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Abstract. The class of systems of uniform recurrence equations (URESpsed under uni-
modular transformations. As a result, every systolic ad@gcribed by a unimodular mapping
can be specified by a system of space-time UREs, in which the &and space coordinates
are made explicit. As non-unimodular mappings are freduersed in systolic designs, this
paper presents a method that derives space-time equatios)sstolic arrays described by non-
unimodular mappings. The space-time equations for nomadular mappings are known else-
where as sparse UREs (SURES) because the domains of thablearare sparse and their data
dependences are uniform. Our method is compositional trspiece-time SURESs can be further
transformed by unimodular and non-unimodular mappindswatg a straightforward imple-
mentation in systems like ALPHA. Specifying a systolic d@sby space-time equations has
two advantages. First, the space-time equations exhlhisaful properties about the design,
allowing the design to be formally verified. Second, depegdn the application area and
performance requirement, the space-time equations caeatisad as custom VLSI systems,
FPGAs, or programs to be run on a parallel computer.
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1 Introduction

The problem of synthesising systolic arrays from uniformcureence equations
(URES) [4] is well-understood and various design methogiel® have been proposed for its
solution over the last two decades [11, 13, 14, 16, 20]. Thia teahnique consists of finding a
non-singular mapping to transform the original index sgac@espace-time domain, i.e., assign-
ing a time and place to each point in the original index sp&ueh aspace-time mappingpr
mappingfor short) must satisfy several design constraints to bil vadcluding the causality
constraint ensuring that the original data dependencespected [10, 12].

The class of systems of UREs is closed under unimodular mgppiAs a result, every
systolic array described by a unimodular mapping can belyesmkcified by a system of space-
time URES, in which the time or space coordinates are explBection 3 recalls how such
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a system of space-time equations can be obtained from tgaalriprogram by applying a
so-called domain morphism in Crystal [3]. Applying this @ddirectly to a non-unimodular
mapping, however, does not yield a system of well-formedagqos because the domains of
equations are sparse and cannot be specified by dense calyk&qra.

This paper presents a method for deriving space-time eansator systolic arrays designed
by non-unimodular mappings. The basic idea is to decompasenaunimodular mapping
into a unimodular domain morphism followed by a scaling $farmation. Our method is
compositional in that space-time equations can be furthestormed by unimodular and non-
unimodular mappings, allowing a straightforward impletagion in transformational systems
like ALPHA [7]. In addition, our method handles unimodulaappings as a special case.

This work is useful for three reasons. First, non-unimodoiappings are frequently used
in the synthesis of systolic designs. For example, the nmgpihiat describes Kung-Leiserson’s
array for matrix multiplication is non-unimodular. In atidn, all multirate arrays as defined in
[16] are described by non-unimodular mappings. Our metlaodderive space-time equations
for all systolic arrays in the traditional sense [10, 12] afianultirate arrays as defined in [16].
Second, space-time equations provide a precise spedfioatisystolic designs, allowing the
designs to be realised as custom VLSI systems, as FPGAspoogems to be run on a general
purpose parallel architecture. In particular, since wargfarrays are the asynchronous version
of multirate arrays according to S. Y. Kung [6, p. 244], thagptime equations for a multirate
array can also be translated to a program to be run in a watedrcay. Third, the space-time
equations for a design exhibit all useful properties abbetdesign, allowing the design to be
formally verified and further transformed. Two importanbperties about a non-unimodular
design are theeriodof the array [16] and thphasein which a processor is active [8].

The objective of this work is to derive space-time equationsion-unimodular mappings.
It suffices to use the familiar matrix multiplication as aramyple for illustrations.

The rest of the paper is organised as follows. Section 2dotes sparse UREs and Crys-
tal's domain morphism. Section 3 reviews how to derive sgane equations for unimodular
mappings. Section 4 describes our method to deal with namadular mappings. The space-
time equations for Kung-Leiserson’s array are given. $ach applies our method to derive
space-time equations for two multirate array realisatiohmatrix multiplication. Section 6
describes the related work. Section 7 concludes the paper.



