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Abstract. In this paper we focus on the representation of Steiner trades
of volume less than or equal to nine and identify those for which the
associated partial latin square can be decomposed into six disjoint latin
interchanges.

1 Background information

In any combinatorial configuration it is possible to identify a subset which
uniquely determines the structure of the configuration and in some cases is min-
imal with respect to this property. For example such subsets can be found by
studying the literature on critical sets in latin squares (see Donovan and Howse
[2]) and defining sets in block designs (see Street [7]), as well as in the study
of premature partial latin squares (see Brankovic, Horak, Miller and Rosa [1]).
Research has shown that computer analysis of critical sets, defining sets and pre-
mature partial latin squares is computationally expensive. This fact has led to a
study of the inherent nature of the configuration in order to obtain information
for refining searches and associated algorithms. In the past, critical sets, defining
sets and premature partial latin squares have been studied in isolation and, in
many cases, using different techniques. However, there is much to be gained by
studying these configurations in unison. A crucial element in the identification
of defining sets or critical sets is the determination of interchangeable elements
within the design or latin square. By representing the interchangeable sets in
certain designs as associated partial latin squares, Donovan, Khodkar and Street
[3], [4] have identified new families of defining sets. The work in the papers
[3], [4] raises many new questions. For instance, can our knowledge of the in-
terchangeable sets in latin squares (latin interchanges) be used to classify the
interchangeable sets in the block designs (trades)? It is this interesting question
that we focus on here. In Section 2 of this paper we give the appropriate defi-
nitions of (partial) latin squares and latin interchanges, (partial) Steiner triple
systems and associated Steiner trades, and finally detail the connection between
latin interchanges and Steiner trades. In Section 3 we take all Steiner trades of
volume less than or equal to nine and classify them according to the structure
of the associated latin interchanges.
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2 Definitions

First we turn our attention to partial latin squares. A partial latin square P of or-
der v is a vx v array with entries chosen from the set V' = {1,...,v} in such a way
that each element of V' occurs at most once in each row and at most once in each
column of the array. For ease of exposition, a partial latin square P will be repre-
sented by a set of ordered triples {(4, j; Pi;) | element P;; occurs in cell (4, 5) of
the array}. If all the cells of the array are filled then the partial latin square is
termed a latin square. That is, a latin square L of order v is a v X v array with
entries chosen from the set V' = {1,...,v} in such a way that each element of V/
occurs precisely once in each row and precisely once in each column of the array.

Example 1. The following arrays are examples of three partial latin squares of
order 6. Note that the first may also be termed a latin square.

113/ 2|4/6|5 32| |6]5 6|5 [3|2
3|12|1(6|5(4 1 4 4 1
211(3|5/4|6 2|1| (5|4 54| 2|1
416|5(1|3|2 65| |3|2 32| |6]5
6|5(4(3|2(1 4 1 1 4
5(4(6|2|1|3 54| (2|1 2(1| |54

The set of cells Sp = {(i,5) | (¢,7;P;) € P, for some P;; € V} is said
to determine the shape of P and |Sp| is said to be the wvolume of the partial
latin square. That is, the volume is the number of non-empty cells. For each r,
1 <r <w,let R denote the set of entries occurring in row r of P. Formally,
Rp = {P.; | (r,j;P-j) € P}. Similarly, for each ¢, 1 < ¢ < v, we define
C% = {Pic | (i,¢; P;c) € P} and for each element e € V' we define £§ = {(4, j) |
(i,j;e) € P}.

A latin interchange, T = (I,I'), of volume s, is a collection of two partial
latin squares, of order v, such that

1. 8§ =S,

2. for each (i,j5) € Si, Lij # I'ij,

3. foreachr, 1 <r <wv, R} =R}, and
4. foreach ¢, 1 <c < v, Cf =Cj.

Thus a latin interchange is a pair of disjoint partial latin squares of the same
shape and order, which are row-wise and column-wise mutually balanced.

Ezxample 2. Together the second and third partial latin square given in Example
1 form a latin interchange of order 6 and of volume 20.

