
ar
X

iv
:2

00
6.

13
18

1v
1

 [
m

at
h.

N
A

]
 2

3
Ju

n
20

20

Numerical aspects of integration in

semi-closed option pricing formulas for

stochastic volatility jump diffusion models

Josef Daněk1 and Jan Pospíšil∗1

1NTIS - New Technologies for the Information Society, Faculty of Applied Sciences,
University of West Bohemia, Univerzitní 2732/8, 301 00 Plzeň, Czech Republic,

Received 23 October 2017
Revised 6 February, 1 June, 4 September, 12 December 2018

Accepted 24 December 2018
Published 15 May 2019

Abstract

In mathematical finance, a process of calibrating stochastic volatility (SV) option pricing
models to real market data involves a numerical calculation of integrals that depend on several
model parameters. This optimization task consists of large number of integral evaluations
with high precision and low computational time requirements. However, for some model
parameters, many numerical quadrature algorithms fail to meet these requirements. We
can observe an enormous increase in function evaluations, serious precision problems and a
significant increase of computational time.

In this paper we numerically analyse these problems and show that they are especially
caused by inaccurately evaluated integrands. We propose a fast regime switching algorithm
that tells if it is sufficient to evaluate the integrand in standard double arithmetic or if a higher
precision arithmetic has to be used. We compare and recommend numerical quadratures for
typical SV models and different parameter values, especially for problematic cases.

Keywords : variable precision arithmetic; numerical integration; adaptive quadrature; op-
tion pricing; stochastic volatility models

MSC classification: 65D30; 91G60; 65R10

JEL classification: C63

∗Corresponding author, honik@kma.zcu.cz

1

This is an Accepted Manuscript of an article published by Taylor & Francis in the International Journal of Computer

Mathematics 97(6), 1268–1292, 2020, DOI 10.1080/00207160.2019.1614174.

Available online https://www.tandfonline.com/10.1080/00207160.2019.1614174.

http://arxiv.org/abs/2006.13181v1
mailto:honik@kma.zcu.cz
http://dx.doi.org/10.1080/00207160.2019.1614174
https://www.tandfonline.com/10.1080/00207160.2019.1614174

1 Introduction

Recently, Baustian, Mrázek, Pospíšil, and Sobotka (2017) presented a unifying approach to several
stochastic volatility jump diffusion (SVJD) models. This approach among others covers the widely
used Heston (1993) and Bates (1996) models, Barndorff-Nielsen and Shephard (2001) model as
well as a newly proposed approximative fractional stochastic volatility jump diffusion (AFSVJD)
model (Pospíšil and Sobotka, 2016a; Mrázek, Pospíšil, and Sobotka, 2016). Although we present
the numerical pitfalls of numerical integration only for the AFSVJD model in detail here, similar
numerical misbehaviour can be observed in all above mentioned models and probably in other
SVJD models as well.

In many mathematical models we can observe that standard IEEE 32-bit or 64-bit floating-
point arithmetic is not always fully sufficient, see for example works by Bailey and Borwein (2005),
who studied especially applications in physics (Bailey, Barrio, and Borwein, 2012; Bailey and
Borwein, 2015). Computations that require higher than double precision for robust and exact
decision making were introduced in Pal, Koul, Musadeekh, Ramakrishna, and Basu (2004). To
overcome the problems caused by the floating-point arithmetic limits, high-precision or variable-
precision arithmetic is a rapidly growing part of scientific computing environments. In the above
mentioned papers we can find among others currently available software packages for high-precision
floating-point arithmetic. For example in MATLAB, there exists a possibility of defining variables
and perform numerical calculations in variable-precision arithmetic using the vpa bundle that is
part of the Symbolic Math Toolbox. Variable in the name suggests that a user can set the number
of significant digits arbitrary, by default it is 32 significant digits. In this paper we show that in
some cases it is actually necessary to use the vpa in order to get correct integration results and
consequently correct option prices.

Numerical integration in standard floating-point arithmetic is introduced in many university
textbooks or monographs, let us mention at least the following books by Krylov (1962); Stoer
and Bulirsch (2002); Davis and Rabinowitz (2007) and by Dahlquist and Åke (2008). The most
common quadratures used in applications are the Gauss quadratures or the Simpson rule together
with the adaptive refinement techniques. The problem of high-precision numerical integration is
reviewed by Bailey and Borwein (2011). Gauss-Legendre quadratures using vpa in MATLAB was
in particular studied by Rathod, Sathish, Islam, and Gali (2011). In our case, we would like to get
an effective, i.e. fast and sufficiently accurate, calculation of definite integral arising in the option
pricing formula. This effectiveness can be for example achieved by clever switching algorithm
between standard floating-point arithmetic that can be often sufficient and between vpa.

Although integration in option pricing models was already studied in several papers, accord-
ing to authors’ knowledge none of them focused on problems caused by inaccurately evaluated
integrands or on high-precision integration. A very good unpublished review of option pricing
formulas based on Fourier transform is the online document by Schmelzle (2010). Integrand in
the Heston model was studied by Kahl and Jäckel (2005). A variations of the Fourier transform
in option pricing was studied in Levendorskii (2012); Boyarchenko and Levendorskii (2014), how-
ever, from the numerical point of view the usage of trapezoidal rule is far from being satisfactory.
A widely used techniques in option pricing are based on Fourier method. Among these methods
we find the classical fast Fourier transform (FFT) as was suggested by Carr and Madan (1999)
or the fractional FFT modification (Bailey and Swarztrauber, 1991, 1994), Fourier method with
the Gauss-Laguerre quadrature (Lindström, Ströjby, Brodén, Wiktorsson, and Holst, 2008), the
so called COS method (Fang and Oosterlee, 2009) or methods based on wavelets (Ortiz-Gracia
and Oosterlee, 2016). All these methods can be fast for example in calculating an approximation
of the integral in many discrete points at once, however, in option pricing problems many values
are calculated redundantly and moreover with relatively low precision that should be in modern
financial applications considered unsatisfactory.

The paper is structured as follows. In Section 2 we introduce the studied formula for European
call option price obtained by the approximative fractional stochastic volatility model.

The problem of inaccurately evaluated integrand is presented in Section 3. A special attention
is paid to study the integral behaviour during the optimization process that occur during the

2

calibration of the model to real market data. We show that an inaccurately evaluated integrand
can lead to changes in option price in order of hundreds of dollars. We suggest a usage of the
variable precision arithmetic for problematic cases and design a switching regime algorithm.

In Section 4 we explain why numerical quadratures fail. Further we compare several numerical
quadratures in Section 5 where we give also some recommendations what quadrature to use and
why or why not, how to handle adaptivity and how to set the tolerances to get reliable results. In
particular we compare the calibration results for the cases where the switching regime algorithm
is used or not. We conclude in Section 6.

2 Stochastic volatility models

Following Baustian, Mrázek, Pospíšil, and Sobotka (2017), we consider a general stochastic volatil-
ity jump diffusion (SVJD) model that covers several kinds of stochastic volatility processes and
also different types of jumps

dSt = (r − λβ)St dt+
√
vtSt dW

S
t + St− dQt,

dvt = p(vt) dt+ q(vt) dW
v
t ,

dWS
t dW v

t = ρ dt,

where p, q ∈ C∞(0,∞) are general coefficient functions (for particular choices of p and q see Table
1), r is the interest rate, ρ is the correlation of Wiener processes WS

t and W v
t , parameters λ and

β correspond to a specific jump process Qt, which is a compound Poisson process Qt =
Nt∑

i=1

Yi,

where Y1, Y2, . . . are pairwise independent random variables with identically distributed jump sizes
β = E[Yi] for all i ∈ N, Nt is a standard Poisson process with intensity λ independent of the Yi.

Table 1: Different SVJD models

model p(v) q(v)

Heston/Bates κ(θ − v) σ
√
v

3/2 model∗ ωv − θ̃v2 ξv
3

2

Geometric BM αv ξv
AFSVJD∗∗ (H − 1/2)ψtσ

√
v + κ(θ − v) εH−1/2σ

√
v

∗θ̃ = − 1

2
ξ2 + (1− γ)ρξ +

√

(θ + 1

2
ξ2)2 − γ(1 − γ)ξ2,

∗∗ψt =
∫ t
0
(t − s+ ε)H−3/2 dWψ

s .

A unifying formula for the price V = V (K, τ) of a European call option with strike price K
and time to maturity τ has the form (Baustian, Mrázek, Pospíšil, and Sobotka, 2017)

V = S −Ke−rτ
1

2π

∫
∞+iki

−∞+iki

e−ikX̃eλ(ϕ̂(−k)−1)τ F̂ (k, v, τ)

k2 − ik
dk, (1)

where X̃ = ln(S/K)+(r−λβ)τ and max(k1, 0) < ki < min(1, k2) and F̂ is the so called fundamen-
tal transform of the particular stochastic volatility part and ϕ̂ is the transform of the jump term.
An integration domain in the complex plane is a line (represented by ki) lying in the suitable strip
of regularity Lewis (2000, 2016), for European call options it suffices to take ki = 1/2.

If Bεt =
t∫

0

(t−s+ε)H−
1

2 dWs is the approximative fractional Brownian motion, ε > 0 (for ε→ 0

the process converges to the standard fractional Brownian motion), H > 1/2 (for H = 1/2 it is

3

the standard Brownian motion), then the volatility process in the approximative fractional SVJD
(AFSVJD) model Pospíšil and Sobotka (2016a)

dvt = κ(θ − vt) dt+ σ
√
vt dB

ε
t ,

can be rewritten as

dvt = [(H − 1/2)ψtσ
√
vt + κ(θ − vt)] dt+ εH−1/2σ

√
vt dW

v
t ,

where ψt =
∫ t

0 (t− s+ ε)H−3/2dWψ
s .

Example 2.1. Jumps examples:

1. In Bates (1996) model, jump sizes are log-normal, ln(1 + Yi) ∼ N (µJ , σ
2
J),

ϕ̂(k) = exp
{
iµJk − 1

2σ
2
Jk

2
}
, β = ϕ̂(−i)− 1 = exp

{
µJ + 1

2σ
2
J

}
− 1.