2 SUREs, UREs and Domain Morphism

For a classification of various forms of recurrence equatissed in systolic designs, we refer
to [8]. For the purposes of this paper, it suffices to cons&dgeneric system afparse UREs
(SURES),Psure, such that each variabl® is defined by an input equation (IE), a computation
equation (CE) and an output equation (OE) as follows:

Psure: IE: zeD; — X(Mz)==2z(9(2))
CE: ze D, —» XMz)=f(--,Y(Mz—-19),---) (1)
OE: z€ D, — =z(h(z))=X(Mz)

wherez € Z" is anindex poinf M € Z™*" is a non-singular integer matrix;, D. and D;
are thedomainsof the three equations, respectivalye Z" is a constantlependence vector
g andh are functions fronZ" to Z™ for somem and f is a strict, single-valued function. In
the computation equatiory; is a variable not necessarily distinct frok and the dots - -”
indicate the arguments of the same syntax. ifkdex spac®f the entire syster®;,,. is defined
to be the union of the domains of all computation equations.

The domains of the three equations are (dense) convex pblyloé the form:

D, = {z|A;z<b;}, wherez € {i,c,o} (2)

The domain of variableX, i.e.,{Mz | z € D.}, is sparsewhen M is non-unimodular.
Psure 1S Sparsewhen the domains of some variables are spafBg,. becomes a system of
UREs whenVM is the identity matrix in all its equations. Then, we WIRg,.c aSPyre.

Pure: VS Di — X(Z) = .’L‘(g(Z))

z€D. = X(z)=f(--,Y(z=9),---) (3)
z€D, — z(h(2)) =X(2)

Crystal [3] is a functional language based on generalisstesys of recurrence equations.
One of the basic transformations in Crystal is called a domaorphism. In this paper, it is
only necessary to consider the domain morphisms that aresingular linear transformations
on systems of SURESs (including UREs as a special case).

LetT € Z™" be a non-singular mapping from the original index spac®f. to a new
index space. Lelom(7, Psure) be the equivalent system of SURES obtained from applyiag th
domain morphisnT to the original progranPg,,.. We have:

z) = z(9(T"'2))
2) = f( YV(TMT 2= T0), )

(TMT 2) (4)

dom(T Poue):| 2 € T(D)) — X(TMT-!
€ T(D) — X(TMT!
z€T(D,) — z(h(T7'2))

whereT(D,) ={Tz | z € D,},V z € {i,c,0}
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In the case ofP,., we have:

dom(T, Pu):| z € T(D;) —
ze€T(D,) —
A T(Do) -

P

2
A1) = X () (5)

whereT (D,) ={Tz |z € D,},Vz € {i,c,0}

3 Unimodular Mappings

Before being mapped to systolic arrays, affine recurrenoateans (AREs) must be first trans-
formed into UREs [13]. So we are only concerned with derivapgce-time equations for
systolic arrays synthesised from UREs.

The synthesis of a systolic array from a system of UREs ctmeisfinding two separate
functions. Thetiming functiont(z) = Az, where) € Z", specifies that the index poiatis
computed at the time steyx. Theallocation functiondefined usually by arojection direction
u = (uy, - ,u,) € Z" such thaged(u, - - - ,u,) = 1, specifies that two index pointsandz’
are mapped to the same PE4fE 2’ + au, wherea € Z".

The two functions can be collectively specified as a singéeEsgime mapping:

T = [;} ©)
whereP € Z™Y*" has full-row rank and satisfig8u = 0. P, theallocation matrix specifies
that the index point is executed at the PEz. Two different allocation matrice®, and P,
such thatP,u = P,u = 0 define the same array; they do not change the topology of thg ar
but only modify the processor coordinates (i.e., labelsjgmeed to the PEs.

T satisfies all data dependences of the prograkdif> 1 for every dependence vectdiin
the program. This assumes that evaluation of an index pakesstone unit time. A relaxation
of this assumption will allow multirate arrays to be desiggs discussed in Section’B.must
also satisfy the conditiodet(7T") # 0, i.e., \u # 0, ensuring that two index points mapped to
the same time step are not mapped to the same PE.

A unimodular mappind’ transforms the original prograf,.. to dom(7",Py.). The do-
mains of equations in (5) are all convex polyhedra and cam Iteespecified as follows:

T(D,) = {z| AT "2 < by} (7)

Thus, the space-time equationgiom(7’,P,..) are well-formed. They are the space-time equa-
tions for the systolic array described By
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Fig. 2: S. Y. Kung’s systolic arrayN = 3).

