
ar
X

iv
:1

90
9.

01
47

3v
1 

 [
cs

.D
C

] 
 3

 S
ep

 2
01

9

Asynchronous Time-Parallel Method based on Laplace

Transform

Frédéric Magoulès∗ Qinmeng Zou∗

Abstract. Laplace transform method has proved to be very efficient and easy to parallelize
for the solution of time-dependent problems. However, the synchronization delay among
processors implies an upper bound on the expectable acceleration factor, which leads to a
lot of wasted time. In this paper, we propose an original asynchronous Laplace transform
method formalized for quasilinear problems based on the well-known Gaver-Stehfest algo-
rithm. Parallel experiments show the convergence of our new method, as well as several
interesting properties compared with the classical algorithms.

Keywords. Laplace transform; Gaver-Stehfest algorithm; asynchronous iterations; parallel
computing; quasilinear equation; option pricing

1 Introduction

Laplace transforms are powerful tools employed to derive the analytical solutions of dif-
ferential equations. However, it is too difficult to find or evaluate the analytical inverse
transform in closed form. Researchers try to use numerical Laplace transform methods that
convert the time-dependent equations to parameter-dependent problems, which could be
parallelized easily in frequency domain. There exist a great deal of approaches that could
be used to obtain the inverse transform over the past five decades. Davies and Martin in
1979 wrote a survey [13] investigating many promising methods, in which 14 specific al-
gorithms were tested and compared. Duffy [15] concentrated on three methods developed
later, in which two methods are based on existing techniques but considerably improved by
other researchers. Cohen wrote a comprehensive review book [10] that shows all aspects of
Laplace transform inversion. Finally, Kuhlman surveyed five different methods in [23] and
their implementations.

There exist many time-parallel methods, including shooting-type methods, space-time
domain decomposition methods, space-time multi-grid methods, and direct methods [20].
Obviously, Laplace transform belongs to the direct methods where [12] and [36] are cited
as pioneering works in this category. Our paper is based on the algorithm described in [12]
that is called Gaver-Stehfest algorithm, which has a good accuracy on a fairly wide range
of functions as illustrated in [13], thereafter they developed an iterative scheme in [26, 25]
through linearization of implied volatility, leading to a series of iterations throughout the
time-stepping process.

Our purpose in this paper is to employ asynchronous iterative scheme in modeling a
Laplace-type solver, which might be extremely flexible in data transmission and exploita-
tion throughout the processing phase. Such iterative scheme was first theoretically proposed
in [9] for relaxation algorithms, formalized further in [34, 4, 17] with norm-based contraction
model and in [5, 6] with nested set model. Another well-known time-parallel method, called
Parareal, has been successfully generalized to the asynchronous iterative scheme [31, 29]. In
the next section, we recall and present the classical Gaver-Stehfest algorithm. In Section 3,
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we introduce the iterative Laplace transform method for an option pricing model with vari-
ational volatility. In Section 4, we propose a new Laplace method based on asynchronous
iterative scheme with some remarks about the its convergence. Finally, some numerical
experiments are given in Section 5 and concluding remarks are presented in Section 6.

2 The Gaver-Stehfest algorithm

Given a second-order linear elliptic operator A, consider the initial value problem

{

∂u(x,t)
∂t

+Au(x, t) = b, t ∈ [0, T ], x ∈ Ω,

u(x, t) = u0(x), t = 0, x ∈ Ω,
(1)

where the boundary conditions are supposed defined to have a well-posed problem. In the
following we note u = u(t) = u(·, t) if the space variable does not hamper the formulation
and computation. To solve this equation, we employ the Laplace transform defined as

U(z) =

∫

∞

0

e−ztu(t)dt. (2)

A general contour integral formula for the inverse Laplace transform is given as

u(t) =
1

2πj

∫

Γ

eztU(z)dz, (3)

where Γ is the Bromwich contour that must be further determined, thus yielding a lot of
numerical applications in recovering the original function.

We are interested in the Gaver-Stehfest algorithm, which aims to approximate Equa-
tion (3) by a sequence of functions

u(t) ≈
ln 2

t

p
∑

i=1

ωiU(
i ln 2

t
), (4)

where ωi are defined as follows

ωi = (−1)
p

2
+i

min(i, p
2
)

∑

k=⌊ 1+i

2 ⌋

k
p

2 (2k)!

