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Abstract 

This paper addresses the distributed fusion estimation problem for discrete-time multi-sensor 

stochastic systems with random parameter matrices. It is assumed that the random parameter 

matrices in the observation equations are one-step autocorrelated and cross-correlated between 

the different sensors and the additive noises are also correlated. Under these assumptions, a 

recursive algorithm is proposed to obtain local least squares linear filters based on the 

measurements of each sensor, and the distributed fusion filter is designed as the matrix-weighted 

linear combination of these estimators which minimizes the mean squared estimation error. This 

research is illustrated by two numerical simulation examples where multi-sensor systems with 

randomly delayed measurements and missing measurements are considered, respectively, and 

the performance of the proposed estimators is analysed by comparing the estimation error 

variances of the distributed and centralized fusion filters. 

Usuario
Rectángulo



1. Introduction

In recent years, the use of sensor networks has received significant attention in many
practical domains, since they usually provide more information than traditional single-
sensor communication systems. For this reason, the fusion estimation problem in sensor
network stochastic systems has been widely studied in many fields of science, tech-
nology and military such as target tracking, navigation and detection (see [11] among
others).

Although there are several information fusion techniques, the most common fusion
estimation approaches are the centralized and distributed ones. The former is based
on the measurements from all the sensors, which are sent to a fusion centre, and so,
it provides the optimal estimator when all the sensors work accurately. However, a
sensor error can spoil the performance of the centralized filter and may give rise to
heavy computational burden and poor reliability. In the distributed fusion estimation
approach, each single sensor sends a local estimator to the fusion centre, where the
state is estimated by a combination of all the received local filters using a certain opti-
mality criterion. Thus, the distributed approach has lower estimation accuracy, which
is compensated with considerable advantages, such as greater robustness, reliability
and flexibility due to its parallel structure. Therefore, the distributed fusion method
is usually more attractive and has become an interesting research topic (see e.g. [1–5],
[14–16], [19, 20], and references therein). In [17], a survey on distributed fusion esti-
mation algorithms for multi-sensor networked systems based on the existing literature
is presented and new advances are discussed.

In general, there are many situations with network-induced phenomena, such as
multiplicative noise uncertainties, random delays, packet dropouts and missing mea-
surements, in which the state estimation problem can be addressed by transforming
the original system into one with random parameter matrices. For example in [14] and
[21] systems with packet dropouts and/or random delays are transformed into systems
with random parameter matrices. Systems with multiplicative noises in the state and
observation equations as those investigated in [19] are special cases of this kind of
systems. Also, in complex stochastic systems it is extremely important to have the
missing measurement phenomenon in mind for the derivation of the estimation algo-
rithms, and many observation models for time-varying complex networks with missing
measurements, as those considered in [9] or those for nonlinear time-varying systems
subject to multiplicative noises and missing measurements in [10], can be defined by
using random measurement matrices. The optimal filtering problem is addressed for a
class of discrete-time stochastic systems with multiplicative noises and random sensor
delays in [6] and, later, also with missing measurements in [7], by transforming the
original system into one with random parameter matrices.

Discrete-time systems with random parameter matrices arise in many areas, such
as radar control, missile track estimation, satellite navigation, digital control of chem-
ical processes or economic systems, among others [13]. Accordingly, the study of the
estimation problem in this kind of systems has become an active research field. In
[13] a distributed Kalman filtering fusion is proposed for systems with independent
random state transition and measurement matrices and white noises, which is also
applied to multi-model dynamic processes. For a class of discrete-time multi-sensor
stochastic systems also with independent random parameter matrices but autocorre-
lated and cross-correlated noises, the centralized fusion estimation problem has been
addressed under the phenomena of fading measurements in [8]. Moreover, by consid-
ering this same correlation assumption of the noise processes and one-step correlated
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and cross-correlated random measurement matrices, the centralized fusion linear filter
is obtained in [12], where the results are applied to systems with missing measurements
and randomly delayed observations. More recently, considering correlated random pa-
rameter matrices at the same sampling time, in [18] centralized fusion estimators are
presented for a class of nonlinear discrete-time stochastic systems with fading mea-
surements and multi-step correlated noises. The distributed fusion estimation problem
has also been studied for sensor network systems with independent random parameter
matrices and correlated noises in [1] and also in [4] where, additionally, random packet
dropouts are assumed to occur during transmission. Centralized and distributed fusion
estimation problems are both studied in [2, 3, 5] for networked systems with random
parameter matrices and different correlation assumptions about the noises involved
in the system. Specifically, measurements subject to random delays during the trans-
mission are considered in [2] and measurements subject to both random delays and
packet dropouts are analyzed in [3, 5].

Motivated by the above discussion, this paper deals with the distributed fusion
estimation problem for discrete-time linear stochastic systems with multi-sensor mea-
surements including correlated and cross-correlated random parameter matrices and
noises. To the best of the authors’ knowledge, the distributed fusion estimation prob-
lem in this kind of complex stochastic systems has not yet been investigated, so it is
an interesting research topic. The main contributions of this paper can be highlighted
as follows: (a) The considered systems provide a unified framework for simultane-
ously dealing with some network-induced phenomena, such as correlated randomly
delayed measurements and missing measurements, or uncertainties caused by multi-
plicative noises, along with correlated and cross-correlated noises; hence, the proposed
distributed fusion filter has wide applicability. (b) Unlike [12], where centralized fu-
sion estimators are obtained, this paper proposes a distributed fusion estimator, which
has greater robustness and fault-tolerance abilities in comparison with the centralized
fusion estimator and its computational methodology is simple. (c) The innovation
technique is used to obtain algorithms for the local least-squares linear filtering es-
timators and the proposed distributed fusion filter is designed as a matrix-weighted
sum of the local filters with the aim of minimizing the mean squared estimation error.
(d) The proposed observation model is more general than the one considered in [1],
where the distributed fusion filtering estimators are obtained for networked systems
with independent random state transition and measurement matrices, whereas corre-
lation of the random parameter matrices in the observation equation is considered in
the current paper.

