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Abstract

In the literature, there are a few researches to design some parameters in the Proximal Point
Algorithm (PPA), especially for the multi-objective convex optimizations. Introducing some pa-
rameters to PPA can make it more flexible and attractive. Mainly motivated by our recent work
(Bai et al., A parameterized proximal point algorithm for separable convex optimization, Optim.
Lett. (2017) doi: 10.1007/s11590-017-1195-9), in this paper we develop a general parameterized PPA
with a relaxation step for solving the multi-block separable structured convex programming. By
making use of the variational inequality and some mathematical identities, the global convergence
and the worst-case O(1/t) convergence rate of the proposed algorithm are established. Preliminary
numerical experiments on solving a sparse matrix minimization problem from statistical learning
validate that our algorithm is more efficient than several state-of-the-art algorithms.

Keywords: Structured convex programming; Proximal point algorithm; Relaxation step; Com-
plexity; Statistical learning
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1 Introduction

Throughout this paper, let R(R+),Rm,Rm×n be the set of real (positive) numbers, the set of
m dimensional real column vectors and the set of m × n dimensional real matrices, respectively.
The symbol ‖z‖2 denotes the Euclidean norm of z ∈ R

m, which is defined by ‖z‖2 =
√
〈z, z〉

with the standard inner product 〈·, ·〉. For any symmetric positive definite matrix G ∈ R
m×m,

‖z‖G =
√
〈z,Gz〉 represents the weighted G-norm of z. We also use T and I to stand for the

transpose of a vector/matrix and the identity matrix with proper dimensions, respectively.

∗The work was supported by the National Science Foundation of China under grant 11671318 and the Natural
Science Foundation of Fujian province under grant 2016J01028.

†Corresponding author. E-mail address: bjc1987@163.com.
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Consider the following multi-block separable structured convex optimization

min
p∑

i=1

fi(xi)

s.t.
p∑

i=1

Aixi = b, xi ∈ Xi,
(1.1)

where p > 1 is a positive integer, fi(·) : Rni → R are closed convex functions (possibly nonsmooth);
Ai ∈ R

m×ni , b ∈ R
m are respectively given matrices and vector; all structured sets Xi ⊂ R

ni(i =
1, · · · , p) are closed and convex. Throughout the discussions, we make the following assumption:

Assumption 1.1 The solution set of the problem (1.1) is nonempty and all the matrices Ai(i =
1, · · · , p) have full column rank.

Note that the first part of Assumption 1.1 is basic and the second part is necessary. For instance,
when dealing with a minimization problem subject to the linearly equality constraint Ax = b
involving large-size coefficient matrix and variable, we can split

A = [A1, · · · , Ap], x = (xT

1 , · · · , xT

p )
T

to reduce the dimensions of A and x, then in such case each Ai has full column rank. In fact, many
practical application problems do contain at least two different variables (or can be transformed
into an equivalent problem with at least two variables), e.g. the total-variational image deblurring
problems [10, 19], the transformed joint sparse recovery problem [11], the sparse inverse covariance
estimation problem [5], the low-rank and sparse problem [12, 18] and so forth.

The Proximal Point Algorithm (PPA), which was originally proposed to tackle the monotone
operator inclusion problems [13, 14], is regarded as a powerful benchmark method for solving the
convex problems like (1.1). As verified by Rockafellar [17], the well-known Augmented Lagrangian
Method (ALM) for (1.1) with p = 2 was actually an application of PPA to its dual problem.
Moreover, the classical Alternating Direction Method of Multipliers (ADMM) can be also treated
as a special variant of PPA to the dual problem [4]. In the last several years, there has been a
constantly increasing interest in developing the theories and applications of PPA. For example, He
et al.[7] showed a customized application of the classical PPA to the model (1.1) with p = 1, where
some image processing problems were carried out to show the efficiency of the method therein.
Ma and Ni [15] proposed a parameterized PPA for (1.1) with p = 1, where both the basis pursuit
problem and the matrix completion problem were tested in experiments to exam the numerical
performance of their algorithm. Recently, Cai et al.[2] designed a PPA with a relaxation step for
the model (1.1) with p = 2, whose global convergence and the worst-case sub-linear convergence
rate were analyzed in detail. More recently, by introducing some parameters to the metric proximal
matrix, an extended parameterized PPA based on [15] was developed for the two block separable
convex programming [1], whose effectiveness and robustness was demonstrated by testing a sparse
vector optimization problem in the statistical learning compared with two popular algorithms.

To the best of our knowledge, there are a few researches on the parameterized PPA for solving
the multi-block model (1.1) with at least three variables. Based on such observation and motivated
by our recent published work [1], the aims of this article are to design a general parameterized PPA
with a relaxation step (GR-PPA) for solving (1.1) and to test some practical examples having more
than two variables to investigate the performance of our GR-PPA. In the remaining parts, Section 2
shows the details of constructing the proposed GR-PPA and analyzing its convergence theories. In
Section 3, some numerical experiments are carried out in terms of different parameters, tolerances
and initial values. Finally, we conclude the paper in Section 4.
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2 Main results

In this section, we first construct a parameterized proximal matrix to design a novel GR-PPA for
(1.1), where its convergence is analyzed in detail afterwards. The whole convergence analysis is
based on the variational inequality and uses some special techniques to simplify its proof.