(p2 − k)!k!(k − 1)!(i − k)!(2k − i)!
, i = 1, . . . , p, (5)

where p is an even number denoting the number of processors. This numerical solver could
be deduced from Equation (3) by Cauchy integral formula with specific parameters. Notice
that ωi will change sign during iterations. Such behavior is remarkable and indeed affects
the numerical performance of Gaver-Stehfest algorithm in some cases, which will be shown
in the following sections, thus ignored for the moment.

The implementation of direct Laplace transform method is quite simple. Given the
time-dependent problem (1), making Laplace transform yields

ziU(zi)− u(0) +AU(zi) = Bi, i = 1, . . . , p,

where Bi is the Laplace transform of b depending on zi, and obviously

zi =
i ln 2

t
, i = 1, . . . , p.

Finally, making inverse Laplace transform yields

u(t) ≈
ln 2

t

p
∑

i=1

ωiU(zi).
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Figure 1: State diagram of direct Laplace transform method.

which leads to Algorithm 1.

Algorithm 1 Direct Laplace transform method for linear equation.

1: Compute ωi using (5)
2: Compute U(zi) by Laplace transform
3: Reduce ωi and U(zi) to process 1
4: if rank == 1 then

5: Compute u(t) using (4)
6: end if

We notice that one should operate a reduction operation after Laplace transform, which
is a commonly used term borrowed from message-passing specification, where a designated
root node receives data from all nodes and executes an arithmetic or logical operation.
Here the specific operation is summation as indicated above. Furthermore, we illustrate the
corresponding state diagram in Figure 1. Note that Laplace transform method operates in
the frequency domain, whereas most of other methods are proceeding in the original space,
in which time-dependent terms must be solved by appropriate temporal methods, such as
Euler methods, Runge-Kutta methods, and multistep methods.

3 Iterative Laplace transform method for quasilinear prob-

lem

It is not desirable to solve quasilinear problems directly and thus we deal with them in a
different direction. Throughout this paper, we take Black-Scholes equation as an example
to investigate the behavior of iterative methods (see, e.g., [26]).

We note that option pricing is a crucial target in financial decision-making. The break-
through came with the appearance of the Black-Scholes equation [7], which has a huge
influence to the financial market and drives an unexpected prosperity in the trading of
derivatives. This equation is often called the Black-Scholes-Merton (BSM) equation since
it was further generalized by Merton in important ways [32, 33]. Consider the following
European call option pricing problem

∂V (S, t)

∂t
+ rS

∂V (S, t)

∂S
+

1

2
σ2S2∂

2V (S, t)

∂S2
= rV (S, t),

where V is the option price, depending on stock price S and time t. As before, we note
V = V (t) = V (·, t) in the following if possible. Volatility σ and risk-free interest rate r are
the constant parameters, with the final and boundary conditions given by











V (S, t) = max(S − E, 0), t = T, S ∈ [0,+∞),

V (S, t) = 0, t ∈ [0, T ], S = 0,

V (S, t) ∼ S − Ee−r(T−t), t ∈ [0, T ], S → +∞,

(6)
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where T is the maturity of the option and E is the strike price. If there exist transaction costs,
then the price prediction may become much more complex. The volatility can be treated in
different ways, for instance using a modified volatility function σ̃. Here we assume that the
price of option is a parameter of σ̃, thus leading to the BSM equation with implied volatility

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ̃(V )

2
S2 ∂

2V

∂S2
= rV. (7)

There are many ways to choose an appropriate σ̃. Here we adopt the function described in
[26] as following

σ̃(V ) = σ

√

1 + sin

(

πV

E

)

, (8)

where σ denotes constant historical volatility.
We should apply Laplace transform method to Equation (7), but this one is too complex

to be employed directly. Moreover, from (6) we notice that (7) is a backward equation.
Hence, we perform the following variable transformation

S = Eex, t = T −
2τ

σ2
, V = Su(x, τ), κ =

2r

σ2
,

substituting into Equation (7) gives

∂u

∂τ
=

σ̃(u)2

σ2
(
∂2u

∂x2
+

∂u

∂x
) + κ

∂u

∂x
, (9)

with the corresponding conditions










u(x, τ) = max(1 − e−x, 0), τ = 0, x ∈ R,

u(x, τ) = 0, τ ∈ [0, Tσ2

2 ], x → −∞,

u(x, τ) ∼ 1− e−κτ−x, τ ∈ [0, Tσ2

2 ], x → +∞.

