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Abstract

We consider the computation of eigenvectars= (z1,...,z,) over the integers, where each
componentz; satisfies|z;| < b for an integerb. We address various problems in this context,
and analyze their computational complexity. We find that different problems are complete for the
complexity classes'P, P\, FNP//OptP[D(log n)], FPNP, PNP andNPNP. Applying the results,
finding bounded solutions of a Diophantine equator™ = 0 is shown to be intractable.
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1 Introduction

Eigenvalues and eigenvectors have important applications in many areas, e.g. to problems in structural
analysis, quantum chemistry, power system analysis, stability analysis, VLSI design, and geophysics
[2]. The computation of eigenvalues and eigenvectors is thus an important problem, which has been
investigated intensively in the past; see e.g. [3, 5, 11] and references therein.

In this paper, we address the complexity of computing distinguished elements out of the in general
infinite set of eigenvectors for a given eigenvaluef a matrix A/ over the integer&. In particular, we
consider the computation of eigenvectors within a box.bf i.e., the set of vectore = (vy,...,v,)
such that the absolute valye;| of each component; is at mostb; we call such vectors-bounded
Observe that in programming languages, the range of integers is usdmilynded for some constant
b>1.

As with the computation of eigenvectors, there is particular interest in computing shortest eigenvectors,
i.e., a non-zero eigenvectersuch that its lengthjv||, which is understood in terms of tlie (euclidean)
norm, is smallest. For this problem e.g. the algorithm aétad et al. [6] for finding integer relationships
between real vectors can be employed, which is closely related to the Lovasz-Lenstra-Lehsitad-
rithm [9]. Given linearly independent vectovs, ..., v, € Z", andk > 0, the algorithm in [6] finds a



vectorx € Z" in polynomial time such that;-xT = 0foralli = 1,..., s or reports that no such vector

of length< 2% exists. The vector computed is not shortest, but usually shorter than a vector obtained by
simple algorithm such as a standard Gaussian elimination. Furthermore, the algorithm does not return a
b-bounded vector in general, and it is not clear whether the algorithm could be modified in this respect.

The main contributions of the present paper can be summarized as follows:

e We give a precise characterization of the computational complexity of different problems in the
context of computing-bounded eigenvectors ov&r As we show, this problem is intractable in
general. In particular, we show that computing a shortidstunded eigenvector is complete for
FPN? and, ifb is a constant, complete for the cld&NP//OptP[O(log n)] introduced by Chen and
Toda [1]. Few natural problems which are complete for this class are known so far.

e By means of this complexity characterization, appropriate algorithm schemes for the solution of
these problems emerge.

e We provide several different problems, which can be used to establish similar hardness results for
related problems.

To our knowledge, the complexity of these problems has not been considered before.

2 Preliminaries

Eigenvalues and Eigenvectors Let R be a ring withl. Recall that\ € R is an eigenvalue of an x n
matrix M = (m, ;) over R if the equation

M-xT = xT

x1
has nontrivial solutions, i.e., solutions# 0, wherex = (x1,...,z,), xT = | : | is the transpose
Tn
of x, and0 = (0,...,0) is the zero vector; all vectors that satisfy this equation are eigenvectors (for
the eigenvalue\). It is well-known that for any eigenvectoss, ..., v,, all vectors) ;_, a;v;, where

a; € 7, are eigenvectors; iR is a field, then the set of all eigenvectors foform a vector space, whose
dimension is the multiplicity o as root of the characteristic polynomial &f. In this paper, we restrtc
attention toR = Z.

Recall that theL, norm of an integer vectox, ||x|, is defined byx|| = (37, a:?)l/z. Vectorx € V
is maximalin a set of vectord/ if and only if ||y|| < ||x||, for everyy € V. We say that vectoxk is
boundedby a an integeb > 0 (b-bounded, if |x;| < b, foreveryi =1,...,n.

X

Computational Complexity We assume that the reader has some knowledge about computational
complexity. Excellent sources are [4, 7], which we refer to for background information.

Computational problems are encoded over the alphabet {0, 1}, for which a standard one-to-one
polynomial-time invertible pairing functioriz, y) is available. A language is a subsetXf, and a
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function is a partial mag : ¥* — X*. A multi-valued functiory is a mapg : ©* — 2", whereg(z) is
considered undefined if(z) = 0.

