
Computing an optimal hatching direction in

Layered Manufacturing∗

Jörg Schwerdt† Michiel Smid† Man Chung Hon‡

Ravi Janardan‡

June 15, 2001

Abstract

In Layered Manufacturing (LM), a prototype of a virtual polyhe-
dral object is built by slicing the object into polygonal layers, and then
building the layers one after another. In StereoLithography, a specific
LM-technology, a layer is built using a laser which follows paths along
equally-spaced parallel lines and hatches all segments on these lines
that are contained in the layer. We consider the problem of comput-
ing a direction of these lines for which the number of segments to be
hatched is minimum, and present an algorithm that solves this prob-
lem exactly. The algorithm has been implemented and experimental
results are reported for real-world polyhedral models obtained from
industry.

1 Introduction

Layered Manufacturing (LM) makes it possible to rapidly build 3D proto-
types from polyhedral CAD descriptions. This technology, which is heavily
used in industry, includes techniques such as StereoLithography, fused de-
position modeling, and laminated object manufacturing. (See e.g. the book
by Jacobs [5].) The input to these processes is a three-dimensional polyhe-
dron, whose boundary is triangulated. This polyhedron is first sliced into

∗This work was funded in part by a joint research grant by DAAD and by NSF.
†Department of Computer Science, University of Magdeburg, D-39106 Magdeburg,

Germany. E-mail: {schwerdt,michiel}@isg.cs.uni-magdeburg.de.
‡Department of Computer Science and Engineering, University of Minnesota, Min-

neapolis, MN 55455, U.S.A. E-mail: {hon,janardan}@cs.umn.edu. Research also sup-
ported in part by NSF grant CCR-9712226.

1

horizontal polygonal layers. Then these slices are successively “built”, where
each one is attached to the one immediately below it. The way the slices are
built depends on the specific LM-technology. For example, in StereoLithog-
raphy, the prototype is built in a vat of liquid resin. A laser first traces out
the polygonal contour of the slice and then hatches (i.e., fills) the interior,
which hardens to a depth equal to the layer thickness. When hatching the
interior of a slice, the laser follows paths along equally-spaced parallel lines
and hatches all segments on these lines that are contained in the polygon
defined by the contour. (See Figure 1.) Each segment that is hatched by the
laser has a fixed width, which we denote by δ. Hence, any two neighboring
lines containing hatched segments have distance δ. If we assume that these
lines are horizontal, then we can think of this hatching process as covering
the polygonal slice with axes-parallel rectangles of height δ, whose horizontal
central axes have distances to each other which are multiples of δ. The time
needed to hatch the entire slice heavily depends on the number of rectangles
(i.e., the number of segments that are hatched by the laser) that cover the
slice. (See e.g. Sarma [12] for a discussion about this.) Clearly, by choos-
ing another direction for the parallel lines, i.e., the hatching direction, the
number of hatched segments may be substantially smaller.

In this paper, we consider the problem of computing an optimal hatching
direction. That is, given a simple polygon, which represents the contour of
a slice, we want to compute a hatching direction for which the number of
segments drawn by the laser is minimum. In the next subsection, we give a
formal definition of this problem.

1.1 Problem definition

Let P be a simple polygon, possibly with holes, and let n denote the number
of vertices of P. This polygon is given as a sequence containing one or
more lists. Each list contains the vertices of a closed polygonal part of the
boundary of P. The order of the vertices in these lists is such that the interior
of P is to the left of the (directed) edges.

Let d be any direction, i.e., a unit-vector in the two-dimensional plane.
We will refer to d as the hatching direction. Let `0(d) be the line through the
origin having direction d. Let L(d) be the set of all lines that are parallel to
`0(d) and whose distances to `0(d) are (integer) multiples of δ. (See Figure 1.)

For any line ` in L(d), consider the intersection of ` with the polygon P.
This intersection consists of zero or more line segments, and zero or more
single points. We denote by S` the set of line segments (of positive length)

2

0

d

δ

`0(d)

`1

`2

`3

`4

Figure 1: Illustrating the hatching problem. 0 denotes the origin. The
dashed lines are parallel, and two neighboring lines have distance δ. For the
given hatching direction d, the value of H(d), i.e., the number of segments
hatched by the laser, is equal to twelve. Note that for each i, 1 ≤ i ≤ 4, the
set S`i

consists of a single line segment.

in this intersection, and define

H(d) :=
∑

`∈L(d)

|S`|.

Hence, H(d) is equal to the number of segments that the laser draws when
hatching the polygon P in direction d. Using this terminology, the hatching

problem can be stated as follows.

Problem 1 Given a simple polygon P, possibly with holes, having n vertices,

compute a hatching direction d for which H(d) is minimum. We will call

such a direction d an optimal hatching direction.