(10)

Implied volatility defined in (8) becomes

σ̃(u) = σ
√

1 + sin(πuex). (11)

Notice that (9) is forward parabolic and the fractional term is flexible for both linear and
quasilinear model. If we import a constant volatility, the fractional term will vanish; if
we use implied volatility like the one defined (11), the constant coefficient therein will also
disappear.

This equation, however, depends on a quasilinear coefficient that should be tackled before
getting forward. We share the idea of [26] by introducing a one-step retard into a(u), which
linearizes the quasilinear equation (9) in the form

∂u

∂τ
=

σ̃(ū)2

σ2
(
∂2u

∂x2
+

∂u

∂x
) + κ

∂u

∂x
. (12)

We note that ū can be seen as a “frozen variable” which is assigned the previous value of u
and thus does not depend on τ . Now we prepare to apply the Laplace transform method to
Equation (12). Setting

a(ū) =
σ̃(ū)2

σ2
,

yields

ziU − u(x, 0) = a(ū)(
∂2U

∂x2
+

∂U

∂x
) + κ

∂U

∂x
. (13)

More specifically, this yields an iterative scheme illustrated in Algorithm 2. The same algo-
rithm has been investigated in [26] under the name of “iterative coefficient–inverse Laplace
transform”.
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Figure 2: State diagram of synchronous Laplace transform method.

Algorithm 2 Synchronous Laplace transform method for quasilinear equation.

1: u(t) = u0

2: Compute ωi using (5)
3: repeat

4: ū = u(t)
5: Compute U(zi) by Laplace transform
6: Reduce ωi and U(zi) to process 1
7: if rank == 1 then

8: Compute u(t) using (4)
9: end if

10: Broadcast u(t) to other processes
11: until ‖u(t)− ū‖ ≃ 0

Since all processors need the values of u(t) at the beginning of each iteration, we should
broadcast such buffer to all neighbors. Note that “broadcast” is a collective communication
operation which involves a specific root node communicating its data to all other nodes. We
observe that ωi is computed outside because it depends only on the rank i and the number
of processors p. Similarly, the state diagram is shown in Figure 2.

We mention here that there are large numbers of models dealing with the transaction
cost, such as those in [8] and [3], some of which are nonlinear differential equations that
have different forms and properties. There exist meanwhile many other types of equations
related to the option pricing problem, such as the martingale pricing theory [21], the binomial
options pricing model [11], and the stochastic volatility option models [22, 14]. They are
completely different from the Black-Scholes model and thus should be addressed separately.
In general, one might employ Algorithm 2 to other types of equations generalized from
Equation (1), such as

∂u

∂t
+ a(u)Au = b.

Substituting the frozen variable and applying Laplace transform yields

ziU − u(0) + a(ū)AU = Bi,

where linear operator A can be solved by any appropriate discretization methods.

4 Asynchronous Laplace transform method

4.1 Formalization

Asynchronous iterative method releases the restriction of strict data dependency whereby
iterations are executed by several processors in arbitrary order without any synchronization
during computation, first formalized in [9] for linear systems. Obviously, it must be subject to
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Figure 3: Synchronous iterations with asynchronous communications.

some constraints that each processor still needs to continuously obtain the latest information.
Since there is no synchronization imposed to such scheme, asynchronous iterative algorithm
may exhibit incredible flexibility and efficiency even with the expansion of computational
nodes, which contributes to overcome the fault tolerance and the load balancing problems.

Consider a vector space E with

E = E1 × · · · × Ep.

Let
f : E → E, fi : E → Ei, i ∈ {1, . . . , p}.

Practically, p denotes the number of processors. Hence

f(x) = [f1(x1, . . . , xp) . . . fp(x1, . . . , xp)]
⊺
, x = [x1 . . . xp]

⊺
, x ∈ E,

leading to the classical parallel iterative scheme

xk+1
i = fi

(

xk
1 , . . . , x

k
p

)

, i ∈ {1, . . . , p}, (14)

which is presented in Figure 3. In order to compute (k+1)th iteration’s x in processor i, one
needs to collect all data of iteration k from other processors, which imposes a synchronization
point on the computational framework at the end of each iteration.