The complexity classes considered are defined using variants of standard (possibly nondeterministic)
Turing machines (TMs), and are either acceptors or transducers. On a givencjrgudranch of a
nondeterministic TMM may halt in an accepting or rejecting state. The language accepteflibyhe
set of all strings which are accepted bf. A transducefl’ computes a string on inputz, if some branch
halts in an accepting state apdls on the output tape &F. Every deterministic (resp. hondeterministic)
transducefl’ computes a functiofi (resp., multi-valued functiop) such thatf (x) = y (resp.,y € g(x))
iff M computegy on inputz, for everyx € ¥*.

P (resp.NP) is the class of decision problems (identified with languages) solved by a polynomial-
time deterministic TM (resp. nondeterministic TM), aR# is the functional version oP. The class
PNP (resp.,NPNP) contains the decision problems solved in polynomial time by a deterministic (resp.,
nondeterministic) TM with an oracle f&P. The classP™? is the functional version oPNF. The
cIassPﬁIP is the variant o in which all oracle calls must be run in parallel, i.e., no subsegeunt call
of the oracle is possible.

A NP metric Turing maching8] is a polynomial-time bounded TM’, such that on input every
computation branch halts and outputs a binary number; the restilbof: is the maximum over all these
numbers. The clag9ptP contains all (total) integer functiorfswhich are computable by an NP metric
TM. The clas®ptP[O(logn)] is the subclass dDptP in which the outputf (z) hasO(|x|) many bits,
where|x| is the length ofr, i.e., f(z) is polynomial in|z|. The clas&NP//OptP[O(log n)], introduced
in [1], contains all (partial) multi-valued functionsfor which a polynomial-bounded nondeterministic
transducefl” and a functior € OptP[O(log n)] exist such that for every, g(x) = T'((z, h(x))).

A function f; (resp., multi-valued functiog;) is (polynomial-time) reducible to a functiofy (resp.,
multi-valued functiorys) if there is a pair of polynomial functioris; , ko such that, for every, hi(z) is
defined, andf; (z) = ho(z, w) wherew = fao(hi(x)) (resp..ha(x,w) € g1(z) for everyw € ga(hi(x)),
and somew exists if f1(z) is defined.) A (single- or multi-valued) functiofi is hard for a class of
(single- or multi-valued) function¥', if every g € F is reduciblef, and is complete foF, if it is hard
for F and belongs ta.

A computational problenil is modeled (or “solved”) by a functiofi (resp., multivalued function) if
given any instancé of IT encoded by a string, f(x) is defined (respg(x) # 0) iff I has some solution,
and f(x) is the solution (resp., eaeh € g(z) is a solution) for instancé. Furthermore, a problem is
hard (resp. complete) for a class of functidnsif it is modeled by some function which is hard (resp.
complete) forF'. E.g., computing some optimal tour in the Traveling Salesman Problem, as well as the
cost of an optimal tour, is complete 6PN’

We remark that a clasSNP//OptP can be defined analogousidP//OptP[O(log )] by replacing
“h € OptP[O(logn)]” with “ A € OptP” in the definition. It is easy to show that every (multi-valued)
functiong € FNP//OptP has a refinement (single-valued) functjoe FPN? i.e., for everyz it holds
that g(z) is defined iff f(x) is defined andf(x) € g(x). Thus, a problem (with possibly multiple
solutions for a given instance) is solvableRiNP//OptP iff it is solvable inFPNY'. Even if problems in
FPNP that have multiple possible solutions (e.g., computing an optimal tour in the Traveling Salesman
Problem) may be more naturally modeled by function&¥P//OptP, we use here the claB®™",



which is more widely known and reflects more appropriately the nature of deterministic algorithms used
in practice.

