Membrane division, restricted membrane creation and
object complexity in P systems

ARTIOM ALHAZOVa, RUDOLF FREUNDb and AGUSTIN RISCOS-NUNEZ¢

a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Str. Academiei 5, Chigindu, MD 2028, Moldova
bResearch Group on Mathematical Linguistics, Rovira i Virgili University,
PI. Imperial Tarraco 1, 43005 Tarragona, Spain
aFaculty of Informatics, Vienna University of Technology, Favoritenstr. 9, A-1040 Vienna, Austria
cResearch Group on Natural Computing, Department of Computer Science and Artificial Intelligence,
University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

We improve, by using register machines, some existing universality results for specific models of
P systems. P systems with membrane creation are known to generate all recursively enumerable sets
of vectors of non-negative integers, even when no region (except the environment) contains more than
one object of the same kind. We show here that they generate all recursively enumerable languages, and
that two membrane labels are sufficient (the same result holds for accepting all recursively enumerable
vectors of non-negative integers). Moreover, at most rwo objects are present inside the system at any
time in the generative case. We then prove that 10 4+ m symbols are sufficient to generate any recursively
enumerable language over m symbols. P systems with active membranes without polarizations are
known to generate all recursively enumerable sets of vectors of non-negative integers. We show that
they generate all recursively enumerable languages; four starting membranes with three labels or
seven starting membranes with two labels are sufficient. P systems with active membranes and two
polarizations are known to generate/accept all recursively enumerable sets of vectors of non-negative
integers, using only rules of rewriting and sending objects out. We show that accepting can be done by
deterministic systems. Finally, we show that P systems with restricted membrane creation (the newly
created membrane can only be of the same kind as the parent one) generate at least matrix languages,
even when having at most one object in the configuration (except the environment). We conclude by
presenting a summary of the main results obtained in this paper and a list of open questions.

Keywords: Membrane division; Restricted membrane creation; Object complexity; P systems

1. Introduction

P systems with symbol objects is a theoretical framework for distributed parallel multiset
processing, initiated by Paun in 1998 [1]. A systematic field survey can be found in [2], and
[3] contains a comprehensive bibliography.

The aim of this article is to improve the descriptive complexity parameters or properties
of a few universality results. More precisely, we shall speak about object complexity (bounds
in the starting configuration, in any configuration, in the alphabet) and also about membrane
complexity.

Let us denote the set of all recursively enumerable sets of (k-dimensional) vectors of
non-negative integers by PsRE (PsRE(k), respectively), whereas the set of all recursively
enumerable languages (over a k-letter alphabet) is denoted by RE (RE(k), respectively).

It has been shown [4] that P systems with membrane creation generate PsRE, even when
every region (except the environment) contains at most one object of every kind, but using an
unbounded number of membrane labels. We will show that RE is generated using only two
membrane labels and at most two objects present inside the system throughout any computa-
tion. The accepting case is also considered and, again, two membrane labels are sufficient. On
the other hand, by using an unbounded membrane alphabet we can bound the symbol alphabet
by 10 + m objects, where m is the size of the output alphabet.

We also know from [4] that P systems with active membranes without polarization generate
PsRE, again working with an unbounded number of membranes. We will show that RE is
generated by P systems with four membranes and three labels or seven membranes with two
labels in the initial configuration.

As shown in [5, 6], P systems with two polarizations and rules of types (a)—rewriting—and
(c)—sending an object out—generate PsRE using two membranes or accept PsRE using
one membrane. In this article we will show that deterministic systems of this kind with one
membrane accept PsRE.

Returning to the membrane creation case, we investigate the restriction of the model to
creating membranes only of the same kind as the parent membrane.

2. Definitions

After some preliminary definitions, we recall the basic facts concerning register machines and
matrix grammars (without appearance checking) and give the necessary definitions for the
specific models of the P systems considered in this paper.

2.1 Preliminaries

The set of non-negative integers is denoted by N. An alphabet V is a finite non-empty set of
abstract symbols. Given V, the free monoid generated by V under the operation of concate-
nation is denoted by V*; the empty string is denoted by A, and V* — {A} is denoted by V.
By |x| we denote the length of the string x over V.

For more details as well as basic results from the theory of formal languages, the reader is
referred to [7, 8].

2.2 Register machines

A register machine is a construct M = (m, P, ly, l;,), where m is the number of registers, P
is a finite set of instructions injectively labeled with elements from a given set lab(M), Iy is
the initial /start label, and [;, is the final label.

The instructions are of the following forms.

—1: (AN, 1"

Add 1 to the contents of register r and proceed to the instruction (labeled with) I’ or [(an
ADD instruction). For deterministic machines, we require I’ = [".

=1 (S, I, 17)
If register r is not empty, then subtract 1 from its contents and go to instruction /', otherwise
proceed to instruction {” (a conditional SUB instruction).

— I+ halt
Stop the machine. (The final label /, is only assigned to this instruction.)

When considering the generation of languages, we use the model of a register machine with
output tape, which also uses a tape operation:

— [: (write(a),l")
Write symbol a on the output tape and go to [”.

We then also specify the output alphabet T in the description of the register machine with
output tape, i.e. we write M = (m, T, P, Ly, I;).
The following results are folklore (e.g., see [9]).

PROPOSITION 2.1 Let L C N™ be a recursively enumerable set of (vectors of) non-negative
integers. Then L can be generated/accepted by a register machine/deterministic register
machine with at most m + 2 registers; moreover, at the beginning / at the end of a computation,
all registers are empty; the result/the input of a computation appears in the first m registers.

Let L C V* be a recursively enumerable language. Then L can be generated by a register
machine with output tape with two registers.