2. In Yan and Hanson (2006) model, jump sizes are log-uniform, ln(1 + Yi) ∼ U(a, b),
ϕ̂(k) = eikb

−eika

(b−a)ik , β = ϕ̂(−i)− 1 = eb−ea

b−a − 1.

In order to perform a thorough numerical analysis of the integral (1) a particular model with
particular fundamental transform F̂ has to be considered. Sometimes it is also useful to represent
the jumps in terms of a characteristic function that we denote by φ. Price V = V (K, τ) of a
European call option with strike price K and time to maturity τ in the AFSVJD model is given
(Mrázek, Pospíšil, and Sobotka, 2016; Baustian, Mrázek, Pospíšil, and Sobotka, 2017) by

V = S −Ke−rτ
1

π

+∞+i/2∫

0+i/2

e−ikX
F̂ (k, v, τ)

k2 − ik
φ(−k)

︸ ︷︷ ︸

f(k)

dk, (2)

where X = ln(S/K) + rτ , fundamental transform

F̂ (k, v, τ) = exp(C(k, τ) +D(k, τ)v), (3)

C(k, τ) = κθ

(

Y τ − 2

B2
︸︷︷︸

C1

ln

(
1− ge−dτ

1− g

)

︸ ︷︷ ︸

C2

)

,

D(k, τ) = Y
1− e−dτ

1− ge−dτ
,

Y = −k
2 − ik

b+ d
, g =

b− d

b+ d
,

d =
√

b2 +B2(k2 − ik),

b = κ+ ikρB, B = εH−1/2σ,

and characteristic function

φ(k) = exp

{

−iλβk τ + λτ

[

ϕ̂(k)− 1

]}

, (4)

β = exp

{

µJ +
1

2
σ2
J

}

− 1,

ϕ̂(k) = exp

{

iµJk − 1

2
σ2
Jk

2

}

.

4

In Table 2 we can see typical simple lower and upper real-valued bounds (LB and UB) for
model parameters χ = (v0, κ, θ, σ, ρ, λ, µJ , σJ , H) considered in calibration to real market data. It
is worth to mention that for H = 0.5 the AFSVJD model coincides with the Bates (1996) model
and if further there are no jumps (λ = 0), we get the Heston (1993) model. For this reason,
AFSVJD model was chosen as a particular model to study. In Baustian, Mrázek, Pospíšil, and
Sobotka (2017), authors also showed that a similar type of integral can be obtained also for models
that do not follow exactly the above mentioned stochastic dynamics such as the Barndorff-Nielsen
and Shephard (2001) model. Similar pricing formulas for a variety of other SVJD models such as
models with other Lévy processes (double exponential, variance gamma, normal inverse Gaussian,
normal tempered stable, finite moment log stable) or with different type of stochastic volatility
(SABR, 3/2 model) can be found in the book by Lewis (2016).

Table 2: Typical simple lower and upper real-valued bounds (LB and UB) for model parameters
considered in calibration process.

v0 κ θ σ ρ λ µJ σJ H

LB: 0 0 0 0 -1 0 -10 0 0.5
UB: 1 150 1 4 1 100 5 4 1.0

In our experiments we consider the following ranges that are typical for many option market
data sets (options on major indices like DAX, FTSE 100, Nikkei 225 and S&P 500 that occurred
at the market in the last two years):

price of the underlying asset (usually in dollars): 0 < S ≤ Smax = 30 000,

time to maturity (in years): 0 < τ ≤ τmax = 5,

strike price : 0 < K ≤ Kmax = 3Smax,

interest rate (positive): 0 < r ≤ rmax = 0.05.

We will denote the vector of market data by ψ = (τ,K, r, S).
A process of calibrating option pricing models to real market data involves a numerical calcu-

lation of integrals similar to the integral in (2). As we can see, the value of the integral depend
highly nonlinearly on several model parameters and real market data. Calibration as an opti-
mization task consists of large number of integral evaluations that must be calculated with high
precision, but at low computational costs. However, for some model parameters, many numerical
quadrature algorithms fail to meet these two requirements. We can observe an enormous increase
in function evaluations (especially in adaptive quadratures), serious precision problems (even with
the simple non-adaptive trapezoidal rule) as well as a significant increase of computational time.

3 Inaccurately evaluated integrand

In this section we focus on the deeper numerical analysis of the above mentioned behaviour. We
show that some of the problems are caused by an inaccurate evaluation of the integrand in standard
double precision arithmetic (Daněk and Pospíšil, 2015). In the IEEE Standard for Floating-Point
Arithmetic (IEEE 754), the smallest interchange format for the standard double precision number
is referred as binary64 and it contains 1 sign bit, 11 exponent bits and 53 significand (or mantissa)
precision bits (only 52 are explicitly stored). In double precision arithmetic we therefore get 15–17
significant decimal digits precision. Moreover, even simple arithmetic operations such as addition
and subtraction can lead to loosing significant decimal digits precision.

Example 3.1 (Loosing significant decimal digits precision). Let us consider a simple example
10−1 + 109 − 109 whose result in double arithmetic is 0.100000023841858, i.e. after the two

5

operations the number of significant digits lowered to half. The problem is already with the number
0.1 that has periodic representation in binary: 0.1 = (0.00011)2, i.e. 0.1 in double is

0. 1100 1100 . . .1100
︸ ︷︷ ︸

48 digits

11010× 2−3.

On the other hand, the number 109 has an exact representation in double

0.111011100110101100101× 230.

Addition of these two numbers shifts the exponent of the lower number to the higher exponent, i.e.
0.1 after the shift

0. 0000 . . .0
︸ ︷︷ ︸

33 digits

1100 1100 1100 1100 1101× 230

which is in fact the resulting number after adding and subtracting 109, in decimal 0.100000023841858.

Loosing significant digits consequently leads to inaccurate evaluation of functions.

Example 3.2 (Inaccurate evaluation of a simple function). Let h(x) = δx2, where δ is a given
real parameter, say 106. Its implementation in MATLAB can be for example

function result = h_exact(x);

delta = 1e6;

result = delta*x.^2;

end

The following function should theoretically return the same values.

function result = h_trouble(x);

delta = 1e6;

a = x + 1000* delta;

b = (a.^2+delta *(x.^2)).^0.5;

result = b.^2-a.^2;

end

However, in the view of the previous Example 3.1, we can expect problems with loosing sig-
nificant digits precision. Indeed, in Figure 1 there are graphs of both functions depicted over the
interval [0, 1] or in a neighbourhood of number 0.5. Function h_exact(x) is bold blue and func-
tion h_trouble(x) is red. Although the global view of the function h(x) does not indicate any
troubles, a more detailed view (zoom) reveals unexpected discontinuities in the function that should
be smooth.

In Example 3.2, it is clear that the form of h_trouble(x) was implemented inefficiently and
one should use the simpler form h_exact(x). However, in more complicated examples such a
simplification is not always possible. The function of interest is the integrand f(k) in (2). In the
following we show that if it is inaccurately evaluated, we can observe similar misbehaviour as in
the previous simple example. To avoid the problems with loosing significant digits, we perform
the evaluation of function values also in the high precision arithmetic, in particular in vpa in
MATLAB. All vpa values in this paper are obtained with 32 significant decimal digits precision.

From now on, the numerical analysis will involve only the AFSVJD model and the formula (2).
In other SVJD models, very similar analysis can be performed with analogous switching regime
setting (see below).

Example 3.3 (Global and local view to the integrand f(k)). In Figures 2 and 3 we consider
market data (European call options to FTSE 100 dated 8 January 2014, see (Pospíšil and Sobotka,
2016a) and Example 5.1 below)

ψ = (0.120548, 6250, 0.009, 6721.8)

6

Figure 1: Global and detailed view to h_exact(x) and h_trouble(x) from Example 3.2.

and demonstrate the numerical misbehaviour by changing only values of σ and also the zoom depth,
other parameters remain in each example the same. Whereas the inaccurately enumerated values
are in double precision arithmetic (red in Figures 2 and 3), the smooth values are in vpa (blue). In
Figure 2, bottom pictures for σ = 0.000001, we can see that potential smoothing of the inaccurately
evaluated integrand would not help, since it would be completely set off the exact values. Bottom
right picture hence shows only the zoom of the double evaluated integrand from the bottom left
picture.

Moreover, inaccurately evaluated integrand can lead to really big differences in the option
price, even in the order of hundreds of dollars.

Example 3.4 (Hundred dollars error). For parameters

χ = (0.98, 8, 0.8, 0.000001,−0.75, 0.75, 1.4, 0.2, 0.9)

that can be observed during a calibration process and for data

ψ = (0.34, 12500, 0.017, 10000)

we get

price_double=4115.317 price_vpa=3999.167 error=116.150

int_double=1.48755534 int_vpa=1.51691623 error=0.02936088

where price denotes the value of the option price calculated using the Gauss-Kronrod(7,15) quadra-
ture that is by default used in the function integral in MATLAB (we compare other numerical

7

0 10 20 30 40 50 60 70
-0.5

0

0.5

1

1.5

2

2.5
v = 0.97, κ = 17.6, θ = 0.95, ρ = −0.86

λ = 11.7, µJ = −6.66, σJ = 1.007, H = 0.96

1.5 1.51 1.52 1.53 1.54 1.55
-0.108

-0.107

-0.106

-0.105
σ = 0.0001

1 1.5 2 2.5 3 3.5 4
-0.15

-0.1

-0.05

0

0.05
σ = 0.00001

σ = 0.000001 σ = 0.000001

Figure 2: Global and local view to the integrand f(k) in Test Case 1.

quadratures later in Section 4) and int denotes the value of the integral. The sub indices _double
and _vpa denote that the value was obtained for integrand f(k) evaluated using the standard double

precision or vpa arithmetic respectively. Absolute difference error indicate a huge difference in
the option price value.

In order to get a reasonable values in the calibration process, we need the integral to be calcu-
lated with the error less then 1e-8. The reason for this tolerance is the fact that in one calibration
procedure, several hundred options are typically considered, which means that the utility (or fit-
ness) function in the optimization procedure consists of this amount of integral evaluations and
hence the option price calculation in each iteration. A safe option price value tolerance can be
considered 1e-3. From the comparison of the error in integration and option price in the example
above we can clearly see that in order to get the safe price within error 1e-3, we need integral to
be calculated with error less then 1e-8.