Now we define the integer subsets
{

P (k)
}

k∈N
such that

P (k) ⊂ {1, . . . , p}, P (k) 6= ∅, ∀k ∈ N,

and let ρi,j(k) be nonnegative integer-valued functions satisfying

ρi,j(k) ≤ k, k ∈ N, (15)

with i, j ∈ {1, . . . , p}. We introduce here an iterative scheme that generates the following
sequence

xk+1
i =

{

fi

(

x
ρi,1(k)
1 , . . . , x

ρi,p(k)
p

)

, i ∈ P (k),

xk
i , i /∈ P (k),

(16)

which is actually the mathematical model of asynchronous iterative scheme and illustrated
in Figure 4. Generally, for the sake of convergence analysis, Assumption 1 and Assumption 2
are armed therewith, which ensure that processors read eventually the latest information for
each element from essential neighbors and no processor stops updating during iterations.

Assumption 1. ∀i, j ∈ {1, . . . , p}, lim
k→+∞

ρi,j(k) = +∞.

Assumption 2. ∀i ∈ {1, . . . , p}, card
{

k ∈ N | i ∈ P (k)
}

= +∞.
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Figure 4: Asynchronous iterations with asynchronous communications.

Now we apply asynchronous iterative scheme to the iterative Laplace transform method
depicted in Algorithm 2. Since newer value u(t) depends on the previous value ū, thereafter
we use uk+1 and uk to denote these two values during iterations. let

Li

(

uk
)

= U(zi), i ∈ {1, . . . , p}, k ∈ N, (17)

and for a fixed time span t, we define

uk+1
i = Gi(U) =

ln 2

t
ωiU(zi), i ∈ {1, . . . , p}, k ∈ N. (18)

Notice that

uk+1 =
ln 2

t

p
∑

i=1

ωiU(zi) =

p
∑

i=1

uk+1
i , k ∈ N,

which leads to a handy operator

uk = S
(

uk
1 , . . . , u

k
p

)

=

p
∑

i=1

uk
i , k ∈ N. (19)

Combining (17), (18), and (19) gives

uk+1
i = (Li ◦ Gi ◦ S)

(

uk
1 , . . . , u

k
p

)

, i ∈ {1, . . . , p}, k ∈ N.

Setting
fi = Li ◦ Gi ◦ S, i ∈ {1, . . . , p}, (20)

yields
uk+1
i = fi

(

uk
1 , . . . , u

k
p

)

, i ∈ {1, . . . , p}, k ∈ N,

which follows exactly the classical parallel iterative scheme (14). Hence, iterative Laplace
method can be generalized naturally to the asynchronous iterative scheme subject to (15)
and assumed to satisfy Assumption 1 and Assumption 2

uk+1
i =

{

fi

(

u
ρi,1(k)
1 , . . . , u

ρi,p(k)
p

)

, i ∈ P (k),

uk
i , i /∈ P (k),

(21)

then leading to Algorithm 3.
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Figure 5: State diagram of asynchronous Laplace transform method.

Algorithm 3 Asynchronous Laplace transform method for quasilinear equation.

1: u0(t) = u0

2: Compute ωi using (5)
3: ki = 0
4: repeat

5: ki = ki + 1
6: ūi = uki−1(t)
7: for all j ∈ {1, . . . , i− 1, i+ 1 . . . , p} do

8: Request receiving Uρi,j(kj)(zi) from process j
9: end for

10: Compute Uki(zi) by Laplace transform
11: for all j ∈ {1, . . . , i− 1, i+ 1 . . . , p} do

12: Request sending Uki(zi) to process j
13: end for

14: Compute uki(t) using (4)
15: until

∥

∥(uk1(t), . . . , ukp(t))− (ū1, . . . , ūp)
∥

∥ ≃ 0
16: u(t) = uki(t)

The most remarkable notation therein is ki that exhibits the chaotic behavior of asyn-
chronous iterative scheme, where intrinsically retard term ρi,j and execution set P (k) play
important roles during iterations. Meanwhile, another hinge consists in the sending and
receiving operations without synchronization point, which yields the asynchronous perfor-
mance, as opposed to the aforementioned blocking reduction and broadcast operations. Note
that one may also employ nonblocking reduction and broadcast operations to implement Al-
gorithm 3. The state diagram is depicted in Figure 5.