3 Problem Statements
We assume tacitly that vectors and matrices are over the intég¥ve consider the following problems:

Problem P1: Given ann x n matrix M, an integer eigenvalueof M, a real numbe¥s, and a bound
b > 1, does there exist@bounded non-zero eigenvectofor A such that|x| < K?*

This problem is the decision problem naturally associated with the problem of computing a dhortest
bounded eigenvector. It is related to integer and quadratic programming problems (see [4]). We show
that P1 isNP-complete, and hardness holds evelkif= /nb, i.e., deciding whether any-bounded
eigenvector exists is NP-complete. Thus, the algorithm @éteid et al. [6] can not be modified to find
a b-bounded nonzero integer relationship among vectars. ., v, in polynomial time. As shown in
Section 5, this holds evenif= 1, i.e., for a single vector.

Problem P2: Given ann x n matrix M, an integer eigenvalug of M, and an integeb, compute a
shortest eigenvector among the-bounded eigenvectors for.

Intuitively, solving this problem requires computing the lengitf| of a shortest-bounded eigenvector,
and generating an eigenvector of that norm. This problem is completeHdF in general, and for
FNP/IOptPO(logn)] if bis fixed to any constant > 1.

Problem P3: Given ann x n matrix M, an integer eigenvaluk of M, and integer$ and z, decide if
there is any shortest eigenvectoamong the-bounded eigenvectors farwith z; = z, i.e., the
first component ok is z.

This problem isPNP-complete in general, arﬂﬁlp-complete ifb is fixed toc > 1.

Problem P4: Given ann x n matrix M and an integer eigenvalueof M, compute the lexicographically
first among the shortestbounded eigenvectors for.

Selection of the first vector under lexicographical ordering or a similar ordering is a natural choice.
This problem isFPNP-complete, reardless of fixingto a constant > 1 or not.

Problem P5: Given ann x n matrix M, an integer eigenvalug of M, a subsef of the components,
and integer9, z, does there exist &bounded=-minimal nonzero eigenvectot for A such that
x1 = z, wherex <y if and only if x andy coincide on the components Inand||x|| < ||y||.

!Note that P1-P5 are trivial if is irrational, and can be easily reduced to the integer case if it is a rational number.



This problem subsumes P3 as a special cade+f (). Here, the comparability between different
vectorsx andy is restricted to vectors which coincide on a given padf the components. As we
will see, however, this restriction on comparability does not decrease the complexity; on the contrary, it
increases the complexity frof"* to NPNP,

Notice that in all problems P1-P5, correct problem instances can be recognized in polynomial time,

since deciding whethex is an eigenvalue of/ can be done in polynomial time (e.g. using linear pro-
gramming or Gaussian elimination).

4 Complexity Results

For determining the complexity of problems P1-P5, we refer to variants of problems involving the clas-

sical satisfiability problem SAT. Let = {C1, ..., C),} be a set of propositional claus€son variables

X. Atruth assignment to X satisfiesp, if each claus€” € ¢ contains at least one literal (i.e., variable

of negated variable) with valueue. An assignment is not-all-equal satisfyingnae-satisfyingfor ¢, if

each clause ipp contains two literals that have different value according;tdearly, each nae-satisfying

assignment fop satisfiesp in the standard sense. Moreovergifs an nae-satisfying assignment, then

also the complementary assignmentn which each variable has opposite truth value, is nae-satisfying.
Leto = {C4,...,C),} be aninstance of 3SAT, i.e., a set of propositional clad$es «; 1 Va; 2V 3,

i=1,...,monvariablesX = {x1,...,z,}. Then denote by’ the set of the following clauses:

e z;VxiVzandz; ViV -z, foreachj =1...,n,
° a;h Vv a;-‘g V w; andag,i VoV —w;, foreachi=1,...,m
wherex, all z;, all x;‘ and allw; are fresh variables anﬂ;ﬁj =z, if ;5 = xg,andaj’j = xy if
Q45 = 7Ty
The following is easily verified. Let be an nae-satisfying assignment {gr If 7(xzo) = false, then
T, restricted toX, satisfiesp; if 7(xz¢g) = true, then the complementary assignmentrestricted to

X, satisfiesp. On the other hand, if an assignmensatisfiesy, theno is extendible to at least one
nae-satisfying assignment of in which 2y = false. Thus, we obtain the following.

