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Simultaneous Estimation of Tracer Kinetic Model Parameters Using 
Analytical and Inverse Approaches with a Hybrid Method

Abstract

The inverse problem approach to Tracer Kinetic Modelling (TKM) using dynamic positron-emission 
tomography (PET) images is important in identifying the kinetic parameters and then quantifying the 
tracer concentrations in the region of interest. In parameter estimation, knowledge of good initial 
approximations to the parameters is essential. The aim of this paper is to extend existing work on an 
inverse method for tracer kinetics by proposing an improved hybrid method integrated with an analytic 
solution in a multi-objective formulation of the inverse method. The analytical solution is derived through 
the use of the Laplace transformation technique. This integrated approach will be compared against other 
parameter estimation techniques in terms of computational efficiency and accuracy. 

Keywords: Tracer kinetic modelling; Inverse problems; Laplace transform; Compartment model; 
Dynamic PET.
Subject classification code: 62P10, 92C45, 15A29, 80M50, 93C15. 

1. Introduction

Positron-Emission Tomography (PET) is being used more frequently for treatment of medical 
conditions and the discovery of drugs [7, 20]. Information relating to radiotracer kinetics, in 
addition to its spatial distribution, has been discovered through dynamic PET imaging. This 
information is extremely encouraging for the quantitative interpretation of PET images both in 
diagnostic and therapeutic contexts. 

Tracer Kinetic Modelling (TKM) is the most common methodology for the quantitative 
interpretation of dynamic PET images. TKM quantifies tracer concentrations in various regions 
using a set of coupled differential equations (DEs) which describe the tracer behaviour. 

TKM requires measurement of both the Plasma Time-Activity Curve (PTAC) and the Tissue 
Time-Activity Curve (TTAC) to estimate physiological parameters. The PTAC often serves as 
the input function and the TTAC serves as the output function in TKM.

The DEs contain a set of either (1) kinetic micro parameters describing rate constants associated 
with inter-compartmental tracer exchange or (2) physiologically meaningful macro parameters 
that are functions of the underlying micro parameters [3]. The inverse problems approach 
involves the estimation of these unknown parameters by using experimental data and solutions 
from the system of DEs. Therefore in the solution process direct problems must be solved. 
Analytical or numerical methods may be used to solve the direct problems. 

The computation begins by assigning an initial guess for the unknown parameters then the direct 
problem is solved. This is done consecutively until the model solution approaches the 
experimental data as closely as possible. Knowledge of good initial approximations to the 
parameters is essential to the estimation of the tracer kinetic parameters. Lack of this information 
can make the estimation procedure very difficult if not impossible. On the other hand, case 
studies involving large datasets may be very time consuming.  Therefore efficient computation 
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of the inverse problems to determine the kinetic parameters will be able to assist clinicians in 
near real time response and judgement of the changes of the tumour. This has profound impact 
on effective and accurate treatment of the disease.

Specific optimisation methods were studied in an attempt to enhance the effectiveness and 
efficiency of parameter estimation of the TKM. Simulated annealing (SA) algorithms were 
proposed for the optimisation of the kinetic parameters [21]. These algorithms are based on the 
analogy between the state of each molecule and the state of each parameter that affects the energy 
function. The FDOPA kinetic model in Parkinson’s disease diagnosis was estimated through the particle 
swarm optimisation (PSO) method [8].  

An artificial immune optimisation method was proposed to improve the effectiveness of 
parameter estimation [12]. However, it costs much computational time to obtain the optimal 
parameters. In a previous related paper [10], we proposed an efficient hybrid parameter 
estimation algorithm to fit the compartmental model to the output measurements of 
concentration in the region of interest. This hybrid method combines the Quantum-Behaved 
Particle Swarm Optimisation (QPSO) and the Levenberg-Marquardt (LM) methods. The QPSO 
is a stochastic-based method that helps overcome the difficulty of locating a good initial guess 
whilst LM is a gradient-based method that enhances the computational efficiency by speeding up 
the process of optimisation. The results presented in that paper demonstrated a speed up in 
computational time using the hybrid method in comparison to using the QPSO and PSO 
separately, with the same accuracy with regard to experimental data. A similar hybrid approach 
was taken in another previous paper [1] which combines QPSO and Gauss-Newton (GN) and 
was shown to perform really well in the modelling of cardiac myocyte mechanosensation.

In this paper, the hybrid method proposed in [10] is further adapted. An analytic solution of the 
direct problem describing the total concentration of the tracer in the region of interest is derived 
by means of the Laplace transformation technique for a particular form of the input function 
used in this paper.  The computational efficiency of the hybrid optimisation method is examined.  
In addition, a multi-objective formulation of the inverse problem is used to study the optimal 
input and output functions simultaneously.  