Let P be a partial Latin square of order n and {a,b,c} = {1,2,3}. Then the
(a, b, ¢)-conjugate of P is denoted and defined by

P pey = {(a, Tp;2c) | (21,225 23) € P}

Note that P has six conjugates. These conjugates are not necessarily distinct.
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For a given latin interchange 7 = (I,I'), |R}| denotes the number of non-
empty cells in row r and |C§| denotes the number of non-empty cells in column
c. In addition, |£§| denotes the number of cells which contain element e € V. It
is clear that for all 3,5,k € V, |[R¥| > 2, |C}| > 2, |€F| > 2 and 30, |R}| =
Py ICI| = S"h_, |EF| = |S1]. In [5], Keedwell introduced the definition of the
type of a latin interchange. In this paper we modify this definition slightly and
let the type of the latin interchange Z = (I,1') be

[CH+ICF] +[CE| + ... +|C}]
IR+ IR+ IR} + ... + [RY]
IEH+1EFI+ 1€} + .. + |€F]

Note that if any of the values |C|, |RY| or |€}| in the above vector are zero, then
they are omitted. The type of the latin interchange given in the above example
is

24+4+4+2+4+4
4+2+4+4+2+4
44+4+24+4+442

Next we give the definition of a partial Steiner triple system. Let V =
{1,...,v} and let B be a collection of 3-subsets chosen from V" in such a way that
each 2-subset of V occurs in at most one of the 3-subsets. Then (V, B) is said to
be a partial Steiner triple system and is sometimes referred to as a 2-(v, 3) par-
tial Steiner system. The 3-subsets are called blocks or triples and the replication
number for a given element e € V' is the number of triples which contain e. If
|B| = v(v — 1)/6 then each of the 2-subsets of V' is contained in precisely one
triple of B and in this case (V, B) is said to be a Steiner triple system of order v.

Take two such partial Steiner triple systems with triples T' and T". If |T| =
|T'| and each of the 2-subsets of elements of V' contained in the triples of T are
also contained in the triples of 7/, then T' and T" are said to be mutually balanced.
If T and T are mutually balanced and have no common triples, they form a 2-
(v, 3) Steiner trade usually denoted by 7 = (T,T"). The volume(T) of the trade
is |T'| and the foundation of T is F(T) = {x | z is contained in a triple of T'}.

Let (V,B) be a partial Steiner triple system of order v. We define the cor-
responding partial Steiner latin square of order v to be the array with entry
k in cell (i,7) if and only if {i,j,k} € B. We emphasise that for each triple
{z,y,2} € T ({u,v,w} € T"), I contains six entries (z,y; 2), (z,2;v), (y,z; 2),
(y,z;2), (2,¥;2), (2,z;y) (I' contains six entries (u,v;w), (u,w;v), (v,u;w),
(v, w;u), (w,v;u), (w,u;v)).

Lemma 1. Let T = (T, T") be a 2-(v, 3) Steiner trade. Then the partial Steiner
latin squares I and I' corresponding to T and T', respectively, form a latin
interchange T = (I,1').

Proof: Note that |T| = |T'| and T NT' = @, hence I and I’ have the same
volume and shape and are disjoint. Next assume that the rows of I and I
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are not mutually balanced. That is, for some row r there exists a column j
such that (r,j;z) € I, but for the same row r (r,j';2) ¢ I' for any column j'.
Correspondingly the triple {r,j,z} € T for some j € V, but {r,j',z} ¢ T" for
any j' € V, which is a contradiction as 7 = (T,T") is a trade. We may obtain a
similar contradiction for the columns and so deduce that the rows and columns
of I and I' are mutually balanced. Consequently Z = (I,1') is a latin interchange
as required.