3

1.2 Our results

In Sections 2 and 3, we give an exact algorithm that solves Problem 1
in O(Cn log(Cn)) time, where C is proportional to the ratio of the maxi-
mum distance from any vertex of P to the origin, and δ; specifically, C =
1+maxv∈P ‖v‖/δ, where ‖v‖ is the distance of vertex v from the origin. This
algorithm performs a rotational sweep, during which the value of H(d) is
dynamically maintained. Although this algorithm is conceptually simple, a
large number of case distinctions is necessary to implement it. Neverthe-
less, we have implemented this algorithm in software and have tested it on
polygonal slices generated by slicing real-world polyhedral models obtained
from industry. We discuss this in Section 4. We conclude in Section 5 with
directions for further work.

1.3 Related work

In a companion paper [4], we give a simple heuristic for approximating the
minimum value of H(d), and explore its applications to several other related
problems in two and higher dimensions. In essence, this heuristic approxi-
mates the optimal hatching direction by finding a direction which minimizes
the sum of the lengths of the edges when they are projected onto a line per-
pendicular to this direction. The quality of this heuristic depends on the
value of δ; the smaller this value, the better the approximation. This heuris-
tic was discovered independently by Sarma [12] in the context of planning
an optimal zig-zag path for milling machines. To keep the present paper
to a reasonable length, we omit further discussion of this heuristic and its
implementation and applications; we refer the reader to [4] for further details.

As mentioned above, the polyhedral model to be built by Layered Man-
ufacturing is first sliced into layers. McMains and Séquin [9] give an efficient
space sweep algorithm for computing the slices. The prototype is built layer
by layer, and the quality, costs, and time of this process depend on the orien-
tation of the three-dimensional object. Recently, the problem of computing
a good orientation has been considered in the computational geometry com-
munity. See [1, 2, 6, 7, 8, 13, 14, 15].

2 Solving the hatching problem

In this section, we give an outline of our algorithm that solves Problem 1.
Details will be given in Section 3. We make the following assumptions about
the polygon P.

4

Assumption 1 The following two conditions are satisfied.

1. No vertex of P is at the origin.

2. No three successive vertices of P are collinear.

In Layered Manufacturing, the facets of a triangulated 3D-polyhedron are
given in the so-called STL-format. In this format, each facet is specified by
the coordinates of its three vertices, and the outer normal of the facet. The
STL-format requires that all coordinates are positive. (See Jacobs [5, page
160].) Therefore, when building a model, all slices—which are polygons—
are in the first quadrant. Hence, the first assumption is satisfied in Layered
Manufacturing.

If the second assumption does not hold, then we delete the middle vertex
of each triple of successive collinear vertices of the polygon P. Note that this
does not change the solution to Problem 1.

Let us see how we can solve Problem 1. First note that for any direction
d, we have H(d) = H(−d). Therefore, it suffices to compute an optimal
hatching direction d = (d1, d2) for which d2 ≥ 0. The idea of our algorithm
is as follows. We start with an initial direction d = (−1, 0), and rotate it in
clockwise order by an angle of π until d = (1, 0). At certain directions d,
the value of H(d) changes. We will call such directions critical. During the
rotation, we update the value of H(d) at each such critical direction. Note
that during the rotation, the collection L(d) of lines rotates, with the origin
being the center of rotation.

We now give necessary conditions for a direction d to be critical. There
are two types of directions d, for which the value of H(d) changes.

Type 1: The subset of lines in L(d) that intersect the polygon P changes.
We analyze when this can happen. Let CH (P) be the convex hull of the

polygon P. First note that any line intersects P if and only if it intersects
CH (P).

Let d be a direction at which the subset of L(d) that intersects P changes.
Let d⊥ be a direction that is orthogonal to d. Then there must be a vertex
v on the convex hull CH (P) such that the following two conditions hold.

• v is extreme in one of the directions d⊥ and −d⊥.

• v lies on a line of L(d), i.e., the distance between v and the line `0(d)
through the origin having direction d, is a multiple of δ.

Type 2: For some line ` ∈ L(d), the set S` of line segments (of positive
length) in the intersection ` ∩ P changes.

5

If this happens, then there is a vertex v of the polygon P such that the
following two conditions hold.

• v lies on a line of L(d), i.e., the distance between v and the line `0(d)
is a multiple of δ.

• Both vertices of P that are adjacent to vertex v are on the same side
of the line `v(d) through v that is parallel to `0(d). (We have to be
careful with degenerate cases, e.g., when a vertex that is adjacent to v
lies on the line `v(d). We will see later how such cases can be handled.)

Let D be the set of all directions d for which there is a vertex v of P such
that the distance between v and the line `0(d) is a multiple of δ. Then the
discussion above implies that this set D contains all critical directions.