2.3 Matrix grammars

A context-free matrix grammar (without appearance checking) is a construct G =
(N, T, S, M),where N and T are sets of non-terminal and terminal symbols, respectively, with
NNT =@, S € N is the start symbol, M 1is a finite set of matrices, M = {m; | 1 <i < n},
where the matrices m; are sequences of the form m; = (m; 1, ..., m;,), n; > 1,1 <i <n,
and them; ;, 1 < j <n;, 1 <i < n, are context-free productions over (N, T).

Form; = (m;,...,m;,)and v,w € (N UT)* we define v =, w if and only if there
are wo, Wi, ..., Wy, € (N U T)* such that wy = v, w,, = w, and foreach j, 1 < j < n;, w;
is the result of the application of m; ; to w;_;. The language generated by G is

LG)={weT*|S =y, wi =y, w=w, w; €((NUT)",
mi, € Mforl <j<k, k>1}.

The family of languages generated by matrix grammars without appearance checking is
denoted by MAT?. It is known that, for the family of Parikh sets of languages generated
by matrix grammars PsMAT", we have PsMAT"* C PsRE. Further details concerning matrix
grammars can be found in [7, 8]. We only mention that the power of matrix grammars is not
reduced if we only work with matrix grammars in the f-binary normal form where N is the
disjoint union of Ny, N, and {S, f} and M contains rules of the following forms:

(1) (S = XinitAinit), With Xinie € Ny, Ajpic € No;
(i) (X > Y, A— x),withX e N,Y e NyU{f},Ae Ny,andx € (N, UT)*, |x| <2;
Gii) (f —).

Moreover, there is only one matrix of type 1, which is only used in the first step of any
derivation, and only one matrix of type 3, which is only used in the last step of a derivation
yielding a terminal result.

2.4 P systems

The first model of P systems we consider is that of P systems with non-cooperative multiset-
rewriting rules (ncoo) with specifying targets (tar), also using membrane creation (mcre) and
membrane dissolution (§) possibilities. Such a system (of initial degree m > 1) is of the form

M=(0,H, u,wy,...,wy, Ry,..., Ry),

where O is the alphabet of objects, H is the set of labels for membranes (we assume here that
H contains n labels), w is the initial membrane structure, consisting of m membranes labeled
(not necessarily in a one-to-one manner) with elements of H, wy, ..., w,, are strings over O
representing the multisets of objects present in the m compartments (also called regions) of
u, and Ry, ..., R, are the (finite) sets of rules associated with the n labels from H. These
rules can be of the form (1) a — vand 2)a — [; b];, wherev € O*,a,b € O,i € H, and
either v € (O x tar)* or v € (O x tar)*{8}, with tar = {here,out}U {in; | j € H}. The
presence of § on the right-hand side of a rule means that the application of the rule leads to
the dissolution of the membrane.

The meaning of a rule of type (1) is that the object a from the region associated with the
rule ‘reacts’, and as a result the objects specified by v are produced. The objects from v have
associated target commands, of the form here,out, in ;, which specify where the object should
be placed: here means that the object remains in the region where it is produced, in ; means
that it has to go to membrane j, provided that it is directly inside the membrane where the rule
is applied (otherwise the rule cannot be used), and out indicates that the object should exit the
current membrane, going to the surrounding region—which is the environment in the case of
the skin membrane of the system. In general, the indication here is not explicitly written. If the
special symbol § is present, this means that, after using the rule, the membrane is dissolved,
and all its contents, objects and membranes alike, become elements of the surrounding region.
The skin membrane is never dissolved. A rule a — [; b]; of type (2) means that object a
produces a new membrane, with label i, containing the object b.

In this article we will also consider P systems with restricted membrane creation (we will
denote this feature by mcre,): a — [; b]; € R;, meaning that, in region i, it is only possible
to create membranes with label i.

Knowing the label of the membrane, we also know the rules associated with it. We recall
that the number of membrane labels (i.e. kinds of membranes) is n and the rules are associated
with the membrane labels, while the number of membranes initially is m and can change
during the computation. The rules are used in the non-deterministic (the objects and the rules
are chosen non-deterministically) maximally parallel way (no further object can evolve after
having chosen the objects for the rules), thus obtaining transitions between a configuration of
the system to another one.

P systems with active membranes with k polarizations (activey) are constructs

[M=(0,H,E, u,wy, ..., wy, R),

with the components O, H, u, wy, ..., w,, defined in the same way as above, with mem-
branes of u also having associated polarizations from E (having cardinality k) and with the
rules from R of the following forms: (a) [@ — v]j—rewriting-like, (b) a[1; — [b]2/

and (¢)[a l; — []Z/ b—bring an object inside the membrane/send an object out of the mem-
brane (possibly changing its polarization), (d) [a];, — b—dissolve the membrane, producing
another object (the contents of the dissolved membrane are released into the surrounding
region), and (e) [a |; — [b]Z/[c]f,”—membrane division, where two membranes with the
same label (but possibly different polarizations) are produced, each containing a new object
(all other objects are duplicated). In all cases, a, b,c € O,v € O*,e,¢’,¢”" € Eand h € H.

The rules of type (a) are applied in the maximally parallel way, whereas at most one rule of
types (b), (c), (d) and (e) can be applied for each membrane at any step of the computation. If
we have only one polarization, we omit specifying it (and in the literature, the subscript O is
then usually added to the types of rules defined above, thus yielding (ap), etc.).

In both models, when a configuration is reached where no rule can be applied, the computa-
tion stops, and the multiplicity of the objects sent into the environment during the computation
is said to be computed by the system along that computation. We denote by Ps(IT) the set
of vectors generated in this way (by means of all computations) by a system IT. If we take
into account the sequence of symbols as they are sent out into the environment (when two or
more objects leave the system at the same moment, then all permutations of these objects are
considered), then we obtain the string language generated by IT, which is denoted by L (IT).
When considering IT as an accepting system for a set of vectors, we put the input multiset into
the skin membrane and accept by halting computations.