In [4] Donovan, Khodkar and Street showed that for the given trade 7 =
(T, T"), where T = {123,145,167,248,368,578} and T’ = {124,136,157,238,
458,678}, the partial latin interchange 7 corresponding to the triples of 7 can
be decomposed into six disjoint latin interchanges, 7; = (I;, I]) for i = 1,...,6,
in such a way that for each ¢ there is a one-to-one correspondence between the
entries of I; and the triples of T'. Further, they showed that no such decomposi-
tion exists for the latin interchange associated with the trade 7 = (T, T"), where
T = {123,145,167,247,346,357} and T’ = {124,136, 157,237,345,467}. These

results raise the following question:

QUESTION 1: For which trades 7 = (T,T') can the corresponding latin
interchange Z = (I, I') be decomposed into six disjoint latin interchanges Z; =
(I;,I}),1 < i < 6, such that for ¢ = 1,...,6 there is a one-to-one correspondence
between the triples of T' (T”) and the entries of I; (I]) which maps {z,y,2} € T
to (z,y;2) € I,?

In this paper we give some partial answers to this question and, in particular,
give an exact answer for all Steiner trades with block size three and volume less
than or equal to nine. Our list of trades of volume less than or equal to nine has
been taken from [6] where Khosrovshahi and Maimani completely classified all
Steiner trades with block size three and volumes six to nine.

3 Partial Answers

We begin by stating a result which identifies some Steiner trades whose corre-
sponding partial Steiner latin squares can be decomposed into six disjoint latin
interchanges. First we need a definition.

Let T = (T,T') be a trade. We say T is a minimal trade if there is no
0 #BCTand @ # B' CT such that (T\ B,T'\ B') is a trade.

Lemma 2. Let T = (T,T") be a Steiner minimal trade. For each element x €
F(T) let there exist a subset S, of F(T) such that x € S, and each triple
of T intersects the set S, in precisely one element. Then the latin interchange
corresponding to T = (T,T"), say L = (I,I'), can be decomposed into siz disjoint
latin interchanges.
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Proof: First we prove that for z,y € F(T) we have either S, = S, or S,NS, = 0.
Let Sy # Sy and S; N Sy # 0. Define

Ty = {{a,b,c} €T | a€8,\ Sy, b€ S, \ Say c€F(T)\ (Sz US,)},
Ty ={{de,ft€T| de SanS,, e, f € F(T)\ (S:US,)},

T = {{a,V,c} € T' | a' € 5,\ S,, ¥ €5,\ Sy, ¢ € F(T)\ (S, US,)} and
T, ={{d,e,f'}eT | d €S,N8,, ¢, f €F(T)\ (S, US,)}-

We note that if the pair {a, b} occurs in a triple of T then a and b cannot both
be in S, for any z € 7. This leads to T = Ty UT> and T' = T] U T,. Now if
the pair {a, b} is in a triple of T} then {a, b} is in a triple of 7. So (T1,T7) is a
Steiner trade. This is a contradiction since 7 = (T',T") is minimal. Hence either
Sy =Sy orS;NSy, =0forz,ye F(T).

Now let the triple {a,b,c} be in T; then S, US, US, = F(T), Sa NSy =0,
S, NS, =0and S, NS, =0. We define

L ={(z,y;2) | {z,y,2} €T, x € Sa, y € Sy, z € Sc}.

It is easy to see that there is a one-to-one correspondence between the elements
of I; and the triples of T'. Moreover, I; forms half of an interchange into which
we are decomposing the partial latin square associated with T'. We leave the
reader to prove that the six conjugates of I; decompose I into six disjoint latin
interchanges, where 7 = (I,I') is the latin interchange corresponding to 7 =
(T,7).

However, the above condition is not necessary as is shown by the following
example.

Example 8. The partial Steiner latin square corresponding to the trade 7T =
(T, T") where T' = {136, 148,159, 239, 246, 257,347,358} and T" = {139, 158, 146,
259,236,247, 357,348} can be decomposed into six disjoint latin interchanges.
These may be obtained by taking the conjugates of the latin interchange, 7; =
(I, I]), where I = {(1, 3;6),(1,4;8),(1,5;9), (2,3;9),(2,4;6),(2,5; 7), (3,4; 7),
(3,5;8)}. This trade does not have the property set out in the above lemma but
is decomposable.

Thus to further our study we focussed on the trades of volume less than or
equal to nine and began by developing the following algorithm which we used
to systematically test for the decomposition of these Steiner trades.