The rest of the paper is organized as follows. Section 2 describes the system model
with correlated and cross-correlated random parameter matrices and noises, specifying
the assumptions under which the distributed fusion estimation problem is addressed.
In Section 3, the local least squares linear filtering algorithm is given, and the proposed
distributed fusion filter is designed by a matrix-weighted linear combination of the local
filters using the mean squared error optimality criterion. Two illustrative simulation
examples are given in Section 4 to show the applicability of the proposed filtering
algorithm. Finally, some conclusions are drawn in Section 5.
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2. System model

Let us consider the following discrete-time linear stochastic system with measurements
coming from m different sensors:

xk+1 = Fkxk + wk, k ≥ 0,

y
(i)
k = H

(i)
k xk +B

(i)
k v

(i)
k , k ≥ 1, i = 1, . . . ,m,

(1)

where xk ∈ Rnx is the state vector to be estimated and y
(i)
k ∈ Rny , i = 1, . . . ,m, is

the output measurement of the i−th sensor at the sampling time k. wk ∈ Rnx and

v
(i)
k ∈ Rnv are the process and measurement noise vectors, respectively. Fk is the state

transition matrix and H
(i)
k and B

(i)
k are the measurement matrices, all of them with

random parameters and suitable dimensions.

The following assumptions about the initial state, the random parameter matrices
and the noises involved in system (1) are required.

Assumption 1. The initial state x0 is a zero-mean random vector with Cov[x0] = Σ0.
Also, it is assumed to be independent of the random parameter matrices and noise
processes.

Assumption 2. The random parameter matrices {Fk; k ≥ 0}, {H(i)
k ; k ≥ 1} and

{B(i)
k ; k ≥ 1} have known means, which will be denoted F k ≡ E[Fk], H

(i)
k ≡ E[H

(i)
k ]

and B
(i)
k ≡ E[B

(i)
k ], i = 1, . . . ,m. Also, for i, j = 1, . . . ,m, the following expectations

are assumed to be known

E[fpq(k)fp′q′(s)] = E[fpq(k)fp′q′(k)]δk,s,

E[h(i)
pq (k)h

(j)
p′q′(s)] = E[h(i)

pq (k)h
(j)
p′q′(k)]δk,s + E[h(i)

pq (k)h
(j)
p′q′(k − 1)]δk−1,s, s ≤ k,

E[b(i)pq (k)b
(j)
p′q′(s)] = E[b(i)pq (k)b

(j)
p′q′(k)]δk,s + E[b(i)pq (k)b

(j)
p′q′(k − 1)]δk−1,s, s ≤ k,

E[h(i)
pq (k)b

(j)
p′q′(s)] = E[h(i)

pq (k)b
(j)
p′q′(k)]δk,s + E[h(i)

pq (k)b
(j)
p′q′(k − 1)]δk−1,s

+ E[h(i)
pq (k)b

(j)
p′q′(k + 1)]δk+1,s,

where fpq(k), h
(i)
pq (k) and b

(i)
pq (k) denote the (p, q)-th entries of matrices Fk, H

(i)
k and

B
(i)
k , respectively.

Assumption 3. {wk; k ≥ 0} and {v(i)
k ; k ≥ 1}, i = 1, . . . ,m, are zero-mean sequences

and the following covariances and cross-covariances are known

E[wkw
T
s ] = Qkδk,s +Qk,k−1δk−1,s, s ≤ k,

E[v
(i)
k v(j)T

s ] = R
(ij)
k δk,s +R

(ij)
k,k−1δk−1,s, s ≤ k, i, j = 1, . . . ,m,

E[wkv
(i)T
s ] = S

(i)
k δk,s + S

(i)
k,k+1δk+1,s + S

(i)
k,k+2δk+2,s, i = 1, . . . ,m.

Assumption 4. Independence assumptions:

− {Fk; k ≥ 0} is independent of(
{H(i)

k ; k ≥ 1}, {B(i)
k ; k ≥ 1}, {wk; k ≥ 0}, {v(i)

k ; k ≥ 1}, i = 1, . . . ,m
)

.
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−
(
{H(i)

k ; k ≥ 1}, {B(i)
k ; k ≥ 1}, i = 1, . . . ,m

)
is independent of(

{wk; k ≥ 0}, {v(i)
k ; k ≥ 1}, i = 1, . . . ,m

)
.

The basic model in which {H(i)
k ; k ≥ 1} and {B(i)

k ; k ≥ 1}, i = 1, . . . ,m, are in-
dependent sequences of independent random parameter matrices can be unrealistic
in many practical situations, and the fusion estimation algorithms must be modified
to incorporate the effect of different types of correlation between the matrices. The
correlation at consecutive sampling times considered in Assumption 2 is appropriate,
for example, to model real situations involving missing or delayed measurements in
physical plants provided with stand-by sensors for the immediate replacement of a
failed unit, thus avoiding the possibility of successive observation failures. This type
of correlation among consecutive missing or delayed packets usually arises when the
packets are transmitted in a data stream through an intermediate node. For example,
in systems with random transmission delays, if more packets arrive before the first
packet leaves, the delays of new arrivals will depend on the current packet processing
delay. In the study of packet transmission delays in a data stream for different trans-
mission rates and different packet sizes, significant correlations among delay values of
successive packets are found at high sending rates.