By X Oy, ny.n5 Pryns.ng ' we denote the resulting families generated by such P systems,
where: (1) X is either L for languages or Ps for sets of vectors of non-negative integers; we
add the subscript @ when considering accepting systems; (2) F is the list of features used in
the model (e.g., we consider (ncoo, tar, mcre, §), (ncoo, tar, mcre,, 8), (activey, a, b, c,d, e),
and (active,, a, ¢)); (3) the numbers ny, ns, ng represent the bounds on the starting number
of membranes, the maximal number of membranes in any computation, and the number of
membrane labels, * representing the absence of a bound (if all three numbers are *, then we
simply omit them); and (4) the numbers n1, n,, n3 have the same meaning, but for the objects
inside the system; the middle parameter, 7, or 15, can be replaced by n, /n, or n;/ns, where
the primed numbers indicate the bounds on the number of objects or membranes ever present
in the system during halting computations only, thus refining this complexity measure.

3. Membrane creation

3.1 Generating

The first theorem shows how recursively enumerable languages can be generated by P systems
with a small number of objects inside the system and a small number of membrane labels.

THEOREM 3.1 L O, Py «2(ncoo, tar, mcre, §) = RE.

Proof Due to proposition 2.1, we construct a P system simulating a register machine M =
2, T, P, ly, 1) with output tape and two registers; P_ denotes the set of all SUB instruction
labels.

M=(0,H,[1 i,w, Ry, Ry),
O =TUl{ay,ay, C1,C2, 80, 81,8, 1} UPU{l1, 15, 13,14,15,16,17 | | € P_},
H=1{1,2),

w1 = &o.

Ri=RijUR sUR; sUR; pURz7UR o,
R2 = Rz,[U RZ,A U RZ,S U RZ,D U Rzyz.

For clarity, the rules are grouped into categories (initialization, add, subtract, decrement
case, zero case, output).

Initialization:

Rir={g—>0Lgl ei—> L&l & — (o)ou}
RZ,I = {gO — (gl)out}~

Output:
Rio={—1law |acT,I: (write(a),l') € P}.
Add:

Ria={l = I'(Cin;, I > 1"(C)in, | 1: (AG),I',1") € P, i €{1,2}}
U{Cr = 2t], t = A},
Ryp={Co— ot], t = A}

Subtract:

Ris={l— (LCiy | 1:(SE),I',1"y e P, ie{l,2}}
U{C1 = Lt 13Ul — ()i, [12 (S(D),1',17) € P,
Ros={Ci > it 1} U{li > Wim, | 1:(S(),1,1") € P}

Decrement case:

Rip={ls—1Is8|leP)

Uflls = UDiny> Is = Dow | 1: (S, 1", 1" € P)},
Rop=1{L—055|1e P}

Uflls = UDinys Is = Dowr 11:(SQ2),1',1" € P)}.

Zero case:

RI,Z = {16 — 175 | l e P,}
Uil = (6)inys b7 = (Mouw 112 (S, I, 1" € P},
Roz =1{li = U6)in,> I = Mo 11:(S(2),1',1" € P)}.

Initially, by means of the auxiliary objects g;, we create two membranes inside the skin
region, labeled 1 and 2, respectively. These membranes will be referred to as cluster membranes
(because they will contain inside them a number of elementary membranes). We finish the
initialization phase by generating an object [y in the skin region.

The values of the two registers i, i € {1, 2}, are represented by the number of elementary
membranes labeled 2 that occur inside the corresponding cluster membrane i. The duty of the
object C; is to create membrane i. Object ¢ is not needed for the computation, it is only used

to keep the usual form of the membrane creation rules and is immediately erased after having
been created.

Writing an output symbol a € T is done by a non-cooperative rule changing the instruc-
tion label and producing a symbol a that is immediately sent out. To increment a register, a
membrane labeled 2 is created inside the corresponding cluster membrane.

In order to simulate a subtraction on register i we send the objects /; and C| into the cluster
membrane i and then proceed in the following way: while creating a membrane with label 1,
object /; tries to enter some membrane with label 2 as /. If such a membrane exists (i.e.
register i is not empty), then /, changes to /3 and dissolves the membrane, thus being spilled
back into the cluster membrane. Before proceeding to the next label, we have to get rid of
the auxiliary membrane 1 that was created inside the cluster membrane by C;. To this end,
I3 enters into membrane 1 as 4 and dissolves it, thereby changing to /5. Finally, /5 sends an
object I’ out to the skin region. As an overall result, [has been replaced by I’ and the number
of membranes with label 2 inside the cluster membrane i has been reduced by one. If, on the
other hand, no membrane with label 2 exists in the cluster membrane, then /; waits for one
step and then enters the newly created membrane 1 as /g. Immediately afterwards, it changes
to l7 and dissolves the membrane. Finally, /7 sends out an object I” into the skin region. As an
overall result, in the absence of membranes with label 2 inside the cluster membrane i, [has
been replaced by [”.

Notice that, inside the system, there can never be more than one copy of the same object.
In fact, the number of objects inside the system never exceeds two (it can only be two after
the first step of an ADD or SUB instruction).]

3.2 Accepting

Notice that the simulation of the register machine instructions in theorem 3.1 is deterministic
(the non-determinism arises from the non-determinism of the register machine program itself,
not from the simulation). For the case of accepting sets of vectors in a deterministic way, we
also specify the cardinality of the input alphabet, i.e. the number of components in the (Parikh)
vectors.

THEOREM 3.2 DPs,(m)OP) . »(ncoo, tar, mcre, §) = PsRE(m).