4.2 Remarks on convergence

To the best of our knowledge, unfortunately, there is no available theory that can be used
to prove the convergence of asynchronous Laplace algorithm. According to the norm-based
convergence theory (see [17], which is based on the results in [34, 4]), one should prove a
relationship in the form

‖f(x) − f(y)‖w
∞

≤ α ‖x− y‖w
∞

, ∀x, y ∈ E,

where α ∈ (0, 1) and ‖.‖w
∞

denotes the weighted maximum norm with w > 0, in order to
establish the convergence result. This imposes a contraction condition to the operator f .
We recall that in our case there exists a summation operator S, as seen in (20), and thus f
is not an assembly but a summation of subvectors. It is clear that the summation operator
could not lead to desired partial order under contraction. A more general but similar idea
proposed in [5] (see also [6]) is based on the nested set theory, in which a technique known
as “box condition” allows to obtain convergence result without using any norm. This can be
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Figure 6: Direct Laplace transform method for linear equation: absolute error (left), relative
error (right).

written as
Ek = Ek

1 × · · · × Ek
p , k ∈ N,

where Ek
i ⊂ Ei for all i. This condition involves a superposition of infinite subsets and

thus suffers from the same problem as the previous approach. In addition, two-stage and
nonstationary models asynchronous models were discussed in [18, 19] and some papers made
use of the partial ordering such as [16, 35]. These models have gained much popularity in
some problems but do not correspond to our case.

The expansion of summation operator is indeed compensated by the frequency decom-
position, which may contribute to the convergence. In what follows we will not pursue the
convergence issue further; instead, we will focus on the numerical behavior of our method.

5 Numerical experiments

5.1 Environmental setting

We have conducted several experiments for the direct Laplace transform method, using the
Gaver-Stehfest algorithm as illustrated in Algorithm 1, as well as the iterative variants based
on Algorithms 2 and 3. All tests are executed using (13) with σ̃(ū) = σ in the linear case,
whereas (11) is adopted in the quasilinear case.

All tests are launched on an SGI ICE X cluster connected with InfiniBand, involving
MPI library to run parallel applications, which is supported by SGI-MPT 2.14. Mathe-
matical operations and linear systems solvers are implemented by the Alinea programming
library [27] and iterative algorithms are programmed by JACK [28, 30] for both synchronous
and asynchronous variants.

5.2 Direct scheme for linear equation

According to [37], number of processors p must be even. We first illustrate the numerical
results of Algorithm 1 applied to linear equation, shown in Figure 6. Here we run programs
with different numbers of processes and observe that error behaves like a convex function for
each specific time span, where T denoting the maturity of the specific option contract. We
choose 10−3 as convergence threshold, which is adequate and conspicuous for the financial
data. Table 1 gives the convergence interval of direct method. Here, convergence interval
and convergence zone are defined as the set of p that leads to convergent result. Notice that
the larger we assign for time span, the narrower convergence interval we get. When T = 20,
there is no convergence interval observed throughout experiments. In this case, we should

9



Table 1: Convergence zone of direct Laplace transform method with large maturities.

T convergence interval of p remarks

1 8, 10, 12, 14, 16, 18 p < 8: inaccurate; p > 18: inaccurate
5 10, 12, 14, 16, 18 p < 10: inaccurate; p > 18: inaccurate
10 14, 16, 18 p < 14: inaccurate; p > 18: inaccurate
20 ∅ inaccurate, oscillating

Table 2: Convergence zone of synchronous Laplace transform method.

T convergence interval of p remarks

0.01 6, 8, 10, 12 p < 6: inaccurate; p > 12: divergent
0.1 4, 6, 8, 10, 12 p < 4: inaccurate; p > 12: divergent
1 4, 6, 8, 10, 12 p < 4: inaccurate; p > 12: divergent

compute results step-by-step, as described in [26]. Here “oscillating” indicates that we could
not observe a contracting behavior when p increases monotonously. On the contrary, results
fall into an inconsistent solution range and oscillate divergently around initial point. We
mention here that large T , denoting the maturity with the unit of year, is not a normal test
case in option pricing problem, which is shown only for the experimental purpose. In the
following tests, we will use primarily small T to illustrate the real behaviors.