Assumption 3 on the correlation between the sensor noises {v(i)
k ; k ≥ 1}, i =

1, . . . ,m, and the process noise {wk; k ≥ 0} has been usually considered in the lit-
erature, since the independence of the noises is not realistic in many practical situ-
ations (for example, when all the sensors operate in the same noisy environment or
the sensor measurement noises depend on the signal), so noise correlation provides a
more comprehensive framework to model some real-world complexities. Actually, even
more general correlation structures than the one established in Assumption 3 could
be considered. However, this is the most common assumption used in papers involving
correlated noises, since the approach and methodology under more general correla-
tion assumptions would be similar and just additional complexity in the mathematical
derivations would be implied.

The following property will be used to calculate some expectations involving the

random parameter matrices Fk, H
(i)
k and B

(i)
k , i = 1, . . . ,m:

Let A =
(
ars

)
r=1,...,n1

s=1,...,n2

, B =
(
brs

)
r=1,...,m1

s=1,...,m2

and C =
(
crs

)
r=1,...,n2

s=1,...,m2

be random

parameter matrices, such that C is independent of (A,B); then, the (p, q)-th entries
of the matrix E[ACBT ] are given by

(
E[ACBT ]

)
pq

=

n2∑
r=1

m2∑
s=1

E[aprbqs]E[crs], p = 1, . . . , n1, q = 1, . . . ,m1.

Our aim is to address the least squares (LS) linear filtering problem in this class of
systems with correlated and cross-correlated random parameter matrices and noises
using the distributed fusion approach.
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3. Distributed fusion filtering estimators

In this section, the distributed fusion filter of the state xk based on the available

measurements y
(i)
1 , . . . , y

(i)
k , i = 1, . . . ,m, is designed. First, at each sensor, a local LS

linear filtering recursive algorithm is obtained using its own measurement data. Then,
these estimators are sent to the fusion centre where the distributed fusion filter is
computed.

3.1. Local LS linear filters

In order to simplify the expressions of the local linear filtering estimators and the
subsequent calculations, let us first present the following properties [12]:

• The matrices Dk ≡ E[xkx
T
k ] and Dk,k−1 ≡ E[xkx

T
k−1] are recursively calculated by

Dk = E[Fk−1Dk−1F
T
k−1] + F k−1Qk−2,k−1 +Qk−1,k−2F

T
k−1 +Qk−1, k ≥ 2;

D1 = E[F0D0F
T
0 ] +Q0; D0 = Σ0,

Dk,k−1 = F k−1Dk−1 +Qk−1,k−2, k ≥ 2; D1,0 = F 0D0.

(2)

• The noise processes {wk; k ≥ 0} and {v(i)
k ; k ≥ 1}, i = 1, . . . ,m, satisfy the following

correlation properties

W(i)
k ≡ E[wky

(i)T
k ] = Qk,k−1H

(i)T
k + S

(i)
k B

(i)T
k , k ≥ 1,

E(i)
k ≡ E[xkv

(i)T
k ] = F k−1S

(i)
k−2,k + S

(i)
k−1,k, k ≥ 2; E(i)

1 = S
(i)
0,1,

E(i)
k,k−1 ≡ E[xkv

(i)T
k−1 ] = F k−1E

(i)
k−1 + S

(i)
k−1, k ≥ 2,

V(ij)
k,k−1 ≡ E[B

(i)
k v

(i)
k y

(j)T
k−1 ] = E[B

(i)
k S

(i)T
k−2,kH

(j)T
k−1 ] + E[B

(i)
k R

(ij)
k,k−1B

(j)T
k−1 ], k ≥ 2.

(3)

For each sensor i = 1, . . . ,m, a recursive algorithm for the local LS linear filter,

x̂
(i)
k/k, together with its filtering error covariance matrix, Σ

(i)
k/k, is given in the following

theorem.

Theorem 3.1. For system (1), under assumptions 1-4, the local LS linear filter for

the i-th sensor, x̂
(i)
k/k, i = 1, . . . ,m, is given by

x̂
(i)
k/k = x̂

(i)
k/k−1 + X (i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1; x̂

(i)
0/0 = 0, (4)

where the one-step predictor, x̂
(i)
k/k−1, is calculated by

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−1 +W(i)

k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2; x̂

(i)
1/0 = 0. (5)

The innovation, µ
(i)
k , is obtained by

µ
(i)
k = y

(i)
k −H

(i)
k x̂

(i)
k/k−1 − Y

(i)
k,k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; µ

(i)
1 = y

(i)
1 , (6)
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where, denoting H̃
(i)
k ≡ H

(i)
k −H

(i)
k , the matrix Y(i)

k,k−1 ≡ E[y
(i)
k µ

(i)T
k−1] satisfies

Y(i)
k,k−1 = E[H̃

(i)
k Dk,k−1H

(i)T
k−1 ] + E[H̃

(i)
k E

(i)
k,k−1B

(i)T
k−1 ] + V(i)

k,k−1, k ≥ 2.

The matrix X (i)
k ≡ E[xkµ

(i)T
k ] is obtained by

X (i)
k = Σ

(i)
k/k−1H

(i)T
k + E(i)

k B
(i)T
k −X (i)

k,k−1Π
(i)−1
k−1 Y

(i)T
k,k−1, k ≥ 2;

X (i)
1 = Σ

(i)
1/0H

(i)T
1 + E(i)

1 B
(i)T
1 ,

where X (i)
k,k−1 ≡ E[xkµ

(i)T
k−1] is given by X (i)

k,k−1 = F k−1X
(i)
k−1 +W(i)

k−1, k ≥ 2.