2.1 Overview of the algorithm

We now give a high-level description of the algorithm that solves Problem 1.

Step 1: For each vertex v of the polygon P, compute all directions d =
(d1, d2) for which d2 ≥ 0, and for which the distance between v and the line
`0(d) is a multiple of δ. Let D be the set of directions obtained in this way.

Step 2: Sort the directions of D in the order in which they are visited when
we rotate the unit-vector (−1, 0) by an angle of π in clockwise order. Note
that this is equivalent to sorting the directions of D in increasing order of
their first coordinates. We denote this ordering relation by ≺.

Let m be the number of distinct directions in the set D. We denote the
sorted elements of D by

d0 ≺ d1 ≺ . . . ≺ dm−1.

Note that for any index i and any two directions d and d′ that are strictly
between di and di+1, we have H(d) = H(d′). (Here, indices are read modulo
m.)

Step 3: Let ds be a direction that is not in D. Compute the value of H(ds)
for this direction.

Step 4: Let k be the index such that dk−1 ≺ ds ≺ dk. Walk along the
elements of D in the order

dk,dk+1, . . . ,dm−1,d0, . . . ,dk−1.

At each direction di, check if it is a critical direction, and if so, first compute
H(di) from H(d) for di−1 ≺ d ≺ di, and then compute H(d) from H(di)
for di ≺ d ≺ di+1.

6

d

0

d
⊥

v

d(v, `0(d))

`2

`1

v

0

+

−

+

−

`0(d)

Figure 2: The left part illustrates the two orthogonal directions d and d⊥,
and the distance d(v, `0(d)) between vertex v and the line `0(d) through
the origin having direction d. The right part illustrates how the distance
d(v, `0(d)) changes if we rotate the direction d as indicated by the circular
arrow. `1 is the line through the origin and v; `2 contains the origin and
is orthogonal to `1. If d rotates in clockwise order from `1 to `2, then the
distance d(v, `0(d)) increases (indicated by the +). If d rotates in clockwise
order from `2 to `1, then this distance decreases (indicated by the −).

Step 5: Report the minimum value of H(d) found in Step 4, together with
the corresponding optimal hatching direction(s) d.

3 Details of the algorithm

In the following subsections, we describe Steps 1, 3, and 4 of our algorithm
in more detail.

3.1 Step 1

Let v be any vertex of P, and let d = (d1, d2) be any direction such that
d2 ≥ 0. Note that d2 =

√

1− d2
1. We denote by d⊥ the direction that

is orthogonal to d, and that is to the left of the vector d. Hence, d⊥ has
coordinates (−d2, d1). (See the left part of Figure 2.)

We write the coordinates of vertex v as (v1, v2). Moreover, the vector
from the origin to v is denoted by v. The length of this vector is denoted by
‖v‖. Recall that, by Assumption 1, v is not equal to the origin.

The distance d(v, `0(d)) between v and the line `0(d) is equal to

d(v, `0(d)) = |v · d⊥|

= | − v1d2 + v2d1|

7

=

∣

∣

∣

∣

v2d1 − v1

√

1− d2
1

∣

∣

∣

∣

.

Hence, d(v, `0(d)) is a multiple of δ if and only if |v · d⊥|/δ is an integer. If
we denote this integer by j, then j ≥ 0, and

j =
|v · d⊥|

δ
≤
‖v‖

δ
.

Therefore, we implement Step 1 as follows. For each vertex v of P, and each
integer j, 0 ≤ j ≤ ‖v‖/δ, we solve the equation

∣

∣

∣

∣

v2d1 − v1

√

1− d2
1

∣

∣

∣

∣

= jδ (1)

for d1. Since we only consider directions d = (d1, d2) for which d2 ≥ 0, a
simple geometric analysis shows that this equation has at most two solutions
d1. (See the right part of Figure 2.)

Equation (1) reduces to two quadratic equations, depending on the rela-
tive magnitude of v2d1 and v1

√

1− d2
1. A straightforward calculation shows

that we get the following solutions for d1.

1. Each of the two values

d1 =
v2jδ ± v1

√

‖v‖2 − j2δ2

‖v‖2

for which v2d1 ≥ v1

√

1− d2
1, and for which (1) holds.

2. Each of the two values

d1 =
−v2jδ ± v1

√

‖v‖2 − j2δ2

‖v‖2

for which v2d1 < v1

√

1− d2
1, and for which (1) holds.

For each solution d1 obtained, we compute the corresponding value d2 =
√

1− d2
1, and add the direction d = (d1, d2) to the set D.

We have seen already that for each vertex v, and each integer j, at most
two directions d are added to D. Therefore, we have

|D| ≤
∑

v

2

(

1 +
‖v‖

δ

)

≤ 2n

(

1 +
maxv ‖v‖

δ

)

.