It is worth to mention that the integrand f(k) does not have to be evaluated in vpa for all
parameter values. In fact, the most problematic cases occur only for rare certain combinations of
parameters. In Table 3 we present an influence of one model parameter (in particular parameter
σ) and approximation parameter ε to the number of problematic cases. A problematic case is such
that the integral was evaluated either with error greater than 1e-8, or with fevals greater than
1e4 (i.e. with high CPU time). Among all problematic cases, more than a third gave an error
greater than 1e-2. Values in Table 3 show number of problematic cases in 10 millions random
integral evaluations, parameter σ is generated uniformly in different ranges with approximation
parameter ε being fixed in all corresponding trials. All other parameters are chosen uniformly
random in bounds from Table 2. Influence of all parameters to the problematic cases follows

8

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

0.15 v = 0.3, κ = 5, θ = 0.1, ρ = −0.5

λ = 60, µJ = −9, σJ = 1.1, H = 0.6

1.200000022 1.200000025 1.200000028 1.200000031

-0.0125438302

-0.0125438298

σ = 0.001

 1.200003 1.2000034 1.2000038 1.2000042

-0.01254404

-0.01254402

 -0.012544

σ = 0.0001

1.2528 1.2532 1.2536 1.254
-0.014245

 -0.01424

-0.014235

 -0.01423 σ = 0.00001 σ = 0.000001

Figure 3: Global and local view to the integrand f(k) in Test Case 2.

Table 3: Number of problematic cases in 10 millions random integral evaluations for different
ranges for parameter σ and different values of approximation parameter ε. All other parameters
are chosen uniformly random in bounds from Table 2.

σ ∈ \ ε = 10−3 10−4 10−5 10−6

[10−5; 4] 42 103 250 696

[10−2; 10−1] 0 0 155 7 315
[10−3; 10−2] 262 10 742 65 979 179 818
[10−4; 10−3] 109 922 269 021 418 708 528 910
[10−5; 10−4] 684 565 782 732 841 482 882 383
[10−6; 10−5] 1 059 632 1 064 681 1 068 015 1 071 241

below.
To overcome the raised issues, we introduce a switching regime for problematic cases, i.e.

in majority of cases, the evaluation will be done in standard double arithmetic, however, in
problematic cases vpa arithmetic has to be used.

When analysing the integrand f(k) in (2), we can find out that the order of magnitude in terms
C1 and C2 can differ significantly. In fact, this difference is the core of the problem of inaccurately
evaluated integrand. It is worth to mention that presented form of C is the most numerically
stable. Although it is possible to put the term in front of the logarithm into the exponent of the
argument, which is mathematically equivalent, a presented form is numerically more suitable for

9

finite precision arithmetic calculations. We introduce the following algorithm for the switching
between the double and vpa evaluation of the integrand.

Let ℜ(z) denote the real part of a complex number z. Let o1 and o2 denote the order for the
terms C1 and C2 respectively and f0 be the value

f0 := |ℜ(f(0 + i/2))|. (5)

Then

o1 := log10 |ℜ(C1)|,
o2 := log10 |ℜ(C2)|,
o := o1 − o2,

where we consider log10(0) = −∞.
Numerical analysis results show that a problem occurs if f0 is greater than 10−3 and the order

difference o is greater than ω0 = 22. If these two conditions hold, we have to switch the evaluation
of the integrand from double to vpa. If f0 > 10−3 and σ is really small, then ℜ(C2) is close
to zero, the order difference o = +∞ and we have to always switch. For values f0 ≤ 10−3, the
values f(k) remain close to zero for all ℜ(k) > 0 and they are correctly evaluated in double,
so it is not necessary to switch to vpa and the integral will also be close to zero. Empirical
value ω0 is determined by the values of the integrand f(k) to be evaluated within precision 1e-5.
Such a precision together with the exponential decay of the integrand allows us to evaluate the
corresponding integral (2) numerically within precision 1e-8 (see numerical results in Section 5).

Example 3.5 (Test Case 1 revisited). In Example 3.3 Figure 2 we presented inaccurately evaluated
integrand for certain parameter values. In Table 4 we can see the relation of the order difference
o and the integrand evaluation error for different values of parameter σ, all other parameters
remain the same. Values of f0 are evaluated both in double or vpa and their difference is in the
7th column. In Figure 4 we can see an errorf := ℜ(f double(k)−f vpa(k)) for ℜ(k) ∈ [0, 1]. Maxima
of these differences are listed in the last column of Table 4. We can see that the error for o > 22
is bigger than the desired precision 1e-5.

Table 4: Integrand evaluation errors in Test Case 1
σ o1 o2 o fdouble

0
f
vpa
0

|fdouble
0

− f
vpa
0

| max |errorf |

0.1 5.061 -8.510 13.571 2.1369600154 2.1369600152 0.0000000001 0.0000000009
0.05 5.663 -9.112 14.775 2.1369590951 2.1369590940 0.0000000010 0.0000000034
0.01 7.061 -10.510 17.571 2.1369583500 2.1369583571 0.0000000070 0.0000000887
0.005 7.663 -11.112 18.775 2.1369583299 2.1369582649 0.0000000650 0.0000003834
0.001 9.061 -12.510 21.571 2.1369592635 2.1369581912 0.0000010722 0.0000093898
0.0005 9.663 -13.111 22.775 2.1369775046 2.1369581820 0.0000193225 0.0000378410
0.0001 11.061 -14.507 25.568 2.1370505356 2.1369581747 0.0000923609 0.0007385972
0.00005 11.663 -15.051 26.714 2.1388775265 2.1369581737 0.0019193527 0.0020950859
0.00001 13.061 -Inf Inf 2.1243052036 2.1369581730 0.0126529693 0.0126529693

Further numerical analysis shows that it is not necessary to switch to vpa in all such cases
and we can make some corrections to the empirical value ω0. The first correction is based on the
order of the term in front of the integrand. The higher the order of this term, the higher order
o can lead to an integrand that is sufficient to be evaluated in standard double arithmetic (for
simplicity we write that the integrand is “double sufficient”), i.e. it is not necessarily to switch to
vpa. Since Ke−rτ/π < K/3, we define

ω1 := min(5,max(4 − log10(K/3), 0)). (6)

The second correction is based on the order of the value f0. Here the influence is reverse, the
higher the value of the order of f0, the worse is the behaviour of the integrand, i.e. the order o

10

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
10-7

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
10-5

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
10-3

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5
10-3

Figure 4: Integrand evaluation errors in Test Case 1 – see Example 3.5. Values are sampled at
equidistant points with step-size 1e-3.

11

must be lower in order for the integrand to be double sufficient. Let

ω2 := min(log10 |ℜ(f0)|, 0). (7)

The overall switching regime algorithm is summarized as Algorithm 1 below. It is worth to
mention that the switching criteria is relatively cheap operation that requires only one additional
function evaluation, namely calculation of f0 in double arithmetic. Additional speed-up of the
algorithm could be achieved in faster calculation of the order of relevant terms, i.e. instead of
calculating the decimal order using the base 10 logarithm, one could for example take the exponent
from the floating point representation of the number. Such a modification goes beyond the scope
of this manuscript.

Algorithm 1 Fast regime switching algorithm for the evaluation of the integrand f(k) that is by
default in double.
o1 := log10 |ℜ(C1)|; o2 := log10 |ℜ(C2)|; o := o1 − o2; ω0 = 22;
f0 := f(0 + i/2);
par = false;
if f0 > 10−3 and o > ω0 then

ω1 := min(5,max(4 − log10(K/3), 0));
ω2 := min(log10 |ℜ(f0)|, 0);
if o > ω0 + ω1 − ω2 then

par = true;
end if

end if

if par then

switch the evaluation of the integrand f(k) from double to vpa

end if

In Figure 5, we can see the histograms for the order difference o. In each case, 10 millions
integral evaluations were performed with parameter values taken uniformly random in considered
bounds. "Switch mode on" means that in the Algorithm 1 the value par = true. The lower the
value of the parameter σ, the higher is the order difference o. However, as we can see, it is not
only the value σ that causes the problems. For many cases it is sufficient to evaluate the integrand
f(k) in double arithmetic only even if the value σ is really low. In the last graph the value Inf

indicate that the value o = +∞, i.e. that ℜ(C2) is close to zero.
Note that histograms in Figure 5 correspond also to the values obtained in Table 3 and the

thorough analysis of problematic cases motivated the choice of ω0 = 22 that can be observed also
in histograms in the third row.

Example 3.6 (Problematic integrand evaluations during calibration). Calibration of the models
to real market data will be further studied below in Section 5.4. In this example we give more
details to the number of problematic cases that occur during calibration processes described later in
Example 5.1. Since the random generation of parameters occur only during the global optimization
phase of the calibration process, we analyse the problematic integrand evaluations during this phase
only.

In particular, from ten independent global optimization runs for the AFSVJD model we gath-
ered 3 034 000 different vectors of parameter values. For these vectors we tested if an integrand
evaluation is double sufficient or not. We found out that there were 241 307 problematic cases,
i.e. almost eight percent (7.95%). In Figure 6, we can see the double insufficiency distribution
together with the dependence on the time to maturity (there are 6 different maturities in the data
set ranging from τ1 = 0.120548 to τ6 = 0.977528). From this observation we can conclude that on
average, more problematic cases occur for shorter maturities.

If the integrand is double insufficient and higher precision arithmetic is not used, the integral
evaluation and hence the overall calibration process can slow down dramatically. Both accuracy
and speed of the numerical quadratures will be thoroughly tested in the next section.

12

0 5 10 15 20 25 30 Inf
0

2

4

6

8

10

12

14

16

18
105

Switch mode off
Switch mode on

0 5 10 15 20 25 30 Inf
0

2

4

6

8

10

12

14

16

18
105

Switch mode off
Switch mode on

0 5 10 15 20 25 30 Inf
0

2

4

6

8

10

12

14

16
105

Switch mode off
Switch mode on

0 5 10 15 20 25 30 Inf
0

2

4

6

8

10

12

14

16
105

Switch mode off
Switch mode on

0 5 10 15 20 25 30 Inf
0

0.5

1

1.5

2

2.5
106

Switch mode off
Switch mode on

0 5 10 15 20 25 30 Inf
0

1

2

3

4

5

6

7

8
106

Switch mode off
Switch mode on

Figure 5: Influence of the parameter σ to the switch mode. Horizontal axis shows the value of the
order difference o, the vertical axis is the number of cases in 10 millions integral evaluations. All
parameter values were generated uniformly random in considered bounds.