2.1 Formation of GR-PPA

For any τ ∈ R
+, the Lagrangian function of (1.1) is constructed as

L(x1, · · · , xp, λ) =

p∑

i=1

fi(xi)− τ

〈
λ,

p∑

i=1

Aixi − b

〉
, (2.1)

where λ ∈ R
m denotes the Lagrange multiplier with respect to the equality constraint. Let

(x∗
1, · · · , x∗

p, λ
∗) be the saddle-point belonging to the solution set Ω∗ of (1.1). Then, the follow-

ing basic inequalities

L(x∗
1, · · · , x∗

p, λ) ≤ L(x∗
1, · · · , x∗

p, λ
∗) ≤ L(x1, · · · , xp, λ

∗),

imply 



x∗
1 = arg min

x1∈X1

{f1(x1)− τ 〈λ∗, A1x1〉} ,
...
x∗
p = arg min

xp∈Xp

{fp(xp)− τ 〈λ∗, Apxp〉} ,

λ∗ = arg max
λ∈Rm

−τ

〈
λ,

p∑
i=1

Aix
∗
i − b

〉
,

whose optimality conditions are derived as follows




x∗
1 ∈ X1, f1(x1)− f1(x

∗
1) +

〈
x1 − x∗

1,−τAT

1λ
∗〉 ≥ 0, ∀ x1 ∈ X1,

...
x∗
p ∈ Xp, fp(xp)− fp(x

∗
p) +

〈
xp − x∗

p,−τAT

pλ
∗〉 ≥ 0, ∀ xp ∈ Xp,

λ∗ ∈ R
m,

〈
λ− λ∗, τ(

p∑
i=1

Aix
∗
i − b)

〉
≥ 0, ∀ λ ∈ R

m.

It is not hard to reformulate the above optimality conditions into a variational inequality:

w∗ ∈ Ω∗, VI(φ,J ,Ω) : φ(u)− φ(u∗) + 〈w − w∗,J (w∗)〉 ≥ 0, ∀ w ∈ Ω, (2.2)

where

φ(u) =

p∑

i=1

fi(xi), Ω = X1 × · · · × Xp × R
m,

u =




x1

x2

...
xp


 , w =




x1

...
xp

λ


 and J (w) = τ




−AT

1λ
...

−AT

pλ
p∑

i=1

Aixi − b




.

In the following, we also denote

uk =




xk
1

xk
2
...
xk
p


 , wk =




xk
1
...
xk
p

λk


 and J (wk) = τ




−AT

1λ
k

...
−AT

pλ
k

p∑
i=1

Aix
k
i − b




. (2.3)
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Clearly, we can get from the skew-symmetric property of the mapping J (w) that

〈
wk+1 − w,J (wk+1)

〉
=
〈
wk+1 − w,J (w)

〉
, ∀ w,wk+1 ∈ Ω. (2.4)

It is well-known that the standard PPA with given iterate wk reads the following unified frame-
work:

wk+1 ∈ Ω, φ(u)− φ(uk+1) +
〈
w − wk+1,J (wk+1) +G

(
wk+1 − wk

)〉
≥ 0, ∀ w ∈ Ω, (2.5)

where G is a symmetric positive definite matrix (called the proximal matrix). Followed by such
framework, a general parameterized proximal matrix will be designed for the new GR-PPA. Con-
cisely, let the matrix G be of following block form

G =




(
σ1 +

ε2−1
s

)
AT

1A1 −εAT

1(
σ2 +

τ2−1
s

)
AT

2A2 −τAT

2

. . .
...(

σp +
τ2−1

s

)
AT

pAp −τAT

p

−εA1 −τA2 · · · −τAp sI




, (2.6)

where (σ1, · · · , σp, s) are parameters restricted into the domain

K =

{
σ1 >

1 + (p− 1)τ |ε|
s

, σi >
1 + (p− 2)τ2 + τ |ε|

s
, s > 0 | ε ∈ R, τ ∈ R

+, i = 2, · · · , p
}
. (2.7)

For the sake of analysis convenience, here and next we denote

σ̄i := σi +
τ2 − 1

s
, ∀ i = 1, · · · , p. (2.8)

Lemma 2.1 Let K be defined in (2.7) and the matrices Ai(i = 1, 2, · · · , p) have full column rank.
Then, the matrix G in (2.6) is symmetric positive definite for any (σ1, · · · , σp, s) ∈ K.

Proof Notice that the matrix G is symmetric and can be decomposed as

G = DTG0D,

where D = Diag(A1, · · · , Ap, I) and

G0 =




(
σ1 +

ε2−1
s

)
I −εI(

σ2 +
τ2−1

s

)
I −τI

. . .
...(

σp +
τ2−1

s

)
I −τI

−εI −τI · · · −τI sI




. (2.9)

Since all the matrices Ai are assumed to have full column rank, therefore, the matrix G is positive
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definite if and only if G0 is positive definite. Using the identity




I ε
s
I

I τ
s
I

. . .
...

I τ
s
I
I



G0




I ε
s
I

I τ
s
I

. . .
...

I τ
s
I
I




T

=




(
σ1 − 1

s

)
I − ετ

s
I − ετ

s
I · · · − ετ

s
I

− τε
s
I

(
σ2 − 1

s

)
I − τ2

s
I · · · − τ2

s
I

...
...