Algorithm:

— Input the trade T

— Calculate | T |.

— Convert the trade T to the associated partial Steiner latin square P.
— Generate all L‘zﬂ X mj subarrays of P.

2
— For each subarray S generate all subsets U of size | T |.
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— Calculate all permutations of size z of the symbols {1,2...,z} with no fixed
points, where 2 < z < L‘Qﬂj

— Determine the size of each row and column in the subset U, and the number
of times each element occurs in the subset U. If each of these numbers is
greater than or equal to 2, continue; else move to the next subset.

— Apply each of the permutations calculated above to each of the rows in each
subset U. If the columns are mutually balanced then a latin interchange has
been found.

— Once all latin interchanges have been determined, check for a one-to-one
correspondence between the elements of each latin interchange and the triples
of the trade 7. If a correspondence is found, then a decomposition of the
partial Steiner latin square associated with 7T is possible.

There are 25 Steiner trades of volume less than or equal to nine and classifying
these further we see that up to isomorphism there is one Steiner trade of volume
4, two of volume 6, two of volume 7, nine of volume 8 and eleven of volume 9.
The triples of these trades are listed below. Our testing verified that for thirteen
of these Steiner trades the corresponding partial Steiner latin square can be
decomposed into six disjoint latin interchanges satisfying the properties given in
Question 1 of Section 2. These thirteen cases are discussed below and the general
nature of the decomposition is given. For the remainder of the cases, we present
theoretical arguments that indicate why such a decomposition is not possible.

REMARK: We note that if such a decomposition exists for each s = 1,...,6
and each z € V, the partial latin square I; is such that |R%,|+|CF | +|£F,| equals
the replication number for element z. Also since for ¢ = 1,...,6, |T| = |I;],
the volume of each of the latin interchanges 7; is less than or equal to nine.
In the paper [5] Keedwell classified the type of all latin interchanges of volume
less than or equal to 10. We have used his classifications when arguing that
decomposition is not possible and in many of these cases we will use the following
lemma frequently.

Lemma 3. If the replication number of a symbol e is2 or 3, then fori=1,...,6
in any giwen interchange Z;, e can only occur as a row or a column or an element.
If the replication number of a symbol e is 4, then in any given interchange Z;,
e can only occur as a row, a column, or an element, or a row and a column, a
row and an element, or a column and an element.

Proof: Since an interchange requires that | RS |> 2 and | C§ |> 2, and | £§ |> 2,
when the replication number of e is 2 or 3, the symbol cannot be split between
rows and columns, or rows and elements, or columns and elements. Similarly
when the replication number of e is 4, the symbol cannot be split between rows,
columns, and elements.

Trade of volume 4 Ty = (T,T"') where T = {123,156,435,426} and T’ =
{126,135,423,456}. This trade can be decomposed into interchanges, one of
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which is given by Z; = (I1,I]) where I; = {(2,3;1),(5,6;1),(5,3;4),(2,6;4)}.
Note that both T' and T" are Pasch configurations and the trade of volume 4 is
nothing else than a ”Pasch switch”.

Trade of volume 6 7; = (T,T') where T = {123,145,167,247, 346,357} and
T = {124,136, 157,237,345,467}. The replication numbers for the elements
1,...,7 are:

[L[2[3[4]56|7

Replication
number in T

3‘2‘3 3‘2‘2\3

Assume that the latin interchange Z associated with 77 can be decomposed
into six disjoint latin interchanges, then since volume(T) = 6 one of these latin
interchanges must have type

3+3
3+3
2+24+2

So without loss of generality assume column 1 contains three entries, but this
implies there are three nonempty rows which is a contradiction. Therefore no
such decomposition exists.

Trade of volume 6 7; = (T,T') where T = {123,145,167,248, 368,578} and
T' = {124,136,157, 238,458,678}. This trade can be decomposed into inter-
changes, one of which is given by Z; = (I1,1]) where I, = {(1,3;2),(1,4;5),
(1,7;6),(8,4;2),(8,3;6), (8,7;5)}

Example 4. Here we digress for a moment and use this trade to illustrate Lemma
2. To see this note that Sy = Sg = {1,8}, Sa = S5 = Ss = {2,5,6} and
S3 =854 =57={3,4,7}.

