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Abstract

In this work, we apply the Stochastic Grid Bundling Method (SGBM) to numerically solve
backward stochastic differential equations (BSDEs). The SGBM algorithm is based on condi-
tional expectations approximation by means of bundling of Monte Carlo sample paths and a
local regress-later regression within each bundle. The basic algorithm for solving the backward
stochastic differential equations will be introduced and an upper error bound is established
for the local regression. A full error analysis is also conducted for the explicit version of our
algorithm and numerical experiments are performed to demonstrate various properties of our
algorithm.

1 Introduction

The Stochastic Grid Bundling Method (SGBM) is a Monte Carlo based algorithm designed to
solve backward dynamic programming problems, with applications in pricing Bermudan options in
[15] and [4]. This algorithm has been further extended computationally by the incorporation of
GPU acceleration in [16] and generalized to the computation of Credit Valuation Adjustment and
Potential Future Exposure in [6]. In this work, we will extend its applicability to the approximation
of Backward Stochastic Differential Equations (BSDEs). We shall also study the errors in the SGBM
algorithm.

The SGBM algorithm is based on the so-called regress-later technique and on an adaptive local
basis approach. In usual Monte Carlo regression methods for backward-in-time problems, the values
of the target function at the end of a time interval are regressed on certain dependent variables
that are measured at the beginning of the time interval (which is called the regress-now approach).
This creates a statistical error. Instead, the dependent variable is projected onto a set of basis
functions at the end of the interval in a regress-later method, and a conditional expectation across
the interval is then computed for each basis function. This difference removes the statistical error
in the regression step. Regress-later schemes have been further discussed in [9].

With an adaptive local basis approach, the whole simulation is partitioned into non-overlapping
subsets and we perform least-squares regressions separately within these subsets, possibly with a
different basis for each subset. The exact partition depends on the simulated samples themselves and
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its purpose is to gather samples that share similar ”characteristics” such that the local regression
is more accurate than the global one. For further application of localization in numerical schemes,
the reader may check out [3]. Since each partition is non-overlapping, SGBM is easy to scale up in
dimensionality and can facilitate parallel computing. We would like to test the SGBM algorithm in
a new problem setting such that we can take advantage of its nice properties and also get a better
understanding of the underlying principles.

The problem that we are interested in is the numerical approximation of BSDEs. These equa-
tions form a popular subject of research in quantitative finance ever since their introduction in [18]
and related works. The connection between BSDEs and partial differential equations (PDEs) also
provides the opportunity of solving PDEs (in high dimensions) with stochastic methods. However,
the computational difficulties of solving BSDEs prevent them from being widely used in practice.
Therefore, efficient algorithms for the approximation of high-dimensional BSDEs are of great inter-
est. In fact, there are numerous works just focusing on the application of Monte Carlo methods to
BSDEs, including [2, 5, 11, 17, 1] and some of these could be integrated with our proposed scheme
for further development. For example, in [7], the authors proposed a regression basis based on a
Fourier-cosine expansion in a least-squares scheme for BSDEs, which can possibly be used as a basis
function in our SGBM algorithm. As far as we know, there is no study of a combined approach
based on the regress-later scheme and a localization Monte Carlo technique for these equations,
which is the goal of this work.

In this article, we consider the application of SGBM to decoupled Forward Backward Stochastic
Differential Equations (FBSDEs) of the form

{

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0,
dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt, YT = Φ(XT ),

(1.1)

defined on 0 ≤ t ≤ T . The function f : [0, T ] × R
q × R × R

d is called the driver function of the
backward process and the process Wt = (W1,t, . . . ,Wd,t)

⊤ is a d-dimensional standard Brownian
motion. Note that the usual setting of complete probability space (Ω,F ,F,P) with F := (Ft)0≤t≤T

being a filtration satisfying the usual conditions of being right-complete and P-complete applies
throughout the article. Given that a solution exists for the forward equation, a pair of adapted
processes (Yt, Zt) is said to be the solution of the FBSDE (1.1), if Yt is a continuous real-valued

adapted process, Zt is a real-valued predictable process such that
∫ T
0 |Zt|2dt < ∞ almost surely in

P and the pair satisfies Equation (1.1).
One key difficulty in solving a BSDE is that the pair (Yt, Zt) must be adapted to the underlying

filtration. The terminal condition YT is given by Φ(XT ), where Φ : Rq → R is a deterministic
function. Therefore, YT is adapted to the filtration FT and a naive Euler discretization on the
backward equation fails to produce an adapted solution, for further discussion on this, the reader
may refer to the introduction in [2]. In this work, we aim to construct an approximate solution by
the theta-scheme from [22] and applying the SGBM algorithm.

To ensure the existence and uniqueness of the solution to the forward equation, further regularity
conditions are assumed here. The functions µ : [0, T ] × R

q → R
q and σ : [0, T ] × R

q → R
q×d refer

to the drift and the diffusion coefficients of the forward stochastic process, and x0 is the initial
condition for X. It is assumed that both µ(t, x) and σ(t, x) are measurable functions that are
uniformly Lipschitz in x and such condition holds uniformly in t. The forward process also satisfies
the Markov property, namely E[Xτ |Ft] = E[Xτ |Xt] for τ ≥ t, where E[·] denotes expectation with
respect to probability measure P.
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The rest of the article is organized as follows. We start in Section 2 with the introduction of the
SGBM algorithm, along with the necessary time discretization scheme and assumptions. Section
3 will present an error analysis of a simplified case of SGBM. The proof in this section forms the
foundation for the error bound in any algorithm applying SGBM. Later, in Section 4, we derive the
full error bound for a specific choice of discretization scheme as an example. The article finishes
with numerical experiments and a conclusion.

To close off this section, here is some further notation that is used in this article.

• For any vector x, |x| denotes its Euclidean norm and xr denotes its r-th component.

• Similarly, Xr,t denotes the r-th component for any random process Xt.

• The gradient ∇g is defined as
(

∂g
∂x1

, . . . , ∂g
∂xq

)

for any differentiable function g : Rq → R.

• The notations Et[·] and E
x
t [·] are the simplified notations for E[·|Ft] and E[·|Xt = x]

• For any set S, the function 1S is the indicator function which takes value 1 when the input
is within set S and 0 otherwise.

• For any function space H containing functions φ : Rq → R, H+ is defined as the set {{(x, y) ∈
R
q × R : φ(x) ≥ y} : φ ∈ H}.

• For any function φ and compact set A, the control constant Cφ,A is defined as an extended
real number supx∈A |φ(x)|.

2 Assumptions and Algorithm

In this section, we shall introduce the SGBM algorithm and its application to the approximation
of BSDEs. To begin, we need to discretize the BSDEs.

2.1 Discretization Scheme

We denote a time grid π = {0 = t0 < . . . < tN = T} on the interval [0, T ] and let ∆k := tk+1 − tk,
∆Wl,k := Wl,tk+1

− Wl,tk , and ∆Wk := (∆W1,k, . . . ,∆Wd,k)
⊤ be the time-step, the Brownian

motion increment along the l-th dimension and the Brownian motion increment, respectively, for
k ∈ {0, . . . , N − 1}.

For the forward process Xt, we shall apply a Markovian approximation Xπ
tk
, tk ∈ π. The most

common choice is the Euler-Maruyama scheme, which will be explained in Section 5. However, our
algorithm can work with any simulation method where the conditional expectations over one time
step are known for some specific functions.

The backward in time discretizations (Y π, Zπ) form a special case of the theta-scheme from [21]
and [20] by selecting (θ1, θ2) = (0, 1). We use the following explicit discretization:

yN (x) = Φ(x),

zk(x) =
1

∆k
E
x
tk

[

yk+1(X
π
tk+1

)∆Wk

]

, k = N − 1, . . . , 0,

yk(x) = E
x
tk

[

yk+1(X
π
tk+1

)
]

+∆kE
x
tk

[

fk+1(yk+1(X
π
tk+1

), zk+1(X
π
tk+1

))
]

, k = N − 1, . . . , 0,

where fk(y, z) := f(tk,X
π
tk
, y, z).
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2.2 Standing Assumptions

To ensure the existence and uniqueness of the solution of the continuous BSDEs, some basic as-
sumptions are required. Moreover, these assumptions will affect the algorithm designed regarding
the admissible choice of π and the error bound of the scheme. In this work, we assume the global
Lipschitz condition as stated in Assumption 2.1. Note that this assumption will affect the deriva-
tion and the result of the error bound for the complete algorithm. Assumption 2.1 is in force here
as it is the most common assumption in the BSDE literature. Alternative assumptions can be
found, for instance, in [12].

Assumption 2.1 (Globally Lipschitz driver).

(Aξ) i.) Φ is a measurable function.

ii.) The control constant CΦ,A < ∞ for any given compact set A.

(AF ) i.) (t, x, y, z) 7→ f(t, x, y, z) is B(R)⊗ B(Rq)⊗ B(R)⊗ B(Rd)-measurable.

ii.) For every k ≤ N , fk(y, z) as defined in the Subsection 2.1 is Ftk ⊗ B(R) ⊗ B(Rd)-
measurable and there exists an Lf ∈ [0,+∞) such that

|fk(y, z) − fk(y
′, z′)| ≤ Lf (|y − y′|+ |z − z′|), ∀k ∈ {0, . . . , N},

for any (y, y′, z, z′) ∈ R× R×R
d × R

d.

iii.) There exists a Cf ∈ [0,∞) such that

|fk(0, 0)| ≤ Cf , ∀k ∈ {0, . . . , N}.

iv.) The time discretization is such that

lim sup
N→∞

Rπ < +∞, where Rπ = sup
0≤k≤N−2

∆k

∆k+1
.

Again, the assumption here is for the consistency of our derivation and does not imply that our
algorithm can only be applied when these assumptions are satisfied.

2.3 Stochastic Grid Bundling Method

We now introduce SGBM. Due to the Markovian setting of (Xπ
tk
,Ftk)tk∈π, there exist functions

yk(x) and zk(x) such that
Y π
tk

= yk(X
π
tk
), Zπ

tk
= zk(X

π
tk
).

Our method is based on estimating these functions (yk(x), zk(x)) recursively backward in time by a
local least-squares regression technique onto a finite function space with basis functions (pl)0≤l≤Q.

As a Monte Carlo based algorithm, our program starts with the simulation of M independent
samples of (Xπ

tk
)0≤k≤N , denoted by (Xπ,m

tk
)1≤m≤M,0≤k≤N . Note that in this basic algorithm, the

simulation is only performed once. This scheme is therefore a non-nested Monte Carlo scheme.
The next step is the backward recursion. Denote by yRk the SGBM approximation of the function

yk. The function zRk similarly means the approximation of zk.
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At initialization, we assign the terminal values to each path for our approximations, i.e.,

yRN (Xπ,m
tN

) = Φ(Xπ,m
tN

), m = 1, . . . ,M,

The following steps are performed recursively, backward in time, at tk, k = N − 1, . . . , 0. First, we
bundle all paths into Btk(1), . . . ,Btk(B) non-overlapping partitions based on the result of (Xπ,m

tk
).