Lemma 4.1 Let » be any 3SAT instance on variabl& Then, the nae-satisfying assignmentsf ¢’
such thatr(z() = false, correspond on the variable¥ 1-1 to the satisfying assignmentsof

As a consequence, deciding whether a SAT instance is satisfiable under nae-satisfaction (NAESAT) is
NP-hard [4], even if all clauses have size 3 (NAE3SAT).

We now turn to Problem P1 from above, and obtain our first result.
Theorem 4.2 Problem P1 ifNP-complete. Hardness holdsbifs fixed to an arbitrary constant > 1.

Proof. Membership in NP is clear, since a guess for a suitable eigenvedtas polynomially many
bits in the size of the input and can be verified in polynomial time.
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We show hardness by a reduction from NAE3SAT. et {C4,...,C,,} be a 3CNF on variables
X =A{x1,...,zn}.

We will describe the matrixi/ in terms of the equations emerging for each compongtitom the
equation} - xT = A\xT; the eigenvalue is 1.2 That is, we state for eachy the equation

> mij g =
i

Unless stated otherwise, the equation is; = x; (i.e., thei-th row of M has 1 at column and O
everywhere else).

We constructM as ak x k matrix, & = 3n + m, as follows. The components,...,z, of an
eigenvectorx = (z1,...,z)) are supposed to correspond to the variables .., z, of ¢, and the
component values to (partial) truth assignments. For éachi, . .., n, we have the equation

C-Tpti = Ty (1)

any c-bounded solution requires that;, z,,1;) is one of(0,0), (¢, 1), (—¢, —1). Intuitively, this corre-
sponds to a partial truth assignment, whird ) means that variable; of ¢ is set true(—c, —1) thatx;
is set false, and0, 0) thatz; is undefined.

For each claus€’; = ;"' Vv ;* V ;" in o, wheres; ; € {0,1} (as usuak® is the literalz andz*
the literal—x), we have the equation

(_1>8i’1 “Tiy + (_1)Si’2‘xi2 + (_1)Si’3 "Tiz = T3n+i (2)

The value ofrs,,; in anyc-bounded eigenvector is either 0 orte. If all literals in C; have assigned a
truth value, i.e.z;; = +c, thenxzs,,; must have value-c; this is only possible if two termS—l)Si«J‘a:ij
add up to 0, i.e., the corresponding literalshave opposite value under the truth assignment represented
by x.

Now we add further equations, for dl= 1, ..., n:

Tngl + Tnti — Tonti = Toni (3)

They have the following effect. I, 11 = 0, i.e.,xz; is not assigned a value, then alsg,; = 0 must
hold in anyc-bounded eigenvectot, which impliesx = 0. On the other hand, if, 1 = +1, then also
ZTn+; Must have a value from 1, 1, otherwise Equation (3) can not hold.

It should be clear from above how the matfiX is completed. Notice that = 1 is an eigenvalue of
M (e.g., setr; = ¢, foralli = 1,...,n, and choose the other components appropriately).

It holds that in any non-zere-bounded eigenvectox for M and A\, everyz;, i = 1,...,n must have
value+c. Furthermore, the nae-satisfying assignments obrrespond 1-1 to the non-zero eigenvectors.

Thus, forK = /(3n + m)c? the maximum possible length ofcabounded vector, it holds that/, A,
¢, andK is a Yes-instance of P1 if and onlyf is nae-satisfiable. This proves the result. [ |

2Here and in the other proofs, we take= 1; it is easy to see thatis indeed always an eigenvalue lof.



Theorem 4.3 Problem P2, i.e., computing a shortest non-z&f#eounded eigenvector, is complete for
FNP//OptPO(logn)], if b is fixed toc > 1.

Proof. The problem is ifNP//OptP[O(log n)]: The length? of a shortest-bounded eigenvector is
at most,/nc, which means that it ha@(log n) bits. Moreover, it can be computed by a NP metric TM,
and thus computing is in OptP[O(logn)]. An eigenvector of lengtti can be guessed and verified in
polynomial time; hence, computing a shortest eigenvector ENR//OptP[O(log n)].

For the hardness part, we employ a reduction from the following problem. Given an NAE3SAT instance
© on variablesX, a subsetX’ C X and a variabler; € X’, call a nae-satisfying assignmentof
z;; X'-minimal if the set{z; € X’ | o(z;) = o(z;)} is minimal over all nae-satisfying assignmeats
with respect to inclusion.

