k)φ̂n(k)

, (12a)

φ̂n+1(k) = m(φn)
ǫ N̂ (φn)(k)

c+ |kπ/l|α
, (12b)

for k = 0, . . . , N − 1, n = 0, 1, . . . and where φ̂n = (φ̂n(0), . . . , φ̂n(N − 1))T .
A final point concerns the way how the iteration is controlled. This is done by using

three strategies:

• Since in the case of convergence, the sequence of the stabilizing factors mn :=
m(φn), must go to one, see (12a), then a first control is given by the differences

|1−mn|, n = 0, 1, . . . (13)

• A second group of control parameters is given by the sequence of the Euclidean
errors between two consecutive iterations

ERRORc(n) = ||φn − φn−1||, n = 0, 1, . . . (14)

• Finally, the sequence of the residual errors (also in Euclidean norm)

RES(n) = ||Lhφn −Nh(φn)||, n = 0, 1, . . . , (15)

is also considered.

Thus, the iteration is run up to one of (13)-(15) is below a fixed tolerance parameter
tol which, for the experiments below, has been taken as 10−10.

2.2. Acceleration techniques

As mentioned in the Introduction, the loss of smoothness at the boundary due to the
periodic approximation to the equations for the profiles implies an algebraic decrease
of the modulus of the Fourier coefficients and, consequently, a slow iteration. In order
to improve the velocity of convergence, our proposal here is including some acceleration
method in the iterative process, [9, 39]. In this sense, the so-called Vector Extrapolation
Methods (VEM), [20, 37, 40], introduce a final stage of extrapolation at the end of each
iteration of (12). This is usually carried out in a cycling way: from the last iterate ψ0 =
φn at stage n, a number mw (called width of extrapolation) of iterations ψ1, . . . , ψmw

of (12) is computed, and the next iteration φn+1 is derived as a suitable extrapolation
formula from ψ0, . . . , ψmw, see [39] for details. The coefficients of the extrapolation
are functions of previous steps of the iteration and their derivation makes use of
different criteria, leading to different methods. The one considered for the experiments
in this paper is the minimal polynomial extrapolation (MPE), a polynomial method
which computes the coefficients by setting orthogonality conditions on the generalized
residual, see [20, 37].
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The procedure (12), accelerated with MPE is now illustrated by the following nu-
merical results.

3. Numerical experiments

3.1. Some experiments of validation

Some experiments on the performance of the iterative scheme are first presented.
Figure 1 shows the form of approximate solitary wave profiles of (4) with p = 1, c =
1,mw = 6 and several values of α. The initial iteration is a squared hyperbolic secant
and for the implementation, an interval with l = 2048 and N = 218 Fourier modes
were taken. As it is known (at least for p = 1, [23]), the more peaked the profile the
smaller α is. (This behaviour is independent of the nonlinearity parameter, although as
p increases, the amplitude of the corresponding profile has been observed to decrease,
see figures 7 and 8 below.) In all the computations, the minimum value of the profile
is below 10−5. From Figure 1, note that the limiting case αl = 1/3, for p = 1, of α

−4 −3 −2 −1 0 1 2 3 4
0

2

4

6
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10

12

14

16

18

x

φ

 

 

α=1
α=0.6
α=1/3

Figure 1. Computed solitary wave profiles of (1) with p = 1, c = 1 and several values of α.

looks to be computable. This also holds for any p > 1, for which αl = p/(p + 2), see
Figure 2. The algebraic decay at infinity of some of the profiles can be observed in
Figure 3, which displays the corresponding phase portraits and where the derivative
has been computed by using pseudospetral differentiation, see [8, 10]. In order to check
the accuracy of the computed profiles, several experiments are made. Figure 4 displays
the behaviour of the residual error and the stabilizing factor as function of the number
of iterations and for each of the waves computed in Figure 1. The results confirm
the convergence of the sequences (13), (15) and consequently of the iteration. (The
second control sequence (14) behaves even better and the corresponding results are
not shown.) As far as the performance is concerned, note that in all the cases, the
tolerance tol = 10−10 is attained in less than 50 iterations. A second experiment to
check the accuracy is as follows. The computed profiles were taken as initial condition
of a numerical method to approximate the periodic initial value problem associated to
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Figure 2. Computed solitary wave profiles of (1) with c = 1 and limiting value αl = p/(p + 2) of α for (a)
p = 1, (b) p = 1, (c) p = 3 and (d) p = 4.
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Figure 3. Phase portraits of two of the numerical profiles shown in Figure 1.
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Figure 4. Generation of solitary waves of (1) with c = 1, p = 1. (a) Residual errors (15) vs. number of
iterations. (b) Stabilizing factor errors (13) vs. number of iterations, both in semi-log scale.
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(1). The numerical scheme is based on a pseudospectral Fourier discretization in space
and a fourth order, diagonally implicit, Runge-Kutta composition method, described in
[16] (see also references therein) as time integrator. The scheme has relevant geometric
properties, [18], and has been shown to be efficient in nonlinear wave problems, [21].