Note that our design allows the application of various clustering techniques within the SGBM
algorithm. A previous study in [16] compares the k-means clustering with an equal partitioning,
and shows that they are similar in accuracy. However, it remains an interesting problem which
clustering technique would provide the optimal result. We use the equal partition technique, which
will be specified in Section 3, for the error analysis and the numerical experiment.

Next, we perform the regress-later approximation separately within each bundle. The regress-
later technique we are using combines the least-squares regression with the (analytical) expectations
of the basis functions to calculate the necessary expectations.

Generally speaking, for M Monte Carlo paths, a standard regress-now algorithm for a dynamic
programming problem finds a function ι within the space spanned by the regression basis such that
it minimizes the value 1

M

∑M
i=1(g(X

i
t+δ) − ι(Xi

t))
2 and approximates the expectation Et[g(Xt+δ)]

by Et[ι(Xt)] = ι(Xt). As a projection from a function of Xt+δ to a function of Xt is performed
then, it would introduce a statistical bias to the approximation.

Instead, the regress-later technique we employ picks out a function κ such that it minimizes
1
M

∑M
i=1(g(X

i
t+δ) − κ(Xi

t+δ))
2 and approximates the expectation Et[g(Xt+δ)] by Et[κ(Xt+δ)]. By

using functions on the same variable in the regression basis, we can remove the statistical bias in
the regression. However, the expectation of all basis functions must preferably be known in order
to apply the regress-later technique efficiently.

In the context of our algorithm, we define the bundle-wise regression parameters αk+1(b),
βk+1(b), γk+1(b) as

αk+1(b) = arg min
α∈RQ

∑M
m=1(p(X

π,m
tk+1

)α− yRk+1(X
π,m
tk+1

))21Btk
(b)(X

π,m
tk

)
∑M

m=1 1Btk(b)
(Xπ.m

tk
)

,

βi,k+1(b) = arg min
β∈RQ

∑M
m=1(p(X

π,m
tk+1

)β − zRi,k+1(X
π,m
tk+1

))21Btk
(b)(X

π,m
tk

)
∑M

m=1 1Btk(b)
(Xπ.m

tk
)

,

γk+1(b) = arg min
γ∈RQ

∑M
m=1(p(X

π,m
tk+1

)γ − fk+1(y
R
k+1(X

π,m
tk+1

), zRk+1(X
π,m
tk+1

)))21Btk
(b)(X

π,m
tk

)
∑M

m=1 1Btk(b)
(Xπ.m

tk
)

.

The approximate functions within the bundle at time k are defined by the above parameters and

the expectations Ex
tk
[p(Xπ

tk+1
)] and E

x
tk

[

p(Xπ
tk+1

)
∆Wr,k

∆k

]

:

zRr,k(b, x) = E
x
tk

[

∆Wr,k

∆k
p(Xπ

tk+1
)

]

αk+1(b), r = 1, . . . , d;

yRk (b, x) = E
x
tk

[

p(Xπ
tk+1

)
]

(αk+1(b) + ∆k(1− θ1)γk+1(b)), i = 1, . . . , I.

As the expectations related to the basis functions are the foundation of any regress-later scheme,
we assume that the following assumptions are satisfied.
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Assumption 2.2. The regression basis {p1, . . . , pQ} is assumed to satisfy the following assump-
tions.

(Ap) i.) E
x
tk
[pl(X

π
tk+1

)] and E
x
tk

[

pl(X
π
tk+1

)
∆Wr,k

∆k

]

are known, either analytically or empirically, for

all k = 0, . . . N − 1, l = 1, . . . , Q and r = 1, . . . , d.

ii.) For any given compact set A in R
q, the constant Cp,A := maxl=1,...,Q Cpl,A. Moreover,

there exists a constant CM,A such that

Q
∑

l=1

∣

∣

∣E
x
tk
[pl(X

π
tk+1

)]
∣

∣

∣ ≤ CM,A, ∀x ∈ A, and k = 0, . . . , N − 1;

and
Q
∑

l=1

∣

∣

∣

∣

E
x
tk
[pl(X

π
tk+1

)
∆Wr,k

∆k
]

∣

∣

∣

∣

≤ CM,A, ∀x ∈ A, and k = 0, . . . , N − 1.

Next, to ensure the stability of our algorithm, |αk(b)|, |βr,k(b)| and |γk(b)| must be bounded
above for all k, b, r. In practice, this means that an error notion should be given by the program
when the Euclidean norm of any regression coefficient vector is greater than a predetermined
constant L. Further details on this requirement will be described in Section 3.

Finally, to simplify notation, we define the notations below for the regression result across the
bundles.

ỹR,I
k+1(x1, x2) :=

B
∑

b=1

1Btk
(b)(x1)p(x2)αk+1(b),

z̃Rr,k+1(x1, x2) :=

B
∑

b=1

1Btk
(b)(x1)p(x2)βr,k+1(b),

f̃R
k+1(x1, x2) :=

B
∑

b=1

1Btk
(b)(x1)p(x2)γk+1(b).

3 Refined Regression

In this section, we derive a proof of an error bound for our regress-later strategy. In order to ensure
the stability of our algorithm, we have introduced a sample selection step into the algorithm and
modified the classical proof for nonparametric regression from [14], which was used in [12], for the
derivation of the error bound to SGBM.

In order to simplify expressions, different notations are used in this section. We consider a
random vector (X,Y ), where X and Y are both R

q, following the probability measure ν. A cloud
of simulation paths can be generated by independently simulating M copies, {(Xm, Y m) : m =
1, . . . ,M}, defined on a probability space (Ω̂, F̂ , P̂). In our content, the pair (X,Y ) represents the
independent and dependent variables under consideration and (Xm, Y m) are the simulated samples
for (X,Y ).

Denote by B a specific partition with B := {B(1), . . . ,B(B)} and
⋃B

b=1 B(b) = R
d. The partition

which is used in the regression estimates is based on the simulation data Xm in our setting and to
which bundle a sample belongs solely depends on Xm.
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The main goal of SGBM is finding an effective and accurate way to approximate the expectation
E [v(Y )|X] in a recurrence setting for some deterministic function v : Rq → R, and we begin with
establishing an estimate ṽ : Rq × R

q for v. Note that although v solely depends on the dependent
variables, the estimate ṽ depends on both the independent and dependent variables in preparation
for further calculation.

For a given partition and samples, one way to define the estimate ṽ is

ṽ(x, y) :=
B
∑

b=1

1B(b)(x)ṽb(y) =
B
∑

b=1

1B(b)(x)

Q
∑

k=1

αk(b)pk(y), (3.1)

where

ṽb := argmin
φ∈H

{

∑M
m=1 1B(b)(X

m)|v(Y m)− φ(Y m)|2
∑M

m=1 1B(b)(X
m)

}

.

Remark 3.1. It is possible that under some particular clustering scheme for SGBM, there would be
empty bundles in the resulting partition.

In practice, one could simply ignore these empty bundles in the algorithm. As there are no
samples in these bundles, approximations within these bundles are not needed for the next time
step. One point to note is that since least-squares regression requires a sufficient number of samples
to be accurate, adopting a bundling scheme that would produce a small number of samples in any
bundle may not be a good idea.

When generalizing the theoretical proof below to bundling methods other than equal partition,
one has to take this into account and define the measurable partition B in such a way that it is
consistent with the practical bundling scheme while it also merges all empty bundle to non-empty
ones.

Further discussion on bundles with few samples under the equal partition scheme is placed in
Remark 3.6.

Note that functions ṽb : R
q → R are stochastic with respect to the simulation samples (Xm, Y m).

The linear vector space H is spanned by continuous functions {p1, . . . , pQ}, with pl : R
q → R, ∀l =

1, . . . , Q. Thus, the second equality in Equation (3.1) just follows from the definition of H and
typical least-squares regression. In fact, if we denote the total number of samples in a given
bundle by #B(b) and let {(Xb,1, Y b,1), . . . , (Xb,#B(b), Y b,#B(b))} be the samples in this bundle, the
coefficients α(b) satisfy

I⊤Iα(b) = I⊤v(Y b), (3.2)

with
I = (pj(Y

b,i))1≤i≤#B(b),1≤j≤Q and v(Y b) = (v(Y b,1), . . . , v(Y b,#B(b)))⊤.

According to [14], system (3.2) is always solvable, in the next section, we also provide a heuristic
argument for its invertibility. Again, the coefficients α in each bundle can be seen as random
variables with respect to (Xm, Y m)m=1,...,M .

Reversely, we may select the simulation cloud based on the regression coefficients. Let the set S
be the set containing all possible collections of (xm, ym)1≤m≤M ∈ (Rq×R

q)M such that |α(b)|2 ≤ L
for all b given that (Xm, Y m) = (xm, ym)1≤m≤M . We modify the probability of the simulation
cloud by only accepting those results that are in S. We denote the modified expectation by ÊS and

it is related to the original expectation by ÊS[1A] =
Ê[1A1S ]

Ê[1S ]
. 1

1
The situation of

0
0
should be understood as 0 and

K
0

as ∞ in the rest of this article.
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Remark 3.2. In a regress-now scheme, especially in a recursion scheme, the resulting approximation
is truncated such that its value is within a bounded interval [M1,M2]. The truncation guarantees
the convergence and the stability of the scheme. However, truncation is not feasible in our regress-
later scheme as we have to keep the full function for further operation. Therefore, we must instead
control the output by limiting the admissible samples.

Remark 3.3. The introduction of bundling here essentially serves two purposes. First of all, clus-
tering data may act as a localization of function v, thus a more accurate approximation for v can
be achieved with lower order function basis. This is especially beneficial for the high-dimensional
case as basis functions in higher dimension are generally complicated and hard to calculate. We
need a method to increase accuracy without adding more basis functions. Secondly, by partitioning
data into non-overlapping bundles, we can facilitate the application of parallel computing, which is
important when we are in a high-dimensional situation. However, while the above benefit depends
on the particular choice of basis, the analysis we do in this section is applicable for a more general
setting. So, we would not emphasis these points further in this section.

Using ν to denote the probability measure induced by the random variable (X,Y ) and
(Xm, Y m)m=1,...,M are independent and identical copies following the same law under a different
probability space, the following random norms (depending on the simulation cloud (Xm, Y m)) are
used to quantify the error of approximation.