Proof Given a recursively enumerable set of vectors of non-negative integers, we now
simulate a register machine M = (m + 2, P, ly, ;) (see proposition 2.1); the input vector
is represented in the skin by the corresponding numbers of symbols (a;, i), 1 <i < m, for the
ith component.

I=(0,H, [], w, R, Ry),
O={@,)H)I1<i<m+2 1<j<i}
U{C1, Co, 1} U{g | 0 =i <4(m +2)}
UPU{l, 1,15, 14,1s,l6,17 | | € P_}
U{(Lk,j)lleP.,0<k=<2 1=<j<m+2}
H = {1, 2},
w1 = 80,
Ri =R ;UR sUR sUR;pURz,
Ro=R,jUR, AURysURypUR> 7.

Theorem 3.1 Theorem 3.2

1
1 >3\
/.\2 SN2 1
S—— —
) n9 1
2
T
Theorem 3.3 Theorems 3.4, 3.5

a

M .
non-terminals

Figure 1. Membrane structures for the membrane creation proofs.

Like in the previous theorem, we list the rules by categories (initialization, add, subtract,
decrement case, zero case). We again start with the object g, which now starts the creation
of the membrane structure ([; [> 1>)" *2(1;)2, where each membrane with label 2 (cluster
membrane) corresponds to a register. In parallel, the input objects enter the corresponding
membranes and become membranes with label 2; see figure 1.

Initialization:

Ry ={gi — [2 83i+1 12, 83i+2 =~ [1 83143 |1
&m+2+i = (€3m+2)+i+)our | 0 <0 <m + 1}
U {g4(m+2) = lo}
Ulai, j) = (@i, j — Din, | 1 =i <m, 2<j <i}
Uf(ai, 1) = (Cin, | 1 <0 < m},

Ry ={gi41 = (i+2)ow |10 <i <m+1}U{Cy — [2t]2, t = A}.

We then perform a deterministic simulation of the instructions in the program of the deter-
ministic accepting register machine M. We now list the rules for ADD instructions (registers
m + 1, m + 2 for the simulation of the working registers; observe that, for the input initializa-
tion of the registers i, 1 <i < m, similar rules for the corresponding symbols (a;, i) are
used).

Add:

RI,A = {l - l/(ais l)v l - l”(ais l)v
(@i, j) = (@i, j = Diny» (@i, 1) = (C2)in, |
1:(AG) U I eP,m+1<i<m+2, 2<j<i},
Roa={Cr— 2t], t > A}
The main reason for the additional rules is that we have to go to that level of the membrane

structure that corresponds to the register affected by the instruction. The same has to be done
for the SUB instructions.

Subtract:

Ris={— (,0,i), (,0,1) > (LCp)in, | L : (SG), I',1") € P}
U{l,0,)) = (1,0, j =)i, [2<j <i, 1:(SG),I',1") € P}
U{l k, j) = Lk, j—Dour |2 <) <i, 1 k<2,
1:(S@).0.1") € P}

UL L) —> 1 (L2 1) — 1" [1: (SG). I, 1") € PYU {t — Al

Rys ={li = (IDin,» C1 — [1 1 11}

The decrement case and the zero case are handled very much as in theorem 3.1 for register 2.

Decrement case:

Rip={ls—>1I|le P}
RQ’D = {12 — 135 | l e P,}
Ufls = UDin,s Is = (1, Dowr | 12 (SG), ', 1" € P)).

Zero case:

Riz={lg—> 1|l e P},
Ryz ={li = Ue)inys l7 = (1,2, D)our 1 1: (S, I',1" € P)}.

After the correct simulation of the decrement case or the zero case, the symbol (I, 1, i)
or the symbol (/, 2, i), respectively, is released; by decrementing the third component, these
symbols can travel along the line of membranes labeled 1 back to the skin membrane, where
therule (/, 1, 1) — [’ orthe rule (/, 2, 1) — [” is applied; hence, after decrementing, the label
[’ is obtained, whereas in the zero case we continue with label [”.

We finally observe that all the derivations in IT are performed deterministically, which
completes the proof. |

3.3 Generating with one object

Considering P systems having only one object inside the system during the whole computation,
we realize that such P systems with one object work in a sequential way, hence the following
holds.

THEOREM 3.3 PsMAT" is characterized by P systems
H= (O’H’/'Lawla"-awvala"~7Rn)a

where (a) the initial membrane structure is limited by two levels (any membrane inside the
skin is elementary) and label 1 of the skin membrane is unique (i.e. the labels of the other
membranes inside are different from 1); (b) exactly one of the multisets w; consists of exactly
one object, whereas all the other initial multisets are empty; (c) the rules in R are of the
Sform a — buyy,, a — biy,upy, a = b,ora—[; b]; witha,be O, u € O*, and i € H',
where H = H — {s}; and (d) the rules in R;,2 < i < n, are of the forma — b,a — by, or
a — bé.

Proof Let Il be a P system obeying the conditions given above. We first observe that, due
to the form of the initial configuration as well as due to the restricted forms of the rules,
during any computation: (i) the membrane structure is limited by two levels (any membrane
inside the skin is elementary); and (ii) the number of symbols inside the system is exactly
one. Therefore, when constructing a matrix grammar G = (N, T, S, M) simulating I, with
T € O, a membrane i can be represented by the non-terminal i, while the object a and
its position in membrane i can be stored as a pair (a, i). With InCon denoting the set of
representations of the initial configuration given by w, wy, ..., w, (in fact, only one such
representation is necessary), we can now specify the matrix grammar G as follows:

N=HUO x HU{(a,i) | (a,i) € F},

M ={(S - w) | we InCon}
U{((a,s) = (b,s)u) | a = bu,, € R}
U{((a,s) > (b,Du,i —> i) | a—> bipuou € Ry, i € H'}
U{((a,i) > (b,i))|a—>beR;, i € H}
U{((a,i) = (b,s)) |a— by € R;, i € H'}
U{((a,s) = (b,i)i)|la—[;b]i € Ry, i € H'}
U{((a,i) = (b,s),i > A) |a—> bS € R;, i € H'}
U{(a, i) = (@, 1), ((a,i) =)| (a,i) € F}
U{(a,i) > (a,i),j—> 1) | (@ i)eF,ieH, jeH)
U{(a,s) — (a,s),j — A | (a,s) € F, j € H— H,}.