...
. . .

...

− τε
s
I − τ2

s
I − τ2

s
I · · ·

(
σp − 1

s

)
I

sI



=: G̃0,

(2.10)

it is easy to demonstrate that G0 is positive definite if and only if G̃0 is positive definite, which is
guaranteed by the region K defined in (2.7) because in such case both the upper-left and lower-right

block matrices of G̃0 are positive definite. �

Remark 2.1 According to the equation (3.7) in [8], the proximal matrix of their proposed algorithm
can be decomposed as

G = PTḠ0P

with P = Diag(
√
βA1, · · · ,

√
βAp, I/

√
β) and

Ḡ0 =




νI −I · · · −I 0

−I νI · · · −I 0

...
...

. . .
...

...
−I −I · · · νI 0

0 0 · · · 0 I



, (2.11)

in which β > 0 is a penalty parameter with respect to the equality constraint of (1.1) and ν ≥ m− 1
denotes the proximal parameter. Compared (2.10) to (2.11), if we set

(s, τ, ε) := (1, 1, 1) & σi := ν + 1, ∀ i = 1, 2, · · · , p,

then it is clear that G̃0 = Ḡ0, which implies that the proximal matrix of [8] in essence is a special
case of (2.6). That is, the method in [8] is a special case of our GR-PPA without relaxation step.
A similar way can be used to analyze the proximal matrix in equation (8.6) in [6]. Such relations
show that our parameterized proximal matrix is more flexible and general than some in the past.

In what follows, the concrete iterative principles of our GR-PPA are analyzed one by one. Sub-
stituting the matrix G into (2.5), we obtain

λk+1 ∈ R
m, 〈λ− λk+1, Rλ〉 ≥ 0, ∀ λ ∈ R

m,

which is equivalent to

0 = Rλ := τ

(
p∑

i=1

Aix
k+1
i − b

)
− εA1(x

k+1
1 − xk

1)− τ

p∑

i=2

Ai(x
k+1
i − xk

i ) + s
(
λk+1 − λk

)
.

Then, it can be derived from the above equality that

λk+1 = λk − 1

s

[
(τ − ε)A1x

k+1
1 + εA1x

k
1 + τ

p∑

i=2

Aix
k
i − bτ

]
. (2.12)
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Combining (2.5)-(2.6) and (2.12), we have

xk+1
1 ∈ X1, f1(x1)− f1(x

k+1
1 ) +

〈
x1 − xk+1

1 , Rx1

〉
≥ 0, ∀ x1 ∈ X1, (2.13)

where

Rx1
= −τAT

1λ
k+1 − εAT

1 (λ
k+1 − λk) +

(
σ1 +

ε2−1
s

)
AT

1A1(x
k+1
1 − xk

1)

= εAT

1λ
k − (τ + ε)AT

1

{
λk − 1

s

[
(τ − ε)A1x

k+1
1 + εA1x

k
1 + τ

p∑
i=2

Aix
k
i − bτ

]}

+
(
σ1 +

ε2−1
s

)
AT

1A1(x
k+1
1 − xk

1)

= −τAT

1λ
k + τ2−ε2

s
AT

1A1x
k+1
1 + (τ+ε)τ

s
AT

1

(
p∑

i=2

Aix
k
i − b

)
+
(
σ1 +

ε2−1
s

)
AT

1A1x
k+1
1

−
(
σ1 +

ε2−1
s

)
AT

1A1x
k
1 + (τ+ε)ε

s
AT

1A1x
k
1

= −τAT

1λ
k +

(
σ1 +

τ2−1
s

)
AT

1A1x
k+1
1 + (τ+ε)τ

s
AT

1

(
p∑

i=2

Aix
k
i − b

)

−
[
σ1 +

τ2−1−τ(τ+ε)
s

]
AT

1A1x
k
1

= −τAT

1 λ̄
k + σ̄1A

T

1A1(x
k+1
1 − xk

1)

with σ̄1 defined in (2.8) is positive by (2.7) and

λ̄k = λk − τ + ε

s

(
p∑

i=1

Aix
k
i − b

)
. (2.14)

By (2.13) together with Rx1
, obviously, xk+1

1 is the solution of the following problem

xk+1
1 = arg min

x1∈X1

{
f1(x1)−

〈
A1x1, τ λ̄

k
〉
+

σ̄1

2

∥∥A1(x1 − xk
1)
∥∥2
}

= arg min
x1∈X1

{
f1(x1) +

σ̄1

2

∥∥∥∥A1(x1 − xk
1)−

τ

σ̄1
λ̄k

∥∥∥∥
2
}
. (2.15)

Here we get from (2.12) and (2.14) that

λ̄k+1 = λk+1 − τ + ε

s

(
p∑

i=1

Aix
k+1
i − b

)

= λk − 1

s

[
(τ − ε)A1x

k+1
1 + εA1x

k
1 + τ

p∑

i=2

Aix
k
i − bτ

]
− τ + ε

s

(
p∑

i=1

Aix
k+1
i − b

)

= λ̄k +
τ + ε

s

(
p∑

i=1

Aix
k
i − b

)
− τ + ε

s

(
p∑

i=1

Aix
k+1
i − b

)