13

0 5 10 15 20 25 30 Inf
0

1

2

3

4

5

6
105

Switch mode off
Switch mode on

1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500
Switch mode on

Figure 6: On the left, there is a histogram showing the double insufficiency during 10 independent
global optimization runs. Horizontal axis shows the value of the order difference o, the vertical
axis is the number of cases in 3 034 000 that were performed during the optimization. On the
right, an average number of double insufficient integrand evaluations is grouped by the time to
maturity τ .

14

4 Numerical quadratures and their failures

The problem in numerical integration is to approximate definite integrals of the form
∫ b

a f(x) dx
by the n-point numerical quadrature

∫ b

a

f(x) dx ≈ Qn[a, b] :=
n∑

i=1

wif(xi), (8)

where wi are the weights and xi are the points at which the function f(x) is evaluated. An n-point
Gaussian quadrature is a rule constructed to give an exact result for polynomials of degree 2n−1 or
less by a suitable choice of the points xi and weights wi for i = 1, . . . , n. It can be shown Gautschi
(2004); Press, Teukolsky, Vetterling, and Flannery (2007) that the evaluation points xi are the
roots of a polynomial belonging to a class of orthogonal polynomials. Gauss-Legendre n-point
quadrature (denoted by legendre(n) below) is probably the best known Gaussian quadrature
with associated orthogonal polynomials being the Legendre polynomials.

The adaptive control strategy divides the integration domain into subintervals, evaluates the
integral at each region and uses an error estimate of the integral to check if a specified error
tolerance is met. At regions where the function is well approximated by a polynomial, only a few
function evaluations are needed, in other areas the adaptive strategy evaluates the subintervals
in a recursive manner. Adaptive quadratures together with detailed error estimation techniques
were reviewed by Gander and Gautschi (2000), where adaptive Simpson quadrature (quad) was
also introduced. This review was recently extended by Gonnet (2009, 2012).

Adaptive strategy is applied also in the adaptive Gauss-Lobatto quadrature with a modifica-
tion by the so called Kronrod extension to add an effective error control procedure. We consider
two implementations of Gauss-Lobatto, namely adaptlob is the original implementation by Gan-
der and Gautschi (2000) and quadl is the MATLAB implementation that further improves the
adaptivity. The Lobatto formula has preassigned abscissas at the end points of the interval and
other nodes and weights are determined in order to obtain the highest exactness possible. The
Kronrod extension is used to provide an estimate of the approximation error. If the error exceeds
a specified tolerance, regions where the function is not well behaved will be divided recurrently.

Gauss-Kronrod quadrature is an adaptive extension of the Gauss-Legendre algorithm in which
the evaluation points are chosen so that an accurate approximation can be computed by re-using
the information produced by the computation of a less accurate approximation. For the same
set of function evaluation points, it has two quadrature rules, one higher order and an embedded
one with lower order. The difference between these two approximations is used to estimate the
calculation error of the integration. If the quadrature is applied to the interval [ak, bk], then the
error estimate takes the form

Ek = |Gn[ak, bk]−K2n+1[ak, bk]|, (9)

where Gn[a, b] is the n-point Gauss quadrature rule of degree 2n− 1, and K2n+1[a, b] is the 2n+1
point Gauss-Kronrod extension of degree 3n+1 that is used as the approximation of the integral.
This is also the error estimate currently used in the MATLAB function integral that implements
the adaptive Gauss-Kronrod(7,15) quadrature. This quadrature was chosen as the reference, since
it is used de facto as an industrial standard in the latest releases of MATLAB. Initially, the
interval [a, b] is split into 10 equally sized subintervals. The default recurrence rule is set so that if
the error estimate (9) for an interval [ak, bk] is greater than the prescribed tolerance, the interval
[ak, bk] is divided to halves where the process is recurrently repeated. A reference to Gauss-Kronrod
quadratures is Gautschi (1988), computation of Gauss-type quadrature formulas is further studied
for example in Laurie (2001). It is worth to mention that other error estimates for the Gauss-
Kronrod quadrature exist, some of them are of rather curious empirical character (e.g. the one
used in the widely-used QUADPACK library, cf. (Gonnet, 2012, Section 2.4)), but in principle
none of the estimates can properly handle the problem of loosing significant digits precision in the
inaccurate integrand evaluation. This problem leads us to another simple example showing the
failure of numerical quadratures, in particular of the adaptive Gauss-Kronrod quadrature.

15

Example 4.1 (Failure of the Gauss-Kronrod quadrature). Let f0(x) be a piecewise constant
function taking values either 1− ε or 1+ ε with discontinuities exactly at the quadrature abscissas

so that
b∫

a

f0(x) dx = b − a, see Figure 7 at the top where discontinuities occur at the abscissas

of the Gauss-Kronrod(3,7) quadrature. The value of ε is sufficiently small in order to serve as a
measure of discontinuities caused by loosing significant digits. Let us consider the general Gauss-
Kronrod(n,2n+ 1) quadrature. The even nodes that partition the interval [a, b] are the Gaussian
points of the Gn[a, b] quadrature and f0 is equal to 1− ε at these points and 1+ ε at the odd nodes
that are the Gaussian points of the Kronrod extension K2n+1[a, b]. We have that

Gn[a, b] =

n∑

i=1

wGi f0(x
G
i) = (1 − ε)

n∑

i=1

wGi = (1 − ε)(b− a)

K2n+1[a, b] =

2n+1∑

i=1

wKi f0(x
K
i) =

n∑

i=1

wK2i+1f0(x
K
2i+1) +

n∑

i=1

wK2if0(x
K
2i)

= (1 + ε)

n∑

i=1

wK2i+1 + (1− ε)

n∑

i=1

wK2i =

2n+1∑

i=1

wKi + ε

(
n∑

i=1

wK2i+1 −
n∑

i=1

wK2i

)

= b− a+ ε(b− a)Cn = (b− a)(1 + εCn)

and the error estimate

E0 = |Gn[a, b]−K2n+1[a, b]| = |(1 − ε)(b− a)− (b− a)(1 + εCn)|
= ε(b− a)C̃n.

For example for ε = 10−4, n = 7 (i.e. for Gauss-Kronrod(7,15) quadrature) and [a, b] = [−1, 1]
we get E0

.
= 2.004652× 10−4 which is much bigger than the default absolute or relative tolerance

AbsTol=1e-10 and RelTol=1e-6 respectively and hence the adaptive refinement is required.
To mimic the inaccurate evaluation of a function caused by loosing significant digits, we can

consider a piecewise constant function fl(x) taking again values either 1− ε or 1 + ε with discon-
tinuities at the quadrature abscissas in all of the 2l subintervals

[
a+ i−1

2l (b − a), a+ i
2l (b − a)

]
,

i = 1, . . . , 2l. In Figure 7 at the bottom we can see a graph of function f2, i.e. the case where
the original interval [a, b] was divided into 4 subintervals and at each of the subinterval the dis-
continuities occur at the seven abscissas of the Gauss-Kronrod(3,7) quadrature. To approximate

the exact value
b∫

a

fl(x) dx = b − a by the adaptive Gauss-Kronrod(n,2n+ 1) quadrature, adaptive

refinement must be performed at least to the 2l+1 subintervals, where the local error at the level 2l

is E0.

Example 4.2 (Test Case 1 revisited). In Example 3.3 Figure 2 we presented inaccurately evalu-
ated integrand for certain parameter values that could be obtained during the calibration process.
Examining the integrand for these parameter values, we can find out that in double evaluation
there were 63 302 “significant discontinuities” of f(k) for ℜ(k) ∈ [0, 20] with jump sizes up to
8.6846× 10−4 (average jump size 1.9082× 10−6). To satisfy the local Gauss-Kronrod error esti-
mate to be within the relative error 10−6, adaptive refinement had to be done down to the interval
length 5× 10−8. In the language of the previous Example 4.1, the value of l can grow up to 12–16.
Not only is such a numerical integration time demanding (one integral can be calculated several
seconds, for exact values see results in Section 5), the obtained integral value is far from the pre-
cise value, the error is 2.4679× 10−5 although the adaptive quadrature ends with errors within the
default tolerances AbsTol=1e-10 and RelTol=1e-6.

From the review of the adaptive quadratures written by Gonnet (2009, 2012) it is obvious that
although many other error estimates exist, none of them can properly handle the inaccuracy of the
function evaluation caused by loosing significant digits. Almost all existing error estimates assume

16

Figure 7: Functions f0 and f2 from the Example 4.1. Discontinuities occur at the abscissas of the
Gauss-Kronrod(3,7) quadrature.

that the integrand is sufficiently smooth. The only exception is probably the CADRE estimate by
de Boor (see (Gonnet, 2012, Section 3.1)) that allows to detect the low frequency discontinuities.
Although the integrand in our case is theoretically sufficiently smooth, for some parameter values
its evaluation is numerically double insufficient. The only way how to calculate the integral of such
an integrand is to use the high precision arithmetic. Much simpler integrand is for example studied
by Gautschi (2016) who introduces a non-standard Gauss-Hermite quadrature with empirical error
estimates and implementation Gautschi (2017) using the MATLAB vpa.

In the numerical comparison provided in the next section, integral (vpa) denotes the case
when the function integral is applied to vpa evaluated integrand, i.e. the quadrature uses values
that are evaluated in vpa and converted to double. In the MATLAB release R2016b, a new
function vpaintegral was introduced. This function implements a semi-symbolic quadrature
that is supposed to be the high-precision numerical integration. Although the way how this
quadrature obtains the numerical result differs from all other studied quadratures, we also consider
it in our comparisons. For convenience we also add the very simple trapezoidal rule (trapz)
that together with legendre is not adaptive. To understand how the adaptivity works in all
considered quadratures is crucial to realize what happens in a numerical quadrature if the integrand
is inaccurately evaluated as we saw for example in Figures 2 and 3.

17

5 Numerical results

In this section we compare numerical quadratures behaviour in problematic cases and with the
implementation of the switching regime Algorithm 1 described in Section 3.