Lemma 4.4 Given an NAE3SAT instance on variablesX, a subsetX’, and a variablez; € X',
computing ar;; X'-minimal nae-satisfying assignmentyofs FNP//OptP[O(log n)]-hard.

Proof.  This can be shown by a reduction from the following problem, which was préW&e/log-
complete in [1] X-MAXIMAL MODEL): Given a CNF ¢ on variablesX and a subseX’ C X,
compute an assignmeatto the variables inX’ such thatC'o is satisfiable and for no assignmento
X’ such thatr < 7 under usual truth ordering;r is satisfiable.

Without loss of generalityp is only satisfiable if a distinguished variable € X’ is set to true. Using
fresh variablesy can be rewritten by splitting clauses in the standard way (reglaee C; v C5 by
Cy VvV y and—y Vv Cs) to a 3CNFg* such that theX’-maximal models ofp andy* coincide. We then
apply to ¢* the transformation from 3SAT to NAE3SAT outlined at the beginning of Section 4, and
obtain a NAE3SAT instance’. By Lemma 4.1 and the observations preceding it, eac’-minimal
nae-satisfying assignmenbf ¢* corresponds to &’-maximal (partial) mode# of ¢, given byo (z;) =
7(x;) # 7(x;), forallz; € X', and conversely for every at least one such exists. Sinceo* ando are
constructible in polynomial time fromp, X', x; andy, X', x;, T, respectively, the result follows. m

The proof is an extension to the construction in the proof of Theorem 4.2o, L8t = {1, ..., 24},
andx; = x1 be an instance of the problem in Lemma 4.4. Suppose the equations (1)—(3) have already
been established fgr. We introduce for each variablg € X \ X’ further components; for a vector,
j=k+1,...,n,and set up the following equaticn:

T4l — Tptj — 25 = Zj (4)

This equation is similar to Equation (3), which assigns in any non-z&aunded eigenvectar,, ; the
value+1, if z,,1 = z,4;, and the value 0 otherwise (i.e.aif,+1 = —z,4;); Equation (4) does just the
opposite.

Let M andX = 1 (b = ¢) be the resulting instance of P2. Then, similar as in proof of Theorem 4.2, the
non-zeroc-bounded eigenvectoss of M correspond 1-1 to the nae-satisfying assignments. Each such

3Here and in the rest of the paper, for better readability we use component samestc which can be easily transformed
to nameseq, . .., x, as stated in problems P1-P5.



vectorx satisfies|x||> = (m + n)c> + n+n — k + 1 + eq(x), whereeg(x) = |{j | z1 = x; and
1 < j < k}| is the number of components amang . . ., 2, which coincide withz;.

Thus, a shortest-bounded eigenvectot of M corresponds to an nae-satisfying assignneent ¢
in which |[{z; € X | o(x1) = o(z;)}| is minimum. Clearly, every such is anz;; X’-minimal nae-
satisfying assignment fas.

The matrix M and A = 1 can be constructed in polynomial time from and from any shortest
c-bounded eigenvector of/, the corresponding:;; X’-minimal nae-satisfying assignmeatis con-
structible in polynomial time; this proves hardnessEo¥P//OptP[O (log n)]. [ |

For an assignment to Boolean variableX, denote by [ X’] the restriction obr to X’ C X. Recall
that a truth assignmentto an ordered set of variable§’ = {z1,...,x,} is lexicographically smaller
than a truth assignment, denotedr <., o, if 7(z;) = false for the least index such thatr(z;) #

o(x;).
Theorem 4.5 Problem P2, i.e., computing a shortest non-Zetmunded eigenvector, BPNT -complete.

Proof. The membership part follows from Theorem 4.11 below.

For the hardness part, we employ a reduction from the following problem. Given an NAE3SAT in-
stancey on variablesX, X’ C X, and a variabler; € X, call any nae-satisfying assignmentof
X lexicographicz;; X’-maximal if the assignment’ to X given byo'(x;) = o(x1) = o(x;), for
all z; € X' = {x1,...,z}, is lexicographic maximal over all suek. Similar as in the proof of
Lemma 4.4, and using the result that computing the lexicographic maximal satisfying assignment of a
propositional CNFy is FPNP-complete [8], the following can be shown.