The remaining sections are organised as follows. Section 2 describes the compartmental model 
using a system of DEs, the input functions for the tracer in plasma, and a derivation of the 
analytical output function. Section 3 focusses on the methodology underlying the inverse 
problem formulation including a pseudo code for the hybrid method. In section 4, results are 
presented which exhibit the computational accuracy and efficiency of using this hybrid method 
in comparison with the QPSO, Particle Swarm Optimisation (PSO) and Differential Evolution 
(DE) method [2].  This is then followed by discussions and conclusions. 
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2. Tracer kinetic models

Tracer kinetic models have been used to estimate the cerebral metabolic rate of glucose [14], 
blood flow, and neuro receptor ligand bindings. Typically, the physiological parameters in tracer 
kinetic modelling are estimated via PET, which needs the measurements of the tracer time-
activity curves in both plasma (PTAC) and tissue (TTAC) in one or more regions of interests 
(ROIs) of a dynamic image. The fluorodeoxyglucose (FDG) compartmental model is one of the 
most commonly used tracer kinetic models. Figure 1 shows a two tissue compartmental model 
for FDG.

[Figure 1 near here]

The tracer enters the plasma via an injection and reaches the tissues of interest. The states of the 
tracer are extracellular ( ) and metabolised ( ). The expressions  and  represent the 𝑒 𝑚 𝑐e 𝑐𝑚

concentration of the tracer in a “free" (unbound) or “bound" compartment, respectively. 

Mathematically, the tracer kinetic model can be expressed as the following system of two 
ordinary differential equations along with a simple algebraic equation giving the total tracer 
concentration:

𝑑𝑐𝑒(𝑡)
𝑑𝑡 = 𝑘1𝑐𝑝(𝑡) ― (𝑘2 + 𝑘3)𝑐𝑒(𝑡) + 𝑘4𝑐𝑚(𝑡) (1)

𝑑𝑐𝑚(𝑡)
𝑑𝑡 = 𝑘3𝑐𝑒(𝑡) ― 𝑘4𝑐𝑚(𝑡) (2)

 𝑐𝑡(𝑡) = 𝑐𝑚(𝑡) + 𝑐𝑒(𝑡)  (3)

Here,  and  are model output function parameters that describe the rates of change of 𝑘1, 𝑘2, 𝑘3 𝑘4
FDG between plasma, unbound and bound compartments;  and  represent the concentrations 𝑐𝑒 𝑐𝑚
of the tracer in the extracellular state and metabolised state, respectively;  is the output  𝑐𝑡
function equal to the sum of the concentrations,  and , in both compartments; and  is the 𝑐𝑒 𝑐𝑚 𝑐𝑝 
input function in the plasma.

2.1 Input function 

The tracer Plasma Time-Activity Curve (PTAC) often serves as the input function of the tracer 
kinetic models. Measurements of the tracer time-activity curves in both plasma (PTAC) and 
tissue (TTAC) are used to estimate the physiological parameters in tracer kinetic modelling with 
PET.  

A good estimate of the parameters largely depends on the accuracy of tracer time-activity curves 
in plasma. The input function is usually given as the sum of a series with exponential terms [6] 
such as
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,   𝑐𝑝 = ∑𝑛
𝑖 = 1𝑎𝑖𝑒 ―𝜆𝑖𝑡 𝑖 = 1,..𝑛 (4)

where  and  are the parameters of the input function that define the shape of the Plasma 𝑎𝑖 𝜆𝑖
Time-Activity Curve.

2.2 The analytical output function 

A closed form solution for the output function of equations (1)-(3) can be derived by using the 
Laplace transform and is given below.

Taking the Laplace transform of equations (1) and (2) removes the time dependency and 
transforms the functions  and  to   and . The resulting algebraic equations 𝑐𝑒(𝑡) 𝑐𝑚(𝑡) 𝑐𝑒(𝑠)  𝑐𝑚(𝑠)
in terms of the Laplace parameter  are 𝑠

𝑠𝑐𝑒(𝑠) ― 𝑐𝑒(𝑡0) = 𝑘1𝑐 𝑝(𝑠) ― (𝑘2 + 𝑘3)𝑐𝑒(𝑠) + 𝑘4𝑐𝑚(𝑠)

𝑠𝑐𝑚(𝑠) ― 𝑐𝑚(𝑡0) = 𝑘3𝑐𝑒(𝑠) ― 𝑘4𝑐𝑚(𝑠)

With initial conditions , the algebraic system becomes   𝑐𝑒(𝑡0) = 0 and 𝑐𝑚(𝑡0) = 0

𝑠𝑐𝑒(𝑠) = 𝑘1𝑐𝑝(𝑠) ― (𝑘2 + 𝑘3)𝑐𝑒(𝑠) + 𝑘4𝑐𝑚(𝑠)

.𝑠𝑐𝑚(𝑠) = 𝑘3𝑐𝑒(𝑠) ― 𝑘4𝑐𝑚(𝑠)