The evolution of the corresponding numerical solution was monitored and, in the
case of α = 0.7, is represented at several times in Figures 5(a),(b). They show that
the initial approximate profile evolves in a solitary way without relevant disturbances,
suggesting that the computed profile represents a solitary wave of (1) with a high
degree of accuracy. This is also confirmed by the evolution of the amplitude and speed
of the numerical approximation during the integration, displayed in Figures 5(c) and
(d). (The computation of amplitude and speed was made in the standard way, see e. g.
[12].) The following experiments complement the illustration of the performance of the
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Figure 5. (a) Numerical approximation of (1) from the profile computed with α = 0.7, c = 1 and p = 1, at
several times. (b) Magnification of (a). (c) Amplitude and (d) speed errors vs. time.

method. Figure 6 shows the number of iterations required to get a residual error below
the tolerance as function of the fractional parameter α and for several values of the
width of extrapolation mw, in the approximation to a solitary wave profile of (4) with
p = 1 and c = 1. Note that, for moderate values of mw, as mw increases, the number
of iterations decreases and in this sense the performance improves. However, observe
that the parameter mw cannot be fixed a priori in this sort of nonlinear problems,
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[39, 40]. Also, from some value of mw, the number of iterations and the computational
time will not improve anymore. For one of the values of mw considered, the number
of iterations does not increase as α decreases; it is maximum when α is close to 0.6.
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Figure 6. Computed solitary wave profiles of (1) with p = 1, c = 1. Number of iterations to attain a residual
error below tol = 10−10 as function of α and for several values of mw.

3.2. Application to study additional properties of the solitary waves

The final group of experiments is concerned with the model (1). Once the accuracy and
performance of the iterative method have been checked, the procedure can be used to
obtain some additional information about the solitary waves. This idea is focused here
on the search for the speed-amplitude relation and its dependence on the parameters
α and p. Figure 7(a) displays this relation for α = 0.8 fixed and several values of p.
The amplitude is an increasing function of the speed but the increment depends on p.
When α = 2 (gKdV case) the solitary waves are known explicitly and the amplitude
has the exact formula, [7]

Amp =
( c
2
(p+ 1)(p + 2)

) 1

p

, (16)

see Figure 7(b).
A comparison of both figures suggests to consider the experiment of studying the

speed-amplitude relation for a fixed value of p and as function of α. This is illustrated
by Figure 8. Note that for a fixed value of c and α, increasing p typically leads to a
solitary wave of smaller amplitude. When c and p are fixed, the taller the wave the
smaller value of α is (cf. Figures 1 and 7). Due to the peaked form of the profiles, the
maximum is, for small values of α, not easy to compute with a minimum of accuracy.
However, the most reliable numerical results suggest that a similar relation to (16)
holds for any α. This is observed in Table 1 where, for several values of p and α,
the numerical data speed-amplitude were fitted to a power function f(x) = axb. The
accuracy of the results was guaranteed by a goodness of fit where some statistical
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Figure 7. Speed-amplitude relation of computed solitary waves of (1) for several values of p. (a) α = 0.8. (b)
α = 2 (KdV case).
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Figure 8. Speed-amplitude relation of computed solitary waves of (1) for several values of α. (a) p = 1. (b)
p = 2. (c) p = 3.
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Table 1. Parameters of the fit f(x) = axb of
the computed speed-amplitude relation for differ-

ent values of α and p.
p = 1 p = 2 p = 3

α = 0.8 a = 4.735 a = 4.012 a = 3.702
b = 1 b = 0.5001 b = 0.2966

α = 1.2 a = 3.61 a = 2.934 a = 2.57
b = 1 b = 0.5 b = 0.3333

parameters are around some fixed tolerance. Explicitly, the following statistics were
used: the sum of squares due to error SSE (with a tolerance threshold of 10−6), the
R-squared (which in all the cases is equals 1) and the root mean squared error RSME
(around 10−4).

Note that while the coefficients b suggest an amplitude as a power 1/p of the speed
as in (16), the dispersion parameter α looks to affect only the coefficient a of the fit.
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