The set F C O x H is defined in such a way that a pair (a, i) is in F if and only if no rules
of region i are applicable to a, eventually except for rules of the form a — b,-n/ Uy In Ry, and
for any a € O, H, C H' denotes the set of membrane labels j such that R contains rules of
the form a — biy, o, a, b € O, u € O*. We can now see that a configuration with object a
in region i is a halting one if and only if (a, i) € F, and (i) either i # s, or (ii) i = s and no
membranes with labels from H, are present. The rules with the barred symbols (a, i) allow
us to remove all non-terminals from the sentential form of M when IT has reached a halting
configuration. Hence, Ps(L(M)) equals the set of vectors generated by IT.

To show the converse inclusion, we consider a matrix grammar G = (N, T, S, M) without
appearance checking in the f-binary normal form and construct a P system IT simulating G
as follows: IT starts with the initial configuration [S];.

N=(0,H, IS, Rap---» Rs),

O={S,S, L#HUNU{|leM, 0<i <4},
H = N, U {s},

Ry ={S = [a St 1ay | (S = XinitAinit) € M}

U{X = (l))in, |1 : (X = Y, A — uv) € M}
Ulh = bl ll: (X —>Y A—uv)e M, u e N}
Ul = Ly |1 : (X > Y,A— uv)y e M, ueTU{r}}

Ulb—=> Ll :(X—>Y A—uv)e M, ve N}
U{lz > Yvou |l:(X—>Y, A—>uv)e M, veTU{A}}
UX =>#|XeNUHU{f - #,, | Ac N},

Ra = {81 = Xinidour | (§ = XinitA) € M}
Uf{lo—>1ié]1:(X—> Y, A— uv) e M}
U{lhb—=> Bow | 1: (X =Y, B— Av) € M}

U{ly > Wow |1 : (X = Y, B —> uA) e M} U {# — #}.

Therules S — [4,, Si]a,, € Rsaswellas S; = (Xinit)our € Ra,, simulate the start matrix
by producing a membrane corresponding to the literal symbol A, and an object corresponding
to the control symbol Xjn;. A matrix/ : (X — Y, A — uv) is simulated as follows: first, object
X removes a membrane with label A by the rules X — (lp)in, € Ry andlyp — [;6 € R4; then,
it creates membranes with labels u, v if u, v are non-terminal symbols, or sends u, v into
the environment if u, v are terminal symbols. Finally, the object X changes to Y. The rules
X — #, # —> # € R, guarantee that, if the derivation of G is ‘stuck’ in a form which is not
terminal, then the corresponding computation in IT will enter an infinite loop. Finally, the result
of a derivation in G is terminal if and only if f is produced and no other non-terminals have
remained; this is checked by f — #;,, € R; (after the application of sucharule,# — # € R4
then guarantees that the corresponding computation in [T will enter an infinite loop). Observing
that the above P system fulfills all the conditions stated in the theorem concludes the proof. W

init

We conjecture that we need not restrict the membrane structure, i.e. PsMAT* =
PsO | 4 Py . (ncoo, tar, mcre, §).

3.4 Number of symbols

The cardinality of the alphabet in the computational completeness proofs usually depends on
the complexity parameters of the simulated device. We will now show that any recursively enu-
merable set of m-dimensional vectors of non-negative integers can be generated by P systems
with membrane creation and dissolution, having an alphabet of 10 4 m symbols.

THEOREM 3.4 L(m)O12,10+m P2 «.«(ncoo, tar, mcre, §) = RE(m).

Proof We simulate a register machine M = (2, T, P, ly,l;), where T ={a; | 1 <i <m};
let P, denote the set of all ADD instruction labels, and let P_ denote the set of all SUB
instruction labels.

M=(,H,[;[r Ir s, b, Ry, ..., Rp),
O=TUlb,c,d,e}U{ry,r_,r" |refl,2}},
H=PU{I1,2.5 D)

Ri=Ri;UR.oUR AURsURpUR 7UR.y, i € H.

For clarity, the rules are grouped (initialization, output, add, subtract, decrement case, zero
case, next instruction).

Initialization:
Rip=1{b— [, d 1}
R =0,ieH-—{I}
Output:
Rio=a— ay |l : (write(a),l'), a € T}
Uf{a —ad|laeT}, [€ PU{I},
Rs 0 ={a — apub, a — ayyc|a e T},

Rio=0,ieH—(PU{s}.

Add:
Ria=1{d = (ri)ou | 1: (A, 1", 1") € P, r € {1,2}}
Ufry > rydrefl,2}},l e PU{I}
Rya=A{ry = [rd] | re{l,2}},
Rya ={d = bour,d — cou}, 7 €{1,2},
Rpa=20.
Subtract:

Ris=1{d— rou | 1:(S1),I',1") e P, re{l,2}}
Ulr. > r_8 | re{l,2}}, l € PU{I},
Rys={r-—rld, d—I[pdlp|re{l2}}
Rps={d — A},
Ris=W0,ie€H—P—{Is, D}
Decrement case:
Ryp =1{r. = (rL)in,, € = ein, | r € {1,2}},
R.p={r-—r.d, d—[ad]p}, r €{l,2},
Rpp =1{r" — e}, r €{1,2},
Rip=10,ieH-—{1,25,D}.
Zero case:
Riz ={r_ — (rDin,} | 7 €{1,2}},
Rpz=1{r_ — bs|re{l,2}},
Rip=W, ieH-—/{s D}
Next instruction:
Ry v =1{b— by, c —> cin, |1 € P},
Ry={b—Tral, c>lraly|l:(X(),l,l")e P, X c{A,S}}).

