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Abstract

Option pricing models generally require the assumption that stock prices are de-

scribed by continuous-time stochastic processes. Although the time-continuous trad-

ing is easy to conceive theoretically, it is practically impossible to execute in real

markets. One reason is because real markets are not perfectly liquid and purchase

or sell any amount of an asset would change the asset price drastically. A real-

istic hedging strategy needs to consider trading that happens at discrete instants

of time. This paper focuses on the impact and effect due to temporal discretisa-

tion on the pricing partial differential equation (PDE) for European options. Two

different aspects of temporal discretisation are considered and used to derive the

modification or correction source terms to the continuous pricing PDE. First the

finite difference discretisation of the standard Black-Scholes PDE and its modifica-

tion due to discrete trading. Second the discrete trading leads to a discrete time

re-balancing strategy that only cancels risks on average by using a discrete analogy

of the stochastic process of the underlying asset. In both cases high order terms in

the Taylor series expansion are used and the respective correction source terms are

derived.

1 Introduction

An option pricing model requires the assumption that the underlying asset prices

are described by continuous-time stochastic processes. The dynamics governing
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an underlying asset may be described by a stochastic differential equation (SDE)

involving a volatility parameter, a drift coefficient and a stochastic process dB. This

is the randomness involved in the SDE and is known as a Weiner process. In trading

options or bonds, the main aim to ask for is how to achieve a fair price and how

to protect financial risks when one wishes to buy or sell. Answer to this has been

presented in [2] which essentially says that this risks from an option can be offset by a

portfolio of assets that needs to continuously rebalanced. If no arbitrage is possible,

the value of the option is the cost of this replication strategy. Theoretically the time-

continuous trading is easy to achieve. However it is difficult to execute it in real

markets which are usually not perfectly liquid. Therefore the Black-Scholes PDE

produces option pricing results using continuous time are inevitably to be different

from a discretised Black-Scholes pricing results. The objective of this paper is to

address this discrepency through the use of Taylor expansion leading to the concept

of a correction source term in the Black-Scholes PDE for option pricing. The concept

of consistency employed in finite difference methods in the analysis of discretised

PDEs is employed in the first instance to demonstrate the effect of discrete trading

due to temporal and spatial discretisation of the Black-Scholes PDE. A discrete

application of the stochastic process govering the underlying asset is used in the

second instance to analysis a discrete trading strategy through the use of average

values.

The paper is organised as follow. Section 2 provides a brief overview of the con-

tinuous hedging and the development in various discrete hedging strategy. Section

3 discusses the modification to the Black-Scholes equation when a finite difference

discretisation is used. Section 4 examines the Taylor expansion to include higher

order expansion when the trading is not continuous. In both cases the correction

source terms are derived leading to the modified pricing equation as described by

the modified Black-Scholes PDE. Finally conclusions are drawn.

2 Continuous Hedging

The stochastic differential equation (SDE)

dS = µSdt+ σSdB (1)

is the mathematical representation of a fundamental recipe for generating asset

prices. Here S denote the asset price, µ is the growth rate of the asset, σ is the
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volatility, and dB is a Weiner process. It should be noted that the above equation

does not provide a deterministic path of the asset price S, but only its value in a

probabilistic sense. Although real life asset prices are always recorded at discrete

intervals of time, mathematical models for the valuation of option prices would

become simpler and conceivable theoretically in continuous time limit dt→ 0 using

Itô’s lemma. The technicalities leading to Itô’s lemma [9] involving the random term

dB rely on the limits, dB2 → dt, dBdt→ 0 and dt2 → 0, as dt→ 0, where the right

arrows denote tends to. Using eqn (1) one can obtain dS2 → σ2S2dt as dt→ 0, and

thus dSk → 0, for k > 2.

Let V (S, t) be a function of the asset price which is often known as the value of

an option. Taylor expansion of V (S + dS, t+ dt) may be written as

V (S + dS, t+ dt) = V (S, t) +

(
∂V

∂S
dS +

∂V

∂t
dt

)
(2)

+
1

2

(
∂2V

∂S2
dS2 +

∂2V

∂t2
dt2 + 2

∂2V

∂S∂t
dSdt

)
.

Thus the incremental change of the option value as dt→ 0 is given by

dV =

(
∂V

∂S
dS +

∂V

∂t
dt

)
+

1

2

(
∂2V

∂S2
dS2 +

∂2V

∂t2
dt2 + 2

∂2V

∂S∂t
dSdt

)
,

which is rearranged in the form of Itô’s lemma as

dV = σS
∂V

∂S
dB +

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ µS

∂V

∂S

)
dt. (3)

In order to obtain the price of an option or other financial derivatives following

the above SDE, standard assumptions [15] of a perfect market has to be used. These

include no transaction costs, no dividends, no arbitrage, risk-free interest rate and

known asset volatility. The risk-free interest rate is usually denoted as r and it

simply means that the return in a time dt of a portfolio Π is rΠdt. The porfolio

constructed in the Black-Scholes analysis relies on one option with a number ∆ of

the underlying asset S.