Let us consider matrix multiplication defined by the follogiURES:

i=01<i,k <N — A(,j k) =al(i,k)
1<i,j, k<N — A(i,j,k) =A@, j—1,k)
i=0,1<j,k<N — B(,j k) =bk,j)
1<4,j,k<N — B(,j,k)=B@G—1,7k)
k=0,1<i,j <N — C(4,j,k) =0
1<i,j,k<N — C(,j,k)=C(,j,k—1)+A@G,j—1,k)B(i — 1,j, k)
k=N1<ij <N — c(i,j)=C(,j k)

The dependence graph of the UREs is depicted in Figure 1.
S. Y. Kung’s array shown in Figure 2 is described by the unioidmapping:

r--foa. oil-f]
Polovo] L

The processor structure is obtained by projecting the digrere graph along = (0,0, 1).
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The space-time equations for the array are obtained dirfroth (5) by substitutions:

y=0,1<z,t—2z—y< N - A(t,z,y) =a(z,t —x —y)
1<xy,t—x—y<N—>A(txy) Alt—1,z,y — 1)
r=0,1<y,t—z—y<N—=B(t,z,y) =bt —z—y,y)
1<xy,t—x—y<N—>B(txy) B(t—1,z —1,y)
t—r—-y=0,1<2,y<N—>C(t,z,y) =0
1<z, y,t—x—y<N—=C(tz,y) =C@t-1,z,y)+A{t—1,z,y—1)B(t—1,2—1,y)
t—x—y=N,1<z,y< N—)c(m,y) =C(t,z,y)
wheret is the time coordinate andandy are space coordinates.
Many useful properties about the array can be extracted fhase space-time equations.
For example, we find that the array consistS\6f PEs and runs iti3N — 2)d,,, time, where

dsys 1S the length of the global clock.

4 Non-Unimodular Mappings

WhenT is non-unimodular, the space-time equationslom(7",P,..) from (5) are not well-
formed if the domain of equations are defined as in (7). THi®@ausd’(D,) is not dense, i.e.,
T(D,) contains index points that do not correspond to any indertpan the original index
space.

Our approach to deriving space-time equations for a nomadular mapping is to decom-
pose it into a unimodular domain morphism followed by a nogslar scaling transformation
that scales the domains of all variables while leaving theaias of all equations unchanged.

A scaling transformatios' € Z™*™ mapsP,,. to the following program:

scale(S, Psure): | 2€D; — X(SMz) = z(g9(2))
z€D., — X(SMz)=f(---,Y(SMz—S59)),---)
z€Dy — x(h(2)) = X(SMz)

In the case ofP,.., we have:

scale(S, Pure): zeD; — X(Sz)=z(9(2))
z€D. — X(Sz)=f(--Y(Sz—89)), )
z€D, — z(h(z))=X(Sz)

In this section A, 1), denotes the bottorfn — 1) x n submatrix ofA € Z"*",
For the purposes of this paper, the concept of Hermite noiona is defined as follows.

Definition 1 (Hermite normal form) An integer matrix of full-row rank is said to be ider-
mite normal formif it has the form[0, H|, whereH is an upper triangular, nonnegative square
matrix, in which each row has a unique maximum entry, whidbgated on its main diagonal.
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Theorem 1 [17, p. 45] LetA be an integer matrix of full-row rank. There always exists a
unimodular matriX/ that will bring A to itsHermite normal formj0, H] such thatdV' = [0, H].

Definition 2 (Extended-Unimodularity [17, p. 267) An integerm x r matrix of full-row rank
is e-unimodularthe “e” for extended) if the gcd of the determinants of ahitx m submatrices
is 1. An e-unimodular matrix isnimodularif it is square.

The main result of this paper is summarised in the followlmeprem.
Theorem 2 LetT = [ ] be a space-time mapping of the form (6) defined in Section 3.

(a) Itis always possible to decompdsesuch thatl” = SU, whereS is a upper triangular,
nonnegative matrix with\u| as its top-left element and is unimodular. In the special
case wherP is e-unimodularS has the following form:

Dul | 52 o+ sy
0 1

S = : O (8)
o | 0

(b) The space-time equations for the array are derived R according to
dom(T, Puyre) = scale(S,dom(U, Pyre)) 9)

by first applyingU as a domain morphism and théhas a scaling transformation. We
obtain:
scale(S, dom (U, Pyre)):

zeU(D;) — X(Sz2)=x(9(U'2))
z€eU(D.) - X(Sz) = f(---,Y(Sz=T9)),--+) (10)
z€U(D,) — z(h(U 12)) = X(S2)

whereU (D,) = {z | A,U 'z € b,},Vz € {ic,o}

In the space-time equations, the first subscript functiom\edriable represents time and

the remaining subscript functions, which dmme-invariant sinceS is upper triangular,
represent processor coordinates.