The innovation covariance matrix, Π
(i)
k , satisfies

Π
(i)
k = E[H̃

(i)
k DkH

(i)T
k ] + E[H̃

(i)
k E

(i)
k B

(i)T
k ] + E[B

(i)
k E

(i)T
k H̃

(i)T
k ] + E[B

(i)
k R

(i)
k B

(i)T
k ]

+H
(i)
k X

(i)
k + X (i)T

k H
(i)T
k −H(i)

k Σ
(i)
k/k−1H

(i)T
k − Y(i)

k,k−1Π
(i)−1
k−1 Y

(i)T
k,k−1, k ≥ 2;

Π
(i)
1 = E[H̃

(i)
1 D1H

(i)T
1 ] + E[H

(i)
1 E

(i)
1 B

(i)T
1 ] + E[B

(i)
1 E

(i)T
1 H

(i)T
1 ]

+ E[B
(i)
1 R

(i)
1 B

(i)T
1 ] +H

(i)
1 Σ

(i)
1/0H

(i)T
1 .

The filtering error covariance matrix, Σ
(i)
k/k, is computed by

Σ
(i)
k/k = Σ

(i)
k/k−1 −X

(i)
k Π

(i)−1
k X (i)T

k , k ≥ 1; Σ
(i)
0/0 = Σ0,

where the prediction error covariance matrix, Σ
(i)
k/k−1, is given by

Σ
(i)
k/k−1 = Dk + F k−1(Σ

(i)
k−1/k−1 −Dk−1)F

T
k−1 +W(i)

k−1Π
(i)−1
k−1 W

(i)T
k−1

−X (i)
k,k−1Π

(i)−1
k−1 W

(i)T
k−1 −W

(i)
k−1Π

(i)−1
k−1 X

(i)T
k,k−1, k ≥ 2;

Σ
(i)
1/0 = D1.

Finally, the matrices Dk, Dk,k−1 and W(i)
k , E(i)

k , E(i)
k,k−1, V(i)

k,k−1 are given in (2) and

(3), respectively.

Proof. The proof, based on an innovation approach, is analogous to that in [12].
Hence the details are omitted here.

3.2. Distributed fusion filter weighted by matrices

As we have already indicated, our aim is to design a distributed fusion filter, x̂
(D)
k/k , as

a matrix-weighted sum of the local filters, x̂
(i)
k/k, i = 1, . . . ,m, such that the optimal

weighting matrices are computed to minimize the mean squared estimation error. The
following two lemmas provide the expectations required to obtain the proposed fusion
estimator. Hereafter, the assumptions and notation used are the same as those in
Theorem 3.1.
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Lemma 3.2. For i, j = 1, . . . ,m and i 6= j, the expectation L
(ij)
k ≡ E[x̂

(i)
k/k−1µ

(j)T
k ]

satisfies

L
(ij)
k =

(
F k−1K

(i)
k−1/k−2F

T
k−1 −K

(ij)
k/k−1

)
H

(j)T
k

+ X (i)
k,k−1Π

(i)−1
k−1

(
∆

(ji)T
k,k−1 + V(ji)T

k,k−1

)
− L(ij)

k,k−1Π
(j)−1
k−1 Y

(j)T
k,k−1, k ≥ 2;

L
(ij)
1 = 0,

(7)

where the expectation ∆
(ij)
k,k−1 ≡ E[H

(i)
k xkµ

(j)T
k−1 ] is obtained by

∆
(ij)
k,k−1 = E[H

(i)
k Dk,k−1H

(j)T
k−1 ] + E[H

(i)
k E

(j)
k,k−1B

(j)T
k−1 ]

−H(i)
k F k−1

(
K

(j)
k−1/k−2H

(j)T
k−1 + X (j)

k−1,k−2Π
(j)−1
k−2 Y

(j)T
k−1,k−2

)
, k ≥ 3;

∆
(ij)
2,1 = E[H

(i)
2 D2,1H

(j)T
1 ] + E[H

(i)
2 E

(j)
2,1B

(j)T
1 ]−H(i)

2 F 1K
(j)
1/0H

(j)T
1 ,

(8)

and L
(ij)
k,k−1 ≡ E[x̂

(i)
k/k−1µ

(j)T
k−1 ] is computed by

L
(ij)
k,k−1 = F k−1L

(ij)
k−1 + X (i)

k,k−1Π
(i)−1
k−1 Π

(ij)
k−1, k ≥ 2. (9)

The cross-covariance matrices, K
(ij)
k/k−1 ≡ E[x̂

(i)
k/k−1x̂

(j)T
k/k−1], between any two local pre-

dictors are computed by

K
(ij)
k/k−1 = F k−1K

(ij)
k−1/k−2F

T
k−1 + F k−1L

(ij)
k−1Π

(j)−1
k−1 X

(j)T
k,k−1

+ X (i)
k,k−1Π

(i)−1
k−1 L

(ji)T
k−1 F

T
k−1 + X (i)

k,k−1Π
(i)−1
k−1 Π

(ij)
k−1Π

(j)−1
k−1 X

(j)T
k,k−1, k ≥ 2, i 6= j;

K
(ij)
1/0 = 0, i 6= j,

K
(i)
k/k−1 = Dk − Σ

(i)
k/k−1, k ≥ 1.