Davies and Martin [13] mentioned that the Laplace transform method based on the
Gaver-Stehfest algorithm gives good accuracy on a fairly wide range of functions. Figure 6
and Table 1 show that a well-posed option pricing problem leads to good accuracy with
a fairly wide range of convergence interval (e.g., T = 1 lead to a convergence interval
8 ≤ p ≤ 18). Theoretically, the more processors we use, the more precision we obtain
through parallel processing [24]. In practice, however, we must consider the arithmetical
precision of the test machine, namely, we decrease the truncation error thanks to the large
number of processors and meanwhile increase the rounding error due to digit width limit.
Unfortunately, the side effect is dramatically large due to the rapid growth of ωi with sign
alternating. Thus we could not exploit the power of large scale parallel computing, which
acts as an intrinsic defect of the Gaver-Stehfest algorithm.

5.3 Iterative scheme for quasilinear equation

Now we focus on the numerical behavior of iterative Laplace transform methods illustrated
in Algorithms 2 and 3. We continue to use the convergence threshold 10−3 as the termination
condition, which may lead to an infinite loop in our program. Experimental results are shown
in Tables 2 and 3. We notice that the convergence interval of the asynchronous Laplace
transform method is much narrower than the synchronous method. This is a reasonable
compensation because asynchronous methods require less waiting time in communication
but more computational iterations than classical parallel scheme, which amplify the unstable
issue of ωi with rapid growth and sign alternating.

On the other hand, for a large p, both synchronous and asynchronous algorithms become
divergent. This means that we could not obtain a result underneath the given threshold
since the uncertainty propagates throughout iterations. Hence, such behavior is caused by
an intrinsic issue of the Gaver-Stehfest algorithm, which is the same as that in the direct
method.

We illustrate in Table 4 the results of direct Laplace method with the same interval of T
as in Tables 2 and 3. One should keep in mind that the iterative results are obtained from
the BSM equation with implied volatility, whereas the direct method, as seen in Algorithm 2,
is applied to the linear equation where σ̃ = σ is a constant. Thus, comparing the former
with the latter could not lead to an obvious conclusion for the performance of our method.

10



Table 3: Convergence zone of asynchronous Laplace transform method.

T convergence interval of p remarks

0.01 6 p < 6: inaccurate; p > 6: divergent
0.1 6 p < 6: inaccurate; p > 6: divergent
1 4, 6 p < 4: inaccurate; p > 6: divergent

Table 4: Convergence zone of direct Laplace transform method with small maturities.

T convergence interval of p remarks

0.01 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 p < 4: inaccurate; p > 22: inaccurate
0.1 6, 8, 10, 12, 14, 16, 18, 20 p < 6: inaccurate; p > 20: inaccurate
1 6, 8, 10, 12, 14, 16, 18 p < 6: inaccurate; p > 18: inaccurate
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Figure 7: An example of successive asynchronous Laplace iteration with p = 6, ∆T = 0.1,
n = 10: first time interval (left), last time interval (right).

We show these results only for clarity and completeness.
Figure 7 illustrates another experiment that divides temporal interval T into several

smaller parts, as described in [26]. As mentioned before, we address primarily the real situa-
tion in option pricing problem where T is small. For a small T we need no more subdivision
in the time domain. Thus, we conduct this test only for evaluating the performance of
the algorithm illustrated in [26], where we execute asynchronous Laplace transform method
step-by-step along time domain. Similar to the classical temporal integration schemes like
Euler methods, we perform computations in each step using always the latest data, but
employ a rather wide subinterval to fit the characteristic of the Laplace transform method.
The number of processors, the step size, and the number of steps are chosen as p = 6,
∆T = 0.1, n = 10, respectively. We can see that the execution process in the first time in-
terval is highly structured, except for some unordered data due to the asynchronous scheme.
Nonetheless, the last time interval gives different behavior that seems somewhat affected
by the unfinished chores due to the asynchronous iterative scheme. This produces larger
retards and converges more quickly when receiving the latest data in some steps.

Finally, we test the accuracy of the asynchronous Laplace method in comparison with
the synchronous version. We fix the volatility σ = 0.3, risk-free rate r = 0.05, maturity

11



Table 5: Synchronous and asynchronous Laplace results with synchronous option prices
Vsync, asynchronous option prices Vasync, absolute errors εabs, and relative errors εrel, given
σ = 0.3, r = 0.05, T = 1, and p = 6.