−1

s

[
(τ − ε)A1x

k+1
1 + εA1x

k
1 + τ

p∑

i=2

Aix
k
i − bτ + τA1x

k
1 − τA1x

k
1

]

= λ̄k − τ + ε

s

p∑

i=1

Ai(x
k+1
i − xk

i )−
1

s

[
(τ − ε)A1(x

k+1
1 − xk

1) + τ

(
p∑

i=1

Aix
k
i − b

)]
.(2.16)
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Analogously, for i = 2, 3, · · · , p, it follows from (2.5)-(2.6) and (2.12) that

xk+1
i ∈ Xi, fi(xi)− fi(x

k+1
i ) +

〈
xi − xk+1

i , Rxi

〉
≥ 0, ∀ xi ∈ Xi, (2.17)

where

Rxi
= −τAT

i λ
k+1 − τAT

i (λ
k+1 − λk) +

(
σi +

τ2−1
s

)
AT

i Ai(x
k+1
i − xk

i )

= τAT

i λ
k − 2τAT

i

{
λk − 1

s

[
(τ − ε)A1x

k+1
1 + εA1x

k
1 + τ

p∑
i=2

Aix
k
i − bτ

]}

+
(
σi +

τ2−1
s

)
AT

i Ai(x
k+1
i − xk

i )

= −τAT

i λ̄
k+ 1

2 + σ̄iA
T

i Ai(x
k+1
i − xk

i ),

and

λ̄k+ 1

2 = λk − 2

s

[
(τ − ε)A1x

k+1
1 + εA1x

k
1 + τ

p∑

i=2

Aix
k
i − bτ

]

= λ̄k +
τ + ε

s

(
p∑

i=1

Aix
k
i − b

)
− 2

s

[
(τ − ε)A1(x

k+1
1 − xk

1) + τ

(
p∑

i=1

Aix
k
i − b

)]

= λ̄k +
τ + ε− 2τ

s

(
p∑

i=1

Aix
k
i − b

)
− 2(τ − ε)

s
A1(x

k+1
1 − xk

1)

= λ̄k − τ − ε

s

[
2A1(x

k+1
1 − xk

1) +

p∑

i=1

Aix
k
i − b

]
. (2.18)

Therefore, xk+1
i is the solution of the following problem

xk+1
i = arg min

xi∈Xi

{
fi(xi)−

〈
Aixi, τ λ̄

k+ 1

2

〉
+

σ̄i

2

∥∥Ai(xi − xk
i )
∥∥2
}

= arg min
xi∈Xi

{
fi(xi) +

σ̄i

2

∥∥∥∥Ai(xi − xk
i )−

τ

σ̄i

λ̄k+ 1

2

∥∥∥∥
2
}
, i = 2, · · · , p. (2.19)

Consequently, the algorithmic framework of GR-PPA is described in Algorithm 2.1, where we use
w̃k = (x̃k

1 , · · · , x̃k
p, λ̃

k) to replace the original output of the xi-subproblems in (2.15), (2.19) and La-

grange multipliers with given iterate wk = (xk
1 , · · · , xk

p , λ̄
k), and we use wk+1 = (xk+1

1 , · · · , xk+1
p , λ̄k+1)

to stand for the new iterate after adding a relaxation step.

Remark 2.2 Noticing that the steps 4-9 in Algorithm 2.1 are actually the PPA updates whose
proximal term is implicitly simplified into the quadratic term of each subproblem. Algorithm 2.1 is
an extension of our method [1] for the two-block separable convex problem, but the domain of the
parameters restricted into (2.7) is not a direct extension of the past. Besides, Algorithm 2.1 adopts
a serial idea between x1-subproblem and other subproblems, while the parallel idea is used among the
xi-subproblems (i = 2, · · · , p). From the relaxation step of Algorithm 2.1, we immediately have the
following certain relationship

wk+1 − wk = γ(w̃k − wk). (2.20)
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Algorithm 2.1 (GR-PPA for solving Problem (1.1))

1 Choose parameters (σ1, · · · , σp, s) ∈ K, γ ∈ (0, 2) and initialize (x0
1, · · · , x0

p, λ
0) ∈ Ω;

2 r0 =
p∑

i=1

Aix
0
i − b; λ̄0 = λ0 − τ+ε

s
r0 by (2.14);

3 For k = 0, 1, · · · , if not converge, do
4 x̃k

1 = arg min
x1∈X1

{
f1(x1) +

σ̄1

2

∥∥∥A1(x1 − xk
1)− τ

σ̄1

λ̄k
∥∥∥
2
}
;

5 rk =
p∑

i=1

Aix
k
i − b; ∆xk

1 = x̃k
1 − xk

1 ;

6 λ̄k+ 1

2 = λ̄k − τ−ε
s

(
2A1∆xk

1 + rk
)
;

7 Update the xi-subproblem for i = 2, · · · , p by (2.19):




x̃k
2 = arg min

x2∈X2

{
f2(x2) +

σ̄2

2

∥∥∥A2(x2 − xk
2)− τ

σ̄2

λ̄k+ 1

2

∥∥∥
2
}
;

...

x̃k
p = arg min

xp∈Xp

{
fp(xp) +

σ̄p

2

∥∥∥Ap(xp − xk
p)− τ

σ̄p
λ̄k+ 1

2

∥∥∥
2
}
;

8 ∆xk
i = x̃k

i − xk
i , ∀ i = 2, · · · , p;

9 λ̃k = λ̄k − τ+ε
s

p∑
i=1

Ai∆xk
i − 1

s

[
(τ − ε)A1∆xk

1 + rkτ
]
by (2.16);

10 Relaxation step:



xk+1
1
...

xk+1
p


 =




xk
1
...
xk
p


+ γ




∆xk
1

...
∆xk

p


 and λ̄k+1 = λ̄k + γ(λ̃k − λ̄k).