The instruction labels are encoded into membrane labels, and the values of the registers are
encoded by the number of copies of membranes associated with them. The proof mainly relies

on the fact that the amount of information needed to be transmitted between the instructions and
the registers is ‘small’, i.e. the instructions tell us which operation (ADD or SUB, represented
by ry, r—,r € {1, 2}) has to be applied and which register r it has to be applied to. The objects
r’,r € {1, 2}, and e are used to implement the SUB instruction, and the object d is used here to
organize a delay for appearance checking, similar to the technique from theorem 3.1, whereas
otherwise it is used when the membranes already contain all the information needed.

After an operation has been simulated, the next instruction is chosen from two variants,
non-deterministically chosen in the ADD case and, as in the SUB case, depending here on
whether decrementing has been successful or not. These variants are represented by the objects
b, c. The transition to the next instruction is done in the following way. Object b in membrane
[creates membrane /', or object ¢ in membrane [creates membrane [”. Then, the object
‘memorizes’ the next register to be operated on and the operation to be performed, and then
membrane [is dissolved, leaving the newly created membrane in the skin.]

If we want to start with the simplest membrane structure, one more symbol is needed as
shown in the following.

THEOREM 3.5 L(m) O} 2. 114m P1 «.«(ncoo, tar, mcre, §) = RE(m).

Proof We again simulate a register machine M = (2, T, P, ly, l;) as in the proof of the
preceding theorem, but in the P system I1" we use an additional symbol a for an initial step
starting in the skin membrane:

' = (07 H, [s]Sv a, R[ﬂ? ey RD),

O=TUla,b,c,d,e}U{rp,r_,r" |re{l,2}},

H=PU{l,1,2,s, D},

Ri = Ri,I U Ri,O U Ri,A U Ri,S U Ri,D U Ri,Z U Ri,Ns i€ H.

Initialization:

Ry ={a—[; D1},
Rip=1{b—1,dl,}
Ri,l ZQ), i€ H—{S‘,I}

Except for the initialization, the sets of rules are exactly the same as for the P system I1
constructed in the preceding proof, an observation that completes this proof. |

4. One polarization

The theorem below provides a result, similar to that of theorem 3.1, for P systems with
active membranes with only one polarization (usually called P systems with active membranes
without polarizations). The construction gives no upper bound on the number of objects present
inside the system in general, but during any halting computation the number of objects never
exceeds three.

THEOREM 4.1 L O\ 34+ P 3(active;,a,b,c,d,e) = RE.

Proof 1Inthe description of the P system IT below, w, describes the initial multiset for the skin
membrane, whereas w; denotes the initial multiset in the elementary membrane having the
same label as the skin membrane. We now simulate a register machine M = (2, T, P, ly, l},):

I = (0, u, wy, w, wz, w;, R),

w="[00hlk Lk s

O=TU{a |1<i<2)UL1L,L|l€PYUb, bt d,#,
ws =g, w1 = wy = w, = A,

R=RoUR,URsURpURy.

The rules are grouped into categories: output, add, subtract, decrement case and zero case.
QOutput:

Ro={[l—=1lal, [=1"als, [als = [lsa|l: (write(a),l’), a € T}.
Add:

Ra={l1h—=011i [ULi—=[LLltli, [t—=AL, [L)i—11N0,
(L= 1" 11 (AW, 17, i ef{1,2}).

Subtract:

Ry ={[l—dbli1, il i —=>[bi)i, [bili = [1it, [t —> A1,
(b > #]1, [bi = #1i, [#—=#111: (SO, U, 0, i e{1,2}})
Uldl Is =[], [t > ALld—>#], [#—> #],).

Decrement case:

Rp={Ll i =Ll [L1i—111:(SO, 11", ie{l,2}}.
Zero case:

Rz={LlIs—> bl Ll —[LI"|leP}.

As in the previous theorem, we simulate a register machine with output tape and two regis-
ters; the values of registers i, i € {1, 2}, are represented by the multiplicities of membranes i.
However, since new membranes can only be created by dividing existing ones, one extra
membrane is needed for every register. The duty of d is to ‘keep busy’ the elementary mem-
brane with label s (otherwise # appears and the computation does not halt), and the use of the
objects b; is to ‘keep busy’ one membrane with label i for two steps. Object ¢ is not needed
for the computation, it is only used to keep the usual form of the membrane division and
communication rules; it is immediately erased.

Generating an output is done by a non-cooperative rule changing the instruction label
and producing the corresponding symbol, which is then sent out. Incrementing a register
(L : (A@i),1',1")) is done in the following way: [enters membrane i (there is always at least
one), dividing it. The object /; in one copy is sent to the skin as I’ or [”, while the object ¢ in
the other copy is erased.

Subtracting with (/ : (S(i),[’,1")) is done by keeping busy the elementary membrane with
label s for one step and one membrane with label i for two steps, while object /; tries to enter

Theorem 4.1 Theorem 4.2

5 1
—
T
1.1 2 T2 1
)+ 1 1z + 1 ny + 1 niz + 1

Figure 2. Membrane structures for the active membrane proofs.

any membrane with label i. If the register is not zero, then /; immediately enters one of the
other membranes with label i, dissolves it and changes to /’. Otherwise, after waiting for one
step, object /| enters the elementary membrane with label s and returns to the skin as /”.
During a correct simulation of a run of the register machine (in particular, during any halting
computation) there are never more than three objects present inside the system.]