S E Vsync Vasync εabs εrel

60 50 32.178769 32.178726 4.3 ∗ 10−5 1.34 ∗ 10−6

100 50 66.517320 66.517268 5.2 ∗ 10−5 7.82 ∗ 10−7

20 30 7.797859 7.797825 3.4 ∗ 10−5 4.36 ∗ 10−6

20 50 5.380797 5.380790 7.0 ∗ 10−6 1.30 ∗ 10−6

T = 1, and number of processor p = 6. Recall that

σ̃(V ) = σ

√

1 + sin

(

πV

E

)

.

The constant volatility and the strike price in the right hand side are fixed, whereas the
volatility σ̃ changes with V . Then we change the stoke price S and strike price E to
compare the two methods. Results are shown in Table 5. Here, Vsync and Vasync are the
option prices obtained from synchronous and asynchronous iterations, respectively. εabs and
εrel act as absolute and relative errors such that

εabs = |Vsync − Vasync| , εrel =
εabs

Vsync

.

We notice that the asynchronous option prices are close enough to the synchronous cases.
This observation achieves our expectations, as we speculated that the chaotic iterative pro-
cess does not affect dramatically the final result. Since the synchronous Laplace transform
method has proved to be accurate in predicting the option price values using the BSM
equation with implied volatility, we can draw a conclusion that our method yields accurate
results as well.

5.4 Further discussion

We have seen that Laplace transform methods are highly influenced by the number of digits
of machine precision that are prone to round-off error propagation, which leads to an unstable
behavior. Notice that (5) increases quickly with commutative plus-minus sign. The accuracy
mounts in the beginning as the number of processes p increases and then decreases rapidly.

One could avoid such effect for Algorithm 1 by simply adopting the recommended pre-
cision µGS = 1.1 ∗ p in a multi-precision computational environment as discussed in [1].
Meanwhile, the fixed Talbot method [38] requires the precision µFT = p, which performs
a less restrictive behavior and seems a better alternative to the Gaver-Stehfest algorithm
according to the experiments therein. Further investigation gives a unified framework for
various types of inverse Laplace transform algorithms [2]. Recall that the contour integral
is

u(t) =
1

2πj

∫

Γ

eztU(z)dz.

Let y = zt, we have

u(t) =
1

2πjt

∫

Γ

eyU(
y

t
)dy.

Then taking

ey ≈
n
∑

i=0

βi

αi − y
,
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yields

u(t) ≈
1

t

n
∑

i=0

1

2πj

∫

Γ

βi

αi − y
U(

y

t
)dy.

Finally, using Cauchy integral formula, this becomes

u(t) ≈
1

t

n
∑

i=0

βiU(
αi

t
). (22)

Choosing
p = n, αi = ln 2, βi = ωi ln 2,

where p is an even integer, and notice that β0 = 0, we get again the Gaver-Stehfest formula
(4). We could further rewrite (22) in the form

uk+1
i =

1

t
βiU(

αi

t
), i ∈ {1, . . . , n+ 1}, k ∈ N,

where
U(

αi

t
) = Li

(

uk
)

, i ∈ {1, . . . , n+ 1}, k ∈ N.

Combining (17) and (19), we could obtain the asynchronous scheme (21) for the unified
Laplace transform model, whereby the methods discussed in [2], such as Fourier series meth-
ods and Talbot method, might also be executed in asynchronous mode, although no rigorous
proofs are available. The contour integral approach with quadrature is another choice and
has proved to be very efficient for parabolic problems with time-independent coefficients [36].
One may expect to combine these strategies to tackle the quasilinear equations in a more
effective way.

These issues are beyond the scope of this paper. We leave this work, as well as a rigorous
proof of the asynchronous convergence, as a direction of future investigation.

6 Concluding remarks

In this paper, we investigated the Laplace transform and proposed a new method based on
the asynchronous iterative scheme. We formalized the mathematical model and gave some
remarks on its convergence. Numerical experiments showed that asynchronous Laplace
transform method converges chaotically to the correct solution sets. The intrinsic numerical
approximation problem affects the accuracy of Gaver-Stehfest algorithm and led to a narrow
convergence interval. There exists much remains to be done to prove the convergence of this
method, which might require a complete extension of the existing asynchronous theory. Fur-
ther investigation could focus on the asynchronous formalization for other efficient inversion
formulas and nonlinear solvers.
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