We measure an average calculation time (reference PC with 1x quad-core Intel i7-4770K 3.5
GHz CPU and 16 GB RAM) and number of integrand evaluations (fevals). Interesting results
are highlighted. In all quadratures we set the tolerances to satisfy requirements mentioned in
Section 3, i.e. we set absolute tolerance to be AbsTol=1e-10 and relative tolerance RelTol=1e-6.

5.1 Quadratures behaviour in problematic cases

In Table 5 we can see quadratures comparison for numerical integration with parameter values
taken from test case 1, see Figure 2. Although the global view to the integrand does not indicate
any potential problem, the contrary is true. We compare several quadratures for double evaluated
integrand with reference value integral (vpa), i.e. integral function applied to the vpa evalu-
ated integrand. In fact, the whole integrand f(k) is evaluated using vpa and before plugging it into
the integral function, it is converted into double. For convenience, we also provide the simple
trapz rule with step sizes 0.01 and 0.001 and quadl all for double or vpa evaluated integrand.

In the case for σ = 0.001, apart from quadl errors for all other quadratures are negligible,
as well as computation times (without vpa) and fevals are small. Also quadl (vpa) give us
accurate result (in given tolerance 1e-8). From the integral and integral (vpa) comparison
we can see that even in this example the value differs. Computation time for vpa is ca 100 times
higher which goes against our requirement to calculate the integral quickly. We can see that using
vpa evaluated integrand in this case is not necessary for integral, but it is necessary for quadl.
Computation times are especially huge for trapz (vpa).

A problematic case occurs if we change σ to 0.0001. Errors for all quadratures increase due
to the inaccurately evaluated integrands. Computation time for integral is larger than in the
previous case and it is actually larger than for integral (vpa), which is caused by enormous
fevals increase. Such a huge increase is caused by the adaptivity of the quadrature applied to
the inaccurately evaluated integrand.

Further decrease of σ to 0.00001 causes further error increase for all quadratures. Although
one could expect larger computation time and fevals, these values for integral are much smaller
than in the previous case, but error is much larger. Even if the computation time is low, there
can be still a problematic case with high precision error and one can recognize it by large fevals.
This is the reason why one of our criteria for problematic cases is fevals larger than 1e4.

From all three trials we learned that if we use vpa, fevals remain the same and as well as the
computation times are very similar. This is an important indicator that the problematic cases are
caused by the inaccurately evaluated integrands.

5.2 Results for switching regime

In this section we apply the switching regime Algorithm 1 to the function integral, i.e. for
problematic cases the quadrature is applied to the vpa evaluated integrand and in other cases
standard double arithmetic is used. The comparison is summarized in Table 6. As we can see,
the error increases for smaller values of parameter σ which is caused by the increasing order
difference o.

In Test Case 1 we can observe that a problem starts to emerge even for larger value of σ = 0.001,
see the first double-row where the fevals difference is already 30, although this case does not fall
into the problematic category, the error is low and it is actually not necessary to switch to vpa.
In other cases the difference in fevals is huge, apart from the last case when the error was large.
In Test Case 2 for σ = 0.00001 the error is negligible in given tolerance 1e-8, however this must
be interpreted as a coincidence, because the fevals for integral without vpa is huge.

The obtained values confirm the choice of the value ω0 = 22 in the switching regime Algorithm
1 as well as they correspond to the choice of correction terms ω1 and ω2 whose influence was

18

Table 5: Quadratures comparison for Test Case 1
method (case σ = 0.001) value error time [s] fevals

integral 0.77681485 0.00000006 0.056 300
integral (vpa) 0.77681478 0.00000000 4.948 270
legendre (128) 0.77680533 0.00000944 0.006 64
legendre (256) 0.77682245 0.00000767 0.013 128
quad 0.77681499 0.00000020 0.092 1694
quadl 0.94027672 0.16346193 0.150 2018
quadl (vpa) 0.77681478 0.00000000 4.110 146
adaptlob 0.77681496 0.00000017 1.485 30734
trapz (0.01) 0.77681499 0.00000021 0.014 1
trapz (0.001) 0.77681499 0.00000020 0.027 1
trapz (vpa, 0.01) 0.77681478 0.00000000 14.287 1
trapz (vpa, 0.001) 0.77681478 0.00000000 301.293 1

method (case σ = 0.0001) value error time [s] fevals

integral 0.77683946 0.00002467 6.761 360780
integral (vpa) 0.77681478 0.00000000 4.872 270
legendre (128) 0.77695229 0.00013750 0.006 64
legendre (256) 0.77682884 0.00001405 0.012 128
quad 0.77688362 0.00006883 0.218 5006
quadl 0.75020018 0.02661460 0.146 2030
quadl (vpa) 0.77681478 0.00000000 4.101 146
adaptlob 0.77684007 0.00002528 2.278 47324
trapz (0.01) 0.77684249 0.00002770 0.010 1
trapz (0.001) 0.77683949 0.00002470 0.029 1
trapz (vpa, 0.01) 0.77681478 0.00000000 13.743 1
trapz (vpa, 0.001) 0.77681478 0.00000000 288.313 1

method (case σ = 0.00001) value error time [s] fevals

integral 0.76823548 0.00857930 0.655 28260
integral (vpa) 0.77681478 0.00000000 5.004 270
legendre (128) 0.76877555 0.00803923 0.007 64
legendre (256) 0.76810697 0.00870781 0.015 128
quad 0.76823622 0.00857856 0.099 2022
quadl 0.76846917 0.00834561 0.149 2018
quadl (vpa) 0.77681478 0.00000000 4.084 146
adaptlob 0.76823478 0.00858000 0.216 4232
trapz (0.01) 0.76828142 0.00853336 0.013 1
trapz (0.001) 0.76823697 0.00857781 0.030 1
trapz (vpa, 0.01) 0.77681478 0.00000000 14.618 1
trapz (vpa, 0.001) 0.77681478 0.00000000 310.098 1

19

Table 6: Using switching regime integral in Test Case 1 and 2
σ o ω1 par integral / integral (vpa) error

f0 ω2 value time fevals

Test Case 1 (see Figure 2)

0.001 21.572 – false 0.77681485 0.056 300 0.00000006
2.137 – 0.77681478 4.948 270

0.0005 22.775 0.681 true 0.77681452 4.241 115320 0.00000025
2.137 0 0.77681478 2.244 270

0.0001 25.568 0.681 true 0.77683946 6.761 360780 0.00002467
2.1371 0 0.77681478 4.872 270

0.00005 26.715 0.681 true 0.77684142 4.198 217170 0.00002663
2.1389 0 0.77681478 5.056 270

0.00001 Inf 0.681 true 0.76823548 0.655 28260 0.00857930
2.1243 0 0.77681478 5.004 270

0.000001 Inf 0.681 true 0.77674994 0.068 750 0.00006484
2.1243 0 0.77681478 5.043 270

Test Case 2 (see Figure 3)

0.0001 20.447 – false 0.00695940 0.066 900 0.00000000
0.12193 – 0.00695940 16.198 900

0.00005 21.651 – false 0.00695940 0.066 900 0.00000000
0.12193 – 0.00695940 16.105 900

0.00001 24.447 0.681 true 0.00695940 5.901 312240 0.00000000
0.12193 -0.914 0.00695940 16.118 900

0.000001 28.555 0.681 true 0.00695451 10.316 561750 0.00000489
0.12193 -0.914 0.00695940 16.132 900

described in detail in Section 3. It is useful to remind that the Algorithm 1 is designed to be
fast, i.e. for some rare parameter values it can happen that the algorithm switches to the vpa

evaluation of the integrand even if it is double sufficient, however the algorithm should not forget
to switch any problematic case which makes the algorithm fast and reliable.

5.3 Optimal switching regime quadratures

So far the whole calculation of f(k) was either performed in double or vpa arithmetic. Since
the vpa is rather time consuming, additional speed-up (denoted by opt in tables below) can be
achieved by further implementation improvements. Since the most problematic part of f(k) is
the term C(k, τ), we can calculate precisely (using vpa) only this term C and then convert it to
double. The remaining terms are double sufficient.

Let us now compare numerical quadrature in cases when we have to switch to the vpa evaluation
of the integrand. In Tables 7 and 8 we can see all such cases that we already met in Table 6 now
for different numerical quadratures. Using check mark X we indicate that the quadrature gave
us the accurate result (in given tolerance 1e-8) with respect to the reference value obtained by
the integral (vpa), i.e. using the double precision arithmetic function integral applied to the
precisely evaluated integrand (i.e. to integrand evaluated using vpa and converted back to double).
The last row in each block shows the results for the semi-symbolic quadrature vpaintegral that is
supposed to be the implementation if the high-precision numerical integration. Since the way how
vpaintegral evaluates the integrand differs from all other numerical quadratures, the number of
fevals in Tables 7 and 8 is omitted for this quadrature.

We can see that for all numerical quadratures computational time is proportional to fevals.
In all cases we also got a desirable accuracy with the only exception quad in Test Case 2. From
this point of view, results for all numerical quadratures are comparable. On the other hand, the
semi-symbolic quadrature vpaintegral seems to be unusable and although its idea seems to be
promising for the future, in its current state we cannot recommend its usage. First of all, even
for the same tolerance setting (AbsTol=1e-10, RelTol=1e-6) it does not satisfy our precision
criteria. Moreover, we can observe that the error of vpaintegral somehow correlates to the error

20

of integral without vpa, i.e. to only double evaluated integrand and double calculated integral.
Such a correlation indicate probably a systematic misbehaviour of vpaintegral.

To sum up the comparison results for other numerical quadratures, in all our tests the quadl

(opt) quadrature performed best, since it needed fewest fevals and hence it was fastest in all
our examples. However, as we saw in Table 5, it can have serious problems in the cases that are
not switched to vpa, i.e. in cases where integrand is double sufficient. Since all other quadratures
are time comparable as well and the differences are not big, we can conclude that the reference
Gauss-Kronrod quadrature represented by the integral (opt) was chosen reasonably.