By solving the algebraic equations,  and  can be obtained. The inverse Laplace 𝑐𝑒(𝑠) 𝑐𝑚(𝑠)
transform is then applied to obtain  and .𝑐𝑒(𝑡) = 𝐿 ―1[𝑐𝑒(𝑠)] 𝑐𝑚(𝑡) = 𝐿 ―1[𝑐𝑚(𝑠)]

𝑐𝑒(𝑡) = 𝑘1 𝐿 ―1[ (𝑘4 + 𝑠 )

𝑠2 + (𝑘2 + 𝑘3 + 𝑘4)𝑠 + 𝑘2𝑘4
] ⊗ 𝑐𝑝(𝑡)

 𝑐𝑒(𝑡) = 𝑘1 𝐿 ―1[ 𝑘4 + 𝑠
(𝑠 + 𝛼)(𝑠 + 𝛽)] ⊗ 𝑐𝑝(𝑡)

where  and   .𝛼 + 𝛽 = 𝑘2 + 𝑘3 + 𝑘4 𝛼𝛽 = 𝑘2𝑘4

𝑐𝑒(𝑡) =
𝑘1 

𝛽 ― 𝛼
[(𝑘4 ― 𝛼)𝑒 ―𝛼𝑡 + ( ― 𝑘4 + 𝛽)𝑒 ―𝛽𝑡] ⊗ 𝑐𝑝(𝑡)

Similarly for   𝑐𝑚(𝑡)

𝑐𝑚(𝑡) =
𝑘1𝑘3

𝛽 ― 𝛼
[𝑒 ―𝛼𝑡 ― 𝑒 ―𝛽𝑡] ⊗ 𝑐𝑝(𝑡)

Given that  the following is obtained𝑐𝑚(𝑡) + 𝑐𝑒(𝑡) = 𝑐𝑡(𝑡)

𝑐𝑡(𝑡) =
𝑘1 

𝛽 ― 𝛼
[(𝑘4 + 𝑘3 ― 𝛼)𝑒 ―𝛼𝑡 + (𝛽 ― 𝑘4 ― 𝑘3)𝑒 ―𝛽𝑡] ⊗ 𝑐𝑝(𝑡)
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where 𝑐𝑝(𝑡) = ∑𝑛 = 4
𝑖 = 1 𝑎𝑖𝑒 ―𝜆𝑖𝑡

𝑐𝑡(𝑡) = ∫
𝑡

𝜏 = 0
[𝑐𝑝(𝜏)][ 𝑘1

𝛽 ― 𝛼
[(𝑘4 + 𝑘3 ― 𝛼)𝑒 ―𝛼(𝑡 ― 𝜏) + (𝛽 ― 𝑘4 ― 𝑘3)𝑒 ―𝛽(𝑡 ― 𝜏)]]𝑑𝜏

𝑐𝑡(𝑡)

= 𝑎1
𝑘1 (𝑘4 + 𝑘3 ― 𝛼)

𝛽 ― 𝛼 [𝑒 ― 𝜆1𝑡 ― 𝑒 ―𝛼𝑡

𝛼 ― 𝜆1 ] +  𝑎2
𝑘1 (𝑘4 + 𝑘3 ― 𝛼)

𝛽 ― 𝛼 [𝑒 ― 𝜆2𝑡 ― 𝑒 ―𝛼𝑡

𝛼 ― 𝜆2 ] + 𝑎3

𝑘1 (𝑘4 + 𝑘3 ― 𝛼)
𝛽 ― 𝛼 [𝑒 ― 𝜆3𝑡 ― 𝑒 ―𝛼𝑡

𝛼 ― 𝜆3 ] + 𝑎4
𝑘1 (𝑘4 + 𝑘3 ― 𝛼)

𝛽 ― 𝛼 [𝑒 ― 𝜆4𝑡 ― 𝑒 ―𝛼𝑡

𝛼 ― 𝜆4 ] + 𝑎1

𝑘1 (𝛽 ― 𝑘4 ― 𝑘3)
𝛽 ― 𝛼 [𝑒 ― 𝜆1𝑡 ― 𝑒 ―𝛽𝑡

𝛽 ― 𝜆1 ] + 𝑎2
𝑘1 (𝛽 ― 𝑘4 ― 𝑘3)

𝛽 ― 𝛼 [𝑒 ― 𝜆2𝑡 ― 𝑒 ―𝛽𝑡

𝛽 ― 𝜆2 ] + 𝑎3

𝑘1 (𝛽 ― 𝑘4 ― 𝑘3)
𝛽 ― 𝛼 [𝑒 ― 𝜆3𝑡 ― 𝑒 ―𝛽𝑡

𝛽 ― 𝜆3 ] + 𝑎4
𝑘1 (𝛽 ― 𝑘4 ― 𝑘3)

𝛽 ― 𝛼

(5
)

In the inverse problems approach, the derived analytical formula, equation (5), is used to obtain 
the optimised parameters in four case studies using two separate optimisation methods: (1) 
QPSO  (2) a hybrid method (a hybrid of QPSO and LM) (3) PSO and (4) DE.