Proof. Let us prove (a).P € Z™Y*" has full-row rank. By Theorem 1, there must exist
a unimodular matrix/~! € Z™*" such thatPU~' = [0, H], whereH € Z™ Vx5 a
non-singular upper triangular matrix. Hence, we have:

r= )= Plow=[] o= 4] o=so
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To prove that the top-left element 8f= [V,' | is|\ul, it suffices to show that the first column
of U~ is the projection vectot-u. SincePu = [0, H|Uu = 0, whereH is a non-singular
upper triangular square matrix, we must have = (£1,0,---,0) andUg,—1)x,u = 0. That
is,u = U™'(£1,0,---,0)". Hence, the first column df ~! is +u.

Let us prove (b). In the proof of (a), we have already shownm tha_,).,u = 0. That
is, bothT andU share the same projection vectar Therefore dom(U, P,,.) define exactly
the same processor spacedasn (7', Py.). Finally, T = SU. By scalingdom(U, Py.) to
getscale(S,dom(U, Py.)), We ensure that the timing function is applied correctlyha final
space-time equations. [ |

This theorem is also correct whdnis unimodular, in which cas& = T and S is the
identity matrix. Thus, both (5) and (10) are identical.

The space-time equations derived by our method exhibisalfiul properties about a design.
In addition to those that are also relevant to a unimodulgrpimay, four properties particularly
pertinent to a non-unimodular mapping are discussed below.

Let the first subscript function in the variab¥(Sz) be written explicitly as:

|Aulz1 + S22 + - - - + Sp2y (12)

where(|A\ul, sq, - - - , s,) is the top row ofS. Let t,,;, andt,., be the time steps for the first
input and last output, respectively.

1. Theperiodof the array is\u

, i.e., the coefficient of;. That is, a PE is active evefyu|
clock cycles.

2. A PE at the locatioi$(,_1)xn» is active in the following time steps:
{|)\U|t+ 5229 + -+ SnZn | El t e Z : tmin < |)\U|t+8222+ tee +5nzn < tmax}

3. The PEs in the array can be divided inka| groups such that all PEs in the same group
can be simultaneously active. Theth groupGy, where0 < k£ < |\u|, contains the
following PEs:

Gr = {Sm-1)xnz | (5222 + -+ 5p2) % |Au| = k}

These groups are active periodically according to the order

! |
GO_)GI_)"'%kal
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We say that the array hasu| phasesand the PEs iii7;, are active in phask.

4. The equivalence of all mappings that have the saar@du is obvious. Let a systolic array
be designed using = (2,1,0) andu = (1,0,0). Consider three equivalent mappings
and their decompositions:

[2 1 0] [2 1 0] [1 0 0O
7, = |0 1 0| = SU, = 01 0[]0 10
0 0 1 0 0 1] [0 0 1
2 1 0] '21-1][100’
T, = 10 1 1| = SU, = 01 0 011
0 0 1] 0 0 1J[001_
2 1 [2 1 1] 1 0 0]
T, = |01 —1| = S3U; = 0 2 1|10 0 —1
01 1 0 0 1] [0 1 1]

The same array is viewed differently from the perspectivearfh mapping. Let us use
the processor structure described’fyyas a referencel; changes its shape (but not its

topology) by applying a skewing transformati% ﬂ , 1.e., the bottom-lef{n — 1) x
(n — 1) submatrix ofU, to its processor spacé3 also modifies the shape of the array

. 0 —1 —1 0|0 1] |1 1f .
by applying [1 ] } = [ 0 1] [1 0} [0 1] , i.e., the bottom-leftn — 1) x (n —
1) submatrix ofUs. This consists of applying the same skewing transformadi®iin

T, followed by interchanging the two processor axes and theerseng the first (new)
processor axis. The lowén — 1) x (n — 1) submatrix ofS;, i.e., [1 1] corresponds to

01
a relabeling of the processor coordinates.