2.2 Convergence analysis of GR-PPA

This subsection analyzes the global convergence and the ergodic convergence rate of Algorithm 2.1.
First of all, we present an important lemma described as follows.

Lemma 2.2 The sequence {wk+1} generated by Algorithm 2.1 satisfies

∥∥wk+1 − w∗∥∥2
G
≤
∥∥wk − w∗∥∥2

G
− 2− γ

γ

∥∥wk − wk+1
∥∥2
G
, ∀ w∗ ∈ Ω∗. (2.21)

Proof By Algorithm 2.1 and (2.5), we have

w̃k ∈ Ω, φ(u)− φ(ũk) +
〈
w − w̃k,J (w̃k) +G

(
w̃k − wk

)〉
≥ 0, ∀ w ∈ Ω, (2.22)

which, by using (2.2) and (2.4) with setting w = w∗, leads to
〈
w̃k − w∗, G

(
wk − w̃k

)〉
≥ 0. (2.23)

Then, it follows from (2.20) and (2.23) that
∥∥wk − w∗∥∥2

G
−
∥∥wk+1 − w∗∥∥2

G
=

∥∥wk − w∗∥∥2
G
−
∥∥wk − w∗ + wk+1 − wk

∥∥2
G

= 2γ
〈
wk − w∗, G(wk − w̃k)

〉
− γ2

∥∥w̃k − wk
∥∥2
G

= 2γ
〈
wk − w̃k + w̃k − w∗, G(wk − w̃k)

〉
− γ2

∥∥wk − w̃k
∥∥2
G

= γ(2− γ)
∥∥wk − w̃k

∥∥2
G
+ 2γ

〈
w̃k − w∗, G(wk − w̃k)

〉

≥ γ(2− γ)
∥∥wk − w̃k

∥∥2
G
=

2− γ

γ

∥∥wk − wk+1
∥∥2
G
,
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which immediately completes the proof. �

Lemma 2.2 shows that the sequence {wk+1 − w∗} is strictly contractive under the weighted
G-norm. Moreover, the following global convergence theorem holds.

Theorem 2.1 Let the parameters (σ1, · · · , σp, s) ∈ K and the sequence {wk+1} be generated by
Algorithm 2.1. Then, under Assumption 1.1 there exists a point w∞ ∈ Ω∗ such that

lim
k→∞

wk+1 = w∞. (2.24)

Proof See the proof of Theorem 1 [1]. �

In order to establish the convergence rate of Algorithm 2.1 in an ergodic sense, we first need to
characterize the solution set of VI(φ,J ,Ω), which had been given by e.g. [10] in the following:

Theorem 2.2 The solution set of VI(φ,J ,Ω) in (2.2) is convex and can be characterized as

Ω∗ =
⋂

w∈Ω

{ŵ ∈ Ω| φ(u)− φ(û) + 〈w − ŵ,J (w)〉 ≥ 0} .

Theorem 2.3 For any (σ1, · · · , σp, s) ∈ K, let

wt :=
1

1 + t

t∑

k=0

w̃k and ut :=
1

1 + t

t∑

k=0

ũk,

where {w̃k} is the iterative sequence of Algorithm 2.1. Then, under Assumption 1.1 we have

φ(ut)− φ(u) + 〈wt − w,J (w)〉 ≤ 1

2γ(1 + t)

∥∥w0 − w
∥∥2
G
, ∀ w ∈ Ω. (2.25)

Proof Combining (2.22) with (2.4), we get

φ(u)− φ(ũk) +
〈
w − w̃k,J (w)

〉
≥
〈
w̃k − w,G

(
w̃k − wk

)〉
. (2.26)

Meanwhile, by (2.20) and the following identity

2〈a− b,G(c− d)〉 = ‖a− d‖2G − ‖a− c‖2G + ‖c− b‖2G − ‖d− b‖2G
with substitutions (w̃k, w, wk+1, wk) = (a, b, c, d), it follows that

〈
w̃k − w,G

(
w̃k − wk

)〉
= 1

γ

〈
w̃k − w,G

(
wk+1 − wk

)〉

= 1
2γ

(∥∥w̃k − wk
∥∥2
G
−
∥∥w̃k − wk+1

∥∥2
G
+
∥∥wk+1 − w

∥∥2
G
−
∥∥wk − w

∥∥2
G

)
,

(2.27)
where the first two terms

∥∥w̃k − wk
∥∥2
G
−
∥∥w̃k − wk+1

∥∥2
G

=
∥∥w̃k − wk

∥∥2
G
−
∥∥wk − w̃k + wk+1 − wk

∥∥2
G

=
∥∥w̃k − wk

∥∥2
G
−
∥∥wk − w̃k + γ(w̃k − wk)

∥∥2
G

= γ(2− γ)
∥∥(w̃k − wk)

∥∥2
G
≥ 0.