Trade of volume 7 T3 = (T,T") where T = {123,145,167, 246,257, 356, 347}

and T' = {124,136, 157,237, 256,345,467}. The only possible type of a latin
interchange 7 of volume seven is

3+2+2
3+2+2
3+24+2

Since the replication number of each element is 3 this type is not possible.
Trade of volume 7 7y = (T,T") where T = {123,145,167, 248, 358, 369, 579}

and T" = {124,136, 157, 238, 359, 458,679}. A decomposition exists in which one
interchange 7; = (I, 1) is

I'={(1,2;3),(1,5;4),(1,6;7),(8,2;4),(8,5;3),(9,6;3),(9,5;7)}.
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Trade of volume 8 75 = (T,T") where T' = {123,145,167, 248,257, 346, 378,
568} and T = {124,136,157,237,258,348,456,678}. As in the trade T3, the
replication number for each element is 3, and so it is not possible to find a type

w
X I,
Y

in which the sums W, X, and Y consist only of 3s. Thus no decomposition exists.

Trade of volume 8 7 = (T,T") where T = {123, 145,167, 246, 257, 359, 368,
489} and T' = {124,136,157,235,267,389,459,468}. The replication numbers
for the elements 1,...,9 are as follows.

Replication
number in T

But there is no interchange of size 8 which has type

3+3+2
3+3+2
3+3+2

and thus no decomposition exists.

Trade of volume 8 7; = (T,T’') where T = {123,145,167,189,247, 346, 358,
379} and T' = {124,136,158,179, 237,345, 389,467}. The replication numbers
for the elements 1,...,9 are as follows.

[1[2[3]4/5]6|7[8[9

Replication
number in T

4‘2‘4‘3'2‘2‘3’2‘2

Assume that the latin interchange Z associated with 77 can be decomposed
into six disjoint latin interchanges, then since volume(T) = 8 one of these latin
interchanges, Z; = (I1, I]) say, must have type

3+3+2
X
Y

where X and Y represent the appropriate sum values of |R} | and |7 |. By
Lemma 3, this implies that both row 4 and row 7 are simultaneously non-empty.
Moreover, the elements 4 and 7 cannot occur as entries. This is a contradiction
as 247 € T. Therefore no such decomposition exists.
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Trade of volume 8 Tz = (T,T") where T = {127,138,28A4, 379,459,464, 57 A,
689} and T' = {128,137,27A, 389,454,469, 579,68A}. A decomposition exists
where one interchange is given by Z; = (I1,I]) where I; = {(1,2;7),(1,3;8),
(4,28),(9,3;7),(9,5:4), (4,6;4), (4,57),(9,6;8)}-

Trade of volume 8 Ty = (T,T') where T = {123,145,167,189,24 A, 268,279,
35A} and T' = {124,135,168,179,23A4,267,289,45A}. A decomposition exists
where one interchange is given by 7; = (I1,1I]) where I; = {(1,2;3),(1, 5;4),
(1,6;7),(1,9;8),(A,2;4),(2,6;8),(2,9;7), (4,5;3)}.

Trade of volume 8 719 = (T, T") where T' = {123,145,167,189,24A4,35A,68A4,
79A} and T' = {124,135,168,179,23A,45A4,67A,89A}. A decomposition exists
where one interchange is given by 7; = (Iy,I;) where I; = {(1,2;3),(1, 5;4),
(1,6;7),(1,9;8),(A4,2;4), (4, 5;3),(4,6;8), (4,9 7)}.

Trade of volume 8 71; = (T,T") where T' = {123,145,167,189,24A4,36 A, 58 A,
T9A} and T' = {124,136,158,179,23A4,45A4,67A,89A}. A decomposition exists
where one interchange is given by Z; = (I1,I]) where I = {(1,2;3),(1,5;4),
(1,6;7),(1,9;8),(4,2;4), (4,6;3),(4,5;8), (4,9 7)}.