Lemma 4.6 Given an NAE3SAT instangeon variablesX, a subsefX’ C X, and a variabler; € X',
computing a lexicographie;; X’-maximal nae-satisfying assignmentois FPN-hard.

We reduce the problem in Lemma 4.6 to computingt®ounded eigenvector by adapting the proof of
Theorem 4.3 as follows.

(@) Equation (4)issetupforall=1,...,n;
(b) foreachj =1,...,k, whereX’ = {z1,..., 2}, add the equation

—j+1 —j+1
2" I+ Tn+1 — 2" I+ Tn+j = Wj. (5)

We then seb = 2™. The effect of these changes is the following. In any non-2&rbounded eigenvector
x, each component; must be set ta-2", andz,,; to +1. The vectorsx correspond 1-1 to the nae-
satisfying assignments gf. Moreover, the shortest eigenvectarsorrespond 1-1 to the lexicographic
z1; X'-maximal nae-satisfying assignmentsf ©, and somer is easily obtained from any sush

SinceM, A = 1 andb = 2" are polynomial-time constructible from, X andz, the results follows.
[ |



Theorem 4.7 Problem P3 isPNP-complete.

Proof. The length? of a shortest non-zerlebounded eigenvectot can be computed in polynomial

time with a polynomial number of calls to an NP-oracle (query instances of P1), doing a binary search on
for K on[1, /nb]. Given/, deciding querying the NP oracle wehthei-Bounded nonzero eigenvector

x exists such that; = z. Hence, the problem is RNT.

The hardness part is established extending the reduction in the proof of Theorem 4.7: From the result
that deciding a given bit of the lexicographic maximal satisfying assignment of a propositional CNF
is PNP-complete [8], deciding whether(z;) = o(x;) in the (unique) lexicographie;; X’-maximal
nae-satisfying assignment of an NAE3SAT instapclr X’ = X andxz;,z; € X is PNP-hard. The
condition7(z;) = 7(z;) is equivalent tav; = 0, wherew; is from Equation 5. This proves the result.

[ |

Theorem 4.8 Problem P3 isPh\IP-compIete, ib is fixed toc > 1.

Proof.  The length? of a shortest-bounded vector is at mostnc2, and can be easily determined
from the result of a polynomia number of parallel queries to an NP oracle whethek” where K =
V1,v/2,...,v/nc2. Further parallel queries to NP oracles can determine if sebmunded eigenvector
of length K exists such that = z;. Given all queries results, problem P3 is easily answered. Hence, it
is in Ph\”’.

For the hardness part, we use the following lemma:

Lemma 4.9 Given an NAE3SAT instangeon variablesX, a subsetX’ C X, and variablesr; € X',
z; € X \ X', deciding whether some nae-satisfying assignment ekist such that{z; € X’ |
o(xj) = o(xz;)}| is smallest (call such & z;; X’-minimum) ands (z;) = o(xy) is Pﬁlp-complete. is
FNP//OptP[O(log n)]-hard.

Proof. This can be shown by a reduction from problem MAX-3SAT-ODD, which asks whether
max [{z; € X | o(z;) = true}|, whereo ranges over the satisfying assignments for a given 3SAT
in?stance,o over X, is odd (see e.g. [10]). Using further variablgswhether{z; € X | o(z;) = true}|

is odd can be expressed @s wherey; = x; andy; = —(y;—1 = x;), written in clausal form. Then,
apply the reduction as in the proof of Lemma 4.4, and:}die as there and; bey,,. [ |

Construct for the problem in Lemma 4.9 the instance of P2 as in the proof of Theorem 4.3 for the
problem in Lemma 4.4 (wherg = x1). Then, add foreach= 1, ..., k (recall thatX’ = {x1,...,zx})
the equation

Tl + Tngi — Wi = W (6)

similar to Equation 3, where; is a new component, and drop fof from Lemma 4.9 Equation (4).
These changes double the cost of components that have the same vajuarasadd an extra cost for
xz1 = z;. It holds thatz; = 0 in some shortest-bounded nonzero eigenvector iff an nae-satisfying
assignment as in Lemma 4.9 exists. This proves the result. [ |

For the analysis of problems P3 and P4, the following lemma is helpful.
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Lemma 4.10 Given an NAE3SAT instancg computing the lexicographically first nae-satisfying as-
signment ofp, 7*, is FPNF-hard. This holds even if is known to be nae-satisfiable.