5.4 Calibration to real market data

The problem of calibration of the model to real market data is formulated as the nonlinear least
squares optimization problem,

inf
χ
G(χ), G(χ) =

N∑

i=1

wi|Cχi (Ti,Ki)− C∗

i (Ti,Ki)|2,

where N denotes the number of observed option prices, C∗

i (Ti,Ki) is the market price of the call
option, Cχi denotes the model price of the i-th option computed using formula (2) evaluated with
the vector of model parameters χ, and wi is the i-th weight proportional to the bid-ask spread
δi > 0. In particular we consider the following weights (Mrázek, Pospíšil, and Sobotka, 2016)

wi =
δ−2
i

N∑

j=1

δ−2
j

, i = 1, . . . , N.

In Section 2 we mentioned that for the AFSVJD (Pospíšil and Sobotka, 2016a; Mrázek, Pospíšil,
and Sobotka, 2016) model, the vector of model parameters is χ = (v0, κ, θ, σ, ρ, λ, µJ , σJ , H). If
not stated otherwise, the optimization will be performed with simple bounds from Table 2 and
with fixed approximation parameter ε = 10−6. Since the AFSVJD model covers also several other
widely used models, we will consider also the case when H = 0.5, i.e. the Bates (1996) model with
8 parameters (v0, κ, θ, σ, ρ, λ, µJ , σJ) and further with λ = 0, i.e. the Heston (1993) model with 5
parameters (v0, κ, θ, σ, ρ).

To evaluate the calibration performance, we measure the maximum and average of absolute
(value of) relative error

MARE(χ) = max
i=1,...,N

|Cχi − C∗

i |
C∗

i

, AARE(χ) =
1

N

N∑

i=1

|Cχi − C∗

i |
C∗

i

.

Following the widely accepted recommendations (Pospíšil and Sobotka, 2016a,b; Mrázek, Pospíšil,
and Sobotka, 2016; Mrázek and Pospíšil, 2017) we perform the calibration as a combination of the
global and local optimization techniques. Global optimization part of the calibration is especially
needed when there is no suitable initial guess for the gradient based method used in the local
optimizer. For the global optimizer we choose the genetic algorithm (GA)1 with the standard
setting: EliteCount 5% of population size, intermediate crossover (creates children by taking a
random average of the parents) with CrossoverFraction 80% (of the population at the next gen-
eration, not including elite children), no migration, uniform selection and Gaussian mutation. For
the local optimizer we choose the standard trust-region-reflective Newton gradient method
for nonlinear least squares (LSQ)2 with stopping criteria set to function value tolerance or step
tolerance 1e-9. Calibration process is therefore performed in two steps:

Step 1: Run 20 iterations (generations) of the GA optimization for utility (fitness) function G(χ),
GA is run with population size 200.

1available in MATLAB Global Optimization Toolbox, function ga
2available in MATLAB Optimization Toolbox, function lsqnonlin

21

Table 7: Using optimal switching regime quadratures in Test Case 1
method value error time [s] fevals

(σ = 0.0005, o = 22.775, f0 = 2.137, ω1 = 0.681, ω2 = 0, par = true)

integral 0.77681452 0.00000025 2.244 115380
integral (vpa) 0.77681478 0.00000000 4.920 270
integral (opt) X 0.77681478 0.00000000 4.157 270
quad (opt) X 0.77681478 0.00000000 6.206 304
quadl (opt) X 0.77681478 0.00000000 3.520 146
adaptlob (opt) X 0.77681478 0.00000000 3.668 164
vpaintegral 0.77681305 0.00000172 7.694 -

(σ = 0.0001, o = 25.568, f0 = 2.1371, ω1 = 0.681, ω2 = 0, par = true)

integral 0.77683946 0.00002467 6.761 360780
integral (vpa) 0.77681478 0.00000000 4.872 270
integral (opt) X 0.77681478 0.00000000 4.112 270
quad (opt) X 0.77681478 0.00000000 6.270 304
quadl (opt) X 0.77681478 0.00000000 3.520 146
adaptlob (opt) X 0.77681478 0.00000000 3.467 164
vpaintegral 0.77685918 0.00004440 31.627 -

(σ = 0.00005, o = 26.715, f0 = 2.1389, ω1 = 0.681, ω2 = 0, par = true)

integral 0.77684142 0.00002663 4.198 217170
integral (vpa) 0.77681478 0.00000000 5.056 270
integral (opt) X 0.77681478 0.00000000 4.165 270
quad (opt) X 0.77681478 0.00000000 6.317 304
quadl (opt) X 0.77681478 0.00000000 3.615 146
adaptlob (opt) X 0.77681478 0.00000000 3.480 164
vpaintegral 0.77682241 0.00000762 31.843 -

(σ = 0.00001, o = Inf, f0 = 2.1243, ω1 = 0.681, ω2 = 0, par = true)

integral 0.76823548 0.00857930 0.655 28260
integral (vpa) 0.77681478 0.00000000 5.004 270
integral (opt) X 0.77681478 0.00000000 4.108 270
quad (opt) X 0.77681478 0.00000000 6.391 304
quadl (opt) X 0.77681478 0.00000000 3.594 146
adaptlob (opt) X 0.77681478 0.00000000 3.582 164
vpaintegral 0.76839158 0.0084231 13.270 -

(σ = 0.000001, o = Inf, f0 = 2.1243, ω1 = 0.681, ω2 = 0, par = true)

integral 0.77674994 0.00006484 0.068 750
integral (vpa) 0.77681478 0.00000000 5.043 270
integral (opt) X 0.77681478 0.00000000 4.086 270
quad (opt) X 0.77681478 0.00000000 6.233 304
quadl (opt) X 0.77681478 0.00000000 3.516 146
adaptlob (opt) X 0.77681478 0.00000000 3.515 164
vpaintegral 0.77747608 0.00066129 1.016 -

22

Table 8: Using optimal switching regime quadratures in Test Case 2
method value error time [s] fevals

(σ = 0.00001, o = 24.447, f0 = 0.12193, ω1 = 0.681, ω2 = −0.914, par = true)

integral 0.00695940 0.00000000 5.901 312240
integral (vpa) 0.00695940 0.00000000 16.118 900
integral (opt) X 0.00695940 0.00000000 13.367 900
quad (opt) 0.00695930 0.00000010 12.691 622
quadl (opt) X 0.00695940 0.00000000 8.639 362
adaptlob (opt) X 0.00695940 0.00000000 15.986 686
vpaintegral X 0.00695940 0.00000000 4.752 -

(σ = 0.000001, o = 28.555, f0 = 0.12193, ω1 = 0.681, ω2 = −0.914, par = true)

integral 0.00695451 0.00000489 10.316 561750
integral (vpa) 0.00695940 0.00000000 16.132 900
integral (opt) X 0.00695940 0.00000000 13.348 900
quad (opt) 0.00695930 0.00000010 12.894 622
quadl (opt) X 0.00695940 0.00000000 8.614 362
adaptlob (opt) X 0.00695940 0.00000000 16.104 686
vpaintegral 0.00695490 0.00000449 22.478 -

Step 2: Run the LSQ optimization, the optimization is run with the initial guess obtained as a
solution from the previous step.

In the following example, we are especially interested in comparison of calibration results when
the integral in formula (2) is evaluated if our proposed switching algorithm is implemented or if
it is not used at all.

Example 5.1. Let us consider a data set of 82 traded European call options to the index FTSE
100 dated 8 January 2014, see (Pospíšil and Sobotka, 2016a). In Figure 8 we can see the option
data structure. There are six different time to maturities ranging from 0.120548 to 0.977528 (in
years) with strikes ranging from 6 250 to 7 100 with spot price 6 721.78. In Table 9 we can see a
comparison of measured errors for all three models in two different regimes, either our fast regime
switching algorithm is implemented (’ON’, we use the integral (opt) variant from the previous
section) or not used at all (’OFF’).

As we can see, in both SVJD models (AFSVJD and Bates model) we get better calibration
results if our switching algorithm is used. For Heston model we also get slightly better results,
but the measured errors are indistinguishable within the tolerance 1e-9. The table shows also the
ratio how many times the evaluation of the integrand had to be switched to vpa from all integral
calculations in each calibration task. The integral implementation is array valued, i.e. one integral
calculation is performed at once for all 82 option data combinations. For convenience, we set the
lower bound for parameter σ to 1e-4 (i.e. to a value 1 bps = 0.01 % usually used in practice). For
curiosity we also include a case for AFSVJD model, where we set the lower bound for parameter
σ to 1e-2 only. As we can see, although the resulting calibrated value of parameter σ is far
from zero, avoiding the values smaller than 1e-2 during the optimization process led to a worse
calibration result. On the other hand, the results 7 and 8 are almost indistinguishable within the
tolerance 1e-9 since there were only 25 (in 4792) problematic situations when the integrand had to
be switched to vpa and fortunately the final result was not affected in this case. Among all results,
the 6th calibration trial gives the best results also in terms of AARE.

23

Figure 8: Option data structure for data from Example 5.1. There are 82 options in considered
data set of European call options to FTSE 100 dated 8 January 2014. Option prices are depicted
on the left and considered calibration weights on the right. Note that the scaling of dot diameters
differ in both pictures just for visual purposes, the diameters on the left are proportional to the
option prices (USD), whereas on the right they are proportional to the unit-less weights.