Trade of volume 8 T;2 = (T,T") where T = {123,145,167,189,24A4,35A68B,
79B} and T' = {124,135,168,179,23A,45A,67B,89B}. A decomposition exists
where one interchange is given by 7; = (Iy,I]) where I; = {(3,2;1),(4,5;1),
(7,6;1),(8,9;1),(4,2; A),(8,6; B), (7,9; B), (3,5; A) }.

Trade of volume 8 713 = (T, T') where T' = {123,145,24A,35A4,678,69B, 79C,
8BC} and T' = {124,135,234,45A4,67A,68B,78C,9BC}. A decomposition ex-
ists where one interchange is given by Z; = (I1,I;) where I; = {(3,2;1), (4, 5; 1),
(4,25 A),(3,5; 4),(8,7;6), (9, B;6),(9,7;C), (8, B; C) }.

Trade of volume 9 714 = (T,T") where T = {145,167,189, 239, 257, 268, 346,
358,479} and T' = {146, 158, 179, 235, 267, 289, 349, 368, 457}.

Again the replication number for each element e is 3. By Lemma 3, any
latin interchange I must be a 3 x 3 subsquare. Assume that Z; = ([1,1]) is
one of the interchanges into which the partial latin square associated with 774
can be decomposed. There are no 3 x 3 subsquares in the partial latin square
associated with 7. We can show this by considering the partial latin square Iy
containing the element (4, 5;1). By Lemma 3, 4 can only occur as a row, and 1
can only occur as an element. Because 671 is a triple, 6 must occur only as a
row or column. Assume that 6 occurs only as a row. In this case, because 346 is
a triple, either (6,4;3) or (6,3;4) must occur in I; which is a contradiction since
4 can only be a row. Thus 6 must occur only as a column. In this case (7,6;1)
must be in I; and thus because 479 is a triple, (7,9;4) or (7,4;9) must be an
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element in I; which is a contradiction since we are assuming that 4 is a row.
Thus no such decomposition exists.

Trade of volume 9 715 = (T,T") where T' = {147,158, 169, 248, 259, 267, 349,
357,368} and T' = {148, 159, 167, 249, 257, 268, 347, 358, 369}. A decomposition
exists where one interchange is given by 7y = (I1,I]) where I; = {(1,4;7),
(1,5:8), (1,6;9), (2,4:8), (2,5;9), (2,6; 7), (3,4;9), (3,57, (3,6;8)}.

Trade of volume 9 715 = (T,T") where T = {123,145,167,189, 248,257, 269,
346,479} and T' = {125,136, 148,179,234, 267, 289, 457, 469}.
The replication numbers for the elements 1,...,9 are as follows.

Replication
number in T

Assume (6,9;2) € I, where I; forms half of an interchange into which we
are decomposing the partial latin square associated with T'. Then by Lemma 3
we can say that 6 occurs only as a row, and 9 occurs only as a column. Since
167 is a triple, then 7 occurs only as a column or element, and since 479 is a
triple, then 7 occurs only as a row or element. This means that 7 occurs only as
an element. Thus {(6,1;7),(4,9;7)} C I;. With this information, plus the fact
that 257 and 145 are triples, we have four cases:

Case 1 {(5,2;7),(5,1;4)} C I;. Since (6,9;2), (6,1;7) and (4,9;7) are also
in I; by Lemma 3 we find that (6,3;4), (1,3;2), (1,9;8) and (4,2;8) must be in
I;. Now it is easy to see that I3 is not a latin interchange. This is a contradiction.

Case 2 {(5,2;7),(5,4;1)} C I;. Since (6,9;2), (6,1;7) and (4,9;7) are also
in I; by Lemma 3 we find that (6,4;3) € I;. Now either (1,2;3) or (2, 1; 3) must
be in I;. But both are impossible by Lemma, 3.

Case 3 {(2,5;7),(4,5;1)} C I;. Since (6,9;2), (6,1;7) and (4,9;7) are also
in I; by Lemma 3 we find that (8,9;1), (8,4;2), (6,4;3) and (2,1;3) must be in
I;. Now it is easy to see that I; with these entries cannot be a latin interchange.
This is a contradiction.