Definition 3.4. Let ϕ : Ω̂ × R
q × R

q → R be measurable. For any set B ⊂ R
q, we define the

following random norms

||ϕ||2B,∞ :=

∫

B

∫

|ϕ(x, y)|2ν(dx, dy)
∫

B

∫

ν(dx, dy)
; ||ϕ||2B,# :=

∑M
m=1 1B(X

m)|ϕ(Xm, Y m)|2
∑M

m=1 1B(X
m)

.

We derive the following theorem for the estimation of the error. Since we only accept a sim-
ulation result that satisfies event S, we should only consider the average error among all these
accepted events.

Theorem 3.5. Assume that we perform an equal partition at the bundling step, namely, we order
all samples according to some specific measurable sorting function on X, and separate them into
almost-equal size bundles by the ordering. Further, assume a compact set A ⊂ R

q to be given such
that Cv,A ≤ ∞ and

∫

v2(y)ν(dx, dy) ≤ ∞, namely, the function v is within the L2 space with respect
to the given probability measure. Then, for any real function v, we have

ÊS

[
∫∫

|v(y)− ṽ(x, y)|2ν(dx, dy)
]

≤ϑ(L′)

Ê[1S ]
Ê

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)
(log(

∑M
m=1 1B(b)(X

m)− 1) + 1)(Q+ 1)
∑M

m=1 1B(b)(X
m)− 1

]

+ ÊS

[

B−1
∑

b=1

∫

B(b)

∫

ν(dx, dy)
24L′

(
∑M

m=1 1B(b)(X
m))

]

+
12

Ê[1S ]
Ê

[

∑

B∈B

∫

B

∫

ν(dx, dy)( inf
φ∈H

sup
x∈B

E
[

|v(Y )− φ(Y )|2|X = x
]

∧ L′)

]

+ ÊS

[
∫∫

|v(y)− ṽ(x, y)|2(1− 1A(y))ν(dx, dy)

]

,

8



for L′ := 2LQC2
p,A+2C2

v,A, and ϑ(L′) a function depending on L′. Note that the set A is introduced
to avoid the restrictive assumption of v being bounded. It does not play a role in the actual algorithm.

Proof. To prepare for our analysis, a more formal construction of the equal partition technique
needs to be introduced.

In practice, for samples (Xm, Y m)1≤m≤M and a measurable sorting function S : Rq → R, the
M different values can be ordered into,

S(X1∗) ≤ S(X2∗) ≤ · · · ≤ S(XM∗

),

by simply putting {X1∗ , · · · ,X(M/B)∗} into the first bundle, {X(M/B+1)∗ , · · · ,X(2M/B)∗} into the
second one, etc., assuming M can be divided by B for simplicity.

However, in order to conduct meaningful analysis, a measurable partition of Rq based on the
simulation cloud (Xm)1≤m≤M is required. Thus for any simulation (Xm)1≤m≤M with {X1∗ =
x∗1, · · · ,XM∗

= x∗M}, we define B(1) := S−1((−∞,S(x∗M/B)]),B(2) := S−1((S(x∗M/B),S(x∗2M/B)]), · · · ,
B(B) := S−1(S(x∗M−M/B),∞) and ∪B

b=1B(b) = R
q. Therefore,

B = {S−1((−∞,S(x1)]),S
−1((S(x1),S(x2)]), · · · ,S−1((S(xB−1),∞))}

if and only if

(X1@ ,X2@ , · · ·XM@
)

∈(S−1((−∞,S(x1))))
M/B−1 × {x1} × · · · × {xB−1} × (S−1((S(xB−1),∞)))M/B−1.

The notation @ denotes any permutation of the set {1, 2, · · ·M}, noting that each sample is inde-
pendent of the others and interchangeable. This is measurable with respect to the sigma algebra
generated by the simulation cloud Xm as there are finite permutations for fixed M and S is mea-
surable.

Note that this setting is not unique for defining a workable partition and there may be alternative
definitions that may improve the analysis result. However, this is an intuitive definition.

Assuming σ(B) to be the smallest sigma algebra to determine the partition, we notice that it
is smaller than the sigma algebra generated by the random samples Xm, σ(B) ⊂ σ(Xm). This
is because multiple realizations of the samples can lead to the same partition. A simple thought
experiment is to consider a fixed partition, and subsequently move one interior sample within a
bundle. If we conduct a new bundling with this new set of samples, the partition will remain the
same. Indeed, the samples within a bundle are independent among each other and have the same
distribution.

As for the actual analysis, we start by decomposing the error into different terms for any given
partition B = {B(1), · · · ,B(B)} = {S−1((−∞,S(x1)]),S

−1((S(x1),S(x2)]), · · · ,S−1((S(xB−1),∞))}.
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In line with the Monte Carlo literature, we assume Xi 6= Xj , if i 6= j, and
∫∫

|v(y)− ṽ(x, y)|2ν(dx, dy)

≤
∑

B∈B

∫

B

∫

|v(y) − ṽ(x, y)|21A(y)ν(dx, dy) +
∫∫

|v(y)− ṽ(x, y)|2(1− 1A(y))ν(dx, dy)

=

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)

(

||(v − ṽ)1A||B(b),∞ − 2||(v − ṽ)1A||B(b)\{xb},#

+ 2||(v − ṽ)1A||B(b)\{xb},# − 2||(v − ṽ)1A||B(b),# + 2||(v − ṽ)1A||B(b),#
)2

+

∫∫

|v(y)− ṽ(x, y)|2(1− 1A(y))ν(dx, dy)

≤
B
∑

b=1

∫

B(b)

∫

ν(dx, dy)

(

max{||(v − ṽ)1A||B(b),∞ − 2||(v − ṽ)1A||B(b)\{xb},#, 0}

+ 2||(v − ṽ)1A||B(b)\{xb},# − 2||(v − ṽ)1A||B(b),# + 2||(v − ṽ)1A||B(b),#
)2

+

∫∫

|v(y)− ṽ(x, y)|2(1− 1A(y))ν(dx, dy)

≤
B
∑

b=1

∫

B(b)

∫

ν(dx, dy)3max{||(v − ṽ)1A||B(b),∞ − 2||(v − ṽ)1A||B(b)\{xb},#, 0}2

+
B−1
∑

b=1

∫

B(b)

∫

ν(dx, dy)12(||(v − ṽ)1A||B(b)\{xb},# − ||(v − ṽ)1A||B(b),#)2

+
∑

B∈B

12

∫

B

∫

ν(dx, dy)||(v − ṽ)1A||2B,# +

∫∫

|v(y) − ṽ(x, y)|2(1− 1A(y))ν(dx, dy)

=:
B
∑

b=1

∫

B(b)

∫

ν(dx, dy)T1,B(b) +
B−1
∑

b=1

∫

B(b)

∫

ν(dx, dy)T2,B(b)

+
∑

B∈B

∫

B

∫

ν(dx, dy)T3,B +

∫∫

|v(y) − ṽ(x, y)|2(1− 1A(y))ν(dx, dy), (3.3)

with a slight abuse of notation, {xB} := ∅ above.
Note that the easiest way to conceptualize the term ||(v − ṽ)1A||B(b)\{xb},# is that we simply

remove the sample that is used for defining the partition. Thus,

M
∑

m=1

1B(b)\{xb}(X
m) =

M
∑

m=1

1B(b)(X
m)− 1.

This is done to ensure that all samples in the empirical norm || · ||B(b)\{xb},# are independent of
each other.

As the last term cannot be further simplified, we now focus on the first three terms. The
meaning of all error terms will be discussed in the next subsection.
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The first term we study is T3,B, which represents the best possible approximation from the space
H to the target function under the empirical norm within the bundle. To begin, within any bundle
B(b) under any given partition B, it is obvious that

||1A(v − ṽ)||B(b),# ≤ ||v − ṽb||B(b),# = min
φ∈H

||v − φ||B(b),#,

for any B(b). Only the ṽb term in the series of ṽ matters and ṽb is the function that minimizes the
approximation difference under the empirical norm within the given bundle.

Alternatively, we may consider the following composite norm

sup
x∈B(b)

(

E
[

(f(Y ))2|X = x
])

1
2 , (3.4)

for any given bundle B(b). For the sake of simplicity, we assume there exists an element φB(b) within
the space H such that v(·)− φB(b)(·) minimizes the norm, namely,

sup
x∈B(b)

E
[

|v(Y )− φB(b)(Y )|2|X = x
]

= inf
φ∈H

sup
x∈B(b)

E
[

|v(Y )− φ(Y )|2|X = x
]

.

As φB(b) ∈ H, it is clear that under the empirical norm, we have

||1A(v − ṽ)||2B(b),# ≤ ||v − ṽb||2B(b),# ≤ ||v − φB(b)||2B(b),# =

∑#B(b)
m=1 |v(Y b,m)− φB(Y

b,m)|2
#B(b) .

Without loss of generality, assume (Xb,#B(b), Y b,#B(b)) is the bundle defining sample as stated
in the construction of equal partition if b 6= B. Recalling that samples within a bundle are i.i.d.
given the partition, we can take the conditional expectation of the empirical norm with respect to
the position of (Xb,#B(b), Y b,#B(b))1≤m≤#B(b)−1.

Ê

[

||1A(v − ṽ)||2B,#
∣

∣σ(B),Xb,1,Xb,2, · · · ,Xb,#B(b)−1
]

≤
∑#B(b)

m=1 Ê
[

|v(Y b,m)− φB(Y
b,m)|2

∣

∣ σ(B),Xb,1, · · · ,Xb,#B(b)−1
]

#B(b)

=

∑#B(b)−1
m=1 E

[

|v(Y )− φB(Y )|2
∣

∣X = Xb,m ∈ B(b)\{xb}
]

+ E
[

|v(Y )− φB(Y )|2
∣

∣X = xb
]

#B(b)

≤
∑#B(b)

m=1 supx∈B(b) E
[

|v(Y )− φB(Y )|2
∣

∣X = x
]

#B(b)
= inf

φ∈H
sup

x∈B(b)
E
[

|v(Y )− φ(Y )|2
∣

∣X = x
]

.

There are some details in the above calculation that require explanation. Note that the boundary
point information is included in σ(B), therefore we only calculate conditional expectations with
the remaining samples. For the last bundle B(B), the separation is not necessary as no sample is
used to define the bundle, but this does not alter the result. We use the fact that each sample is
independent within the bundle in the first equality.

11



Next, if the minimal element φB(b) does not exist, one has to adjust the derivation above with
a limiting argument. This means that by the definition of infimum, one can find a sequence of
functions (v − φB(b),n)n∈Z+ , such that

sup
x∈B(b)

E
[

|v(Y )− φB(b),n(Y )|2|X = x
]

≤ inf
φ∈H

sup
x∈B(b)

E
[

|v(Y )− φ(Y )|2|X = x
]

+
1

n
.

By repeating the above argument for each function in the sequence, replacing the infimum in the
proof by the corresponding upper bound and taking n to infinity (with the eventual inequality),
we arrive at the same conclusion.