3. Inverse problems
The inverse problems [4, 5] approach involves the estimation of unknown parameters that can be
determined by using experimental data and solutions from DEs. A commonly used technique in
an inverse problem is the Least Squares method in which the sums of the squares of the residuals
of the model solution estimates and the experimental data is minimised. This method requires
that the estimated solution matches the experimental data as closely as possible over a specified
time domain. A multi-objective least squares approach is used for the simultaneous estimation of
the tracer kinetic input and output functions.

3.1 The inverse problem formulation for compartment models using simultaneous estimation

In this section, the general formulation of the inverse problem for the tracer kinetic model is 
given in detail. In order to demonstrate the inverse approach for the tracer kinetic model, the 
direct problem is first given.

𝑪𝑡(𝑡) = (𝑐𝑡1(𝑡), 𝑐𝑡2(𝑡), ….,𝑐𝑡𝑛(𝑡))𝑇

𝐾 = ( 𝑘1,1
⋮
⋮

 … … 𝑘1,𝑛
⋮
⋮

𝑘𝑛,1     …     … 𝑘𝑛,𝑛
)

𝒇(𝑡) = (𝑓1(𝑡), 𝑓2(𝑡), ….,𝑓𝑛(𝑡))𝑇

where  represents the concentration of the tracer in  different compartments,  is a matrix 𝑪𝑡(𝑡) 𝑛 𝐾
of kinetic parameters and  is a non-homogenous term in the ordinary differential equations 𝒇(𝑡)
(ODEs). The compartment model is a system of ODEs involving , with initial condition ,  𝑐𝑡  𝑐𝑡(𝑡0)
and the input function, , with initial condition , and it is given as 𝑐𝑝 𝑐𝑝(𝑡0)
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𝑪′𝑡 = 𝐾𝑪𝑡 + 𝒇(𝑡),    𝑪𝑡(𝑡0) = 𝐶0  

𝑐𝑝 =
𝑛

∑
𝑖 = 1

𝑎𝑖𝑒 ―𝜆𝑖𝑡,       𝑐𝑝(𝑡0) = 𝑐𝑝0.

The observation (experimental data) for the output and input functions are distinguished by overbars: 

𝑪𝑡(𝑡) = (𝑐𝑡1(𝑡), 𝑐𝑡2(𝑡), …,𝑐𝑡𝑛(𝑡))
𝑐𝑝(𝑡) = (𝑐𝑝1(𝑡), 𝑐𝑝2(𝑡), …,𝑐𝑝𝑛(𝑡))

The inverse problem formulation involves the objective functions  and . 𝐽1(𝑘,𝑎,𝜆)  𝐽2(𝑎,𝜆)

𝐽1(𝑘,𝑎,𝜆) =
1
2

‖𝑐𝑡(𝑡;𝑘,𝑎,𝜆) ― 𝑐𝑡 (𝑡)‖2,  𝐽2(𝑎,𝜆) =
1
2

‖𝑐𝑝(𝑡;𝑎,𝜆) ― 𝑐𝑝(𝑡)‖
2

where ,𝑘 = [𝑘1,𝑘2,𝑘3 , 𝑘4],𝑎 = [ 𝑎1,𝑎2,𝑎3,𝑎4] , 𝜆 = [𝜆1,𝜆2,𝜆3,𝜆4]

which are combined into the single multi-objective function

w1‖𝑐𝑡(𝑡;𝑘,𝑎,𝜆) ― 𝑐𝑡(𝑡)‖2 + 𝑤2‖𝑐𝑝(𝑡;𝑎,𝜆) ― 𝑐𝑝(𝑡)‖2

where and   are weights.𝑤1   𝑤2

The aim is to minimise the multi-objective function. Here,  can be computed by solving 𝑐𝑡(𝑡;𝑘) 
the direct problem as described in Equations (1), (2) and (3) with given values of . 𝑘, 𝑎, 𝜆
Meanwhile  can be computed using Equation (4) with the given values of  and . 𝑐𝑝(𝑡;𝑝)   𝑎  𝜆

This inverse problem is ill-posed and has to be regularised in order to stabilise the solution. This 
optimisation problem can be solved using stochastic algorithms (e.g. PSO, QPSO and genetic 
algorithms (GAs)) or deterministic algorithms (e.g. gradient descent, Gauss-Newton, Levenberg-
Marquardt and the conjugate gradient method).