Proof. Reduce the analogous problem for 3SAT, and using the transformation of a 3SAT instance

a NAE3SAT instance’ described above Lemma 4.1. Then, order the variables arbitrarily but such that
the order starts withy, x4, ..., x,. By Lemma 4.1, the lexicographic first nae-satisfying assignment of
¢’ corresponds to the lexicographic first assignmeng.oAs follows from [8], computing the latter, as
well as a given bit thereof, IBPNF-hard. |

Theorem 4.11 Problem P4 isfPNY-complete. This holds evenbifs fixed toc > 1.

Proof.  As described in the proof of Theorem 4.7, computing the ledgiha shortest non-zer
bounded eigenvectoris in FPNY. Computing the lexicographically first eigenvecidrof length? can
be done with a polynomial number of NP oracle calls, computifjg:5 etc. in order; for each component
x; only O(log b) many values need be considered in a binary seardh-brb], and deciding if a partial
vectorz, ...,z can be completed tolabounded eigenvector having lengdtis in NP.

To show hardness, reuse the reduction from the proof of Theorem 4.3 aid set(). Then, the
shortest non-zere-bounded eigenvectors correspond to nae-satisfying assignments. In particular, the
lexicographic first-bounded eigenvector (in whicty = —c) corresponds to the lexicographically first
nae-satisfying assignment of(in which o = false. By Lemma 4.10, this proves the result. [ |

Corollary 4.12 Letc > 1 be fixed. Given am x n matrix M, an integer eigenvalue of M, and
integersi, z, deciding ifz; = z for the lexicographically first maximal eigenvectoramong those that
are c-bounded iPNP-complete.

Proof. Membership irPN? is immediate from Theorem 4.11. As follows from [8], deciding a given
bit of the lexicographically first satisfying truth assignment of a SAT instan&I5-complete. Thus,
deciding a given bit*(z;) of the truth assignment' in Lemma 4.10 i€F-hard, and the result follows
from the reduction in the proof of Theorem 4.11. [ |

Problem P5 turns out to be the hardest among the problems that we consider here, and is complete
for NPNP. In the proof, we employ that checking the validity of certain quantified boolean formulas
(QBFs), based on the notion of nae-satisfaction, is as hard as for the standard notion of satisfaction.
An NAESAT instancep on variablesX can be seen as a QBF = 3X.p, wherey is viewed as a
conjunction of its clauses and the quantifieranges over all truth assignmentsXo & is valid under
nae-satisfaction (briefly, nae-valid)f is a Yes-instance. Accordingly, a QBR 3X.p wherey is in
conjunctive normal form (CNF) is nae-valid if for every assignmemd Y, there is an assignmentto
X such that the combined assignment 7 nae-satisfies. The following lemma is used in the proof of
the next theorem.

Lemma 4.13 Given a QBF® = VY 34X.p, wherey is in CNF, deciding whether it is nae-valid is co-
NPNP_complete, and hard evengfis in 3CNF.
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Proof. Membership in caVPN? is easy: A guess for such that no extension of by o does nae-
satisfy can be checked with a call to an NP oracle (the check is in co-NP).

Hardness follows from a reduction of checking the validity of a QBF of the given form in the stan-
dard sense, which utilizes the reduction from 3SAT to NAE3SAT given by the transformation from
Lemma 4.1. l.e., construct fgr the formulay’, and consider the QBF

U =VY3IX UX*U{zj,z0,wi}.¢"

This formula is nae-valid if and only i is valid in the standard sense. [ |

Theorem 4.14 Problem P5 isNPNP-complete, for every fixed> 1.