Thereafter, if we consider that expectation of the empirical norm conditioning on σ(B), we have

Ê
[

||1A(v − ṽ)||2B,#
∣

∣σ(B)
]

=Ê

[

|Ê
[

||1A(v − ṽ)||2B,#
∣

∣σ(B),Xb,1,Xb,2, · · · ,Xb,#B(b)−1
]∣

∣

∣σ(B)
]

≤ inf
φ∈H

sup
x∈B(b)

E
[

|v(Y )− φ(Y )|2
∣

∣X = x
]

.

Note that this bound is defined on all given partitions and solely depends on the partition but
not the choice of φB for any bundle B. Our calculation here is purely within a bundle given the
partition is known. Therefore, even if the minimum function φB(b) or the sequence (φB(b),n)n∈Z+

is not unique, the actual choice of these functions does not matter as long as they are picked in a
consistent and measurable way.

Here, we derive a bound for the expectation of the weight summation T3,B in (3.3) with respect
to the simulation cloud, i.e.,

ÊS

[

∑

B∈B

∫

B

∫

ν(dx, dy)T3,B

]

≤ 12ÊS

[

∑

B∈B

∫

B

∫

ν(dx, dy)||v − φB||2B,#

]

≤ 12

Ê[1S ]
Ê

[

∑

B∈B

∫

B

∫

ν(dx, dy)Ê
[

||v − φB||2B,#
∣

∣σ(B)
]

]

(3.5)

≤ 12

Ê[1S ]
Ê

[

∑

B∈B

∫

B

∫

ν(dx, dy) inf
φ∈H

sup
x∈B

E
[

|v(Y )− φ(Y )|2|X = x
]

]

.

In this inequality, we expand the denominator of our adjusted probability by also including the
rejected cases and applying the results above for each partition.

However, for an unbounded bundle B, it is possible to find an example such that
supx∈B E

[

|v(Y )− φ(Y )|2|X = x
]

= ∞. An alternative bound is required to ensure that our error
bound is not trivial. Note that given the square norm |α(b)|2 ≤ L, we have

∀y, b, |ṽB(b)(y)1A(y)|2 ≤
(

Q
∑

l=1

|αl(b)|2
)(

Q
∑

l=1

|pl(y)1A(y)|2
)

≤ LQ max
l=1...,Q

max
y∈A

|pl(y)|2,
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and

||(v − ṽ)1A||2B,# =

∑M
m=1 1B(X

m)|(v(Y m)− φB(Y
m))1A|2

∑M
m=1 1B(X

m)

≤
∑M

m=1 1B(X
m)(2|(v(Y m)1A|2 + 2|φB(Y

m))1A|2
∑M

m=1 1B(X
m)

≤
∑M

m=1 1B(X
m)(2C2

v,A + 2LQC2
p,A)

∑M
m=1 1B(X

m)
= L′.

We shall use this alternative bound in Equation (3.5) for any bundle B such that
supx∈B E

[

|v(Y )− φ(Y )|2|X = x
]

> L′. Combining the two error bounds, we have

ÊS

[

∑

B∈B

T3,B

]

≤ 12

Ê[1S ]
Ê

[

∑

B∈B

∫

B

∫

ν(dx, dy)( inf
φ∈H

sup
x∈B

E
[

|v(Y )− φ(Y )|2|X = x
]

∧ L′)

]

.

Next, we consider the term T1,B in (3.3). This term concerns the difference between the theo-
retical projection and the empirical regression function within each bundle. Here we restate that
S denotes the modified probability, based on the regression coefficients, where A is a compact set
defined with respect to Y only.

By taking conditional expectations with respect to σ(B), we have,

ÊS

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)T1,B(b)

]

=
1

Ê[1S ]
Ê

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)Ê[T1,B(b)1S |σ(B)]
]

=
1

Ê[1S ]
Ê

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)ÊB(b)[1S3max{||1A(v − ṽ)||B(b),∞ − 2||(v − ṽ)1A||B(b)\{xb},#, 0}2]
]

.

It is important that we condition on the smaller sigma algebra such that all samples have an
identical conditional distribution. If we can condition on the whole sigma algebra generated by
(Xm)1≤m≤M , each Y m will have a different distribution depending on the position of Xm. Within
each (given) bundle B(b), we may consider the two norms || · ||B(b),∞ and || · ||B(b)\{xb},# as the
theoretical and empirical L2 norms of a random process satisfying the probability distribution

PB(b) :=

∫
B(b) ν(dx,·)∫

B(b)

∫
ν(dx,dy)

and extend our notation for expectations to this measure. In other words,

PB(b) is the conditional probability of Y m given that Xm is within the bundle. As only the samples
within bundle B(b) are considered in T1,B(b), we only have to consider the identically distributed
samples following PB(b). Thus, we simplify the notation with this measure.

Assume that
∑M

m=1 1B(b)\{xb}(X
m) = N−1 and let u > 864L′/(N−1) be arbitrary, by Theorem
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11.2 in [14], we find

P̂B(b){3max{||1A(v − ṽ)||B(b),∞ − 2||(v − ṽ)1A||B(b)\{xb},#, 0}2 > u and the event S is true}
≤P̂B(b){∃φ ∈ HL : ||1A(v − φ)||B(b),∞ − 2||(v − φ)1A||B(b)\{xb},# >

√

u/3 and the event S is true}
≤P̂B(b){∃φ ∈ HL : ||1A(v − φ)||B(b),∞ − 2||(v − φ)1A||B(b)\{xb},# >

√

u/3}

≤3ÊB(b)[N2(
√

2/3
√
u/24,HL,A, Y

2(N−1)
B(b) )] exp

(

−(N − 1)u

864L′

)

≤3ÊB(b)[N2(
√
L′/

√
N − 1,HL,A, Y

2(N−1)
B(b) )] exp

(

−(N − 1)u

864L′

)

, (3.6)

where HL is the set of all functions in H whose coordinates with respect to the basis (pl)1≤l≤Q,
have a Euclidean norm no greater than L and HL,A the set containing all functions of the form
1A(φ − v), where φ belongs to HL. Again, since we condition only on the partition, all samples
within a bundle are i.i.d. and the condition for Theorem 11.2 in [14] is satisfied. In fact, this proof
should work for all partitions for which the samples remain i.i.d. within a bundle. Note that the
indicator for the event S is kept in the first line to keep our regression function bounded, then we
drop the indicator in the second inequality to take advantage of the independent samples. Finally,
YB(b) is a sample following the conditional probability PB here.

ConstantN2 in (3.6) is called the covering number and it is bounded by Lemma 9.2 and Theorem
9.4 of [14]:

N2(
√
L′/

√
N − 1,HL,A, Y

2(N−1)) ≤ 3

(

2eL′

L′/(N − 1)
log(

3eL′

L′/(N − 1)
)

)V
H

+
L,A ≤ 3 [3e(N − 1)]

2V
H

+
L,A ,

where V denotes the Vapnik-Chervonenkis dimension, which represents the number of elements in
the largest set that can be shattered by a class of subsets in R

q. The reader is referred to section
9.4 of [14] for further information on N2 and V .

Next, recalling the definition H+ from Section 1, we notice that VH+
L,A

≤ VH+
L
, which can be

shown by the following argument. Let (y, z) ∈ R
q × R, if y 6∈ A and z ≥ 0, then (y, z) is contained

in none of the sets in H+
L,A and if y 6∈ A and z ≤ 0, then (y, z) is contained in each set of H+

L,A.

Hence, if H+
L,A shatters a set of points, then the x-coordinates of these points must lie in A and

H+
L also shatters this set of points.
In addition, we have the fact that HL ⊂ H and observe that

H+ ⊆ {{(x, t) : φ(x) + a0t ≥ 0} : φ ∈ H, a0 ∈ R},

which is a linear vector space of dimension less than or equal to Q + 1, thus Theorem 9.5 of [14]
implies

VH+
L
≤ Q+ 1.

It follows that, for any u > 864L′/(N − 1), the probability under consideration is bounded by
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9[3e(N − 1)]2(Q+1) exp
(

− (N−1)u
864L′

)

, and for any w > 864L′/(N − 1),

Ê[T1,B(b)1S |σ(B),
M
∑

m=1

1B(b)\{xb}(X
m) = N − 1]

≤w + 9[3e(N − 1)]2(Q+1)

∫ ∞

w
exp

(

−(N − 1)t

864L′

)

dt

= w + 9[3e(N − 1)]2(Q+1) 864L
′

N − 1
exp

(

−(N − 1)w

864L′

)

.

By setting,

w =
864L′

N − 1
log
(

9[3e(N − 1)]2(Q+1)
)

,

and taking expectations with respect to σ(B), we find

ÊS

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)T1,B(b)

]

≤ϑ(L′)

Ê[1S ]
Ê

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)
(log(

∑M
m=1 1B(b)(X

m)− 1) + 1)(Q+ 1)
∑M

m=1 1B(b)(X
m)− 1

]

,

where one possible choice of ϑ is ϑ(L′) := 1728(log(27e) + 1)L′. This can be checked by simple
algebra. Note that ϑ is independent of the number of samples in a bundle and only depends on L′.

Finally, T2,B(b) is the technical term introduced by the definition of the partition B. Consider any
realization of the simulation cloud (Xm, Y m) and partition B, in particular, there exist boundary
defining samples (xb, yb) ∈ (Xm, Y m) for b = 1, 2, · · · , B − 1. Using the inequality (

√
a −

√
b)2 ≤

|a− b| and the definition of L′, we have

12(||(v − ṽ)1A||B(b)\{xb},# − ||(v − ṽ)1A||B(b),#)2

≤12

∣

∣

∣

∣

∣

∑M
m=1 1B(b)\{xb}(X

m)|(v(Y m)− ṽ(Xm, Y m)1A(Y
m)|2

∑M
m=1 1B(b)(X

m)− 1

−
∑M

m=1 1B(b)(X
m)|(v(Y m)− ṽ(Xm, Y m)1A(Y

m)|2
∑M

m=1 1B(b)(X
m)

∣

∣

∣

∣

∣

≤12

∣

∣

∣

∣

∣

∑M
m=1 1B(b)\{xb}(X

m)(|(v(Y m)− ṽ(Xm, Y m)1A(Y
m)|2 − |(v(ym)− ṽ(xm, ym)1A(ym)|2)

(
∑M

m=1 1B(b)(X
m)− 1)(

∑M
m=1 1B(b)(X

m))

∣

∣

∣

∣

∣

≤ 24L′

(
∑M

m=1 1B(b)(X
m))

,

for b = 1, 2, · · · , B − 1.
Substituting all the results above into Equation (3.3) we conclude the proof.