Π = V −∆S (4)

Since

dΠ ≡ rΠdt = dV −∆S,

it is possible to offset the risk and eliminate the uncertainty in the option prices by

setting

∆ =
∂V

∂S
. (5)
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This leads to the Black-Scholes partial differential equation (PDE)

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (6)

subject to suitable terminal and boundary conditions provides deterministic price

of many options and derivatives.

Finite difference method is usually used in obtaining numerical solutions of (6)

typically when the volatility is not a constant when closed form solutions do not ex-

ist [15][11][12]. Non-constant volatility is often discussed in the literature, including

implied volatility [8] and volatility smile [5], just to name a couple of these. Com-

putational efficiency based on parallel temporal domain methods [3][6][7] were also

examined in the literature in order to provide faster solution processes to facilitate

trading.

Although the pricing of options based on eqn (6) is simpler and conceivable the-

oretically, it certainly has two weaknesses. First the option value V (S, t) derived

from the equation depends on continuous trading which is effectively impossible.

A modification to the Black-Scholes PDE would be able to take care of this weak-

ness. Second discretisation schemes applied to eqn (6) would introduce discretisation

errors into the numerical solution of the option pricing. Therefore suitable modifi-

cation would be able to mitigate this weakness.

3 Discrete Hedging

It should be noted that real life asset prices are always recorded at discrete intervals

of time. In the continuous hedging case the Black Scholes model in eqn (6) actually

replicates the option payoff exactly by continuously rebalancing in time a portfo-

lio consisting of the underlying asset and a risk-free option. A linear relationship

between asset returns and the risks exists. However continuous trading becomes

impossible when such relationship is nonlinear.

Early investigation into the effect of discrete hedging on option pricing using

Black-Scholes model was considered by Derman ([4]). The study compared the

replication of a single option using the Black-Scholes model for the lifetime of the

option with the case that only a discrete number of rebalancing trades at regular

intervals were permitted. On the other hand a discrete-time model was derived

leading to a partial differential equation with similar structure as the Black-Scholes

model and was used to partially hedge a single option. Wilmott also examined a
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minimum variance approach in order to partially hedge a single option with discrete-

time model. This resulted to a partial differential equation of the same structure

[14] as the Black-Scholes equation.

This paper examines two discrete aspects of the Black-Scholes equation as given

in eqn (6). Section 4 examines the effect of finite difference discretisation of eqn

(6) and the modification requires to mitigate the pricing problem due to discrete

trading imposed as a result of the discretisation. The concept of consistency for

the finite difference schemes is used to derive the modification. Section 5 examines

the effect of trading due to discrete temporal steps involved in a discrete dynamics

resembling the stochastic process as descibed by the SDE in eqn (1). In other words

the modification to eqn (6) is built when trading cannot be done continuously. To

simplify the analysis σ and µ in eqn (1) is taken as constants in the sequel.

4 Finite Difference Discretisation and its Effect

Rewrite eqn (6) as

∂V

∂t
= −

(
1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

)
≡ LBSV, (7)

defined in the domain Ω = [0, Smax] × [0, T ] subject to suitable boundary and ter-

minal conditions, where Smax is usually chosen as an integral multiple of the strike

price. Finite difference methods are usually applied to eqn (7) in order to ob-

tain a numerical solution. For the ease of exposition of the finite difference meth-

fod, the domain has a uniformly distributed rectangular mesh with mesh point

(Si, tn), where Si = iδS, i = 0, 1, 2, . . . ,M , such that δS = Smax/M , and tn = nδt,

n = 0, 1, 2, . . . , N , such that δt = T/N . In the current case the numerical scheme

with a backward difference along the temporal axis and a central difference schme

along the spatial axis is used. This results to the finite difference approximation to

eqn (7) at a typical nodal point (Si, tn) as below.

V n+1
i − V n

i

δt
= −{1

2
σ2S2

i

V n
i−1 − 2V n

i + V n
i+1

δS2
+ rSi

V n
i+1 − V n

i−1

2δS
− rV n

i }, (8)

where δt is the temporal discretisation step in the backward temporal finite difference

scheme and δS is the spatial discretisation step in the central finite difference scheme.