The overall time for Step 1 is O(n + |D|), which is O(|D|), because |D| ≥ n.

8

0

v

u

(ds)
⊥

ds

`0(ds)

e

δ

Figure 3: The number Ie of lines in L(ds) that intersect edge e is equal to
|bv · (ds)

⊥/δc − bu · (ds)
⊥/δc| = |1− (−3)| = 4.

3.2 Step 3

Let ds be a direction that is not in the set D. In this section, we show how
to compute the value of H(ds).

Recall that `0(ds) denotes the line through the origin having direction ds.
Consider the set L(ds) of lines that are parallel to `0(ds) and whose distances
to `0(ds) are multiples of δ. The value of H(ds) is equal to the number of
line segments of positive length in the intersection of the polygon P with the
set L(ds). The endpoints of any such line segment are on the boundary of
P. Hence, if we count the total number of intersection points between P and
the lines in L(ds), then we get twice the value of H(ds). (Here we use the
fact that no vertex of P is contained in any line of L(ds).)

Consider any edge e = (u, v) of the polygon P. Let Ie be the number of
lines in L(ds) that intersect e. If e is parallel to ds, then no line of L(ds)
intersects e, i.e., Ie = 0. (Again, we use the fact that ds 6∈ D, i.e., edge e
is not contained in any line of L(ds).) So assume that e is not parallel to
ds. The signed distance between u and the line `0(ds) is equal to u · (ds)

⊥.
Similarly, the signed distance between v and `0(ds) is equal to v·(ds)

⊥. From
this it follows that

Ie =

∣

∣

∣

∣

⌊

v · (ds)
⊥

δ

⌋

−

⌊

u · (ds)
⊥

δ

⌋
∣

∣

∣

∣

.

See Figure 3 for an illustration.
Hence, in Step 3 of the algorithm, we compute the value of Ie for all edges

e of the polygon P. Then we compute the value of H(ds) for direction ds as

H(ds) =
1

2

∑

e

Ie.

9

The overall time for Step 3 is O(n).

3.3 Step 4

Let d0 be any direction of D. We analyze how the value of the function H(d)
changes, if the direction d rotates in clockwise order, and “passes” through
d0. We denote by d−ε the direction obtained by rotating d0 by an infinitesi-
mally small angle in counterclockwise direction. Hence, d−ε is the direction
d immediately before it reaches d0. Similarly, dε denotes the direction ob-
tained by rotating d0 by an infinitesimally small angle in clockwise direction.
Hence, dε is the direction d immediately after it leaves d0.

Below, we will consider all possible cases that can occur. For each case,
we will indicate how H(d0) can be obtained from H(d−ε), and how H(dε)
can be obtained from H(d0).

Let v be any vertex of P that corresponds to direction d0. That is, the
distance d(v, `0(d0)) is a multiple of δ. (There may be more than one vertex
that corresponds to d0. At the end of this subsection, we will indicate how
this is handled.) Let vp and vs be the predecessor and successor vertices of
v, respectively. Note that the interior of the polygon P is to the left of the
directed edges (vp, v) and (v, vs).

We distinguish two cases, depending on whether the points v, v +d0, and
vp are collinear or not, and/or the points v, v + d0, and vs are collinear or
not, i.e., whether or not vp and/or vs is on the line through v with direction
d0.

Case 1: The three points v, v + d0, and vp are not collinear, and the three
points v, v + d0, and vs are not collinear.

In this case, neither of the two points vp and vs is on the line through
vertex v having direction d0.

When d passes through d0, there are sixteen cases, depending on (i) the
position of the vertex v with respect to the line through the origin that
contains the vector d⊥

0 , and (ii) the positions of the vertices vp and vs with
respect to the line through vertex v having direction d0. All these cases
are given in Table 1. The fourth column indicates how H(d0) is obtained
from H(d−ε), whereas the fifth column indicates how H(dε) is obtained from
H(d0).

We illustrate Table 1 by verifying the tenth line. In this case, we have
(0, d⊥

0 , v) = C, (v, v + d0, vp) = L, and (v, v + d0, vs) = L. This means that

1. the three points 0, d⊥
0 , and v are collinear, and the two vectors d⊥

0 and
v point into the same direction,

10

(0, d⊥
0 , v) (v, v + d0, vp) (v, v + d0, vs) H(d0) H(dε)

R R R +0 +1
R L L −1 +0
R R L +0 +0
R L R +0 +0
L R R −1 +0
L L L +0 +1
L R L +0 +0
L L R +0 +0
C R R +0 +0
C L L −1 +1
C R L +0 +0
C L R +0 +0
-C R R −1 +1
-C L L +0 +0
-C R L +0 +0
-C L R +0 +0

Table 1: The sixteen cases when d(v, `0(d0)) 6= d(vp, `0(d0)) and
d(v, `0(d0)) 6= d(vs, `0(d0)). L and R indicate that the triple of points form
a left-turn and right-turn, respectively; C indicates that the three points 0,
d⊥

0 , and v are collinear, and the two vectors d⊥
0 and v point into the same di-

rection; -C indicates that the three points 0, d⊥
0 , and v are collinear, and the

two vectors d⊥
0 and v have opposite directions. The two rightmost columns

indicate how H(d) changes. dε denotes the direction obtained by rotating
d0 by an infinitesimally small angle in clockwise direction.