Remark 3.6. Implicitly, it is assumed in our proof that the sorting function used behaves nicely such
that there is no empty bundle or bundle with a few samples in our partition. If this is not the case,
these bundles need to be merged with other bundles in a consistent way and the number of bundles
needs to be adjusted accordingly. We omit this extra complexity in favor of the presentation.
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3.1 Discussion on the Error Bound

We shall discuss the meaning of all error terms in Theorem 3.5. Note that most discussions here
are in heuristic sense instead of rigorous analysis.

The last term in the sum ÊS

[∫∫

|v(y)− ṽ(x, y)|2(1− 1A(y))ν(dx, dy)
]

represents an expectation
with respect to an integration of the approximation error using the probability measure of (X,Y )
outside a given compact set A for Y . In theory, for an increasing series of compact sets A1 ⊂ A2 ⊂
. . . ⊂ AA ⊂ Rq,

lim
A→∞

∫∫

|v(y)− ṽ(x, y)|2(1− 1AA
(y))ν(dx, dy) → 0,

since the original function and the approximant are both in L2(ν) and the dominating convergent
theorem. Again, the setA plays no role in the algorithm. This term is introduced to reflect that only
the area with high probability measure has strong impact on a Monte Carlo approximation, thus,
we can only consider the behavior of function v in this area and do not impose strong conditions
on v over the whole domain. In practice, we can find a big enough set A such that the last term is
smaller than any preset tolerated level. Otherwise, the probability distribution is too much spread
out so that Monte-Carlo may not be a suitable approximation method.

The term 12
Ê[1S ]

Ê
[
∑

B∈B

∫

B

∫

ν(dx, dy)(infφ∈H supx∈B E
[

|v(Y )− φ(Y )|2|X = x
]

∧ L′)
]

can be

seen as the average of the best projection error among bundles and upper bounded by L′. It concerns
how close the original function and its projection onto the space spanned by our basis are. This term
should be controlled by increasing the number of bundles. As the number of bundles increases, all
the bundles converge to a point and the error term becomes 12

Ê[1S]
Ê
[

(infφ∈H E
[

|v(Y )− φ(Y )|2|X
]

∧ L′)
]

,

which is the average projection error over the whole range of X. It is clear that Ê[1S ] might change
when we increase the number of bundles, thus the above analysis is by no mean rigorous. We will
provide comments on S at the end of this section.

The first error term is the bound for the estimation error based on the empirical norm instead
of the theoretical norm. This term can be controlled by simply increasing the number of samples
within each bundle such that this term is below a certain threshold. Because low sample numbers
imply high error bounds, if there are bundles in any partition which contain very few samples, they
should be merged with other bundles or the sorting function must be adapted.

The second error term is just a technical term for constructing a measurable partition and can
be controlled by the number of samples in each bundle.

Therefore, the best way to set the parameters for the SGBM algorithm is to first fix the number
of samples in each bundle such that the first two terms in the error bound are under a given
threshold, then increase the number of bundles to control the projection error. However, we cannot
write a simple convergence rate for the combined error under the current conditions.

3.2 Discussion on Event S

There is one final question remaining. The above argument heavily depends on L, which is a user
defined quantity, and the probability of S, the event that L2 norms of the regression coefficients are
below threshold L. It is natural to ask if we can actually find a number L such that PS is bounded
below, as our bound becomes trivial when 1

Ê[1S ]
tends to infinity and it would be incredibly expensive

to apply the algorithm if we reject most of the simulations. In the following, we shall provide a
heuristic argument for the convergence of the regression coefficients within the bundle, therefore,
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there is a natural choice of L depending on the target function itself and a hard cut off may be
unnecessary. The numerical experiments in the next section also back up this argument.

Once again, we consider Equation (3.2), where the regression coefficients within any bundle
B(b) satisfy

I⊤Iα(b) = I⊤v(Y b),

with

I⊤I =







∑#B(b)
i=1 (p1(Y

b,i))2
∑#B(b)

i=1 p1(Y
b,i)pQ(Y

b,i)
. . .

∑#B(b)
i=1 pQ(Y

b,i)p1(Y
b,i)

∑#B(b)
i=1 (pQ(Y

b,i))2







and

I⊤v(Y b) =







∑#B(b)
i=1 p1(Y

b,i)v(Y b,i)
...

∑#B(b)
i=1 pQ(Y

b,i)v(Y b,i)






.

When the number of samples within a bundle tends to infinity, it is easy to see that

1

#B(b)I
⊤I →







E[p1(Y ))2|X ∈ B(b)] E[p1(Y )pQ(Y )|X ∈ B(b)]
. . .

E[pQ(Y )p1(Y )|X ∈ B(b)] E[pQ(Y ))2|X ∈ B(b)]







and

1

#B(b)I
⊤v(Y b) →







E[p1(Y )v(Y )|X ∈ B(b)]
...

E[pQ(Y )v(Y )|X ∈ B(b)]






.

So, the empirical system of equations ”converges” to the system of equations of a projection.
Therefore, as long as our basis is properly defined such that they remain linearly independent for
all bundles, this system of equations should be solvable with enough simulation paths. Moreover,
since the regression coefficients should ”converge” to the theoretical projection coefficients, we
could pick L depending on the L2 norm of v itself, like, for example, two times its theoretical
norm. Alternatively, when there are enough samples within each bundle, we suspect that the
regression coefficients simply ”converges” to the theoretical value and satisfy the bounded condition
of regression in a natural way. Therefore, no actual rejection step in the algorithm is needed when
there are enough samples within the bundles. This proposition appears to be supported by our
numerical experiments.

However, there are multiple difficulties to incorporate the above argument into Theorem 3.5.
First, since equal partitioning is not a recursive partitioning scheme as defined in [13], we cannot
use a martingale argument on equal partitioning, limiting the available tools. Secondly, as the
partition changes when increasing the overall number of samples, the above ”convergence” does
not seem to be properly defined. Finally, we would have to introduce a measure of convergence
with respect to a matrix inverse, which is beyond the scope of this work.

On the other hand, there is a possibility that when the number of samples within a bundle is
too small, the algorithm as a whole will fail to converge. Thus, it is beneficial to remind a user of
such possibility and put a safety check in place. Therefore, we keep the derivation of Theorem 3.5
as a complete justification for SGBM. In practice, one can either make sure that there are enough
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samples within each bundle and let L be infinity. In this case, Theorem 3.5 no longer applies but
we believe that the overall error will satisfy a bound of similar form. Alternatively, one starts from
a small L when running the algorithm and increases L’s value until most tests are accepted. By
these techniques, the error bound from Theorem 3.5 remains valid.

4 Error Analysis

A complete error description of the algorithm with respect to the application of SGBM towards
BSDEs will be derived in this section.

We wish to apply the theorem from the last section to establish an error bound for the ex-
pectation of our approximation with respect to the selected simulation cloud. We need to check
that after rejecting the simulations that generate regression coefficients that are ”too large”, our
approximation functions are bounded in the recursion. We notice that for any k ≤ N ,

|yRk (x)| ≤ max{CM,AL
√

2(1 + C2
π), CΦ,A} =: CY,A

and
|zRk (x)| ≤ CM,AL

√

2(1 + C2
π) =: CZ,A

for all x in a compact set A. The constant Cπ is defined as maxk=0,...,N−1∆k. These bounds can
be proven by Assumption 2.1 and some simple inequalities. Furthermore, we have ∀x ∈ A,

fR
k (x) := fk(y

R
k (x), z

R
k (x)) ≤ Cf + Lf (CY,A +CZ,A) =: Cf,A,

which follows from the Lipschitz assumptions of f . Therefore, Theorem 3.5 applies.
We denote by S the set of all simulation cloud values (Xπ,m

tk
)1≤m≤M
0≤k≤N

such that the Euclidean

norm of the regression coefficients at each time step in each bundle is bounded by L, and the
expectation is adjusted accordingly. With the application of Theorem 3.5, we know that for any
given compact set A,

Ê
x
tk,S

[

E
x
tk

[

|yRi+1(X
π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)|2
]]

≤
ϑ(L′

y)

Êx
tk
[1S ]

Ê
x
tk

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)
(log(

∑M
m=1 1B(b)(X

m)− 1) + 1)(Q+ 1)
∑M

m=1 1B(b)(X
m)− 1

]

+ Ê
x
tk,S

[

B−1
∑

b=1

∫

B(b)

∫

ν(dx, dy)
24L′

y

(
∑M

m=1 1B(b)(X
m))

]

+
12

Ê
x
tk
[1S ]

Ê
x
tk

[

∑

B∈B

∫

B

∫

ν(dx, dy)( inf
φ∈H

sup
θ∈B

E
θ
ti

[

|yRti+1
(Xπ

ti+1
)− φ(Xπ

ti+1
)|2
]

∧ L′
y)

]

+ Ê
x
tk,S

[

E
x
tk

[

|yRi+1(X
π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)|2(1− 1A(X
π
ti+1

))
]]

=: Ξx
tk
(i, y).
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and

Ê
x
tk,S

[

E
x
tk

[

|fR
i+1(X

π
ti+1

)− f̃R
i+1(X

π
ti ,X

π
ti+1

)|2
]]

≤
ϑ(L′

f )

Ê
x
tk
[1S ]

Ê
x
tk

[

B
∑

b=1

∫

B(b)

∫

ν(dx, dy)
(log(

∑M
m=1 1B(b)(X

m)− 1) + 1)(Q+ 1)
∑M

m=1 1B(b)(X
m)− 1

]

+ Ê
x
tk,S

[

B−1
∑

b=1

∫

B(b)

∫

ν(dx, dy)
24L′

f

(
∑M

m=1 1B(b)(X
m))

]

+
12

Êx
tk
[1S ]

Ê
x
tk

[

∑

B∈B

∫

B

∫

ν(dx, dy)( inf
φ∈H

sup
θ∈B

E
θ
ti

[

|fR
ti+1

(Xπ
ti+1

)− φ(Xπ
ti+1

)|2
]

∧ L′
f )

]

+ Ê
x
tk,S

[

E
x
tk

[

|fR
i+1(X

π
ti+1

)− f̃R
i+1(X

π
ti ,X

π
ti+1

)|2(1− 1A(X
π
ti+1

))
]]

=: Ξx
tk
(i, f),

where L′
y = 2LQC2

p,A + 2C2
Y,A and L′

f = 2LQC2
p,A + 2C2

f,A. Note that although the size of Cπ :=
maxk=0,...,N−1∆k may affect multiple constants here, like CM,A due to the probability law, CY,A

and Cf,A by definition, however, Cπ → 0 would not make these constants converge to 0. So it
may be easier to replace the constant Cπ by T and consider these constants independent of the
discretization scheme. Therefore, we consider the refined regression error to be independent of the
discretization scheme.