(10)

Proof. We will repeatedly use the equations and assumptions on the system model
(1), as well as expression (6) for the innovation.

In this way, the following expression for L
(ij)
k ≡ E[x̂

(i)
k/k−1µ

(j)T
k ] is obtained:

L
(ij)
k = E[x̂

(i)
k/k−1x

T
kH

(j)T
k ] +E[x̂

(i)
k/k−1v

(j)T
k B

(j)T
k ]−K(ij)

k/k−1H
(j)T
k −L(ij)

k,k−1Π
(j)−1
k−1 Y

(j)T
k,k−1,

so we need to calculate the expectations E[x̂
(i)
k/k−1x

T
kH

(j)T
k ] and E[x̂

(i)
k/k−1v

(j)T
k B

(j)T
k ].

For the first one, using (5) for x̂
(i)
k/k−1 with (4) for x̂

(i)
k−1/k−1, it is deduced that

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−2 + X (i)

k,k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2; x̂

(i)
1/0 = 0. (11)

According to the Orthogonal Projection Lemma (OPL), since E[x̂
(i)
k−1/k−2x

T
k−1] =
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E[x̂
(i)
k−1/k−2x̂

(i)T
k−1/k−2], from (11) we obtain

E[x̂
(i)
k/k−1x

T
kH

(j)T
k ] = F k−1K

(i)
k−1/k−2F

T
k−1H

(j)T
k + X (i)

k,k−1Π
(i)−1
k−1 ∆

(ji)T
k,k−1. (12)

For the second expectation, using again (11), it is clear that

E[x̂
(i)
k/k−1v

(j)T
k B

(j)T
k ] = F k−1E[x̂

(i)
k−1/k−2v

(j)T
k B

(j)T
k ] + X (i)

k,k−1Π
(i)−1
k−1 E[µ

(i)
k−1v

(j)T
k B

(j)T
k ],

and, taking into account that B
(j)
k v

(j)
k is independent of y

(i)
s , for s ≤ k − 2, and

consequently it is independent of µ
(i)
s , for s ≤ k − 2, we have that

E[x̂
(i)
k−1/k−2v

(j)T
k B

(j)T
k ] = 0 and E[µ

(i)
k−1v

(j)T
k B

(j)T
k ] = E[y

(i)
k−1v

(j)T
k B

(j)T
k ].

Then, it is deduced that

E[x̂
(i)
k/k−1v

(j)T
k B

(j)T
k ] = X (i)

k,k−1Π
(i)−1
k−1 V

(ji)T
k,k−1. (13)

From the above relations, expression (7) for L
(ij)
k is immediately derived.

Next, we calculate (8) for ∆
(ij)
k,k−1 = E[H

(i)
k xkµ

(j)T
k−1 ] = E[H

(i)
k xky

(j)T
k−1 ] −

E[H
(i)
k xkx̂

(j)T
k−1/k−2]H

(j)T
k−1 −E[H

(i)
k xkµ

(j)T
k−2 ]Π

(j)−1
k−2 Y

(j)T
k−1,k−2. By using the conditional ex-

pectation properties, we have

∆
(ij)
k,k−1 = E[H

(i)
k Dk,k−1H

(j)T
k−1 ] + E[H

(i)
k E

(j)
k,k−1B

(j)T
k−1 ]

− E[H
(i)
k xkx̂

(j)T
k−1/k−2]H

(j)T
k−1 − E[H

(i)
k xkµ

(j)T
k−2 ]Π

(j)−1
k−2 Y

(j)T
k−1,k−2.

From the OPL, it is deduced that E[H
(i)
k xkx̂

(j)T
k−1/k−2] = H

(i)
k F k−1K

(j)
k−1/k−2,

E[H
(i)
k xkµ

(j)T
k−2 ] = H

(i)
k F k−1X

(j)
k−1,k−2 and (8) for ∆

(ij)
k,k−1 is proved.

Finally, expression (9) for L
(ij)
k,k−1 is immediately deduced using (11) for x̂

(i)
k/k−1 and

the derivation of (10) for K
(ij)
k/k−1 can be seen in [1].

Lemma 3.3. For i, j = 1, . . . ,m and i 6= j, the cross-covariance matrices of the

innovations, Π
(ij)
k ≡ E[µ

(i)
k µ

(j)T
k ], are given by

Π
(ij)
k = ∆

(ij)
k + E[B

(i)
k E

(i)T
k H

(j)T
k ] + E[B

(i)
k R

(ij)
k B

(j)T
k ]

− V(ij)
k,k−1Π

(j)−1
k−1

(
H

(j)
k X

(j)
k,k−1 + Y(j)

k,k−1

)T
−H(i)

k L
(ij)
k − Y(i)

k,k−1Π
(i)−1
k−1 Π

(ij)
k−1,k, k ≥ 2;

Π
(ij)
1 = ∆

(ij)
1 + E[B

(i)
1 E

(i)T
1 H

(j)T
1 ] + E[B

(i)
1 R

(ij)
1 B

(j)T
1 ],

(14)
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where the expectations ∆
(ij)
k ≡ E[H

(i)
k xkµ

(j)T
k ] are obtained by

∆
(ij)
k = E[H

(i)
k DkH

(j)T
k ] + E[H

(i)
k E

(j)
k B

(j)T
k ]−H(i)

k F k−1K
(j)
k−1/k−2F

T
k−1H

(j)T
k

−∆
(ij)
k,k−1Π

(j)−1
k−1

(
H

(j)
k X

(j)
k,k−1 + Y(j)

k,k−1

)T
, k ≥ 2;

∆
(ij)
1 = E[H

(i)
1 D1H

(j)T
1 ] + E[H

(i)
1 E

(j)
1 B

(j)T
1 ],

(15)

and Π
(ij)
k−1,k ≡ E[µ

(i)
k−1µ

(j)T
k ] are given by

Π
(ij)
k−1,k = ∆

(ji)T
k,k−1 + V(ji)T

k,k−1 − L
(ji)T
k,k−1H

(j)T
k −Π

(ij)
k−1Π

(j)−1
k−1 Y

(j)T
k,k−1, k ≥ 2. (16)

Proof. As in Lemma 3.2, the measurement equation y
(i)
k given in (1) and the innova-

tion formula (6) will be repeatedly used.