2. the triple of points (v, v + d0, vp) forms a left-turn, and

3. the triple of points (v, v + d0, vs) forms a left-turn.

(See Figure 4.) The two rightmost columns indicate that H(d0) = H(d−ε)−1,
and H(dε) = H(d0) + 1. Let us check if this is correct.

Let j be the integer such that d(v, `0(d0)) = jδ. For any direction d, let
`j(d) be the line that has direction d and whose distance to `0(d) is equal to
jδ. (See Figure 4. In this figure, the interior of P is above the edges (vp, v)
and (v, vs). The discussion below also applies if vp and vs are interchanged,
in which case the interior of P is below these two edges.)

Consider what happens if the direction d rotates in clockwise order, and
passes through d0. For direction d−ε, and in a sufficiently small neighborhood
of vertex v, the intersection of line `j(d−ε) with the polygon P is a line

11

`0(d0)

`j(d0)

d0

d⊥0

0

v

vs

vp

`j(dε)

`j(d−ε)

Figure 4: Illustrating the tenth line of Table 1.

segment of positive length. For direction d0, and in a sufficiently small
neighborhood of v, the intersection of line `j(d0) with P is a single point,
viz. the vertex v. Hence, we indeed have H(d0) = H(d−ε)− 1. For direction
dε, and in a sufficiently small neighborhood of v, the intersection of line
`j(dε) with P is again a line segment of positive length. Therefore, we have
H(dε) = H(d0) + 1.

Case 2: The three points v, v + d0, and vp are collinear, or the three points
v, v + d0, and vs are collinear.

First note that, by Assumption 1 (part 2), exactly one of these two pos-
sibilities occurs. Hence, we have two adjacent vertices, whose (signed) dis-
tances to the line `0(d0) are equal to the same multiple of δ. We rename these
vertices as u and v, and assume without loss of generality that the triple of
points (u, u + d⊥

0 , v) forms a right-turn. (Otherwise, we swap u and v.) Let
u′ be the vertex of P that is adjacent to u and for which u′ 6= v. Similarly,
let v′ be the vertex that is adjacent to v and for which v ′ 6= u.

When d passes through d0, there are fifty six cases, depending on (i) the
positions of the vertices u and v with respect to the line through the origin
that contains the vector d⊥

0 , (ii) the positions of the vertices u′ and v′ with
respect to the line through vertex v having direction d0, and (iii) whether
the interior of P is to the left or right of the directed edge (u, v). (Note that
because of the possible renaming of u and v, the edge (u, v) may occur as
(v, u) in the polygon P.) All cases are given in Table 2. As in Table 1, the

12

two rightmost columns indicate how H(d0) is obtained from H(d−ε), and
how H(dε) is obtained from H(d0).

We illustrate Table 2 by verifying the third line. In this case,

(0, d⊥
0 , u) (0, d⊥

0 , v) (u, u + d0, u
′) (v, v + d0, v

′) u↔ v H(d0) H(dε)

R R R R → +0 +1
R R R R ← +1 +0
R R L L → +0 −1
R R L L ← −1 +0
R R R L → +0 +0
R R R L ← +0 +0
R R L R → +0 +0
R R L R ← +0 +0
C R R R → +0 +1
C R R R ← +1 +0
C R L L → +0 +0
C R L L ← −1 +1
C R R L → +0 +0
C R R L ← +0 +0
C R L R → +0 +1
C R L R ← +0 +1
-C R R R → −1 +1
-C R R R ← +0 +0
-C R L L → +0 −1
-C R L L ← −1 +0
-C R R L → −1 +0
-C R R L ← −1 +0
-C R L R → +0 +0
-C R L R ← +0 +0
L L R R → −1 +0
L L R R ← +0 −1
L L L L → +1 +0
L L L L ← +0 +1
L L R L → +0 +0
L L R L ← +0 +0
L L L R → +0 +0
L L L R ← +0 +0

Table 2; continued on next page

13

Table 2; continued from previous page
(0, d⊥

0 , u) (0, d⊥
0 , v) (u, u + d0, u

′) (v, v + d0, v
′) u↔ v H(d0) H(dε)