Table 9: Calibration results for data from Example 5.1 for different models with switching regime
algorithm (switch) used (ON) or not (OFF). Dimension (dim.) indicate the length of the vector
of model parameters χ that is being calibrated. Number of switches (# of sw.) indicate, how
many times the evaluation of the integrand had to be switched to vpa in all integrand evaluations
in each calibration trial. Calibrated parameter values for the AFSVJD model are listed below the
table.

model dim. switch # of sw. AARE(χi) MARE(χi) G(χi) i

Heston 5
OFF 0 / 4508 0.06512446 0.35292408 106.94072000 1
ON 74 / 4442 0.06512469 0.35292146 106.94071999 2

Bates 8
OFF 0 / 4364 0.10001985 0.92693868 130.25382485 3
ON 293 / 4526 0.06512521 0.35292381 106.94071992 4

AFSVJD 9
OFF 0 / 4812 0.06512390 0.35292162 106.94072035 5
ON 88 / 6162 0.06065231 0.42843860 84.14079714 6

AFSVJD
9

OFF 0 / 4792 0.06512324 0.35291189 106.94071997 7
(σ ≥ 0.01) ON 25 / 4792 0.06512324 0.35291189 106.94071997 8

χ5 = (0.00644592, 6.19473908, 0.00880072, 3.95726677, 0.99999999, 0.00000000, 1.04059997, 1.61568883, 0.69621767)

χ6 = (0.00001000, 0.00716856, 0.18471466, 3.71676726, 0.99995279, 3.49596838, 0.04460999, 0.00001000, 0.64278280)

χ7 = (0.00644589, 6.19756427, 0.00880014, 3.23167264, 0.99999999, 0.00000246,−7.44129841, 2.73418003, 0.68154330)

χ8 = (0.00644589, 6.19756427, 0.00880014, 3.23167264, 0.99999999, 0.00000246,−7.44129841, 2.73418003, 0.68154330)

24

6 Conclusion

In this paper we studied numerical integration in semi-closed option pricing formulas used espe-
cially in jump diffusion stochastic volatility models. When calibrating these models to real market
data, a numerical calculation of integrals has to be performed many times for different model
parameters. During calibration process all integral evaluations have to be performed with high
precision and low computational time requirements. Motivation for writing this paper was an
observation that for some model parameters, many numerical quadrature algorithms fail to meet
these requirements. We observed an enormous increase in function evaluations (fevals) especially
in adaptive quadratures, serious precision problems even for the simple trapezoidal rule as well
as a significant increase of computational time in all quadratures. At first we thought that the
problem is in the choice of numerical quadrature. However, a more detailed numerical analysis
showed that the problem is caused especially by the inaccurately evaluated integrand. We demon-
strated this behaviour on a simplified integrand in conference paper Daněk and Pospíšil (2015)
and suggested the usage of variable precision arithmetic (vpa) in all cases when evaluating the
integrand in standard double arithmetic is not sufficient.

The aim of this paper was to numerically analyse the integrand in the approximative fractional
stochastic volatility jump diffusion model first introduced by Pospíšil and Sobotka (2016a) that
among others cover also the Bates and Heston models. Since the evaluation of the integrand in vpa

is time consuming, the goal was to find a suitable fast algorithm that could tell if the integrand is
double sufficient or if it has to be evaluated in higher precision. The main result of this paper is
therefore the Algorithm 1. Experimental results then cover comparison of numerical quadratures
especially for problematic (double insufficient) cases that has to be switched to vpa.

From all numerical experiments we learned several lessons. First of all, a thorough numerical
analysis is a necessity in all problems that require some numerics, one should not believe any
implementation of any formula if not tested thoroughly. Even a very nice looking integrand can
cause serious numerical problems especially if inaccurately evaluated which can of course be hard
to realize. Blindly used formulas that were not numerically analysed can lead to potential big losses
as we showed in the example of wrongly priced option with difference greater than 100 dollars.
We also learned that a small error of the numerical integration can be actually a coincidence and
the potential problems can be detected by monitoring the number of fevals. And last but not
least, it was not only the low value of parameter σ that causes the problematic cases although its
influence is the most remarkable.

To tell what numerical quadrature is the best for our studied integral is not an easy task,
since the behaviour differs in double sufficient and problematic cases. In fact, when working
with real data, we might find a case when every numerical quadrature fails to meet some criteria.
Based on our huge number of experiments we can recommend the Gauss-Kronrod(7,15) quadrature
implemented in MATLAB as a function integral together with the correct (opt) implementation
of the regime switching Algorithm 1.

A promising for the future is the idea of high-precision numerical quadrature, newly available
in MATLAB function vpaintegral that can for example precisely calculate simple integrands
such as the one in Daněk and Pospíšil (2015), but as we showed still has some serious problems
with the integrand studied in this paper. To have a robust implementation of such a high-precision
integration routine can be in fact a challenging issue, as was mentioned by Bailey, Jeyabalan, and
Li (2005) where several high-precision quadratures are compared on a set of test problems with
integrands much simpler than the one studied here.

Last but not least, we compared the calibration results for the cases where the switching regime
algorithm is used or not and showed that avoiding problematic values of some of the parameters
can lead to worse calibration results.

We believe that methodology and experiments described in this paper can lead to a wider
usage of high-precision numerics in financial applications and we encourage readers to perform
similar numerical analysis also for other models.

25

Funding

This work was partially supported by the Grantová Agentura České Republiky (GACR), grant
numbers GA14-11559S Analysis of Fractional Stochastic Volatility Models and their Grid Imple-
mentation and GA18-16680S Rough models of fractional stochastic volatility.

Acknowledgements

Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific
Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and
Innovations Infrastructure”.

References

Bailey, D. H., Barrio, R., and Borwein, J. M. (2012), High-precision computation: mathematical physics
and dynamics. Appl. Math. Comput. 218(20), 10106–10121, ISSN 0096-3003, DOI 10.1016/j.amc.2012.03.087,
Zbl 1248.65147, MR2921767.

Bailey, D. H. and Borwein, J. M. (2005), Experimental mathematics: examples, methods and implications.
Notices Amer. Math. Soc. 52(5), 502–514, ISSN 0002-9920, Zbl 1087.65127, MR2140093.

Bailey, D. H. and Borwein, J. M. (2011), High-precision numerical integration: progress and challenges. J.
Symbolic Comput. 46(7), 741–754, ISSN 0747-7171, DOI 10.1016/j.jsc.2010.08.010, Zbl 1291.65070, MR2795208.

Bailey, D. H. and Borwein, J. M. (2015), High-Precision Arithmetic in Mathematical Physics. Mathematics
3(2), 337–367, ISSN 2227-7390, DOI 10.3390/math3020337, Zbl 1318.65025, MR3623863.

Bailey, D. H., Jeyabalan, K., and Li, X. S. (2005), A comparison of three high-precision quadrature schemes.
Experiment. Math. 14(3), 317–329, ISSN 1058-6458, DOI 10.1080/10586458.2005.10128931, Zbl 1082.65028,
MR2172710.

Bailey, D. H. and Swarztrauber, P. N. (1991), The fractional Fourier transform and applications. SIAM Rev.
33(3), 389–404, ISSN 0036-1445, DOI 10.1137/1033097, Zbl 0734.65104, MR1124359.

Bailey, D. H. and Swarztrauber, P. N. (1994), A fast method for the numerical evaluation of continuous
Fourier and Laplace transforms. SIAM J. Sci. Comput. 15(5), 1105–1110, ISSN 1064-8275, DOI 10.1137/0915067,
Zbl 0808.65143, MR1289155.

Barndorff-Nielsen, O. E. and Shephard, N. (2001), Non-Gaussian Ornstein–Uhlenbeck-based models and
some of their uses in financial economics. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63(2), 167–241, ISSN 1467-
9868, DOI 10.1111/1467-9868.00282, MR1841412.

Bates, D. S. (1996), Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options.
Rev. Financ. Stud. 9(1), 69–107, DOI 10.1093/rfs/9.1.69.

Baustian, F., Mrázek, M., Pospíšil, J., and Sobotka, T. (2017), Unifying pricing formula for sev-
eral stochastic volatility models with jumps. Appl. Stoch. Models Bus. Ind. 33(4), 422–442, ISSN 1524-1904,
DOI 10.1002/asmb.2248, Zbl 1420.91444, MR3690484.

Boyarchenko, S. and Levendorskii, S. (2014), Efficient variations of the Fourier transform in applications to
option pricing. J. Comput. Finance 18(2), 57–90, ISSN 1460-1559, DOI 10.21314/jcf.2014.277.

Carr, P. and Madan, D. B. (1999), Option valuation using the fast Fourier transform. J. Comput. Finance
2(4), 61–73, ISSN 1460-1559, DOI 10.21314/JCF.1999.043.

Dahlquist, G. and Åke, B. (2008), Numerical methods in scientific computing. Vol. I. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, ISBN 978-0-898716-44-3, DOI 10.1137/1.9780898717785,
MR2412832.

Daněk, J. and Pospíšil, J. (2015), Numerical integration of inaccurately evaluated functions. In Technical Com-
puting Prague 2015, pp. 1–11, Prague: University of Chemistry Technology, ISBN 978-80-7080-936-5, ISSN
2336-1662, TCP 2015, November 4, 2015, Prague, Czech Republic.

Davis, P. J. and Rabinowitz, P. (2007), Methods of numerical integration. Dover Publications, Inc., Mineola,
NY, ISBN 978-0-486-45339-2, corrected reprint of the second (1984) edition, Zbl 1139.65016, MR2401585.

Fang, F. and Oosterlee, C. W. (2009), A novel pricing method for European options based on Fourier-cosine se-
ries expansions. SIAM J. Sci. Comput. 31(2), 826–848, ISSN 1064-8275, DOI 10.1137/080718061, Zbl 1186.91214,
MR2466138.

Gander, W. and Gautschi, W. (2000), Adaptive quadrature—revisited. BIT 40(1), 84–101, ISSN 0006-3835,

DOI 10.1023/A:1022318402393, Zbl 0961.65018, MR1759036.
Gautschi, W. (1988), Gauss-Kronrod quadrature—a survey. In Numerical methods and approximation theory, III

(Niš, 1987), pp. 39–66, Niš: Univ. Niš, MR0960329.
Gautschi, W. (2004), Orthogonal polynomials: computation and approximation. Numerical Mathematics and

26

http://dx.doi.org/10.1016/j.amc.2012.03.087
https://zbmath.org/?q=an:1248.65147
https://www.ams.org/mathscinet-getitem?mr=2921767
https://zbmath.org/?q=an:1087.65127
https://www.ams.org/mathscinet-getitem?mr=2140093
http://dx.doi.org/10.1016/j.jsc.2010.08.010
https://zbmath.org/?q=an:1291.65070
https://www.ams.org/mathscinet-getitem?mr=2795208
http://dx.doi.org/10.3390/math3020337
https://zbmath.org/?q=an:1318.65025
https://www.ams.org/mathscinet-getitem?mr=3623863
http://dx.doi.org/10.1080/10586458.2005.10128931
https://zbmath.org/?q=an:1082.65028
https://www.ams.org/mathscinet-getitem?mr=2172710
http://dx.doi.org/10.1137/1033097
https://zbmath.org/?q=an:0734.65104
https://www.ams.org/mathscinet-getitem?mr=1124359
http://dx.doi.org/10.1137/0915067
https://zbmath.org/?q=an:0808.65143
https://www.ams.org/mathscinet-getitem?mr=1289155
http://dx.doi.org/10.1111/1467-9868.00282
https://www.ams.org/mathscinet-getitem?mr=1841412
http://dx.doi.org/10.1093/rfs/9.1.69
http://dx.doi.org/10.1002/asmb.2248
https://zbmath.org/?q=an:1420.91444
https://www.ams.org/mathscinet-getitem?mr=3690484
http://dx.doi.org/10.21314/jcf.2014.277
http://dx.doi.org/10.21314/JCF.1999.043
http://dx.doi.org/10.1137/1.9780898717785
https://www.ams.org/mathscinet-getitem?mr=2412832
https://zbmath.org/?q=an:1139.65016
https://www.ams.org/mathscinet-getitem?mr=2401585
http://dx.doi.org/10.1137/080718061
https://zbmath.org/?q=an:1186.91214
https://www.ams.org/mathscinet-getitem?mr=2466138
http://dx.doi.org/10.1023/A:1022318402393
https://zbmath.org/?q=an:0961.65018
https://www.ams.org/mathscinet-getitem?mr=1759036
https://www.ams.org/mathscinet-getitem?mr=0960329

Scientific Computation, Oxford University Press, New York, ISBN 0-19-850672-4, oxford Science Publications,
Zbl 1130.42300, MR2061539.