It is possible to reduce the number of membrane labels to two at the price of starting with
seven membranes.

THEOREM 4.2 LO 3/45 P75 2(activey, a, b, c,d, e) = RE.

Proof (sketch) Similarly to the proof of theorem 3.1, let us start with a membrane structure
L L lilz 2 hile [iz 12 12 11 (see also figure 2), and represent the values of a working
register i by the number of elementary membranes with label 2, inside the membranes with
labels i, minus one. The elementary membranes with label 1 will be used for delay, just like
the elementary membrane labeled s was used in the proof of theorem 4.1, and the instructions
are simulated accordingly. The main difference is that when simulating an ADD or a SUB
instruction, we have one additional initial step at the beginning choosing the ‘cluster mem-
brane’ representing the corresponding register (see the proof of theorem 3.1). Obviously, at the
end of the simulation of the instruction in the right ‘cluster membrane’, we need an additional
final step for moving the instruction label back to the skin membrane. |

5. Two polarizations

The next theorem shows that, with two polarizations, we need only one membrane to simulate
register machines in a deterministic way.

THEOREM 5.1 DPs,OP) 1 i(active,, a, c) = PsRE.

Proof We will simulate the actions of a deterministic register machine M = (d, P, ly, I;)
with d registers by a deterministic P system with one membrane and two polarizations. For
every instruction /, let us denote that register / acts by r (/) and that operation [is carried out

by op(l).
M= (0.E.[]} wi. R),
O={@ijll<i<d 0<j=<d+2)
U{l,i,)lIleP, 0<i<2 1<j=<d+2}U{#},
E = {0, 1},
w; = (lp, 0, 0).

The system receives the input (a, 1, 0)"' ... (a, d, 0)" in addition to w; in the skin. The set
R contains the rules

[zf > [1]z, ee{0,1}, (1)
(@i, j) = (@i, j+ DI, 1<i<d 0<j<d+]1,)
[(a,i,d +2) = (a,i,0)]), 1<i<d, 3)
[a,i,j+D1i = @i j+1), 1<i<d,)
[((1,0,) > (1,0, j+ D0, 1eP, 0<j<r()—1, (5)
[i j)— i j+ D, leP ic(l, 2L, r)<j<d+1, (6)
[(,1,d+2) = (1',0,0)1°, leP, @)
[(,2,d+2) = (",0,0)°, [eP, ®)
(1,0,) > (I, 1, j+ D@, j+1,j+ D 1leP,

j=r) =1, op() = A,)
[(,0, /) = (1,0,j+1zI% leP, j=rl)—1,op() =S, (10)
[(1,0,j) = (1,0, j+ D% 1LeP, j=r(), op(l)=S, (11)
(1,0, /) > (1,0, j + D), LeP, j=r()+1, 0op() =S, (12)
[0,) > (.1, j+ DI, 1eP, j=r)+2 op() =S5, (13)
[(1,0,) = (1,2, Dzl LeP, j=rl)+2, op(l) =S, (14)
[((,2,)) = (1,2, j+ DI}, LeP, j=rd), op() =S5, (15)
[(14, 0,001 = [114, 0,0), 1<i<d. (16)

The idea of this proof is similar to that from [5, 6]: the symbols corresponding to the registers
have states (second subscript) O, ...,d + 2, and so do the symbols corresponding to the
instructions of the register machine. The first subscript of the instruction symbols is 0O if the
instruction has not yet been applied, it is 1 if increment or decrement has been applied, and 2
if the decrement has failed.

Most of the time the polarization is 0; object z can reverse the polarization by (1). When the
polarization is 0, the register symbols cycle through the states by (2), (3). Before the current
instruction [is applied, the instruction symbols also cycle through the states until the state
becomes r(I) — 1, i.e. the index of the register (the instruction operates on) minus one. We
will explain the details of the application below. After the instruction has been applied, the first
subscript of the instruction symbol changes to 1 or 2 and it cycles through the states by (6),
finally changing into I’ by (7) or into I” by (8).

Addition is done by rule (9). Decrement is done by a ‘diagonalization technique’: polariza-
tion 1 when register i is in state i + 1 signals a decrement attempt of register i by (4), and the
polarization will change if and only if it has been successful. Thus, to apply / : (S(@), ', "),
the instruction symbol in state i — 1 additionally produces a symbol z. By the time z changes
the polarization to 1 by (1), all other symbols reach state i + 1. After one more step the state
symbol checks whether the decrement has been successful, (13), or not, (14). After a suc-
cessful decrement, all symbols continue changing states with polarization 0 and state i + 1.
Otherwise, the instruction symbol additionally produces a symbol z and, after one more step,
all symbols continue changing states with polarization 0 and state i + 1.

After the simulation of M having reached the final label, the instruction symbol exits the
system, changing the polarization to 1. Since the register symbols are in state 1, the system
halts. |

Looking into the proof of the preceding theorem we realize that even a more general result
is shown: the multisets remaining in the skin membrane at the end of a halting computation
can be interpreted as the computation result:

COROLLARY 5.2 Any partially recursive function can be computed by a deterministic P system
with one membrane, two polarizations and internal output.

6. Restricted membrane creation

We now revisit the membrane creation case and consider restricted membrane creation: in
region i it is only possible to create membranes with label i.

THEOREM 6.1 PsO\ | . P .« (ncoo, tar, mcre,, 8§) 2 PsMAT".