The following proposition summarizes the error bound for our scheme:

∆zk(x) := zk(x)− zRk (x); ∆yk(x) := yk(x)− yRk (x).

Proposition 4.1. Given Assumption 2.1, and the time-grid π and an N -dimensional vector γ ∈
(0,+∞)N satisfying 12q(L2

fRπ ∨ 1)(∆k +
1
γk
) ≤ 1, for all k ≤ N − 1, we have, for 0 ≤ k ≤ N ,

Ê
x
tk ,S

[|∆yk(x)|2]

≤6qeT/4
N−2
∑

i=k

(∆i + γ−1
i )ΓiL

2
fΞ

x
tk
(i+ 1, y) + 3eT/4

N−1
∑

i=k

(∆i + γ−1
i )Γi

1

∆i
Ξx
tk
(i, y)

+ 3eT/4
N−1
∑

i=k

(∆i + γ−1
i )Γi∆iΞ

x
tk
(i, f), (4.1)

where Γi :=
∏k−1

i=0 (1 + γi∆i), and

Ê
x
tk,S

[

N−1
∑

i=k

∆iE
x
tk

[

|∆zi(X
π
ti)|2

]

Γi

]

≤(12q + 3TeT/4)

N−1
∑

i=k+1

(

∆i + γ−1
i

) 1

∆i
Ξx
tk
(i, y)Γi + 6qTeT/4

N−2
∑

i=k

(∆i + γ−1
i )ΓiL

2
fΞ

x
tk
(i+ 1, y)

+ (12q + 3TeT/4)
N−1
∑

i=k+1

(

∆i + γ−1
i

)

∆iΞ
x
tk
(i, f)Γi + 4

N−1
∑

i=k

qΞx
tk
(i, y)Γi.
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We will discuss the bound on ∆yk here only as the two bounds are quite similar in structure.
Note that the three terms within the sum at the right hand side of Equation (4.1) are also of
similar structure. They all sum up the refined regression error multiplied by some constant related
to ∆i. The most problematic term is 3eT/4

∑N−1
i=k (∆i+ γ−1

i )Γi
1
∆i

Ξx
tk
(i, y) as the coefficient is O(1).

The value
∑N−1

i=k (∆i + γ−1
i )Γi

1
∆i

tends to infinity as the number of time steps tends to infinity.
Therefore, one must use the parameters M and B to ensure the refined regression term is bounded
by C∆1+ǫ

i for some constant C, such that the sum and the error are bounded by CCǫ
π. This error

plus the discretization error between the continuous system and the discretized system would be
the complete error. So, in practice, one should ensure that N,M,M/B all tend together to infinity.

Proof. The proof is fairly similar to the one used in [12] with the necessary modifications for our
present algorithm.

We shall derive an a-priori estimate of the error propagation in the recursion steps and we start
with an estimate of ∆zk(x). Note that we add an extra term in the formula which is equal to zero
due to the expectation of the Brownian motion being equal to zero. This term is added here to
facilitate future steps of the proof. We have

|∆k∆zk(x)|2 =
(

E
x
tk

[(

∆yk+1(X
π
tk+1

)− E
x
tk

[

∆yk+1(X
π
tk+1

)
])

∆W T
k

]

+ E
x
tk

[(

yRk+1(X
π
tk+1

)− ỹRk+1(X
π
tk
,Xπ

tk+1
)
)

∆W T
k

])2

≤2
(

E
x
tk

[(

∆yk+1(X
π
tk+1

)− E
x
tk

[

∆yk+1(X
π
tk+1

)
])

∆W T
k

])2

+ 2
(

E
x
tk

[(

yRk+1(X
π
k+1)− ỹRk+1(X

π
tk
,Xπ

tk+1
)
)

∆W T
k

])2
.

The inequality follows from the inequality (
∑N

n=1 an)
2 ≤∑N

n=1 Na2n, which will be frequently used
in the proof and will not be specified again. By applying the Cauchy-Schwarz inequality, we can
derive bounds for the two terms separately, where

∣

∣

∣
E
x
tk

[(

∆yk+1(X
π
tk+1

)− E
x
tk

[

∆yk+1(X
π
tk+1

)
])

∆W T
k

]∣

∣

∣

2

≤q∆k

(

E
x
tk

[

(∆yk+1(X
π
tk+1

))2
]

−
(

E
x
tk

[

∆yk+1(X
π
tk+1

)
])2
)

,

and

∣

∣

∣
E
x
tk

[(

yRk+1(X
π
k+1)− ỹRk+1(X

π
tk
,Xπ

tk+1
)
)

∆W T
k

]∣

∣

∣

2

≤q∆kE
x
tk

[

∣

∣

∣
yRk+1(X

π
k+1)− ỹRk+1(X

π
tk
,Xπ

tk+1
)
∣

∣

∣

2
]

.

Therefore,

∆k|∆zk(x)|2 ≤2q

(

E
x
tk

[

(∆yk+1(X
π
tk+1

))2
]

−
(

E
x
tk

[

∆yk+1(X
π
tk+1

)
])2
)

+ 2qEx
tk

[

∣

∣

∣yRk+1(X
π
k+1)− ỹRk+1(X

π
tk
,Xπ

tk+1
)
∣

∣

∣

2
]

. (4.2)
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Combining the fact that (a+ b)2 ≤ (1 + γk∆k)a
2 + (1 + γ−1

k ∆−1
k )b2 for (a, b) ∈ R

2, γk > 0, and
the Lipschitz property of f , one deduces with Equation (4.2) that, for 0 ≤ k ≤ N − 2:

|∆yk(x)|2 ≤
(

E
x
tk

[

∆yk+1(X
π
tk+1

)
]

+ E
x
tk

[

yRk+1(X
π
tk+1

)− ỹRk+1(X
π
tk
,Xπ

tk+1
)
]

+ E
x
tk

[

fk+1(yk+1(X
π
tk+1

), zk+1(X
π
tk+1

))− fR
k+1(X

π
tk+1

)
]

∆k

+E
x
tk

[

fR
k+1(X

π
tk+1

)− f̃R
k+1(X

π
tk
,Xπ

tk+1
)
]

∆k

)2

≤(1 + γk∆k)
(

E
x
tk

[

∆yk+1(X
π
tk+1

)
])2

+ 3
(

∆k + γ−1
k

)

∆k

[

L2
fE

x
tk

[

(∆yk+1(X
π
tk+1

))2
]

+ L2
fE

x
tk

[

(∆zk+1(X
π
tk+1

))2
]

+
1

∆2
k

E
x
tk

[

|yk+1(X
π
tk+1

)− ỹk+1(X
π
tk
,Xπ

tk+1
)|2
]

+E
x
tk

[

|fR
k+1(X

π
tk+1

)− f̃R
k+1(X

π
tk
,Xπ

tk+1
)|2
]]

≤(1 + γk∆k)
(

E
x
tk

[

∆yk+1(X
π
tk+1

)
])2

+ 3(∆k + γ−1
k )∆kL

2
fE

x
tk

[

(∆yk+1(X
π
tk+1

))2
]

+ 6q(∆k + γ−1
k )L2

fRπ

(

E
x
tk

[

(∆yk+2(X
π
tk+2

))2
]

− E
x
tk

[

(

Etk+1

[

∆yk+2(X
π
tk+2

)
])2
])

+ 6q(∆k + γ−1
k )L2

fE
x
tk

[

∣

∣

∣yRk+2(X
π
tk+2

)− ỹRk+2(X
π
tk+1

,Xπ
tk+2

)
∣

∣

∣

2
]

+ 3(∆k + γ−1
k )∆k

1

∆2
k

E
x
tk

[

|yRk+1(X
π
tk+1

)− ỹRk+1(X
π
tk
,Xπ

tk+1
)|2
]

+ 3(∆k + γ−1
k )∆kE

x
tk

[

|fR
k+1(X

π
tk+1

)− f̃R
k+1(X

π
tk
,Xπ

tk+1
)|2
]

, (4.3)

while

|∆yN−1(x)|2 ≤3
(

∆k + γ−1
k

)

∆k

[

1

∆2
k

E
x
tk

[

|yRk+1(X
π
tk+1

)− ỹRk+1(X
π
tk
,Xπ

tk+1
)|2
]

+E
x
tk

[

|fR
k+1(X

π
tk+1

)− f̃R
k+1(X

π
tk
,Xπ

tk+1
)|2
]]

. (4.4)

Next, we define the following sequence

λk :=

[

1 +

(

γk−1 +
1

4

)

∆k−1

]

λk−1, where λ0 := 1,

consider the sum of |∆yi(X
π
ti)|λi, from i = 1 to N − 1, and take conditional expectations with

respect to Fk. Applying Equation (4.4) for the case k = N − 1 and Equation (4.3) otherwise, we
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have:

N−1
∑

i=k

E
x
tk

[

|∆yi(X
π
ti)|2λi

]

≤
N−2
∑

i=k

λi+1E
x
tk

[

(

∆yi+1(X
π
ti+1

)
)2
]

+

N−2
∑

i=k

6q(∆i + γ−1
i )L2

fλiE
x
tk

[

∣

∣yRi+2(X
π
i+2)− ỹRi+2(X

π
i+1,X

π
i+2)

∣

∣

2
]

+

N−1
∑

i=k

3(∆i + γ−1
i )∆i

1

∆2
i

λiE
x
tk

[

|yRi+1(X
π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)|2
]

+
N−1
∑

i=k

3(∆i + γ−1
i )∆iλiE

x
tk

[

|fR
i+1(X

π
ti+1

)− f̃R
i+1(X

π
ti ,X

π
ti+1

)|2
]

.

By rearranging the terms, we have:

|∆yk(x)|2λk ≤
N−2
∑

i=k

6q(∆i + γ−1
i )L2

fλiE
x
tk

[

∣

∣

∣
yRi+2(X

π
ti+2

)− ỹRi+2(X
π
ti+1

,Xπ
ti+2

)
∣

∣

∣

2
]

+
N−1
∑

i=k

3(∆i + γ−1
i )∆i

1

∆2
i

λiE
x
tk

[

|yRi+1(X
π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)|2
]

+

N−1
∑

i=k

3(∆i + γ−1
i )∆iλiE

x
tk

[

|fR
i+1(X

π
ti+1

)− f̃R
i+1(X

π
ti ,X

π
ti+1

)|2
]

.