Taking into account that Π
(ij)
k = E[µ

(i)
k µ

(j)T
k ] = E[y

(i)
k µ

(j)T
k ]−H(i)

k E[x̂
(i)
k/k−1µ

(j)T
k ]−

Y(i)
k,k−1Π

(i)−1
k−1 E[µ

(i)
k−1µ

(j)T
k ], it is easy to check that

Π
(ij)
k = ∆

(ij)
k + E[B

(i)
k v

(i)
k µ

(j)T
k ]−H(i)

k L
(ij)
k − Y(i)

k,k−1Π
(i)−1
k−1 Π

(ji)T
k,k−1.

To obtain E[B
(i)
k v

(i)
k µ

(j)T
k ], we use (13) for the expectation E[B

(i)
k v

(i)
k x̂

(j)T
k/k−1], which

yields

E[B
(i)
k v

(i)
k µ

(j)T
k ] = E[B

(i)
k E

(i)T
k H

(j)T
k ] + E[B

(i)
k R

(ij)
k B

(j)T
k ]

− V(ij)
k,k−1Π

(j)−1
k−1 X

(j)T
k,k−1H

(j)T
k − V(ij)

k,k−1Π
(j)−1
k−1 Y

(j)T
k,k−1,

and expression (14) for Π
(ij)
k is deduced.

To derive formula (15) for ∆
(ij)
k = E[H

(i)
k xkµ

(j)T
k ] = E[H

(i)
k xky

(j)T
k ] −

E[H
(i)
k xkx̂

(j)T
k/k−1]H

(j)T
k − E[H

(i)
k xkµ

(j)T
k−1 ]Π

(j)−1
k−1 Y

(j)T
k,k−1, we use the conditional expecta-

tion properties to obtain

∆
(ij)
k = E[H

(i)
k DkH

(j)T
k ]+E[H

(i)
k E

(j)
k B

(j)T
k ]−E[H

(i)
k xkx̂

(j)T
k/k−1]H

(j)T
k −∆

(ij)
k,k−1Π

(j)−1
k−1 Y

(j)T
k,k−1,

and, using (12) for E[H
(i)
k xkx̂

(j)T
k/k−1], expression (15) is proved.

Finally, expression (16) for Π
(ij)
k−1,k is obtained by using a similar reasoning to that

used to derive Π
(ij)
k .

The distributed fusion filter, x̂
(D)
k/k , and its error covariance matrix, Σ

(D)
k/k , are given

in the following theorem.

Theorem 3.4. Let X̂k/k = (x̂
(1)T
k/k , . . . , x̂

(m)T
k/k )T be the vector consisting of the local

filters obtained in Theorem 3.1. Then, the distributed fusion filter for the system (1)

10



is given by

x̂
(D)
k/k = Ξk/kK

−1
k/kX̂k/k, k ≥ 1,

where Kk/k =
(
K

(ij)
k/k

)
i,j=1,...,m

and Ξk/k = (K
(1)
k/k, . . . ,K

(m)
k/k ), with the cross-

covariance matrices, K
(ij)
k/k , i, j = 1, . . . ,m, between any two local filters calculated

as

K
(ij)
k/k = K

(ij)
k/k−1 + L

(ij)
k Π

(j)−1
k X (j)T

k + X (i)
k Π

(i)−1
k L

(ji)T
k

+ X (i)
k Π

(i)−1
k Π

(ij)
k Π

(j)−1
k X (j)T

k , k ≥ 1, i 6= j;

K
(i)
k/k = Dk − Σ

(i)
k/k, k ≥ 1.

The error covariance matrices of the distributed fusion filtering estimators are com-
puted by

Σ
(D)
k/k = Dk − Ξk/kK

−1
k/kΞ

T
k/k, k ≥ 1.

Finally, the matrices L
(ij)
k , K

(ij)
k/k−1 and Π

(ij)
k are given in Lemmas 3.2 and 3.3, respec-

tively.

Proof. The proof can be seen in [1]. Hence the details are omitted here.

4. Numerical simulation examples

In this section we show that the results obtained in the current paper for the system
model with random measurement matrices (1) can be applied to the multi-sensor
systems with correlated randomly delayed measurements and missing measurements
as particular cases.

4.1. Multi-sensor system with randomly delayed measurements

Consider a discrete-time linear stochastic system with state-dependent multiplicative
noise and scalar randomly delayed measurements coming from two sensors:

xk = (0.95 + 0.2εk−1)xk−1 + wk−1, k ≥ 1,

z
(i)
k = C(i)xk + v

(i)
k , k ≥ 1, i = 1, 2,

y
(i)
k = (1− γ(i)

k )z
(i)
k + γ

(i)
k z

(i)
k−1, k ≥ 2; y

(i)
1 = z

(i)
1 , i = 1, 2

(17)

where {εk; k ≥ 0} is a zero-mean Gaussian white process with unit variance. Let
us assume that C(1) = 0.7 and C(2) = 0.6. The additive noises are defined as wk =

0.6(ηk + ηk+1) and v
(i)
k = c(i)ηk, i = 1, 2, where c(1) = 1, c(2) = 0.5 and {ηk; k ≥ 0} is

a zero-mean Gaussian white process with variance 0.5.