Let us construct the space-time equations for Kung-Leweshexagonally mesh-connected
array [5], depicted in Figure 3. Unlike S. Y. Kung’s arrayistharray is designed using the fol-
lowing non-unimodular mapping:

o[
G

The processor structure is obtained by projecting the digrere graph along = (1, 1, 1).
Applying Theorem 2, we decompo&geas follows:

31 1[0 0 1
01 0ff1 0 -1
00 1[0 1 -1
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T = SU =




b [(] Go={@v)|(@@+y%3=0}
T Gr=A{(z,y) [ (@ +y)%3=1}
-:::ﬁf\ % Gy = {(:L‘,y) ‘ (:U + y)%3 = 2}

a a a $<—T

Fig. 3: Kung-Leiserson’s systolic array for matrix multgation(N = 3).

To illustrate our method, we derive the space-time equatiotwo steps. In the first step,
we apply the following domain morphism:

0 0 1 ) t
01 —1 k Y

to obtain the following equations:

t+y=01<t+z,t<N—A{tzy) =alt+z,1)

I1<t+z,t+y,t < N— At z,y) = A(t,z,y — 1)
t+x=0,1<t+y,t<N— B(t,z,y) =b(t,t +y)

1<t+z,t+y,t<N— B(t,z,y) = B( —1,y)
t=0,1<t+z,t+x<N->C(t,z,y) =

I1<t+x,t+y,t < N—=>Cltz,y) = C’(t Lz+1,y+1)+A(t,z,y—1)B(t,z—1,y)
t=N,1<t+z,t+y<N-oct+zt+y) =C(, )

In the second step, we appiyto scale the domains of three variablgsB andC:

t+y=0,1<t+z2,t<N—->ABt+x+y,x,y) =a(t + z,1)
I1<t+z,t+y,t < N—o>ABt+zx+y,z,y) =ABt+z+y— 1,2,y — 1)
t+x_0,1<t+y,t<N—>B(3t+x+y,:ry)—b(tt+y)
1<t+z,t+y,t < N—>B@Bt+zx+vy,z,y)= (3t+:c+y—1,x—1,y)

t—()1<t+xt+y<N—>C(3t+x+y,xy)
1<t+z,t+y,t < N=>C@Bt+z+y,z,y)= (3t+x+y—1,m+1,y+1)
+ABt+z+y—1,z,y—1)BBt+z+y—1,2—1,y)
t=N,1<t+x,t+y<N-oct+z,t+y)=CBt+z+y,z,v)
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Fig. 4: The extended index space for Kung-Leiserson’s gikay- 3).

From these equations, we can see clearly that the periodrajeiserson’s array is\u| =

3. This means that the array operates in 3 phases. The PEsathbecsimultaneously active
are shaded identically in Figure 3. The array consist3/éf — 3N + 1 PEs. If we assume
that all I/O are performed at border PEs, the latency of th@yaran be calculated as follows.
Following [16], the index space is extended to find out thentfe) mapped to the first time
step and the point(s) mapped to the last time step. By extgrttlie index space as shown in
Figure 4, we find thafl, 1, — N + 2) and(N, N, 2N — 1) are mapped to the first and last time
steps, respectively. Thus,

tmin = (1,1,1)(1,1,-N+2)=—-N +4
tmax = (1,1,1)(N,N,2N —1) =4N —1

The latency of the array &N — 4)d,,s. PE(z, y) is active in the time steps:

{Bt+z+y|IteZ: -N+4<3t+2r+y<4N -1}

Our method for deriving space-time equations is composlion the sense that the space-
time equations for a mapping can be further transformed Ipjyam unimodular and non-
unimodular mappings.

The following theorem describes how a non-singular mappargbe applied to the space-
time equations given in (10).

Theorem 3 Let 77 andT; be two non-singular mappings such that their decompostene
T, = S,U; andTy = SyU,. LetTy, T, be decomposed intd,7; = SU. Let SoU,S; be
decomposed such th8iU,S; = S3U3. Then,

scale(S, dom (U, Pure) = scale(S3Us Sy Us ', dom(Us, scale(S;, dom (Uy, Pure))))
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Proof. From S,U,S, = S3Us, we haveS,U,S1U; = S3U3U;. By using further the fact that
T, = SaUsS1U; = SU, we establish tha$;UsU; = SU. BecauseS and S; are in Hermite
normal form as defined in Definition 1 ardd, U; andU are all unimodular, we must have
S = S3 andU = U3U;. (Note that a diagonal element 3 (andS) is the largest of the row
containing that element.) This leads to the equality of sodles of the equation. [ |
By this theorem, the space-time equations obtained by appli,7; as one compound
mapping are the same as those obtained by appWirandT; individually in that order.