Case 4 {(2,5;7),(1,5;4)} C I;. Since (6,9;2), (6,1;7) and (4,9;7) are also
in I; by Lemma 3 we find that (1,9;8) € I;. Now either (4,2;8) or (2, 4; 8) must
be in 77. But both are impossible by Lemma 3.

Thus no decomposition exists.

Trade of volume 9 T1; = (T,T") where T = {123, 145,167, 189, 248, 256, 279,
346,358} and T = {124,136, 158,179, 235, 267, 289, 348,456} .
The replication numbers for the elements 1,...,9 are as follows.

Replication
number in T
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Assume (3,4;6) € I, where I; forms half of an interchange into which we
are decomposing the partial latin square associated with 7. Then by Lemma, 3
we can say that 3 occurs only as a row, 4 occurs only as a column, and 6 occurs
only as an element. Since 256 is a triple, then 5 occurs only as a column or a
row, and since 358 is a triple, then 5 occurs only as a column or an element. This
implies that 5 occurs only as a column. However, this leads to a contradiction
since if we look at the triple 145, 4 and 5 must both occur as columns. Thus no
decomposition exists.

Trade of volume 9 715 = (T, T") where T = {123,145,167, 248, 369, 378,49 A,
579,684} and T' = {124,136,157,238,379,459,48A4,678,69A}.
The replication numbers for the elements 1,...,9, A are as follows.

Replication
number in T

Assume (1,2;3) € I;, where I; forms half of an interchange into which we
are decomposing the partial latin square associated with 7. Then by Lemma 3
we can say that 1 occurs only as a row, 2 occurs only as a column, and 3 occurs
only as an element. Since 248 is a triple, we have that 4 occurs only as a row or
an element, and since 145 is a triple, we have that 4 occurs only as a column or
an element. Therefore, 4 occurs only as an element, 5 occurs only as a column,
and 8 occurs only as a row. Since 494 is a triple, we have that 9 occurs only as
a row or a column, and since 579 is a triple, we have that 9 occurs only as a row
or an element. Therefore, 9 occurs only as a row, A occurs only as a column,
and 7 occurs only as an element.

However this leads to a contradiction since in the triple 378, 3 and 7 must
both be elements. Therefore no decomposition exists.

Trade of volume 9 T19 = (T,T") where T = {123,145,167,189,24A,356,37A,
468,479} and T' = {124,135,168, 179,234, 367,456,489,47A}. A decomposition
exists where one interchange is given by Z; = (I, I]) where I; = {(1,2;3),
(1,5;4),(6,7;1),(9,8;1), (4,2;4), (6,5 3), (A, 7;3), (6,8;4),(9,7;4) }.

Trade of volume 9 T3 = (T,T") where T' = {123,145,167,189,24 A, 368,39A,
479,578} and T' = {124,136,158,179, 234, 389,457,494, 678}.
The replication numbers for the elements 1,...,9, A are as follows.

Replication
number in T

Assume (1,2;4) € I, where I; forms half of an interchange into which we are
decomposing the partial latin square associated with 7. Then by Lemma 3 we
can say that 2 occurs only as a column and 4 occurs only as an element. Since
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23A is a triple, we have that A occurs only as a row or an element, and since 49 A
is a triple, we have that A occurs only as a row or a column. Therefore, A occurs
only as a row and we must have (4,2;3),(A,9;4) € I;. Then we must have
(8,9;3) € I;. Since 678 is a triple, we have that 6 occurs only as a column or an
element, and since 136 is a triple, we have that 6 occurs only as a row or a column.
Therefore, 6 occurs only as a column and we must have (8,6;7),(1,6;3) € I.
However this leads to a contradiction since in the triple 457, 4 and 7 must both
be elements. Therefore no decomposition exists.

Trade of volume 9 731 = (T,T") where T = {123,145,167,189,24 4, 346, 358,
394,479} and T' = {124,136,158,179, 234, 345,389,467,49A}.
The replication numbers for the elements 1,...,9, A are as follows.