Proof This theorem follows the same line as the second part of theorem 3.3 (see also the
explanations given there). We simulate a matrix grammar G = (N, T, S, M) in the f-binary
normal form. The multiplicity of any ‘literal non-terminal’ A € N, (see the definition) is
represented by the number of membranes with label A. However, these membranes are not
directly in the skin membrane, but rather inside a cluster membrane with label A, which is in
the skin. Let us refer to the ‘literal non-terminals’ N, as {A; | 1 <i < n}, and let A, = A;.

1-[:(07H7M9wsva17"'swA,,1RssRAlv"'vRA,,)v
O={S, S, [(HMUN Ui [leM, 0<i<5lU{fi|1<i<n+1}
H = {s}UN,,

"= [S [Al]Al ...[An]An]Sv
wy; =S,

wAZ)n, A€N2.

The P system IT now simulates the actions of G using the following rules.
Start (S — XAy € M:

S — (8)a, € Ry,
S —[a, S11a,, S1 = SDow € Ry,
S1 = Xinit € Ry.

Applying matrix/ : (X > Y, A - uv) e M,u,v e N,UT U{Lr}:

X = (X)in, € Ry,

X —> #, # > # € Ry,

X = (l0)ings lo = 18, It = (I)our € Ra,
Iy = luyg, € Ry, ifu e TU{A},

Iy = (Ip)in, € Rs, ifu € Ny,

b= [l 1w I3 = (3)ow € Ry,

I3 — lsv, € Ry, ifveTU{A},

I3 = (I4)in, € Rs, ifv € Ny,

14 - [v lS]va lS - (ZS)out € Rva lS —Ye Rs-
Finish:

f_> fl ERSa

i (fin, € R 1=i <m,
fn+l g (#)inA € Rs’ Ae NZ:
#—>#ec Ry, A€ N,.

Jfi = fix1d € Ry, 1 <i <n,

Information concerning the ‘control non-terminal’ X € N; (see the definition of matrix
grammars in f-binary normal form) is stored in only one object that travels across the mem-
brane structure, updating the membrane structure and itself according to the matrices of G. At
the end of the simulation of G, the object dissolves all cluster membranes and finally tries to
enter any remaining membrane and thus start an infinite loop. Hence, the computation halts if
and only if a terminal form has been reached. |

7. Conclusions and open problems

We have shown that P systems with membrane creation generate RE, using two membrane
labels and at most two objects present inside the system throughout the computation. Accepting
any recursively enumerable language can also be done with two membrane labels. On the other
hand, it is possible to bound the number of symbols by m + 10 and still generate RE (m),
provided that the number of membrane labels is unbounded.

We have also shown that RE is generated by P systems using four membranes and three
labels or seven membranes and two labels in the initial configuration, where at most three
objects are ever present in any halting computation.

It is known from [5, 6] that P systems with two polarizations and rules of types (a) and (c)
generate PsRE using two membranes, or accept PsRE using one membrane. We have proved in
this article that deterministic systems of this kind with one membrane accept PsRE. Moreover,
in the proof of this result (theorem 5.1), the rules are global (there is only one membrane) and
rules of type (c) are non-renaming (the contents of the environment do not matter).

Improving any complexity parameter greater than one (especially in the case of %) in any
theorem is an open question. Moreover, the following questions are of interest.

e What is the power of P systems with membrane creation and one object?

Whatis the power of deterministic P systems with membrane division (without polarizations,

without changing labels, etc.)?

What is the exact power of P systems with restricted membrane creation?

How can the types of rules be restricted in theorem 4.1?

How can target indications be restricted in theorem 3.17?

What further restrictions cause a complexity trade-off?

What is the generative power of P systems without polarizations and m membranes, m =

1,2,3?

e What is the generative power of one-membrane P systems with two polarizations and
external output?

Acknowledgements

The first author is supported by the project TIC2002-04220-C03-02 of the Research Group
on Mathematical Linguistics, Tarragona, and acknowledges the Moldovan Research and
Development Association (MRDA) and the U.S. Civilian Research and Development Foun-
dation (CRDF), award No. MM2-3034. The third author would like to acknowledge the
support from Ministerio de Ciencia y Tecnologia of Spain, through Plan Nacional de I+D+1
(2000-2003) (T1IC2002-04220-C03-01), co-financed by FEDER funds.

References

[1] Paun, Gh., 2000, Computing with membranes. Journal of Computer and System Sciences, 61, 108-143; TUCS
Research Report 208, 1998. Available online at: http: //www.tucs.fi.

[2] Paun, Gh., 2002, Membrane Computing: An Introduction (Berlin: Springer).

[3] The P systems webpage. Available online at: psystems.disco.unimib.it (accessed December 2005).

[4] Alhazov, A., 2004, P systems without multiplicities of symbol-objects. Information Processing Letters, submitted
(preprint version: www.geocities.com/aartiom).

[5] Alhazov, A., Freund, R. and Paun, Gh., 2005, In M. Margenstern (Ed.) Machines, Computations, and Universality,
International Conference, MCU 2004, Saint Petersburg, 2004, Lecture Notes in Computer Science 3354 (Berlin:
Springer).

[6] Alhazov, A., Freund, R. and Piun, Gh., 2004, In Gh. Piun, A. Riscos-Nuiiez, A. Romero-Jiménez and F. Sancho-
Caparrini (Eds) Second Brainstorming Week on Membrane Computing, RGNC Technical Report 01,/2004 (Seville:
University of Seville).

[7] Dassow, J. and Paun, Gh., 1989, Regulated Rewriting in Formal Language Theory (Berlin: Springer).

[8] Salomaa, A. and Rozenberg, G. (Eds), 1997, Handbook of Formal Languages (Berlin: Springer).

[9] Minsky, M., 1967, Computation. Finite and Infinite Machines (Englewood Cliffs, NJ: Prentice Hall).