3.2 A Hybrid method for tracer kinetic modelling 

The random search associated with stochastic optimisation algorithms leads typically to a slow 
convergence rate. However, such algorithms have proven reliable in obtaining the global 
optimum. For relatively fast convergence, deterministic algorithms such as the gradient descent, 
Gauss Newton, Levenberg-Marquardt and conjugate gradient methods, have demonstrated speed 
where good model parameter initialisations are given. However, prior information is almost 
certainly required to obtain good initial parameter values. Through the combination of these two 
approaches, we have obtained a robust and computationally efficient optimisation method. The 
proposed new hybrid algorithm is divided into two phases. Firstly, the QPSO investigates the 
design space thoroughly and identifies the neighbourhood of the global optimum. Once the 
QPSO process terminates, using a termination condition, the second phase starts by applying the 
gradient method. This begins with the good estimate from the QPSO and uses the gradient 
information to accelerate convergence to the global optimum. We shall now outline the QPSO 
and Levenberg-Marquardt Methods. 
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3.2.1 Quantum-Behaved Particle Swarm Optimisation (QPSO)

The PSO was first developed by Eberhart and Kennedy [9] in 1995. The algorithm uses the 
behaviour of animals for inspiration, the flocking of birds and the schooling of fish for example.

 Finding a solution to an optimisation problem is achieved using a population of particles. Each 
particle in this population represents a potential solution and an objective fitness function can be 
used to approximate their position. While the PSO optimisation algorithm shows probabilistic 
tendencies to global convergence [22], it does not guarantee global convergence in the same way 
as the QPSO [16,17,18]. Thus QPSO is a global convergence guaranteed [17, 18] search 
technique which enhances the global search ability of the PSO. We choose QPSO since this 
global convergence guarantee should lead more reliably to good starting values for the 
Levenberg-Marquart algorithm (which might converge very slowly without “good enough” 
starting values [13]). Unlike PSO, which uses position and velocity vectors, QPSO utilises a 
wave function to describe the state of each individual particle. The position of these particles and 
their local focus is updated using 

 (6)xn + 1
i,j = pn

i,j ± α|xn
i,j ― mbestn

j |ln ( 1
un + 1

i,j
)

 (7)pn
i,j = φn

i,j.pbestn
i,j + (1 ― φn

i,j)gbestn
j

where  is called the contraction-expansion (CE) coefficient, and  represent uniformly α φ u
distributed random numbers within [0,1] and  is the global best position. The mean best gbest
position  is defined as the mean value of all particles’ best positionsmbest

mbestn
j = ∑M

i = 1
pbestn

i 

M

3.2.2 Levenberg-Marquardt Methods (LM) 

A commonly utilised iterative method for nonlinear least-squares is the Levenberg-Marquardt [11] 
algorithm, also known as the damped least-squares method, due to its damping parameter . To estimate  𝜆
parameters in the compartmental model for tracer kinetic is a nonlinear least-squares problem so 
the Levenberg-Marquardt method may be used to fit to PET data. 

The Levenberg-Marquardt method is based on Gauss-Newton’s method which is given below. 

JTJδp = JTf(p)

where f(p) =
[𝑐𝑡1(𝑡) ― 𝑐𝑡1(𝑡), 𝑐𝑡2(𝑡) ― 𝑐𝑡2(𝑡)⋯,𝑐𝑡𝑚(𝑡) ― 𝑐𝑡𝑚(𝑡),  𝑐𝑝1(𝑡) ― 𝑐𝑝1(𝑡), 𝑐𝑝2(𝑡) ― 𝑐𝑝2(𝑡)⋯,𝑐𝑝𝑚(𝑡) ― 𝑐𝑝𝑚(𝑡) ]T

.

The Levenberg-Marquardt method includes an additional damping factor  given below.  λ

       (8) [ JTJ + λ]δp = JT f(p)
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The new set of parameters are updated by solving the above equation for . The damping factor  𝛿𝑝
is also adjusted for each iteration depending on the current and previous objective function 
values.

This hybrid algorithm is denoted as QPSO-LM. The proposed algorithm to determine kinetic 
parameters is displayed through the following pseudo-code: 

While  and (iter<=maxiter)𝑒 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
            Initialise the kinetic parameters    in random space for every 𝑘𝑛

𝑖 , 𝑎𝑛
𝑖  𝑎𝑛𝑑 𝜆𝑛

𝑖    for 𝑖 = 1,2,3,4
particle
            For each particle

Solve the ODE models in equation (1)-(4) using numerical or Analytical method
Calculate the fitness value 
If current fitness value < local fitness value then

local position = current position
local fitness = current fitness

If local fitness < global fitness value then
global position = local position
global fitness = local fitness

           End For
            For each particle

Compute the local focus (attractor)  and then positions  𝑝𝑛 𝑘𝑛 + 1
𝑖 , 𝑎𝑛 + 1

𝑖  𝑎𝑛𝑑 𝜆𝑛 + 1
𝑖    for

   using equations (7) and (6) respectively 𝑖 = 1,2,3,4
            End For
End While
While  and (iter<=maxiter)𝑒 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
           Use parameters obtained in QPSO algorithm as initial values, 𝑘𝑛 + 1

𝑖 , 𝑎𝑛 + 1
𝑖 , 𝑎𝑛𝑑 𝜆𝑛 + 1

𝑖    
  𝑓𝑜𝑟 𝑖 = 1,2,3,4

           Solve the ODE models in equation (1)-(4) using numerical or Analytical method
           Compute Jacobian matrix 
           Calculate the change in parameters using equation (8)
           Update the new parameters 
End While

4. Numerical experiments
In this section, the inverse problems for both the analytical and numerical case studies are
carried out using the experimental data for a single patient from the Nuclear Centre of the
Jiangnan University Affiliated Hospital to compare the speed and accuracy of compartmental
model fitting.