[1]2[3]4/5]6|7/8[9| A

Replication
number in T

4‘2‘4‘4‘2’2‘2‘2‘3‘2

Assume that the partial latin interchange I associated with 7' can be decom-
posed into six disjoint latin interchanges, then since volume(T) = 9 one of these
latin interchanges, 7; = (I;,I]) say, must have type

w
X
Y

Y

where W, X and Y are all odd and represent the appropriate sums for values
of |RY |, |Cf,| and |€f |. However it is not possible to partition the multiset
{4,2,4,4,2,2,2,2,3,2} into three multisubsets such that the sum of the entries
in each of these multisubsets is odd. Therefore no such decomposition exists.

Trade of volume 9 T3 = (T,T') where T = {123,145,167,189,24 4,364, 468,
479,578} and T' = {124,136,158,179,23A4, 457,46 A, 489, 678}.
The replication numbers for the elements 1,...,9, A are as follows.

Replication
number in T

i

Assume (5,7;8) € I, where I; forms half of an interchange into which we
are decomposing the partial latin square associated with 7. Then by Lemma 3
we can say that 5 occurs only as a row, 7 occurs only as a column, and 8 occurs
only as an element. On the other hand, since 167 and 468 are triples we must
have (6,7;1),(6,4;8) € I;. Now considering the triples 36 A and 479, we have
four different cases:

Case 1{(6,3;4),(4,7;9)} C I which means that 9 occurs only as an element
by Lemma 3. But 189 as a triple requires both 8 and 9 to be elements. This is
a contradiction.
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Case 2 {(6,3;A),(9,7;4)} C I which means that 9 occurs only as a row,
A occurs only as an element, and 3 occurs only as a column by Lemma, 3. Then
189 as a triple requires that (9,1;8) be an element in I;. Thus 1 occurs as both
a column and an element. Since 123 is a triple, this means that (2,3;1) must be
an element in I;, which means that 2 can only occur as a row. Then 24 A4 as a
triple requires (2,4; A) to be an element of I;. Thus 4 occurs as both a column
and an element. Then 145 as a triple requires (5,1;4) to be an element of Iy,
since column 1 needs to have two elements in it. It is now easy to see that I3
with these entries cannot be a latin interchange. This is a contradiction.

Case 3 {(6, 4;3),(4,7;9)} C I which means that 9 occurs only as an element
by Lemma 3, leading to a contradiction as in Case 1.

Case 4 {(6,4;3),(9,7;4)} C I; which means that 9 occurs only as a row,
A occurs only as a column, and 3 occurs only as an element by Lemma, 3. Then
189 as a triple requires that (9, 1;8) be an element in I;. Thus 1 occurs as both
a column and an element. Since 123 is a triple, this means that (2, 1; 3) must be
an element in I;, which means that 2 can only occur as a row. Then 244 as a
triple requires (2, A;4) to be an element of I;. Thus 4 occurs as both a column
and an element. Then 145 as a triple requires (5,4;1) to be an element of Iy,
since row 5 needs to have two elements in it. It is now easy to see that I; with
these entries cannot be a latin interchange. This is a contradiction.

Thus no decomposition is possible.

Trade of volume 9 T3 = (T,T"') where T = {123,145,167,248,368,49A4, 579,
69B,84AB} and T' = {124,136, 157,238,459, 679,484, 68B,94B}. A decom-
position exists where one interchange is given by Z; = (I1,I]) where I} =
{(3,2;1),(4,5;1),(7,6;1), (4,2;8),(3,6;8),(4,4;9), (7,5 9), (B,6;9), (B, 4;8)}.

Trade of volume 9 724 = (T, T') where T' = {123, 145,167,189,24A,36A,49B,
58B,79A} and T' = {124,136,158,179,23A4,45B,67A,89B,49A}. A decom-

position exists where one interchange is given by 7y = (I1,I]) where I; =
{(3,2;1),(4,5;1),(7,6;1), (8,9;1), (4, 2; A), (3,6; A), (4,9; B), (8,5; B), (7,9; A) }.
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