For i = 1, 2, the random variables γ
(i)
k , which model the random delays, are defined

by two independent sequences of independent Bernoulli random variables, {α(i)
k ; k ≥

11



1}, i = 1, 2, with probabilities P [α
(i)
k = 1] = α(i); specifically, for i = 1, 2, γ

(i)
k =

α
(i)
k+1(1 − α

(i)
k ). Due to this definition, if γ

(i)
k = 1, then γ

(i)
k+1 = 0. Therefore, two

consecutive delays cannot happen in the transmission of the data.

Taking into account the previous definition, at each sensor the variables γ
(i)
k and γ

(i)
s

are independent for |k − s| 6= 0, 1 but correlated at consecutive sampling times. The
mean of these variables is γ(i) = α(i)(1−α(i)), i = 1, 2, and the correlation function is

given by E[γ
(i)
k γ

(i)
s ] =

{
γ(i), |k − s| = 0
0, |k − s| = 1

.

In order to apply the theoretical results established in Section 3, system (17) can
be equivalently rewritten as the following one, with random parameter matrices:

Xk+1 = FkXk +Wk, k ≥ 0,

y
(i)
k = H

(i)
k Xk +B

(i)
k V

(i)
k , k ≥ 1, i = 1, 2,

(18)

where

Xk =

(
xk
xk−1

)
, k ≥ 1; X0 =

(
x0

0

)
.

Fk =

(
0.95 + 0.2εk 0

1 0

)
, Wk =

(
wk
0

)
, k ≥ 0.

H
(i)
k =

{ (
C(i), 0

)
, k = 1,(

(1− γ(i)
k )C(i), γ

(i)
k C(i)

)
, k ≥ 2,

B
(i)
k =


(

1, 0
)
, k = 1,(

1− γ(i)
k , γ

(i)
k

)
, k ≥ 2.

V
(i)
k =


(
v

(i)
1 , 0

)T
, k = 1,(

v
(i)
k , v

(i)
k−1

)T
, k ≥ 2.

The new noise processes and the random parameter matrices of system (18) satisfy
the assumptions 1-4 to apply the algorithm proposed in this paper. Specifically, we
have:

• {H(i)
k ; k ≥ 1} and {B(i)

k ; k ≥ 1} are correlated and cross-correlated at consecutive
sampling times.

12



• The additive noises {Wk; k ≥ 0} and {V (i)
k ; k ≥ 1} are correlated, with

◦ Qk =

(
0.36 0

0 0

)
, k ≥ 0, Qk,k−1 =

(
0.18 0

0 0

)
, k ≥ 1.

◦ R(ij)
k =

(
0.5c(i)c(j) 0

0 0.5c(i)c(j)

)
, k ≥ 2; R

(ij)
1 =

(
0.5c(i)c(j) 0

0 0

)
,

R
(ij)
k,k−1 =

(
0 0

0.5c(i)c(j) 0

)
, k ≥ 2.

◦ S(i)
k =

(
0.3c(i) 0

0 0

)
, k ≥ 1,

S
(i)
k−1,k =

(
0.3c(i) 0.3c(i)

0 0

)
, k ≥ 2; S

(i)
0,1 = S

(i)
1 ,

S
(i)
k−2,k =

(
0 0.3c(i)

0 0

)
, k ≥ 2.

To illustrate the feasibility of the proposed estimators, the corresponding algorithms
were implemented in MATLAB, and one hundred iterations of the centralized linear
filtering algorithm [12] and the proposed distributed filtering algorithm were run. The
error variances of both distributed and centralized fusion filters were calculated for
several values of α(i) which provide different values of the delay probabilities γ(i), i =
1, 2. Only the cases α(i) ≤ 0.5 are displayed due to the symmetry of γ(i) = α(i)(1−α(i)).

Figure 1 shows local, centralized, and distributed filtering error variances considering
α(1) = 0.5 and α(2) = 0.1. This figure confirms that the distributed fusion filter
outperforms each local filter and that the centralized method is more accurate than
the distributed one.

Next, we will show the dependence of the estimation error variances upon the values
α(1) and α(2). Since in all the cases examined, the error variances present insignificant
variation from a certain iteration onwards, Figure 2 displays the filtering error vari-
ances, at a fixed iteration (namely, k = 100), when both α(1) and α(2) are varied
from 0.1 to 0.5, which provide different values of the delay probabilities γ(1) and γ(2)

(γ(i) = 0.09, 0.16, 0.21, 0.24, 0.25). In both graphs we can see that worse estimations
are obtained as the delay probabilities increase. Also, this figure confirms the similar
accuracy of both methods, centralized and distributed.

4.2. Multi-sensor system with missing measurements

Let {xk; k ≥ 0} be the state process generated by the same model as that in Section
4.1 and let us consider missing measurements coming from two sensors given by

y
(i)
k = θ

(i)
k C(i)xk + v

(i)
k , k ≥ 1, i = 1, 2. (19)
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Figure 2. Centralized and distributed filtering error variances at k = 100 versus α(2) with α(1) varying from
0.1 to 0.5.

The additive noises are defined by v
(i)
k = c(i)(ηk−1 + ηk), i = 1, 2, where c(1) = 0.75

and c(2) = 0.5. It is assumed that C(1), C(2) and the process {ηk; k ≥ 1} are defined
in Section 4.1.