Gautschi, W. (2016), Algorithm 957: Evaluation of the Repeated Integral of the Coerror Function by Half-Range
Gauss-Hermite Quadrature. ACM Trans. Math. Softw. 42(1), 9:1–9:10, ISSN 0098-3500, DOI 10.1145/2735626,
Zbl 1347.65052, MR3472425.

Gautschi, W. (2017), OPQ: A Matlab suite of programs for generating orthogonal polynomials and related quadra-
ture rules. DOI 10.4231/R7959FHP, URL https://purr.purdue.edu/publications/1582/1.

Gonnet, P. (2009), Adaptive Quadrature Re-Revisited. Ph.D. thesis, ETH Zürich, DOI 10.3929/ethz-a-005861903.
Gonnet, P. (2012), A review of error estimation in adaptive quadrature. ACM Comput. Surv. 44(4), 22:1–22:36,

ISSN 0360-0300, DOI 10.1145/2333112.2333117, Zbl 1293.65037.
Heston, S. L. (1993), A closed-form solution for options with stochastic volatility with applications to bond and

currency options. Rev. Financ. Stud. 6(2), 327–343, ISSN 0893-9454, DOI 10.1093/rfs/6.2.327, Zbl 1384.35131,
MR3929676.

Kahl, C. and Jäckel, P. (2005), Not-so-complex logarithms in the Heston model. Wilmott Magazine

2005(September), 94–103.
Krylov, V. I. (1962), Approximate calculation of integrals. Translated by Arthur H. Stroud, The Macmillan Co.,

New York-London, 1962, Zbl 1152.65005, MR0144464.
Laurie, D. P. (2001), Computation of Gauss-type quadrature formulas. J. Comput. Appl. Math. 127(1-2), 201–217,

ISSN 0377-0427, DOI 10.1016/S0377-0427(00)00506-9, Zbl 0980.65021, MR1808574.
Levendorskii, S. (2012), Efficient pricing and reliable calibration in the Heston model. Int. J. Theor. Appl.

Finance 15(7), 1–44, ISSN 0219-0249, DOI 10.1142/S0219024912500501, MR2999575.
Lewis, A. L. (2000), Option Valuation Under Stochastic Volatility: With Mathematica code. Finance Press,

Newport Beach, CA, ISBN 9780967637204, Zbl 0937.91060, MR1742310.
Lewis, A. L. (2016), Option Valuation Under Stochastic Volatility II: With Mathematica code. Finance Press,

Newport Beach, CA, ISBN 978-0-9676372-1-1, Zbl 1391.91001, MR3526206.
Lindström, E., Ströjby, J., Brodén, M., Wiktorsson, M., and Holst, J. (2008), Sequential calibration

of options. Comput. Statist. Data Anal. 52(6), 2877–2891, ISSN 0167-9473, DOI 10.1016/j.csda.2007.08.009,
Zbl 05564677, MR2424766.

Mrázek, M., Pospíšil, J., and Sobotka, T. (2016), On calibration of stochastic and fractional stochastic
volatility models. European J. Oper. Res. 254(3), 1036–1046, ISSN 0377-2217, DOI 10.1016/j.ejor.2016.04.033,
Zbl 1346.91238, MR3508893.

Mrázek, M. and Pospíšil, J. (2017), Calibration and simulation of Heston model. Open Math. 15(1), 679–704,
ISSN 2391-5455, DOI 10.1515/math-2017-0058, Zbl 1368.60061, MR3657941.

Ortiz-Gracia, L. and Oosterlee, C. W. (2016), A highly efficient Shannon wavelet inverse Fourier
technique for pricing European options. SIAM J. Sci. Comput. 38(1), B118–B143, ISSN 1064-8275,
DOI 10.1137/15M1014164, Zbl 1330.91184, MR3452255.

Pal, S. P., Koul, R. K., Musadeekh, F., Ramakrishna, P. H. D., and Basu, H. (2004), Computations
that require higher than double precision for robust and exact decision making. Int. J. Comput. Math. 81(5),
595–605, ISSN 0020-7160, DOI 10.1080/00207160410001684235, Zbl 1093.65046, MR2170905.

Pospíšil, J. and Sobotka, T. (2016a), Market calibration under a long memory stochastic volatility model.
Appl. Math. Finance 23(5), 323–343, ISSN 1350-486X, DOI 10.1080/1350486X.2017.1279977, Zbl 1396.91760,
MR3615548.

Pospíšil, J. and Sobotka, T. (2016b), Test data sets for calibration of stochastic and fractional stochastic
volatility models. Data Brief 8(C), 628–630, DOI 10.1016/j.dib.2016.06.016.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007), Numerical recipes.
Cambridge University Press, Cambridge, third edn., ISBN 978-0-521-88068-8, the art of scientific computing,
Zbl 1132.65001, MR2371990.

Rathod, H. T., Sathish, R. D., Islam, M. S., and Gali, A. K. (2011), Application of MATLAB symbolic
maths with variable precision arithmetic (vpa) to compute some high order Gauss Legendre quadrature rules.
Ganit 29(0), 117–125, ISSN 1606-3694.

Schmelzle, M. (2010), Option pricing formulae using Fourier transform: Theory and application. URL
http://pfadintegral.com/articles/.

Stoer, J. and Bulirsch, R. (2002), Introduction to numerical analysis, vol. 12 of Texts in Applied Mathematics.
Springer-Verlag, New York, third edn., ISBN 0-387-95452-X, DOI 10.1007/978-0-387-21738-3, Zbl 1004.65001,
MR1923481.

Yan, G. and Hanson, F. B. (2006), Option pricing for a stochastic-volatility jump-diffusion model with log-
uniform jump-amplitude. In Proceedings of American Control Conference, pp. 2989–2994, Piscataway, NJ: IEEE,
DOI 10.1109/acc.2006.1657175.

27

https://zbmath.org/?q=an:1130.42300
https://www.ams.org/mathscinet-getitem?mr=2061539
http://dx.doi.org/10.1145/2735626
https://zbmath.org/?q=an:1347.65052
https://www.ams.org/mathscinet-getitem?mr=3472425
http://dx.doi.org/10.4231/R7959FHP
https://purr.purdue.edu/publications/1582/1
http://dx.doi.org/10.3929/ethz-a-005861903
http://dx.doi.org/10.1145/2333112.2333117
https://zbmath.org/?q=an:1293.65037
http://dx.doi.org/10.1093/rfs/6.2.327
https://zbmath.org/?q=an:1384.35131
https://www.ams.org/mathscinet-getitem?mr=3929676
https://zbmath.org/?q=an:1152.65005
https://www.ams.org/mathscinet-getitem?mr=0144464
http://dx.doi.org/10.1016/S0377-0427(00)00506-9
https://zbmath.org/?q=an:0980.65021
https://www.ams.org/mathscinet-getitem?mr=1808574
http://dx.doi.org/10.1142/S0219024912500501
https://www.ams.org/mathscinet-getitem?mr=2999575
https://zbmath.org/?q=an:0937.91060
https://www.ams.org/mathscinet-getitem?mr=1742310
https://zbmath.org/?q=an:1391.91001
https://www.ams.org/mathscinet-getitem?mr=3526206
http://dx.doi.org/10.1016/j.csda.2007.08.009
https://zbmath.org/?q=an:05564677
https://www.ams.org/mathscinet-getitem?mr=2424766
http://dx.doi.org/10.1016/j.ejor.2016.04.033
https://zbmath.org/?q=an:1346.91238
https://www.ams.org/mathscinet-getitem?mr=3508893
http://dx.doi.org/10.1515/math-2017-0058
https://zbmath.org/?q=an:1368.60061
https://www.ams.org/mathscinet-getitem?mr=3657941
http://dx.doi.org/10.1137/15M1014164
https://zbmath.org/?q=an:1330.91184
https://www.ams.org/mathscinet-getitem?mr=3452255
http://dx.doi.org/10.1080/00207160410001684235
https://zbmath.org/?q=an:1093.65046
https://www.ams.org/mathscinet-getitem?mr=2170905
http://dx.doi.org/10.1080/1350486X.2017.1279977
https://zbmath.org/?q=an:1396.91760
https://www.ams.org/mathscinet-getitem?mr=3615548
http://dx.doi.org/10.1016/j.dib.2016.06.016
https://zbmath.org/?q=an:1132.65001
https://www.ams.org/mathscinet-getitem?mr=2371990
http://pfadintegral.com/articles/
http://dx.doi.org/10.1007/978-0-387-21738-3
https://zbmath.org/?q=an:1004.65001
https://www.ams.org/mathscinet-getitem?mr=1923481
http://dx.doi.org/10.1109/acc.2006.1657175

	1 Introduction
	2 Stochastic volatility models
	3 Inaccurately evaluated integrand
	4 Numerical quadratures and their failures
	5 Numerical results
	5.1 Quadratures behaviour in problematic cases
	5.2 Results for switching regime
	5.3 Optimal switching regime quadratures
	5.4 Calibration to real market data

	6 Conclusion