4.1 Experimental data from PET
Dynamic FDG PET studies were performed at the Nuclear Centre of the University Affiliated 
Hospital, in Wuxi, China.  During this particular set of experiments, five suspected lung cancer 
patients were enrolled in the study. They were fully informed of the purposes and process of the 
experiment. None of them was receiving chemotherapy, or other anti-tumour therapy, before 
scanning. They were also asked not to eat for 4-6 hours before the PET scans and to empty their 
bladders before the scanning process.  During the entire scanning process, they were asked to 
remain still and silent. The PET scans were obtained by using Siemens Biography True Point 64 
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PET/CT with 216 mm axial field-of-view (FOV) axial and lateral resolutions 4.2mm, axial 
resolutions 4.7 mm. dynamic scanning of beds ranged from the lower half of the chest to the 
upper half of the abdomen area including suspected tumour tissue. 

Images were acquired after intravenous injection of 370 MBq -555 FDG. The scanning protocol 
for the dynamic FDG PET studies during the first 30min was:   scans,  scans, 8 × 15𝑠 6 × 30𝑠 

 scans according to literature reports [19].  Images were reconstructed using an image 5 × 300𝑠 
iterative method. Image fusion was achieved in coronal, sagittal and transverse view. The ROIs 
were manually drawn over the PET images to obtain time-activity curves (TACs) on the normal 
lung tissue, suspected lung tumour tissue and the abdominal aorta region. The abdominal aorta 
TAC was used as the model input function value of FDG-PET dynamics modelling. 

4.2 Results and Discussion
A multi-objective inverse problem is formulated in order to optimise the parameters 
simultaneously. Computational results are presented for the estimation of output function 
parameters  and input function parameters  and  for . All computational 𝑘𝑖 𝑎𝑖 𝜆𝑖  𝑖 = 1,2,3,4
experiments were performed using an Intel core i5 2500, 3.30 GHz with 4GB RAM. Results are 
obtained and compared between the analytical and numerical methods (the 4th order Runge-
Kutta (RK4)). These results are given in Table 1.  

For the hybrid method (QPSO-LM), the QPSO algorithm is first run until the norm value for the 
objective function falls below certain levels which have been given in Table 3. This type of 
stopping condition is consistent with one of the two convergence criteria described in [15]. 
Parameters are then used to initialise the LM method so that it starts from the best estimate of the 
QPSO. 

In the hybrid-analytical and numerical method, to test the effect of different initial parameter 
estimates from the QPSO, we use three different values of the objective function norm as 
stopping criteria for the QPSO: 15.0, 10.0 and 5.0. The results are given in Table 3 which show 
that for each of these stopping criteria the parameters converge (with similar overall residual 
errors), but when 15.0 is used we get greater computational efficiency. When we used stopping 
criteria values greater than 15.0, the LM method converged more slowly due to starting 
parameter values which were far from the solutions. Therefore, for our experimental data a 
stopping condition of 15.0 for the QPSO part of the hybrid method was found to be a good 
balance between accuracy and efficiency since it meant that we used the expensive QPSO 
method as much as was needed to get adequate starting parameter estimates for the LM method 
to converge quickly. The corresponding parameters are given in results columns 1 and 4 of Table 
3. 

An L2-norm is given for the differences in the input and output functions against the 
experimental data. This is given as  for the input function and  for the(‖𝑟‖2)𝑖𝑛𝑝𝑢𝑡 (‖𝑟‖2)𝑜𝑢𝑡𝑝𝑢𝑡
output function in Table 1 where the residual . A weighted L2-norm  𝑟 = (𝑥𝑚𝑜𝑑𝑒𝑙 ― 𝑥𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)
is also given for the combined difference of the input and output functions from the experimental 
data. This is given as .   (‖𝑟‖2

2)𝑡𝑜𝑡𝑎𝑙
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For all cases, the algorithm is run until the norm value for the output function first falls below 
0.63. At this norm value, all of the methods showed good convergence to the data; in addition, it 
ensured fair comparisons of the computational times amongst different methods. Algorithms that 
achieve errors within this range appear to converge with output and input function results close 
to that of the experiments and to each other. Furthermore the final corresponding parameter 
values from all simulations are in close agreement. 