The temporal discretisation step is in essence equivalent to the discrete trading time

step as imposed by the above finite difference scheme.
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Taylor series expansion of V n+1
i leads to the series below with high order terms.

V n+1
i − V n

i

δt
=
∂V (Si, tn)

∂t
+

δt

2

∂2V (Si, tn)

∂t2
+
δt2

6

∂3V (Si, tn)

∂t3
+
δt3

24

∂4V (Si, tn)

∂t4
+ . . . , (9)

Differentiating eqn (7) with respect to t leads to

∂2V (S, t)

∂t2
= LBS (LBSV ) ,

and again leads to
∂3V (S, t)

∂t3
= LBS (LBS (LBSV )) .

Taylor series expansion of V n
i+1 and V n

i−1 lead to the series below including some high

order terms.
V n
i+1 − V n

i−1

2δS
=
∂V (Si, tn)

∂S
+

δS2

3!

∂3V (Si, tn)

∂S3
+
δS3

4!

∂4V (Si, tn)

∂S4
+ . . . , (10)

and
V n
i−1 − 2V n

i + V n
i+1

δS2
=
∂2V (Si, t

n)

∂S2
+

2δS2

4!

∂4V (Si, t
n)

∂S4
+

2δS4

6!

∂6V (Si, t
n)

∂S6
+ . . . . (11)

Substituting the above Taylor series expansions to the finite difference approxima-

tion in eqn (8) at a particular grid point (Si, t
n) shows that it is consistent to the

original PDE [10][1] in eqn (7) through the consistency relation up to the terms δt2

and δS2

∂Ṽ (S, t)

∂t
− LBSṼ = St, (12)

where

St = −δt
2
LBS

(
LBSṼ

)
− δt2

6
LBS

(
LBS

(
LBSṼ

))
− δS2

(
1

3!
rS
∂3Ṽ

∂S3
+

1

4!
σ2S2∂

4Ṽ

∂S4

)
.

The solution Ṽ of eqn (12) is in essence the exact solution of the finite difference

approximation in eqn (8). As δt → 0 and δS → 0 eqn (12) reduces to the original

BS PDE in eqn (7), and in this situation Ṽ → V . As δt exhibits a finite size which

resembles a discrete trading time step, St consists of correction terms of δt and δt2

of a recursive BS operator LBS acting on Ṽ and higher order spatial derivatives of

Ṽ to correct the pricing function obtained by means of the BS PDE in eqn (7).
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Define L = σ2S2 ∂
∂S

+ r. Using the original BS PDE it is possible to derive the

following four relations.

∂

∂t

(
∂V

∂S

)
− LBS

(
∂V

∂S

)
− L

(
∂V

∂S

)
= 0 (13)

∂

∂t

(
∂2V

∂S2

)
− LBS

(
∂2V

∂S2

)
− L

(
∂2V

∂S2

)
− L

(
∂V

∂S

)
= 0 (14)

∂

∂t

(
∂3V

∂S3

)
− LBS

(
∂3V

∂S3

)
−

L

(
∂3V

∂S3

)
− L

(
∂2V

∂S2

)
− L

(
∂V

∂S

)
= 0 (15)

∂

∂t

(
∂4V

∂S4

)
− LBS

(
∂4V

∂S4

)
−

L

(
∂4V

∂S4

)
− L

(
∂3V

∂S3

)
− L

(
∂2V

∂S2

)
− L

(
∂V

∂S

)
= 0 (16)

Note that solving eqns (15) and (16) provides knowledge of higher derivatives of Ṽ

which may be used in eqn (12).

5 Discrete Trading and its Effect

Let δt be the discrete time step between two successive trading times. It is assumed

that the discrete assest price changes according to the discrete backward difference

equation

δS = Si+1 − Si = aδt+ bδt1/2εi+1, i = 0, 1, . . . (17)

where εi represents an independent Gaussian distributed variable. Here a = µS and

b = σS. This equation is in essence the Euler discretisation of the continuous SDE

defined in eqn (1). The incremental change of the option value when δt is a finite

value can be exspanded using Taylor series expansion as

δV =
∂V

∂t
δt+

∂V

∂S
δS+

1

2

∂2V

∂S2
δS2 +

1

2

(
∂2V

∂t2
δt2 + 2

∂2V

∂S∂t
δSδt

)
+

1

3!

∂3V

∂S3
δS3 +

1

3!

(
∂3V

∂t3
δt3 + 3

∂3V

∂S3∂t
δS2δt+ 3

∂3V

∂S∂t2
δSδt2

)
+
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1

4!

∂4V

∂S4
δS4 +

1

4!