(2.28)

Combining (2.26)-(2.28), we deduce

φ(u)− φ(ũk) +
〈
w − w̃k,J (w)

〉
+

1

2γ

∥∥wk − w
∥∥2
G
≥ 1

2γ

∥∥wk+1 − w
∥∥2
G
.
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Summing the above inequality over k = 0, 1, · · · , t, we obtain

(1 + t)φ(u)−
t∑

k=0

φ(ũk) +

〈
(1 + t)w −

t∑

k=0

w̃k,J (w)

〉
+

1

2γ

∥∥w0 − w
∥∥2
G
≥ 0,

which by the definitions of wt and ut results in

1

1 + t

t∑

k=0

φ(ũk)− φ(u) + 〈wt − w,J (w)〉 ≤ 1

2γ(1 + t)

∥∥w0 − w
∥∥2
G
. (2.29)

Because of the convexity of the function φ(u) (since all fi are assumed to be convex), the following
inequality holds

φ(ut) ≤
1

1 + t

t∑

k=0

φ(ũk),

which, by substituting it into (2.29), completes the whole proof. �

Remark 2.3 Theorem 2.3 illustrates the worst-case O(1/t) convergence rate of Algorithm 2.1 in an
ergodic sense. By the region γ ∈ (0, 2) in Algorithm 2.1 and the inequality (2.25), one may choose
a larger value γ approximating to 2 so that the value of right-hand of (2.25) is much smaller.

3 Numerical experiments

In this section, we investigate the numerical performance of our proposed GR-PPA for solving
a popular sparse matrix optimization problem. All experiments are simulated in MATLAB 7.14
(R2012a) on a lenovo-PC with Intel Core i5 processor (2.70GHz) and 4 GB memory.

3.1 Test problem

The Latent Variable Gaussian Graphical Model Selection (LVGGMS) problem [3, 16] arising in
statistical learning is of the following form:

min F (X,S, L) := 〈X,C〉 − log det(X) + ν‖S‖1 + µtr(L)
s.t. X − S + L = 0, L � 0,

(3.1)

where C ∈ R
n×n is a given covariance matrix obtained from the sample variables, ν and µ are given

positive weighting factors, tr(L) denotes the trace of the matrix L, ‖S‖1 =
∑n

i,j=1 |Sij | stands for
the l1-norm of the matrix S and Sij means its ij-th entry.

Clearly, the LVGGMS problem (3.1) can be regarded as a special case of (1.1). And applying
Algorithm 2.1 it is easy to write the three corresponding subproblems as the following





X̃k = arg min
X∈Rn×n

{
〈X,C〉 − log det(X) + σ̄1

2

∥∥∥X − (Xk + τ
σ̄1

λ̄k)
∥∥∥
2

F

}
,

S̃k = arg min
S∈Rn×n

{
ν‖S‖1 + σ̄2

2

∥∥∥S − (Sk − τ
σ̄2

λ̄k+ 1

2 )
∥∥∥
2

F

}
,

L̃k = argmin
L�0

{
µtr(L) + σ̄3

2

∥∥∥L− (Lk + τ
σ̄3

λ̄k+ 1

2 )
∥∥∥
2

F

}
.

(3.2)

Observe that the above subproblems have closed formula solutions. According to the first-order
optimality condition of the X-subproblem in (3.2), we derive

0 = C −X−1 + σ̄1

(
X −Xk − τ

σ̄1

λ̄k
)

⇐⇒ σ̄1X
2 +

(
C − σ̄1X

k − τλ̄k
)
X − I = 0.
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Then, by using the eigenvalue decomposition

UDiag(ρ)UT = C − σ̄1X
k − τλ̄k,

where Diag(ρ) is a diagonal matrix with diagonal entries ρi(i = 1, · · · , n), we get its explicit solution

X̃k = UDiag(γ)UT, (3.3)

in which Diag(γ) is the diagonal matrix with diagonal entries

γi =
−ρi +

√
ρ2i + 4σ̄1

2σ̄1
, i = 1, 2, · · · , n.

Applying the soft shrinkage operator Shrink(·, ·), see e.g.[18], the solution of the S-subproblem is

S̃k = Shrink

(
Sk − τ

σ̄2
λ̄k+ 1

2 ,
ν

σ̄2

)
. (3.4)

Besides, it is obvious that the L-subproblem in (3.2) is equivalent to

Lk+1 = argmin
L�0

σ̄3

2

∥∥∥L− L̃
∥∥∥
2

F
= VDiag(max{ρ̃,0})V T, (3.5)

where max{ρ̃,0} is taken component-wise and VDiag(ρ̃)V T is the eigenvalue decomposition of the
matrix

L̃ = Lk +
τλ̄k+ 1

2 − µI

σ̄3
.