L C R R → −1 +0
L C R R ← +0 −1
L C L L → +0 +0
L C L L ← −1 +1
L C R L → −1 +0
L C R L ← −1 +0
L C L R → +0 +0
L C L R ← +0 +0
L -C R R → −1 +1
L -C R R ← +0 +0
L -C L L → +1 +0
L -C L L ← +0 +1
L -C R L → +0 +0
L -C R L ← +0 +0
L -C L R → +0 +1
L -C L R ← +0 +1
L R R R → −1 +1
L R R R ← +0 +0
L R L L → +0 +0
L R L L ← −1 +1
L R R L → −1 +0
L R R L ← −1 +0
L R L R → +0 +1
L R L R ← +0 +1

Table 2: The fifty six cases when d(u, `0(d0)) = d(v, `0(d0)). We assume that
the triple of points (u, u + d⊥

0 , v) forms a right-turn. The meaning of L, R,
C, and -C, and the two rightmost columns is as in Table 1. → means that v
is the successor of u; ← means that u is the successor of v.

1. the triple of points (0, d⊥
0 , u) forms a right-turn,

2. the triple of points (0, d⊥
0 , v) forms a right-turn,

3. the triple of points (u, u + d0, u
′) forms a left-turn,

4. the triple of points (v, v + d0, v
′) forms a left-turn, and

14

`0(d0)

`j(d0)

d0

d⊥0

0

u
v

v′

u′ `j(dε)

`j(d−ε)

L

Figure 5: Illustrating the third line of Table 2.

5. v is the successor of u. (Recall that we assume that the triple of points
(u, u + d⊥

0 , v) forms a right-turn.)

(See Figure 5.) According to the two rightmost columns, we have H(d0) =
H(d−ε), and H(dε) = H(d0)− 1. Below, we argue why this is correct.

Let j be the integer such that

d(u, `0(d0)) = d(v, `0(d0)) = jδ.

For any direction d, let `j(d) be the line having direction d and whose
distance to `0(d) is equal to jδ. (See Figure 5. Note that the interior of
P is to the left of the directed edges (u′, u), (u, v), and (v, v′).)

Consider what happens if the direction d rotates in clockwise order, and
passes through d0. For direction d−ε, the intersection of line `j(d−ε) with the
polygon P contains a line segment L, whose endpoints are in the interiors
of the edges (u′, u) and (v, v′). For direction d0, the intersection of line
`j(d0) with P contains the edge (u, v). If we rotate the direction from d−ε

to d0, then the segment L “moves” to the edge (u, v). Hence, we indeed
have H(d0) = H(d−ε). For direction dε, edge (u, v) does not contribute any
line segment to the intersection of line `j(dε) with P. Therefore, we have
H(dε) = H(d0)− 1.

Now we are ready to describe how Step 4 of the algorithm is implemented.
Recall that

d0 ≺ d1 ≺ . . . ≺ dm−1

15

denotes the sorted sequence of distinct directions of the set D. Consider the
direction ds 6∈ D that was chosen in Step 3. Let k be the index such that
dk−1 ≺ ds ≺ dk. We visit the directions of D in the order

dk,dk+1, . . . ,dm−1,d0, . . . ,dk−1.

Let d0 be any such direction. We consider all vertices v of P for which the
distance d(v, `0(d0)) is a multiple of δ. For each such vertex v, we do the
following.

1. If we are in Case 1, then we update H(d) according to Table 1.

2. If we are in Case 2, then we update H(d) according to Table 2. In
this case, we do not update H(d) for the neighbor u of v for which
d(u, `0(d0)) = d(v, `0(d0)).

For each direction d0 ∈ D, and each vertex v, for which d(v, `0(d0)) is a
multiple of δ, we spend O(1) time to update H(d). Hence, the overall time
for Step 4 is O(|D|).

3.4 Complexity of the algorithm

We summarize the running times of the five steps of our algorithm, as given
in Section 2.1. Step 1 takes O(|D|) time. In Step 2, we sort the elements of
D, which takes O(|D| log |D|) time. Step 3 takes O(n) time. Finally, Steps 4
and 5 take O(|D|) time. Since n ≤ |D| ≤ 2n(1 + maxv ‖v‖/δ), we have
proved the following result.

Theorem 1 Given a simple polygon P, possibly with holes, having n ver-

tices, Problem 1 can be solved in O(Cn log(Cn)) time, where

C = 1 +
maxv ‖v‖

δ
.

4 Experimental results

We have implemented the algorithm of Section 2 in C++ using LEDA 4.1 [10,
11]. We now discuss the implementation and experiments in more detail.

It is well-known that implementations of geometric algorithms using double-
precision are extremely prone to roundoff errors. Such errors may occur, e.g.,
in orientation tests, in which we have to decide whether three given points
form a left-turn, a right-turn, or are collinear. These orientation tests are
heavily used in the algorithm. Clearly, if they are handled incorrectly, the

16

output of the algorithm will be incorrect. Furthermore, recall that the algo-
rithm works with unit-length vectors d = (d1, d2) for which d2 =

√

1− d2
1.