5 Space-Time Equations for Multirate Arrays

In the synthesis of systolic arrays, the evaluation of eegpyation (i.e., operation) is assumed
to take one unit time. As a result, the clock cycle has to bentagimum of these operation
times. Amultirate arrayis a generalised systolic array, allowing different equadito take
different time units to complete by making use of a finer clogkle. Some discussions about
multirate arrays can be found in [6, 16]. S. Y. Kung demornestidy an example how to design
a multirate array using the retiming theorem [6, pp. 243}2R@0 used integer programming
to search for multirate arrays with the maximal efficiencyglaBned below [16, pp.156—166]:

the maximum of the evaluation times for all computation equs
Au

Efficiency =

In this section, we apply our method to derive space-timeaggus for a multirate array
once the corresponding mapping is known.

In the case of matrix multiplication, we assume that all PEssimplemented as serial
multiply-accumulators. We further assume that the contmraequations ford and B take
one unit each and the computation equationfdakes 16 time units. Then Rao formulated the
problem of finding efficiency-maximal multirate arrays aidas [16]:

Minimise Au
Subjectto A(1,0,0)T > 1
A0,1,007 >1 (12)
A0,0,1)T > 16
Au > 16
There are three dependence vectors in the program. Thehfiest tonstraints ensure that all
three dependence vectdis 0, 0), (0,1,0) and(0,0,1) are respected. The last constraint en-
sures that the time interval for computing two consecutiekek points in the same PE is at least
16 time units.
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In general, one of the constraints in designing multirataye is:
AU Z Tmax

wheremyay IS the maximum of the times for evaluating all operationsud;hall mappings for
multirate arrays are non-unimodular.

Let us consider two multirate arrays, one designed usingribjection vector for S. Y. Kung'’s
array and one using the projection vector for Kung-Leisessarray.

5.1 Projection Vectoru = (0,0, 1)

In this case\ = (1,1, 16) is a solution to (12) that achieves 100% efficiency. The aceaybe
described by the mapping:

11 16
T = |1 0 0
01 0
An application of Theorem 2 will decompo&éto:
16 1 1] [0 0 1
T = SU =10 101|100
0 0 1](0 1 0

The space-time equations can be derived as:

y=0,1<z,t <N — A(l6t+z+vy,z,9) =alx,t)

1<z,y,t <N — At,z,y) =A(l6t+x+y—1,z,y—1)
z=0,1<y,t<N — B(6t+z+y,x,y)=0bty)

1<z, y,t<N — B(l6t+z+y,z,y)=B(l6t+z+y—1,2—1,y)
t=0,1<z,y< N — C6t+z+y,z,y)=0

1<z, y,t< N —» C6t+z+y,z,y)=C16t+z+y—16,z,v)

+A(16t+z+y—1,z,y—1)B(16t+z+y—1,2—1,y)
t=N,1<z,y<N c(z,y) =C(16t+z +y,z,y)

By extending the index space, we find that the latency of thayars ((1,1,16)
((N,N,N) — (1,1,1)) + 16)0mu = (18N — 2)6u1, Whered,,, is the length of the array’s
clock. This array is much faster than S. Y. Kung’s array siige= 164,,,. This is because, by

1

allowing different operations to consume different timétsithe computations of all elements
of C in the multirate array can begin as soon as the respectiresals ofA andB are available.

Due to the projectiorf0, 0, 1) used, a PE is responsible for executing one vertical line of
the points in the dependence graph (Figure 1). The depeedezator forC' in the space-
time equations i$16,0,0). Since the computation equation fortakes164,,, time units to
evaluate, a PE is active in every clock cycle from the timemidegins to compute the first
point. Hence, the array has 100% efficiency.
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5.2 Projection Vectoru = (1,1, 1)

In this case, there are no multirate arrays achieving 100&6eafcy. One solution is to choose
the same timing function = (1, 1,16) as before. This gives rise to the following equivalent
space-time mapping:

1 1 16
T = |1 0 -1
01 -1

The efficiency of the array i§%% = 89%. Applying Theorem 2 decompos@sto:

18 1 11 |0 0 1
T = SU= |0 1 0] (1 0 -1
0 0 1] (0 1 —1
Due to the similarities between this mapping and the one torgkLeiserson’s array, we obtain
the following space-time equations, which are the same @setfor Kung-Leiserson’s array
except that the coefficient ofis 18 instead of 3:
t+y=0,1<t+z,t<N—-> A8 +z+y,z,y) = a(t + z,t)
I1<t+z,t+y,t < N> A8t + x4+ y,z,y) = A8t +z+y—1,z,y — 1)
t+2=0,1<t+y,t<N—=B18t+zx+y,z,9)=btt+7y)
I1<t4+z,t+y,t<N—=B(18+z+vy,z,y) =B(18t+z+y—1,2—-1,y)
t=0,1<t+z,t+y< N->C(18+z+y,z,y) =0
I1<t+z,t+y,t < N—->C(18t+z+y,z,y) =C(18t+z+y—16,z+ 1,y + 1)
+A(18t + x4+ y—1,z,y-1)B(18t+ z +y — 1,2—1,y)
t=N1<t+x,t+y<N-oct+z,t+y)=CA8t+z+y,x,v)

Again by extending the index space, we find that the latencthisf multirate array is
((1,1,16)((N,N,2N—=1) = (1,1, =N +2)) +16) 6 = (48N — 34)dmu, Which is faster than
Kung-Leiserson’s array sin@gys = 160mul-

However, it is well-known that we can maximise the throughpuKung-Leiserson’s ar-
ray by interleaving the execution of multiple instances @ftmx multiplication. The time for
executing three instances can be calculated t@be— 2)dgys.

The pipelined execution of three instances in the multiaatay given above will take three
times longer than the execution of a single instance.

Therefore, the multirate version has a lower latency butgkLigiserson’s array can achieve
better throughput by interleaving the execution of mudtipistances in the array.

Note that the first subscript function of the risn the computation equation it + = +
y—16. This means that a PE wastes two cycles when evaluating thpwutation equation fat’
for two consecutive points allocated to the PE. Hence, thaeicy of the array i%% = 89%.
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6 Related Work

Loop transformation and systolic design are two closelgtesl fields. In both fields, a matrix
transformation is sought that specifies precisely the [ghi@de to be generated or the systolic
array to be designed. The major focuses in loop transfoomsitare on increasing parallelis-
m, improving data locality and reducing communication teeads. The emphases in systolic
design are on minimising the latency, throughput, and memecount of a design.

This work is related to the code generation problem arismigpop transformation, which
consists of producing the new loop code to execute the ib@itin the original loop code
according to the order specified by a given loop transforonatilf the loop transformation
is unimodular, the new index space is convex since the @igimdex space is convex. The
code generation is simple. The new loop code can be geneaatedscribed in [1, 18]. If
the loop transformation is non-unimodular, the new indexcgpisnot convex. In this case,
the generation of the new loop code is solved in several ggdferl5, 19]. The basic idea is
to obtain the Hermite normal form from the loop transforraatmatrix and derive from it the
new loop bounds and step sizes. The non-unity step sizes teskip theholesin the new
non-convex index space.

In systolic design, many researchers have focused on fitldengcheduling vector and the
projection vecto to describe a systolic array [12, 13, 14, 16]. Although bb#ndu can be
collectively specified using a single non-singular matexra(6), the generation of new space-
time equations has been discussed only for unimodular mgpg2, 7, 12, 16]. To the best of
our knowledge, no systematic methods for deriving spane-équations under non-unimodular
mappings have been reported in the literature. This pameidges a systematic method for
solving this problem. Theorem 2 shows that the space-timmatezns can be obtained from the
original equations by first applying a unimodular domain piesm and then a non-unimodular
scaling transformation. Theorem 3 shows that our methodnspositional so that the space-
time equations can be further transformed by unimodulamamdunimodular mappings.

7 Conclusion

In this paper, we have presented a method for deriving spaeeequations for systolic arrays
described by non-unimodular space-time mappings. Ouradetiows both unimodular and
non-unimodular mappings to be treated in a unified mannex.space-time equations provide a
precise specification of systolic designs, allowing theradormally manipulated. Depending

15



on the application area and performance requirement, Hpese-time equations can be realised
in a variety of ways, as VLSI custom systems, as FPGASs andaggams to be run on general
purpose parallel computers.

In presenting our method, we have assumed all variablescheslgled by the same linear
timing function. In the general case, every variables scheduled by an affine timing function
of the formty (z) = Az+ay. Since the effect of the affine constantis to perform a translation
on the domain of variabl®&, our method applies in this case as well. For a similar reason
method also works in the case when the allocation matrixfiiseaf
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