3.2 Numerical results

In the following experiments, the parameters (ν, µ) = (0.005, 0.05) in (3.1) come from [16] and the
matrix C is randomly generated by the MATLAB codes of Boyd’s homepage1 with n = 100. The
maximal number of iterations is set as 1000 and the following termination criterions are simultane-
ously used for all algorithms:

IER(k) := max

{∥∥Xk −Xk−1
∥∥
F

‖Xk‖F
,

∥∥Sk − Sk−1
∥∥
F

‖Sk‖F
,

∥∥Lk − Lk−1
∥∥
F

‖Lk‖F

}
≤ ǫ1,

OER(k) :=
|F (Xk, Sk, Lk)− F ∗|

|F ∗| ≤ ǫ2,

CER(k) :=

∥∥Xk − Sk + Lk
∥∥
F

max {1, ‖Xk‖F , ‖Sk‖F , ‖Lk‖F }
≤ ǫ3,

where (ǫ1, ǫ2, ǫ3) are given tolerances, (Xk, Sk, Lk) are the k-th iterative values and F ∗ is the ap-
proximate optimal objective function value by running Algorithm 2.1 after 1000 iterations. The
penalty parameter and the relaxation factor in all involved algorithms are set as (β, γ) = (0.05, 1.8).
We choose the feasible points (X0, S0, L0, λ0) = (I,4I, 3I,0) as the initial starting iterates.

First of all, for the two-block classical lasso problem, as shown in [1] that Algorithm 2.1 could per-
form significantly better than ADMM and the customized relaxed PPA [6] when properly choosing
the parameters, especially for solving large-size problems and high accurate solutions are required.
Followed by the similar way of adjusting the parameters [1], we first would like to investigate the
effects of the parameters (σ1, σ2, σ3, s) on Algorithm 2.1 for solving the three-block case (3.1). For

1http://web.stanford.edu/∼boyd/papers/admm/covsel/covsel example.html.
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this purpose, given (ε, τ) we randomly choose some values of one parameter and fix the remaining
as known values, then it is clear from (2.7) that

s > 0, σ1 >
1 + 2τ |ε|

s
, σi >

1 + τ2 + τ |ε|
s

, ∀i = 2, 3. (3.6)

Here we can note that σ1 and σi(i = 2, 3) play the same role if taking ε = τ , since in such case their

regions are the same. Therefore, in the following we would take ε = τ =
√
5−1
2 (the golden section

ratio) to adjust the relative better value of e.g. σ1 for an example. We also investigate the effect of
the parameter s on Algorithm 2.1.

Under the tolerance ǫi = 10−8 (i = 1, 2, 3), experimental results of adjusting the parameters
σ1 and s are respectively reported in Tables 1-2, where the parameter in Table 1 is restricted by

σ1 > 2+(
√
5−1)2

20 ≈ 0.1764 and the parameter in Table 2 is restricted by s > 2+(
√
5−1)2

0.178 ≈ 9.9097. The
notations “IT”, “CPU” denote the number of iterations and the CPU time in seconds, respectively.
We can observe from Tables 1-2 that:

• For the parameters (σ1, σ2, σ3, s), the experimental results in each column of IER and CER
are nearly the same when fixing any three parameters with one parameter changing;

• With the increase of the parameter σ1 (s), both the iteration number and the CPU time tend
to increase, which verifies the comments in the final part of [8]. That is, slow convergence
would occur in terms of solving the proximal subproblem if the proximal parameter is set too
large, which may significantly affect the whole computational efficiency of the algorithm;

• Both Tables 1-2 show that (σ1, σ2, σ3, s) = (0.178, 0.178, 0.178, 10) would be a relative reason-
able choice for tackling the test problem (3.1) and we would use them as the default parameter
setting for GR-PPA.

σ1 IT CPU IER OER CER
0.178 160 4.82 4.30e-9 1.27e-12 6.97e-9
0.200 163 5.24 2.73e-9 1.69e-12 5.71e-9
0.350 168 5.44 2.43e-9 2.63e-12 7.75e-9
0.500 170 5.65 5.65e-9 1.15e-11 9.93e-9
0.600 182 5.75 3.06e-9 7.13e-11 8.58e-9
0.800 217 6.53 1.85e-9 1.39e-10 7.19e-9
0.900 236 7.36 1.09e-9 1.62e-10 7.21e-9
1.000 244 7.43 1.81e-9 1.93e-10 7.49e-9
3.000 318 10.01 9.72e-9 2.06e-10 8.07e-9
5.000 505 15.43 9.82e-9 2.85e-12 4.55e-9
8.000 775 23.98 9.85e-9 2.80e-12 4.56e-9
10.000 950 30.44 9.88e-9 2.40e-12 4.56e-9

Table 1: Results of GR-PPA with fixed parameters (σ2, σ3, s) = (0.2, 0.2, 10).
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s IT CPU IER OER CER
10 141 4.20 6.05e-9 1.60e-12 7.80e-9
12 194 5.49 2.39e-9 2.41e-12 8.73e-9
15 257 7.34 2.42e-9 1.53e-12 9.92e-9
17 297 8.58 5.10e-9 2.45e-12 6.70e-9
20 363 10.42 6.55e-9 2.24e-12 4.47e-9
22 435 12.49 2.09e-9 1.97e-12 8.66e-9
25 487 14.03 4.62e-9 7.26e-13 5.19e-9
27 510 15.24 9.37e-9 1.74e-12 9.41e-9
30 585 16.93 6.94e-9 3.57e-12 7.10e-9
35 692 19.80 5.87e-9 5.75e-13 5.13e-9
40 782 22.22 6.54e-9 2.41e-12 9.37e-9
45 873 25.24 6.05e-9 2.61e-13 8.32e-9

Table 2: Results of GR-PPA with fixed parameters (σ1, σ2, σ3) = (0.178, 0.178, 0.178).