Again, in order to get an exact result, we need an implementation that
can handle the square root operation exactly. Therefore, we implemented
the algorithm using the LEDA number type real, which implements exact
arithmetic with algebraic numbers. (See Burnikel et al. [3].) Hence, this
program computes the exact minimum of the function H(d).

We ran our program on seven real-world polyhedral models obtained from
Stratasys, Inc. For each model, we chose five z-coordinates, and used their
program Quickslice to slice the model using horizontal planes corresponding to
these z-coordinates. This resulted in a set of 35 polygons, whose coordinates
are in the range [0, 12]. We ran the program on a SUN Ultra (400 MHz, 512
MByte RAM), using δ = 0.1.

The results of our experiments are given in Table 3. Each line gives the re-
sult for one polygon. For example, the polygon 4501005-layer-z-1.009.ssl

in the first line is obtained by slicing the model 4501005.stl using a hori-
zontal plane at height z = 1.009. The resulting polygon has n = 257 vertices.
For each polygon, we measured the following information.

1. num: the minimum value of the function H(d), as computed by the
program.

2. |D|: the number of elements of the set D. Recall that this is the number
of directions for which the program updates the value of H(d).

3. time: the time (in seconds) taken by the program.

We also implemented the projection-based heuristic from [4], using the
number type double of C++ and ran it on the above examples. We discovered
that the number of hatching segments generated by the heuristic was always
very close to the optimal number generated by the algorithm of Section 2
(in our experiments, the heuristic generated at most fourteen percent more
hatching segments than the exact algorithm.) Thus, to the extent that we
have tested it, the heuristic appears to work very well on practical inputs.
Note that without our exact algorithm, it would not have been possible to
support this claim.

Since the operations on LEDA reals are relatively slow, the exact pro-
gram takes much longer than the heuristic. Another reason for this is the
fact that the set D is quite large. The running time of the heuristic does not
depend on δ or the size of D; it only depends on n. On the above examples
it ran in under one second.

17

5 Concluding remarks

We have given an efficient algorithm that solves an important problem arising
in Layered Manufacturing and path planning of zig-zag paths for milling
machines.

The running time of our algorithm heavily depends on the ratio of the
maximum distance of any vertex to the origin, and the width δ of the laser
path. We leave open the problem of deciding if Problem 1 can be solved
exactly in a time that only depends on n.

Our algorithm, as presented in this paper, computes an optimal hatch-
ing direction for one single polygon. Recall from Section 1 that in Layered
Manufacturing, a prototype of a three-dimensional polyhedron is built by
successively hatching the different layers. In practice, one global hatching
direction d is chosen, and all odd-numbered layers are hatched in direction
d, whereas all even-numbered layers are hatched in direction d⊥. Our al-
gorithm can easily be extended so that it computes the globally optimal
hatching direction: For each i, let Hi(d) be defined as the number of seg-
ments that the laser draws when hatching the i-th layer in direction d. Then
we perform one global rotation sweep using all layers and compute a direction
d for which

∑

i

H2i+1(d) +
∑

i

H2i(d
⊥)

is minimum.
In this paper we have assumed that the paths of the laser are on parallel

lines whose distances are multiples of δ to a line containing the origin. Hence,
the output of our algorithm depends on the coordinate system. For any point
x ∈ R

2, define

Hx(d) :=
∑

`∈Lx(d)

|S`|,

where Lx(d) is defined as in Section 1.1, but with the coordinate axes trans-
lated such that the origin is at point x. We leave open the problem of
designing an algorithm that computes a point x and a direction d for which
Hx(d) is minimum.

Acknowledgements

We thank Stratasys, Inc. for providing us with test models and for access to
their software front-end, Quickslice, to slice these models.

18

References

[1] P. K. Agarwal and P. K. Desikan. Approximation algorithms for layered
manufacturing. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms,
pages 528–537, 2000.

[2] B. Asberg, G. Blanco, P. Bose, J. Garcia-Lopez, M. Overmars, G. Tous-
saint, G. Wilfong, and B. Zhu. Feasibility of design in stereolithography.
Algorithmica, 19:61–83, 1997.

[3] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient exact
geometric computation made easy. In Proc. 15th Annu. ACM Sympos.

Comput. Geom., pages 341–350, 1997.

[4] M. C. Hon, R. Janardan, J. Schwerdt, and M. Smid. Minimizing the total
projection of a set of vectors, with applications to layered manufacturing.
http://www.cs.umn.edu/~janardan/min-proj.ps.

[5] P. F. Jacobs. Rapid Prototyping & Manufacturing: Fundamentals of

StereoLithography. McGraw-Hill, New York, 1992.