  [Figure 2 near here]

  [Figure 3 near here]

Figures 2 and 3 illustrate the accuracy of the model prediction for the output (Figure 2) and input 
(Figure 3) functions against the experimental data (red crosses) for the analytical method with 
QPSO compared to that of the numerical method with QPSO. The individual methods show 
good agreement with the experimental data. Both methods produce very similar results (Figures 
2 and 3, Table 1).

Similar study was undertaken for the hybrid method and these results can be seen in Figures 4 
and 5. Here we also see good agreement between the model output and experimental data for 
both the analytical and numerical methods. It also shows that the methods produce similar 
results to each other (Figures 4 and 5, Table 1).

  [Figure 4 near here]

  [Figure 5 near here]

To compare our method with standard evolutionary techniques, similar study was undertaken for 
the PSO and DE. 

 PSO results can be seen in Figures 6 and 7. Here we also see good agreement between the 
model output and experimental data for both the analytical and numerical methods. It also shows 
that the methods produce similar results to each other (Figures 6 and 7, Table 1).

  [Figure 6 near here]

  [Figure 7 near here]
The results of the DE method can be seen in Figures 8 and 9. Here we also see good agreement 
between the model output and experimental data for both the analytical and numerical methods. 
It also shows that the methods produce similar results to each other (Figures 8 and 9, Table 1).
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  [Figure 8 near here]

  [Figure 9 near here]

Table 1 shows the obtained values of the parameters and the corresponding -norm errors 𝐿2
obtained using each of the analytical or numerical method for QPSO, the hybrid method, PSO 
and DE. In all of these case studies, it can be seen that each input and output parameter for the 
methods are within a small range. Likewise the individual and total error norms are very similar 
across the four cases.  

[Table 1 near here]

[Table 2 near here]

[Table 3 near here]

Table 2 shows the mean computational time taken to run 8 different cases. As can be seen, even 
though both the analytical and numerical methods provide similar accuracy, the analytical 
method is much more computationally efficient in comparison with the others. The performance 
of the hybrid method using the analytical formula outperforms all others with only 
approximately 2 seconds of run time in comparison with the QPSO, PSO and DE for the 
analytical method which took about 50, 62 and 20 seconds respectively. Running the LM 
method with random starting values for the parameters sometimes resulted in relatively quick 
convergence and sometimes in very slow convergence, indicating a sensitivity to initial 
conditions. More generally, poor starting values for the LM method could lead to very slow 
convergence [13] therefore, performing the QPSO method prior to the LM overcomes this issue 
as well as helps boost the computational efficiency. From these results one can see that the 
hybrid method is noticeably more computationally efficient than the QPSO, PSO and DE alone. 
Additionally, we see a noticeable computational speed up when using the analytical method. 
Overall, the hybrid-analytical method outperforms the rest.

5. Conclusion and future work

In this paper, we investigated the fast and efficient improved simultaneous estimation of tracer 
kinetic models using an analytical formula for the direct problem and a hybrid method which 
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combines the stochastic optimisation method, QPSO, and the gradient based optimisation 
method, LM, for identifying parameters in tracer kinetic modelling. 

The model predicted results show good agreement with experimental data from the Nuclear 
Centre of the University Affiliated Hospital, in Wuxi, China. The performance of the hybrid 
method using the analytical solution for the total tracer concentration was tested and compared 
with QPSO, PSO and DE to show that the computational time for the hybrid method is much 
less expensive. This enables the method to be used for fitting any PET data accurately and 
robustly in fewer than 3 seconds. In addition, this method automatically finds an initial 
approximation that aids convergence of the scheme and which overcomes the difficulty of 
finding a suitable initial approximation for the tracer kinetic parameters. This hybrid approach 
demonstrated substantial reduction in computational times. One potential clinical impact of this 
research is that the result tool provides rapid confirmation in real time of any presence or 
changes of a tumor resulting to early treatment plan.

Future research includes implementing time domain parallel computing techniques to solve for 
the parameters in nonlinear compartment TKMs to further improve the computational speed up 
and the development of the computational tool into clinical applications as discussed above.
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Analytical Numerical
Parameters Hybrid 