It follows from the simple inequality Γk ≤ λk = exp(
∑k

i=0 log(1+ (γi +0.25)∆i) ≤ eT/4Γk that, for
all k ∈ {0, . . . , N},

|∆yk(x)|2 ≤|∆yk(x)|2Γk

≤6qeT/4
N−2
∑

i=k

(∆i + γ−1
i )ΓiL

2
fE

x
tk

[

∣

∣

∣yRi+2(X
π
ti+2

)− ỹRi+2(X
π
ti+1

,Xπ
ti+2

)
∣

∣

∣

2
]

+ 3eT/4
N−1
∑

i=k

(∆i + γ−1
i )Γi

1

∆i
E
x
tk

[

|yRi+1(X
π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)|2
]

+ 3eT/4
N−1
∑

i=k

(∆i + γ−1
i )Γi∆iE

x
tk

[

|fR
i+1(X

π
ti+1

)− f̃R
i+1(X

π
ti ,X

π
ti+1

)|2
]

. (4.5)

We can take expectations with respect to the simulation cloud and apply Theorem 3.5, which
finishes the calculation for ∆y.

Regarding the error term ∆z,
∑N−1

i=k ∆iE
x
tk

[

|∆zi(X
π
ti)|2

]

Γi is bounded from above by

N−1
∑

i=k

∆iE
x
tk

[

|∆zi(X
π
ti)|2

]

Γi

≤
N−1
∑

i=k

2q

(

E
x
tk

[

(∆yi+1(X
π
ti+1

))2
]

− E
x
tk

[

(

Eti

[

∆yi+1(X
π
ti+1

)
])2
])

Γi+1
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+

N−1
∑

i=k

2qEx
tk

[

∣

∣

∣
yRi+1(X

π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)
∣

∣

∣

2
]

Γi

≤2qΓNE
x
tk

[

(∆yN (Xπ
tN
))2
]

+

N−1
∑

i=k+1

2qΓi

(

E
x
tk

[

(∆yi(X
π
ti))

2
]

− (1 + γi∆i)E
x
tk

[

(

Eti

[

∆yi+1(X
π
ti+1

)
])2
])

+
N−1
∑

i=k

2qEx
tk

[

∣

∣

∣
yRi+1(X

π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)
∣

∣

∣

2
]

Γi,

because of Equation (4.2), and from (4.3), we have

N−1
∑

i=k

∆iE
x
tk

[

|∆zi(X
π
ti)|2

]

Γi ≤6

N−1
∑

i=k+1

q
(

∆i + γ−1
i

)

∆iL
2
fE

x
tk

[

(∆yi+1(X
π
ti+1

))2
]

Γi

+ 6
N−1
∑

i=k+1

q
(

∆i + γ−1
i

)

∆iL
2
fE

x
tk

[

(∆zi+1(X
π
ti+1

))2
]

Γi

+ 6

N−1
∑

i=k+1

q
(

∆i + γ−1
i

) 1

∆i
E
x
tk

[

|yRi+1(X
π
ti+1

)− ỹRi+1(X
π
ti ,X

π
ti+1

)|2
]

Γi

+ 6

N−1
∑

i=k+1

q
(

∆i + γ−1
i

)

∆iE
x
tk

[

|fR
i+1(X

π
ti+1

)− f̃R
i+1(X

π
ti ,X

π
ti+1

)|2
]

Γi

+
N−1
∑

i=k

2qEx
tk

[

∣

∣

∣
yRi+1(X

π
i+1)− ỹRi+1(X

π
ti ,X

π
ti+1

)
∣

∣

∣

2
]

Γi.

Using the assumptions of the proposition statement, it follows that
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2
]
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N−1
∑

j=k+1

∆jE
x
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[

(∆yj+1(X
π
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))2
]

Γj+1.

Note that we may bound each individual term in the last sum with the estimate from Equation
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(4.5) and by taking conditional expectations.

E
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[(∆yj+1(X
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)− ỹRi+2(X
π
ti+1

,Xπ
ti+2

)
∣

∣

∣

2
]

+ 3eT/4
N−1
∑

i=j+1

(∆i + γ−1
i )Γi

1

∆i
E
x
tk

[

|yRi+1(X
π
ti+1
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This upper bound is independent of j. Summing up the remaining parts, the time increments,
results in the full time length T . We have:
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Again, taking expectations with respect to the simulation cloud finishes the proof.

5 Numerical Experiments

In this section, numerical experiments are conducted for some selected examples. Before discussing
these examples, we would specify the forward and backward discretization scheme used in these ex-
periments. In particular, we introduce a more general backward scheme to show that our algorithm
can be applied in general circumstances.
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5.1 Forward and Backward Scheme

In this section, we conduct our numerical experiments with the Euler-Maruyama discretization
scheme, which is a common standard in the literature.

Definition 5.1 (Euler-Maruyama scheme). The Euler-Maruyama scheme is defined by

Xπ
tk+1

= Xπ
tk
+ b(tk,X

∆
tk
)∆k + σ(tk,X

π
tk
)∆Wk =: d(Xπ

tk
,∆Wk).

Note that the conditional expectation E
x
tk

[

∆Wl,k

∆k
p(Xπ

tk+1
)
]

can be calculated by:

E
x
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(2π)q∆q
k

∫

Rq

exp

(

−1

2
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y2r
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)

∇p(d(x, y))
∂d(x, y)

∂yl
dy

=E
x
tk

[

∇p(Xπ
tk+1

)
]

σl(tk, x),

where σl is the l-th column of the matrix σ.

For example, for the one-dimensional monomial xr, r ∈ N and a forward process discretized by
the Euler-Maruyama scheme, we have

E
x
tk

[

∆Wk

∆k
(Xπ

tk+1
)r
]

=E
x
tk

[

r(Xπ
tk+1

)r−1
]

σ(tk, x).

The conditional expectations of polynomials are calculated directly by definition. We have

E
x
tk
[(Xπ

tk+1
)0] =1;

E
x
tk
[(Xπ

tk+1
)1] =x+ b(tk, x)∆k;

E
x
tk
[(Xπ

tk+1
)2] =x2 + 2xb(tk, x)∆k + σ(tk, x)

2∆k + b(tk, x)
2∆2

k,

and so on.
For the backward discretization, we apply the theta-scheme from [21] and [20]:

Y π
tN =Φ(Xπ

tN ), Zπ
tN =

(

∇Φ(Xπ
tN )σ(tN ,Xπ

tN )
)T

,

Zπ
tk
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2 Etk
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]
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[
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π
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)∆Wk

]

, k = N − 1, . . . , 0,

Y π
tk

=Etk

[

Y π
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]

+∆kθ1fk(Y
π
tk
, Zπ

tk
)

+ ∆k(1− θ1)Etk

[

fk+1(Y
π
tk+1

, Zπ
tk+1

)
]

, k = N − 1, . . . , 0,

0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1.
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By picking various parameters (θ1, θ2), we can construct different types of one-step dynamic
programming schemes. For example, the choice (θ1, θ2) = (0, 1) would result in an explicit scheme,
while the choice (θ1, θ2) = (0.5, 0.5) would give the Crank-Nicolson scheme. Using a general con-
struction means that our algorithm can be applied to various types of schemes and we may adjust
our algorithms towards the specific problem.

Applying the SGBM algorithm to this general scheme, we have that the approximate functions
within the bundle at time k are defined by:

z
(θ1,θ2),R
r,k (b, x) = −θ−1

2 (1− θ2)E
x
tk

[

p(Xπ
tk+1

)
]

βr,k+1(b)

+ θ−1
2 E

x
tk

[

∆Wr,k

∆k
p(Xπ

tk+1
)

]

(αk+1(b) + (1− θ2)∆kγk+1(b)), r = 1, . . . , d;

y
(θ1,θ2),R,0
k (b, x) = E

x
tk

[

p(Xπ
tk+1

)
]

αk+1(b),

y
(θ1,θ2),R,i
k (b, x) = ∆kθ1f(tk, x, y

(θ1,θ2),R,i−1
k (x), z

(θ1,θ2),R
k (x)) + hk(b, x),

hk(b, x) = E
x
tk

[

p(Xπ
tk+1

)
]

(αk+1(b) + ∆k(1− θ1)γk+1(b)), i = 1, . . . , I.

Note that a Picard iteration is performed at each time step for each bundle if the choice of (θ1, θ2)
results in an implicit scheme. For further details on the application of the Picard iteration, readers
may refer to [10] or [20] and the references therein.

Different types of backward discretizations will be considered for Example 1.

5.2 Example 1

This example is originally from [21]. The considered FBSDE is given by

{

dXt = dωt,
dYt = −(YtZt − Zt + 2.5Yt − sin(t+Xt) cos(t+Xt)− 2 sin(t+Xt))dt+ Ztdωt.

We take the initial and terminal conditions x0 = 0 and YT = sin(XT + T ).
The exact solution is given by

(Yt, Zt) = (sin(Xt + t), cos(Xt + t)).

The terminal time is set to be T = 1 and (Y0, Z0) = (0, 1). We use the set {1, x, x2} as the regression
base for this example. We apply equal partitioning bundling for all our tests with the sample paths
sorted by the value function x. As mentioned in Session 2.2, not all assumptions set in this work
are necessary for the basic SGBM algorithm to work. For example, Assumption 2.1 is included to
ensure the existence and uniqueness of the solution of the BSDE. In this example, even though the
driver is not Lipschitz, one can check that the above solution solves the BSDE with Itô’s formula,
and the SGBM algorithm still applies.

Table 1 shows the tests that we have run. Basically, our test cases can be placed into two
groups. Test cases 1a, 1b, 1c are tests for the explicit version of our algorithm, while test cases 1d,
1e, 1f are for the Crank-Nicolson version. Within each group, the three tests are run for identical
test settings, except for the constant L, i.e., the pre-set limit for the Euclidean norm so that we
may check the influence of the factor L. Within each test, the factors M , N and B are linked
to a common factor J such that when J tends infinity, N , B and M/B tend to infinity as well.
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This setting is inspired by our observation on the error bound that all three factors should tend to
infinity together to ensure the convergence of the algorithm. However, the extra ratio between the
three factors is from empirical experience.

Test Case θ1 θ2 I M N B L

1a 0 1 - 22J 2J 2J 100
1b 0 1 - 22J 2J 2J 10000
1c 0 1 - 22J 2J 2J −
1d 0.5 0.5 4 22J 2J 2J 100
1e 0.5 0.5 4 22J 2J 2J 10000
1f 0.5 0.5 4 22J 2J 2J −

Table 1: Test cases for Example 1

5.3 Example 2: Black-Scholes European option

The second example under consideration is the calculation of the price v(t, St) of a European option
under the d-dimensional Black-Scholes model by solving a FBSDE, which has been a classical
application of BSDEs. It has been introduced in classical papers, like [8], and here we will provide
a brief review. We consider a market where the assets satisfy:

dSi,t = µiSi,tdt+ σiSi,tdBi,t, 1 ≤ i ≤ d,

where Bt is a correlated d-dimensional Wiener process, with

dBi,tdBj,t = ρijdt.

The parameters ρij form a symmetric non-negative matrix ρ,

ρ =











1 ρ12 ρ13 · · · ρ1q
ρ21 1 ρ23 · · · ρ2q
...