Proof. The problem is ilNP" | as a guess for &-minimal c-bounded nonzero eigenvectorcan be
verified with a call to a NP oracle (deciding whether sgme x with x # y exists is in NP).

Hardness is shown by using the following variant of the problem in Lemma 4.13. Suppose for each
assignment to Y, some assignmentto X exists in whichr(z1) = 7(z2) such that U 7 nae-satisfies
p; it is asked whether a exists such that U 7 nae-satisfiep andr(z1) # 7(x2). This variant of the
problem is also cdNPNT-hard; indeed, before applying the reduction from 3SAT to NAE3SAT, replace
each clause ip by the clauseg’ v x; andC Vv x5, wherez; andz, are fresh variables and split the
clauses using further fresh variables to 3CNF form.

We reduce this problem to the complement of P5. Let the input formufh beV.X23.X ;.. For the
formulayp, seen as an NAE3SAT instance &n U X9 = {z1,...,2,}, Set up the equations (1)—(3) asin
the reduction described in the proof of Theorem 4.2. Furthermore, introduce foj eaehl < j < n,

a new component; and set up the Equation (4) as f&f = X \ {z2} U X», i.e.,

T+l = Tnt+j — 25 = Zj (7

Then, thec-bounded nonzero eigenvectors correspond 1-1 to the nae-satisfying assignmey tie
assertion orp, for each assignmentto X5, a corresponding eigenvectomexists such that; = v, = c.
It holds thatl|v||? = (m+n)c?+2n, andvy, 2 = 1; v is <-minimal, if and only if there is no assignment
7’ to X3 such that-(z1) # 7(x2) ando, 7’ satisfiesp. Thus, it follows thatb is a not a Yes-instance for
the problem described above, if and only if there exists seameinimal nonzera:-bounded eigenvector
v which satisfiessy,,+2 = 1. This proves the result. [ |

5 Discussion and Conclusion

The results that we have derived in the previous section may be profitably used to derive similar complex-
ity results for related problems. As an example, we consider the problem of finding integer relationships
between numbers [6]. Given a real vectgrfind a vector of integers such thaw-xT = 0. If v is an in-

teger vector, then the resulting Diophantine equation always has nonzero solutions. Fintiograled
nonzerax which satisfies this equation is intractable, however.
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Theorem 5.1 Given an integer vectov = (vy,...,v,) andb > 0, deciding whether there is a nonzero
b-bounded vectox € Z such thatv-xT = 0 is NP-complete. Hardness holds fbfixed to any: > 1.

Proof.  Obviously, a propex can be guessed an checked in polynomial time. For the hardness part,
we reduce problen®; to this problem. Rewritd/-xT = A\xT asM’-xT = 0, whereM’ = M — \-I1 (I
is the identity matrix). Lein = max |m; ;| be the largest absolute valuel’. DefineD = b-n-m + 1,

Z7]

and let the vectov = (vy,...,v,) be

n
L —1, /
vj—g D" my ;
i=1

(thusv-xT = >""  D"ly,xT, wherey; is thei-th row of M). Then, for every-bounded vectox it
holds thatv-xT = 0 iff M’-xT = 0. Observe that each?, i < n, hasO(i-b-n-m) bits; thus,v is
constructible in polynomial time fromy/’, and thus from\/ and\. This proves the result. [ |

By the same reduction, similar complexity results as for problems P2-P5 can be established for analo-
gous problems on a single Diophantine equatior™ = 0.

In this paper, we have considered the computational difficulty of problems that arise in the context of
computing bounded integer eigenvectors for a given integer mafrand eigenvalue.

As we have shown, computing some maxiriiddounded eigenvector is possible in polynomial time
with the help of an NP oracle. Thus, practically speaking, this problem is not much harder than solv-
ing SAT. On the other hand, the proof of Theorem 4.3 suggests that parallelizing the computation of a
maximal c-bounded eigenvector to NP problems is not evident; this follows from a similar property of
computing a satisfying truth assignment (resp., an nae-satisfying truth assignment) of a SAT instance.

Some problems remain for further investigation. Other norms apartfrofor maximal vectors might
be considered, as well as other domains such as the rationals, finite fields, or prime ideadafther
issue is approximation of shortest eigenvectors. This is left for future research.
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