Secondly, we would like to use our GR-PPA (Algorithm 2.1) with the tuned parameters to com-
pare with two state-of-the-art algorithms: the Proximal Jacobian decomposition of the ALM [8]
(“PJALM”) and the splitting algorithm of the ALM [9] (“HTY”). The default parameter µ = 2.01
and H = βI are used for HTY [9], and the proximal parameter of PJALM [8] is fixed as 2 as sug-
gested by the theory therein. Experimental results of these algorithms under different tolerances are
reported in Table 3. Furthermore, with fixed tolerances (ǫ1, ǫ2, ǫ3) = (10−12, 10−14, 10−12), conver-
gence curves of the residuals IER and OER against the number of iterations by different algorithms
with different starting iterates are respectively depicted in Figs. 1-2.

It is clear from Table 3 that under higher tolerances our GR-PPA performs significantly better
than the others in terms of the number of iterations and the CPU time, although HTY could perform
slightly better than GR-PPA under some lower tolerances. Besides, the comparative convergence
curves depicted in Figs. 1-2 show that GR-PPA converges faster than the rest two algorithms for
different starting feasible points, which illustrates that GR-PPA could performs well for any initial
iterative values. Reported results of Table 1 and convergence curves in Figs. 1-2 demonstrate the
effectiveness and robustness of the proposed algorithm.

4 Conclusion remarks

In this paper, we develop a relaxed parameterized PPA for solving a class of separable convex
minimization problems. The global convergence and a worst-case sub-linear convergence rate of the
algorithm are established. Numerical experiments on testing a sparse matrix minimization problem
in statistical learning also verify that our proposed algorithm outperforms two popular algorithms
when properly choosing the relaxation factor and the parameters in the proximal matrix.

Note that, in Sec.3, we only take a three-block problem of (1.1) for an example to investigate the
performance of our algorithm, since its performance for the two-block lasso problem had been verified
in [1] compared with the classical ADMM and the relaxed PPA [6]. For the problem with more
than three variables, the parameters in GR-PPA need to adjust afresh via experiments. From the
framework of PPA in (2.5), one may have other choices to construct a novel parameterized proximal
matrix to develop the corresponding PPA only if it is symmetric positive definite. Besides, the
proposed algorithm is applicable to the separable convex optimization problem where the coefficient
matrices in the linear constraint have full column rank. Hence, whether there exists a PPA for the
non-separable case with nonlinear constraints? In addition, we have tried our best to analyze the
algorithmic convergence rate in the non-ergodic sense but without any results. These questions need
further investigations in the future.
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Fig. 1: Convergence curves of the residuals IER and OER by different algorithms with initial values
(X0, S0, L0, λ0) = (I, 4I, 3I,0).
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Fig. 2: Convergence curves of the residuals IER and OER by different algorithms with initial values
(X0, S0, L0, λ0) = (2I, 4I, 2I, I/2).
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Parameter GR-PPA PJALM HTY

ǫ1(ǫ2 = 10−10

/ǫ3 = 10−6)
IT CPU IER OER CER IT CPU IER OER CER IT CPU IER OER CER

10−4 110 3.15 2.55e-7 2.89e-11 2.45e-7 132 3.55 1.28e-7 9.50e-11 5.59e-8 128 3.36 1.51e-9 9.26e-11 1.73e-8

10−7 116 3.28 9.39e-8 7.73e-11 3.09e-7 136 3.67 9.53e-8 6.88e-11 4.17e-8 128 3.36 1.51e-9 9.26e-11 1.73e-8

10−12 215 6.08 9.25e-13 4.44e-16 5.49e-12 293 7.63 9.96e-13 8.87e-16 4.35e-13 234 6.21 9.56e-13 2.44e-15 1.18e-11

ǫ2(ǫ1 = 10−6

/ǫ3 = 10−6)

10−4 105 2.72 4.17e-7 1.46e-10 6.58e-7 107 3.08 9.34e-7 9.54e-10 4.06e-7 79 2.03 1.03e-7 1.35e-8 9.20e-7

10−11 124 3.54 5.11e-8 3.31e-12 5.86e-8 161 4.24 1.53e-8 9.76e-12 6.70e-9 151 4.01 2.83e-10 9.40e-12 3.41e-9

10−15 214 6.15 1.36e-12 4.44e-16 1.71e-12 279 7.49 2.74e-12 2.22e-16 1.21e-12 243 6.48 5.20e-13 8.87e-16 6.42e-12

ǫ3(ǫ1 = 10−6

/ǫ2 = 10−8)

10−8 141 4.09 6.05e-9 1.60e-12 7.80e-9 156 5.12 2.20e-8 1.43e-11 9.65e-9 136 3.89 8.32e-10 4.17e-11 9.76e-9

10−11 200 6.44 7.24e-12 2.44e-15 6.41e-12 251 7.19 2.12e-11 1.26e-14 9.33e-12 237 6.96 7.83e-13 3.10e-15 9.66e-12

10−12 225 7.31 1.50e-12 6.66e-16 9.87e-13 282 8.65 2.22e-12 3.11e-15 6.70e-13 271 8.10 9.94e-14 2.22e-16 9.59e-13

Table 3: Comparative results of the problem (3.1) by different algorithms under different tolerances.
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