...
...

...
ρq1 ρq2 ρq3 · · · 1











,

and we assume it is invertible. By performing a Cholesky decomposition on ρ such that CC⊤ = ρ,
where C is a lower triangular matrix with real and positive diagonal entries, we may relate the
correlated and standard Brownian motions, as follows,

Bt = CWt.

Along the line of reasoning in [20], we assume the financial market is complete, there is no
trading restriction and a derivative can be perfectly hedged. To derive the corresponding pricing
BSDE for a European option with terminal payoff g(ST ), we construct a replicating portfolio Yt,
containing ωi,t of asset Si,t and bonds with risk-free return rate r. Applying the self-financing
assumption, the portfolio follows the SDE:

dYt = −(−rYt −
d
∑

i=1

ωi,t(µi − r)Si,t)dt+
d
∑

i=1

ωi.tσiSidBi,t.

27



If we set Zt = (ω1,tσ1S1,t, . . . , ωd,tσd, Sd,t)C, then (Y,Z) solves the BSDE,

{

dYt = −
(

−rYt − ZtC
−1
(µ−r

σ

))

dt+ ZtdWt;

YT = g(ST ),

where
(µ−r

σ

)

=
(

µ1−r
σ1

, · · · , µq−r
σq

)T
.

We test our algorithm for the next two cases.

5.3.1 Arithmetic Basket Put Option

In this numerical test, we use the 5-dimensional example from [19], which is designed as a tractable
representation for the German stock index DAX at that time. All µi are assumed to be r here.
The volatilities are given by

(σ1, σ2, σ3, σ4, σ5) = (0.518, 0.648, 0.623, 0.570, 0.530),

while the correlations ρ are given by

ρ =













1.00 0.79 0.82 0.91 0.84
0.79 1.00 0.73 0.80 0.76
0.82 0.73 1.00 0.77 0.72
0.91 0.80 0.77 1.00 0.90
0.84 0.76 0.72 0.90 1.00













.

We would consider a European weighted basket put option for T = 1 year, with the payoff
function g given by

g(S) =

(

1−
5
∑

i=1

wiSi

)+

,

where (w1, w2, w3, w4, w5) = (38.1, 6.5, 5.7, 27.0, 22.7). The risk free interest rate is r = 0.05 and all
the stocks have starting value 0.01. The reference price is given as 0.175866 in [19].

We perform the equal-partitioning bundling technique and sort the paths in different bundles
according to the ordering of the value

∑5
i=1wiS

m
i,tp . The regression basis is chosen to be pk(x) =

(

∑5
i=1 wixi

)k−1
for k = 1, . . . ,K.

Table 2 shows the tests that we have run. In these tests, we keep most of the parameters fixed
but vary the number of bundles. We test our algorithm for the explicit scheme with a second-order
regression basis and the Crank-Nicolson scheme with a third-order regression basis. The change of
basis is made to test the impact of the regression basis to our algorithm. We just keep these two
sets of tests to demonstrate the impact of the number of bundles.

Test Case θ1 θ2 I M N B L K

2.1a 0.5 0.5 4 212 10 22J - 3
2.1b 0 1 - 212 10 22J - 2

Table 2: Test cases for Example 2.1
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5.3.2 Example 2.2: Geometric Basket Put Option

Here we also consider the problem of pricing q-dimensional geometric basket options with initial
state S0 = (40, . . . , 40) ∈ R

q; strike K = 40; risk-free interest rate r = 0.06; volatility σi = 0.2, i =
1, . . . , d; correlation ρij = 0.25, i, j = 1, . . . , d, i 6= j; and maturity T = 1.0. The final payoff
function is given by

g(S) =



K −
(

d
∏

i=1

Si

)

1
d





+

.

This is the same setting as in [16] but for European options instead of Bermudan options.
We again use the equal-partitioning technique and sort the paths in different bundles accord-

ing to the ordering of the values
(

∏d
i=1 S

m
i,tp

) 1
d
. The regression basis is chosen to be pk(x) =

(

∏d
i=1 xi

)
k−1
d

for k = 1, . . . , 3.

Since the geometric product of a geometric Brownian motion remains a geometric Brownian
motion, the analytic solution can be found using Black-Scholes formula and any other classical
pricing method.

Table 3 shows the tests that we have run. In these sets of tests, we fixed all the parameters
but change the number of stocks in our test. This example is used to test the scalability of our
methodology. Tests are performed for both explicit and Crank-Nicolson schemes.

Test Case θ1 θ2 I M N B L

2.2a 0 1 - 212 20 16 -
2.2b 0.5 0.5 4 212 20 16 -

Table 3: Test cases for Example 2.2

5.4 Results

The results are given as the average values of 10 separated runs of the algorithm.
We first consider the results of the explicit version of our algorithm applied to Example 1, namely

test cases 1a, 1b and 1c, in Table 4. This test can be seen as a proof of concept. As mentioned, we
design the test in such a way that the number of steps N , the number of bundles B and the ratio
M/B all tend to infinity. As expected, our algorithm converges under this setting. Moreover, the
total variation of the absolute errors among each successful run converges with respect to J too,
as the reader can read from the second part of Table 4. It is defined as the sum of the individual
differences between the Monte Carlo result of each run (which is not rejected) and the analytic
solution, divided by the total number of successful runs.

While we have not shown the proof of convergence for the CrankNicolson scheme, where θ1 =
θ2 = 0.5, our numerical tests for test cases 1d, 1e, 1f, in Table 5, suggest that it works well in our
framework.

A specific point of interest is the impact of factor L introduced in Section 3 for the samples
selection. It can be seen in Table 5 that when the number of paths or the bundles are few, a smaller
value of L preserves the stability of our algorithm. In test case 1d, where the factor L is relatively
small, our algorithm rejected all tests for J = 8. One of the explanations is that the regression
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|Y0 − y
(θ1,θ2),R
0 (x0)|

J 2 3 4 5 6 7 8

1a 0.023535 0.20392 0.046947 0.057056 0.026622 0.018172 0.016179
1b 0.18360 0.17807 0.098821 0.030159 0.028840 0.019621 0.0057568
1c 0.41648 0.14362 0.10368 0.04658 0.018068 0.019175 0.0098448

Total Variation/Successful Run
J 2 3 4 5 6 7 8

1a 0.28203 0.20392 0.081031 0.057056 0.027255 0.018172 0.016179
1b 0.31030 0.17807 0.098884 0.044555 0.028840 0.020392 0.0079454
1c 0.60090 0.15673 0.10368 0.054715 0.019420 0.019175 0.011833

Table 4: Test result for Example 1 with explicit scheme.

|Y0 − y
(θ1,θ2),R
0 (x0)|

J 2 3 4 5 6 7 8

1a 0.0053401 0.032606 0.18142 0.025799 0.0060404 0.020565 NA
1b 3.6788 0.24551 0.34892 0.069220 0.012861 0.0013653 0.0024095
1c 4.6822 × 108 3.5241 × 10137 1.0773 × 1044 0.051122 0.0050518 0.011735 0.0030526

Total Variation/Successful Run
J 2 3 4 5 6 7 8

1a 0.23450 0.032606 0.18142 0.025799 0.012630 0.020565 NA
1b 4.5732 0.37590 0.34892 0.075550 0.014571 0.012470 0.010903
1c 4.6822 × 108 3.5241 × 10137 1.0773 × 1044 0.058288 0.020924 0.014260 0.0078873

Table 5: Test result for Example 1 with CrankNicolson scheme

coefficients converge to the analytic projection coefficients on the basis space but the norm of these
analytic coefficient is greater than L. The effect of the factor L actually can be seen in Table
4 too. Some runs for test case 1a were rejected when J = 8 and the result for J = 8 is worse
than either 1b or 1c. On the contrary, if we remove the restriction on L altogether, the results
are non-satisfactory when the value of J is low but converge when the number of time steps and
samples are high enough. Heuristically, the regression coefficients should converge to the actual
projection coefficients on the basis space, which results in a function that is bounded in a compact
set. This in turns satisfies the conditions of the proof of convergence with respect to the regression.
Although it may look like we can adjust L in the same time as other algorithm parameters in order
to achieve the optimal result, we should still note that L is model dependent and there is no clear
way to figure out the best link of L with the simulation parameters. It remains important to use
L as a warning system.

Next, we shall move on to the result for the more practical and higher-dimensional Example 2.
The results for Example 2.1 in Table 6 show that our method can be easily applied to a practical
problem.

With respect to the problem of dimensionality, we can check the results in Table 7. Since the
analytic solution is known to this problem, we compare our result to the actual value. It can be seen
that under our choice of bundling and regression basis, the accuracy of our method is similar across
all choices of problem dimensions. This suggested that with appropriate setting, our algorithm can
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|Y0 − y
(θ1,θ2),R
0 (x0)|

J 0 1 2

2.1a 2.0321 × 10−3 2.2567 × 10−3 1.9883 × 10−3

2.1b 2.9314 × 10−3 1.8934 × 10−3 2.2151 × 10−4

Table 6: Test result for Example 2.1

easily scale up to tackle high-dimensional problems.

|Y0 − y
(θ1,θ2),R
0 (x0)|

Stock dimensions 1 2 3 4 5

2.2a 6.5482 × 10−3 7.3015 × 10−3 6.6827 × 10−3 8.0384 × 10−3 7.1308 × 10−3

2.2b 5.1918 × 10−3 6.9460 × 10−3 6.4038 × 10−3 6.9507 × 10−3 7.4937 × 10−3

Stock dimensions 6 7 8 9 10

2.2a 6.9885 × 10−3 7.5067 × 10−3 6.9271 × 10−3 6.9993 × 10−3 7.5682 × 10−3

2.2b 7.2034 × 10−3 7.1633 × 10−3 7.0850 × 10−3 7.2023 × 10−3 6.7595 × 10−3

Stock dimensions 11 12 13 14 15

2.2a 6.9549 × 10−3 7.4005 × 10−3 7.5329 × 10−3 7.1437 × 10−3 7.1364 × 10−3

2.2b 8.4614 × 10−3 7.1430 × 10−3 7.6267 × 10−3 7.8998 × 10−3 7.2455 × 10−3

Table 7: Test result for Example 2.2

More generally, all the results from Example 2 suggest that linking the bundling criterion and
the regression basis to the terminal condition can deliver an accurate algorithm. Adapting our
algorithm to a specific problem to improve the performance could be a promising direction of
further research. In fact, the choice of basis itself deserves further study. Even in our localised
setting, regression with respect to the linear basis scheme fails to converge for Example 1. A more
sophisticated way to pick the regression basis may be important to put our algorithm into actual
applications.

To sum up, we have developed a new algorithm for approximating BSDEs based on SGBM and
our numerical tests showed that this new algorithm can deliver accurate estimation results.
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