[6] J. Majhi, R. Janardan, J. Schwerdt, M. Smid, and P. Gupta. Mini-
mizing support structures and trapped area in two-dimensional layered
manufacturing. Comput. Geom. Theory Appl., 12:241–267, 1999.

[7] J. Majhi, R. Janardan, M. Smid, and P. Gupta. On some geometric op-
timization problems in layered manufacturing. Comput. Geom. Theory

Appl., 12:219–239, 1999.

[8] J. Majhi, R. Janardan, M. Smid, and J. Schwerdt. Multi-criteria geo-
metric optimization problems in layered manufacturing. In Proc. 14th

Annu. ACM Sympos. Comput. Geom., pages 19–28, 1998.

[9] S. McMains and C. Séquin. A coherent sweep plane slicer for layered
manufacturing. In Proc. 5th ACM Symposium on Solid Modeling and

Applications, pages 285–295, 1999.

[10] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and

Geometric Computing. Cambridge University Press, Cambridge, U.K.,
1999.

[11] K. Mehlhorn, S. Näher, M. Seel, and C. Uhrig. The LEDA User Man-

ual. Max-Planck-Institute for Computer Science, Saarbrücken, Ger-
many, http://www.mpi-sb.mpg.de/LEDA/MANUAL/MANUAL.html.

19

[12] S. E. Sarma. The crossing function and its application to zig-zag tool
paths. Computer-Aided Design, 31:881–890, 1999.

[13] J. Schwerdt, M. Smid, R. Janardan, and E. Johnson. Protecting criti-
cal facets in layered manufacturing: implementation and experimental
results. In Proc. 2nd Workshop on Algorithm Engineering and Experi-

ments, pages 43–57, 2000.

[14] J. Schwerdt, M. Smid, R. Janardan, E. Johnson, and J. Majhi. Pro-
tecting critical facets in layered manufacturing. Comput. Geom. Theory

Appl., 16:187–210, 2000.

[15] J. Schwerdt, M. Smid, J. Majhi, and R. Janardan. Computing the width
of a three-dimensional point set: an experimental study. ACM Journal

of Experimental Algorithmics, 4, Article 8, 1999.

20

polygon n num |D| time

4501005-layer-z-1.009.ssl 257 84 34715 903
4501005-layer-z-3.369.ssl 384 71 41054 1093
4501005-layer-z-5.019.ssl 322 52 32652 875
4501005-layer-z-6.099.ssl 290 44 29568 790
4501005-layer-z-7.329.ssl 187 33 18031 479
cover-5-layer-z-0.049.ssl 22 13 2838 76
cover-5-layer-z-3.199.ssl 47 32 3737 98
cover-5-layer-z-4.529.ssl 47 39 3153 83
cover-5-layer-z-5.419.ssl 22 39 1746 46
cover-5-layer-z-5.969.ssl 27 105 3119 83
eaton sp-layer-z-0.229.ssl 165 18 11353 308
eaton sp-layer-z-1.239.ssl 156 50 9822 265
eaton sp-layer-z-1.949.ssl 209 52 11837 321
eaton sp-layer-z-2.859.ssl 106 27 5064 133
eaton sp-layer-z-3.199.ssl 90 16 4736 123
frame 29-layer-z-0.009.ssl 156 18 15070 406
frame 29-layer-z-1.509.ssl 214 30 20714 557
frame 29-layer-z-2.509.ssl 225 22 21777 586
frame 29-layer-z-3.919.ssl 355 57 36161 971
frame 29-layer-z-4.419.ssl 890 201 93028 2485
impller-layer-z-0.009.ssl 52 15 4132 110
impller-layer-z-0.669.ssl 405 96 33893 904
impller-layer-z-1.489.ssl 412 110 33746 904
impller-layer-z-2.469.ssl 559 120 45803 1223
impller-layer-z-2.999.ssl 133 15 10575 283
mj-layer-z-0.029.ssl 32 7 1450 38
mj-layer-z-0.529.ssl 49 14 2113 56
mj-layer-z-1.509.ssl 52 14 2256 62
mj-layer-z-2.029.ssl 64 14 3416 93
mj-layer-z-2.489.ssl 88 18 5054 136
sa600280-layer-z-0.779.ssl 238 35 11916 310
sa600280-layer-z-1.629.ssl 300 50 22142 566
sa600280-layer-z-2.209.ssl 445 56 31063 799
sa600280-layer-z-3.069.ssl 346 46 22824 589
sa600280-layer-z-4.539.ssl 187 15 11693 300

Table 3: Results of our experiments. n gives the number of vertices of
the polygon; num gives the minimum value of H(d), as computed by the
program; |D| gives the number of directions for which the program updates
the value of H(d); and time gives the time of the program, in seconds.

21