(
∂4V

∂t4
δt4
)
. (18)

Using eqn (17) to calculate δS2, δS3 and δS4, substituting the results into eqn (18)

and keeping terms upto δt2 leads to

δV = Aδt1/2 +Bδt+ Cδt3/2 +Dδt2, (19)

where A = bε∂V
∂S

, B = ∂V
∂t

+ 1
2
b2ε2 ∂

2V
∂S2 + a∂V

∂S
, C = abε∂

2V
∂S2 + 1

6
b3ε3 ∂

3V
∂S3 + bε ∂

2V
∂S∂t

. and

D = 1
2
∂2V
∂t2

+ 1
24
b4ε4 ∂

4V
∂S4 + 1

2
ab2ε2 ∂

3V
∂S3 + 1

2
a2 ∂

2V
∂S2 + a ∂

2V
∂S∂t

+ 1
2
b2ε2 ∂3V

∂S2∂t
.

Use the same portfolio as defined in eqn (4), the incremental change of the

portfolio can be written as

δΠ = δV −∆δS,

and to offset the risk and eliminate the uncertainty in the option prices, one needs

to compute the expected value of δΠ instead of using eqn(5). Hence one needs to

use

E[δΠ] ≡ E[δV ]−∆E[δS] = r(V −∆S)δt. (20)

A suitable choice ol ∆ in this case is needed. This could be achieved by minimising

the variance of the portfolio. From eqn (20) one can obtain the variance of δΠ as

var[δΠ] = var[δV ] + ∆2var[δS]− 2∆cov[δV, δS]. (21)

It can be easily shown that the minimum variance of the portfolio occurs when

∆opt = cov[δV,δS]
var[δS]

. Let ρ be the correlation coefficient between δV and δS. Therefore

∆opt can be written as

∆opt =
ρ
√
var[δV ]var[δS]

var[δS]
.

Substituting the above optimal value to eqn (21) leads to

var[δΠ] = var[δV ](1− ρ2). (22)

Substituting the above optimal value to eqn (20) leads to

E[δV ]− ρ

√√√√var[δV ]

var[δS]
E[δS] = r

V − ρ
√√√√var[δV ]

var[δS]
S

 δt, (23)

which can be re-arranged to give the relation

E[δV ]− rV δt√
var[δV ]

= ρ
E[δS]− rSδt√

var[δS]
.
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In the case of discrete trading which means ρ 6= 1, the relation E[δV ] = rV δt must

hold. This is used in the following analysis.

Note that in the present study E[ε] = 0, E[ε2] = 1, E[ε4] = 3!! = 3 and the

variance of the discrete random numbers is 1. Using these results one obtains E[A] =

0, E[C] = 0, and

E[B] =
∂V

∂t
+

1

2
b2
∂2V

∂S2
+ a

∂V

∂S
,

E[D] =
1

2

∂2V

∂t2
+

3

24
b4
∂4V

∂S4
+

1

2
ab2

∂3V

∂S3
+

1

2
a2
∂2V

∂S2
+ a

∂2V

∂S∂t
.

Combining the results of the expected values and the relation E[δV ] = rV δt and

keeping terms upto δt2 leads to

∂V

∂t
+

1

2
b2
∂2V

∂S2
+ a

∂V

∂S
− rV

+δt

(
1

2

∂2V

∂t2
+

3

24

∂4V

∂S4
+

1

2
ab2

∂3V

∂S3
+

1

2
a2
∂2V

∂S2
+ a

∂2V

∂S∂t
+

1

2
b2

∂3V

∂S2∂t

)
= 0.

Differentiating the above PDE one can obtain ∂2V
∂t2

, ∂2V
∂S∂t

, and ∂3V
∂S2∂t

which are then

substituted back to the PDE to give

∂V

∂t
− LBSV = ΓD, (24)

where

ΓD = δt{1

2
σ4S3∂

3V

∂S3
+
(

1

2
σ2S2µ− 1

2
σµS +

1

4
σ2S2r

)
∂2V

∂S2

+
(

1

2
µ2S +

1

2
µSr

)
∂V

∂S
+

1

2
rLBSV } = 0.

This is the source term introduced to the pricing PDE when discrete trading takes

place. Note that ΓD becomes larger as δt increases.

6 Conclusion

The importance of discrete trading strategy is discussed. Two aspects of discrete

trading are discussed, one due to the finite difference discretisation of the Black-

Scholes PDE and the other due to the discrete analog of the SDE governing the

dynamics of the asset. In both cases modified source terms are derived leading to

modified Black-Scholes models. As δt becomes larger the modified source terms be-

come significant. The modified source terms tend to zero as δt tends to zero which
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reduces to the pricing obtained by continuous trading.
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