The random variables {θ(1)
k ; k ≥ 1} used to model the missing phenomenon in

the first sensor are defined by a sequence of independent Bernoulli random variables,
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{βk; k ≥ 0}, with probabilities P [βk = 1] = β; specifically, θ
(1)
k = 1 − βk−1(1 − βk).

Taking into account this relation, the variables θ
(1)
k and θ

(1)
s are independent for |k −

s| ≥ 2. Also, it is easy to check that if θ
(1)
k = 0, then θ

(1)
k+1 = 1, hence, in this sensor the

state cannot be missing in two successive observations. The mean of these variables is
given by θ = 1− β(1− β) and the correlation function is

E[θ
(1)
k θ(1)

s ] =

{
θ, |k − s| = 0,

2θ − 1, |k − s| = 1.

In the second sensor, the missing phenomenon is modelled by a sequence of indepen-

dent random variables {θ(2)
k ; k ≥ 1} with probability distribution P [θ

(2)
k = 0] = 0.1,

P [θ
(2)
k = 0.5] = 0.5 and P [θ

(2)
k = 1] = 0.4.

Under these assumptions, it can be easily seen that the measurement equations (19)

are a particular case of those in (1) with H
(i)
k = θ

(i)
k C(i) and B

(i)
k = 1, for k ≥ 1.

The additive noises {v(i)
k ; k ≥ 1} are one-step autocorrelated between the different

sensors and two-step cross-correlated with {wk; k ≥ 0} and

R
(ij)
k = c(i)c(j), k ≥ 1; R

(ij)
k,k−1 = 0.5c(i)c(j), k ≥ 2.

S
(i)
k = 0.3c(i), S

(i)
k−1,k = 0.6c(i), k ≥ 1; S

(i)
k−2.k = 0.3c(i), k ≥ 2.

The accuracy of the proposed local and distributed estimators in comparison with
the centralized ones in [12] is studied. Figure 3 displays the error variances of the
local, centralized and distributed fusion filters at a specific iteration (k = 100), for
different values of β which provide different values of θ. Since the value of θ does not
vary if the value 1 − β is considered instead of β, it is enough to consider β ≤ 0.5.
This figure corroborates that the distributed filter performs quite better than the local
filters, but lightly worse than the centralized filter; however, the performance of both
filters is similar and provide good estimations. Let us observe that, as the probability β
increases (which means that the probability 1−θ of only-noise measurements increases
in the first sensor), the filtering error variances become greater and, consequently, worse
estimations are obtained. Note that the local filtering error variances at the second
sensor are constant, because its behaviour is not influenced by β.

5. Conclusion

The distributed fusion filtering problem has been addressed for multi-sensor stochas-
tic systems with correlated random parameter matrices and additive noises. Firstly,
recursive algorithms for the local LS linear filters of the system state based on the
measurements coming from each sensor have been obtained. Next, a distributed fu-
sion filter has been designed as a matrix-weighted linear combination of such local
estimators by minimizing the mean squared estimation error. The applicability of
the proposed estimators has been illustrated by two numerical simulation examples,
where an error variance comparison has been carried out to show the performance of
the centralized and distributed fusion estimators.
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for systems with correlation in the measurement matrices and noises: recursive algorithm
and applications, Int. J. Syst. Sci. 45 (2014), pp. 1548–1562.

[13] Y. Luo, Y. Zhu, D. Luo, J. Zhou, E. Song and D. Wang, Globally optimal multisensor
distributed random parameter matrices Kalman filtering fusion with applications, Sensors
8 (2008), pp. 8086-8103.

[14] J. Ma and S. Sun, Information fusion estimators for systems with multiple sensors of
different packet dropout rates, Inf. Fusion 12 (2011), pp. 213–222.

[15] J. Ma and S. Sun, Distributed fusion filter for networked stochastic uncertain systems with
transmission delays and packet dropouts, Signal Process. 130 (2017), pp. 268–278.

[16] F. Peng and S. Sun, Distributed fusion estimation for multisensor multirate systems with
stochastic observation multiplicative noises, Math. Probl. Eng. 2014 (2014) Article ID
373270, 8 pages.

[17] S. Sun, H. Lin, J. Ma and X. Li, Multi-sensor distributed fusion estimation with applica-
tions in networked systems: A review paper, Inf. Fusion 38 (2017), pp. 122–134.

[18] S. Sun, T. Tian and L. Honglei, State estimators for systems with random parameter
matrices, stochastic nonlinearities, fading measurements and correlated noises, Inf. Sci.
397-398 (2017), pp. 118-136.

[19] T. Tian, S. Sun and N. Li, Multi-sensor information fusion estimators for stochastic
uncertain systems with correlated noises, Inf. Fusion 27 (2016), pp. 126–137.

[20] S. Wang, H. Fang and X. Liu, Distributed state estimation for stochastic non-linear sys-
tems with random delays and packet dropouts, IET Control Theory Appl. 9 (2015), pp.
2657–2665.

[21] S. Wang, H. Fang and X. Tian, Recursive estimation for nonlinear stochastic systems
with multi-step transmission delays, multiple packet dropouts and correlated noises, Signal
Process. 115 (2015), pp. 164–175.

17


	Introduction
	System model
	Distributed fusion filtering estimators
	Local LS linear filters
	Distributed fusion filter weighted by matrices

	Numerical simulation examples
	Multi-sensor system with randomly delayed measurements
	Multi-sensor system with missing measurements

	Conclusion