Method QPSO PSO DE Hybrid QPSO PSO DE

K1 0.756 0.749 0.746 0.705 0.729 0.736 0.734 0.627

K2 5.501 5.675 5.668 5.626 5.811 5.748 5.738 5.398259

K3 0.830 0.862 0.853 0.955 0.971 0.963 0.949 0.970687O
ut

pu
t

K4 0.026 0.025 0.022 0.028 0.0206 0.0211 0.014 0.016346

𝑎1 -540.254 -539.508 -538.824 -538.711 -540.322 -539.466 -539.671 -540.905

𝑎2 480.005 479.259 479.092 474.786 479.939 480.118 479.523 473.1528

𝑎3 56.440 56.441 56.029 60.276 56.5016 55.540 56.304 63.68118

𝑎4 3.820 3.826 3.816 3.855 3.886 3.797 3.845 3.867833

𝜆1 11.088 11.069 11.024 10.541 11.442 11.834 11.794 11.16894

𝜆2 13.436 13.400 13.317 12.646 14.152 15.000 15.168 14.009

𝜆3 3.412 03.400 3.370 3.514 3.451 3.400 3.360 3.647512

In
pu

t

𝜆4 0.0336 0.034 0.035 0.0352 0.035 0.0351 0.039 0.035935

(‖𝑟‖2)𝑡𝑜𝑡𝑎𝑙 1.154 1.073 1.165 1.192 1.111 1.109 1.148 1.092

(‖𝑟‖2)𝑜𝑢𝑡𝑝𝑢𝑡 0.621 0.608 0.602 0.6150 0.584 0.604 0.5950 0.5981

L 2
-N

or
m

(‖𝑟‖2)𝑖𝑛𝑝𝑢𝑡 1.881 1.890 1.918 1.9638 1.881 1.803 1.8906 1.772

Table 1: Comparison of parameter estimation and errors for hybrid, QPSO, PSO and DE using 
analytical and numerical method

Method Computational time (s)

Hybrid Method 2.28

A
na

ly
tic

a
l

QPSO 50.90

PSO 62.51

DE 19.42

Hybrid Method 9.20

N
um

er
ic

al

QPSO 114.00

PSO 132.39

DE 56.13

Table 2: Computational time
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Table 3: Comparison of the effect of different stopping   
conditions on the parameter estimations and errors of the hybrid method 

Analytical-Hybrid 
Stopping Criteria of QPSO 

Numerical-Hybrid
Stopping Criteria  of QPSOParameters

Epsilon=15  Epsilon=10 Epsilon=5 Epsilon=15 Epsilon =10 Epsilon =5

K1 0.756 0.803 0.757 0.729 0.736 0.702

K2 5.501 5.672 5.684 5.811 5.814 5.846

K3 0.830 0.785 0.842 0.971 0.954 1.032O
ut

pu
t

K4 0.026 0.0246 0.024 0.0206 0.020 0.022

𝑎1 -540.254 -539.540 -538.995 -540.322 -539.849 -539.668

𝑎2 480.005 480.541 479.003 479.939 479.504 479.466

𝑎3 56.440 55.220 56.088 56.5016 56.455 56.359

𝑎4 3.820 3.813 3.891 3.886 3.893 3.871

𝜆1 11.088 11.120 11.050 11.442 11.723 11.652

𝜆2 13.436 13.437 13.335 14.152 14.780 14.615

𝜆3 3.412 3.380 3.422 3.451 3.467 3.455

In
pu

t

𝜆4 0.0336 0.0334 0.03527 0.035 0.0354 0.0348

(‖𝑟‖2)𝑡𝑜𝑡𝑎𝑙 1.154 1.1629 1.1554 1.111 1.0921 1.0902

(‖𝑟‖2)𝑜𝑢𝑡𝑝𝑢𝑡 0.621 0.6188 0.6028 0.584 0.5888 0.5679

L 2
-N

or
m

(‖𝑟‖2)𝑖𝑛𝑝𝑢𝑡 1.881 1.9011 1.8979 1.881 1.779 1.791
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Figure 1: Two tissue compartmental model 
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Figure 2: The concentration of the output function (Ct) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the QPSO method. 
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Figure 3: The concentration of the Input function (Cp) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the QPSO method. 
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Figure 4: The concentration of the output function (Cp) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the hybrid method. 
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Figure 5: The concentration of the Input put function (Cp) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the hybrid method. 
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Figue 6: The concentration of the Input put function (Ct) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the PSO. 
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Figure 7: The concentration of the Input put function (Cp) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the PSO. 
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Figure 8: The concentration of the Input put function (Ct) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the DE. 
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Figure 9: The concentration of the Input put function (Cp) predicted by the model (solid line) is compared 

against the experimental data (starred). For the model prediction an analytical method (left) and a 
numerical method (right) are used and obtained using the DE. 
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Figure 1: Two tissue compartmental model

Figure 2: The concentration of the output function (Ct) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the QPSO method.

Figure 3: The concentration of the Input function (Cp) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the QPSO method.

Figure 4: The concentration of the output function (Ct) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the hybrid method.

Figure 5: The concentration of the Input put function (Cp) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the hybrid method.

Figure 6: The concentration of the Input put function (Ct) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the PSO.

Figure 7: The concentration of the Input put function (Cp) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the PSO.

Figure 8: The concentration of the Input put function (Ct) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the DE.

Figure 9: The concentration of the Input put function (Cp) predicted by the model (solid line) is 
compared against the experimental data (starred). For the model prediction an analytical method 
(left) and a numerical method (right) are used and obtained using the DE.
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