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In this paper we propose new mathematical models for percutaneous absorption of a drug. The
new models are established by introducing, in the classical Fick’s law, a memory term being the
advection–diffusion equations of the classical models replaced by integro-differential equations.
The well-posedness of the models is studied with Dirichlet, Neumann and natural boundary con-
ditions. Methods for the computation of numerical solutions are proposed. Stability and convergence
of the introduced methods are studied. Finally, numerical simulations illustrating the behaviour of the
model are included.

Keywords: Convergence; Integro-differential model; Numerical approximation; Stability

AMS Subject Classifications: 35B30; 35B35; 65M06; 65M12; 65M15

1. Introduction

Mathematical models based on the well-known Fick’s law

J (x, t) = −D∇c(x, t) − νc(x, t), (1)

where c(x, t) is the concentration at point x at time t , D is the diffusion coefficient, ν is the
advection rate (representing cell creation) and ∇c(x, t) is the concentration gradient, have
been largely used to describe percutaneous drug absorption. These models are established by
combining (1) with the conservation law

∂c

∂t
= −∇J − γ c + μ, (2)

where γ is the reaction rate, μ is a parameter related to the permeability of the duct membrane
and ∇J is the flux gradient. Without being exhaustive we mention the parabolic equation

∂c

∂t
= D�c + ν∇c − γ c + μ, (3)

where �c represents the Laplacian of the concentration, considered for instance in [1, 2] (see
also [3]). It is well known that the solution of equation (3) has the unphysical property that
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452 S. Barbeiro and J. A. Ferreira

if a sudden change in drug concentration occurs at a certain point it is felt instantaneously
everywhere. Moreover, there is an overestimation of the travelling waves velocity.

The drawback observed in equation (3) is also present in the Fisher equation [4–10] and
in the classical heat equation [11–13]. In order to overcome these unphysical properties, in
the context of the Fisher equation, the flux defined by Fick’s law is replaced by a flux with a
memory term [4–6]. This approach was considered in the context of heat conduction problems,
and consists of introducing a memory term in the expression of the flux defined by Fourier
law [12, 13].

Following the procedure presented in these papers, we replace J1(x, t) := −D∇c(x, t) in
Fick’s law (1) by

J1(x, t + τ), (4)

where τ is a small parameter related to the memory of the skin. In fact, taking the limit when
τ → 0 we obtain the traditional Fick’s flux.

Taking the first approximation J1(x, t + τ) � J1(x, t) + τ(∂J1/∂t)(x, t) into account we
easily deduce

J1(x, t) � −D

τ

∫ t

0
e−((t−s)/τ)∇c(x, s) ds,

which when replaced in (1) allows us to obtain the integro-differential equation

∂c

∂t
= D

τ

∫ t

0
e−((t−s)/τ)�c(x, s) ds + ν∇c − γ c + μ. (5)

We consider an element of skin with length L with an initial drug distribution

c(x, 0) = cinit(0), x ∈ [0, L]. (6)

For the behaviour of the concentration at the end points of the skin element we consider

c(0, t) = c0, Bc(L, t) = cL(t), t ∈ [0, T ], (7)

where the boundary operator B is defined by

Bc(L, t) = c(L, t)

if we assume that the drug concentration is known at x = L, or

Bc(L, t) = ∇c(L, t)

if the space drug variation at x = L is known. B can also define the natural boundary condition

Bc(L, t) = D

τ

∫ t

0
e−((t−s)/τ)∇c(L, s) ds − 1

2
νc(L, t).

This last quantity represents the drug flux at x = L introduced in our model.
From the analytical point of view our aim in this paper is to study the behaviour of the total

drug mass contained in the skin element at each time t ∈ [0, T ] and the norm of the integral
over time of the drug concentration gradient, defined by the model (5)–(6).

From the numerical point of view our aim is to study a numerical method that allows us to
obtain numerical approximations to the concentration. The numerical solution should present
qualitative properties that can be seen as discretizations of the behaviour of the continuous
solution.
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Integro-differential models for percutaneous drug absorption 453

The approach followed in this paper was considered in other contexts, for instance in
reaction–diffusion equations with memory that were studied in [14, 15], and in the study of
the effect of memory terms in the heat equation which was analysed in [16].

The paper is organized as follows. In section 2 we establish energy estimates for the solution
of the initial boundary value problem (5)–(7). These estimates allow us to characterize the
behaviour of the solution and the integral over time of its gradient when the initial condition
is perturbed. In section 3 a semi-discrete approach is considered in order to obtain a semi-
discrete approximation to the concentration. In that section, the stability and convergence of
the semi-discrete approximation is studied and a non-standard convergence order is proved.
A fully discrete numerical method obtained by combining the implicit Euler method with a
rectangular rule is studied in section 4. The stability and convergence of this method is proved.
Finally, in section 5, numerical experiments illustrating the theoretical results, proved in the
paper, are presented. We also compare, from a numerical point of view, the differential model
(3) with the integro-differential model (5).

2. Integro-differential models

In this section we study the stability properties of initial boundary value problems (IBVP)
(5)–(7). Our aim is to study the difference between two solutions of the IBVP (5)–(7) and
so we consider (5) with μ = 0. The estimates are established using the energy method. The
L2([0, L])-norm is denoted by ‖ · ‖L2([0,L]). We also use the following notation: by v(t) we
denote the x-function if v is defined in [0, L] × [0, T ] and t is fixed.

THEOREM 1 Let c be a solution of the IBVP (5)–(7) with μ = 0 and homogeneous Dirichlet
boundary conditions. Then

‖c(t)‖2
L2([0,L]) + D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])
≤ eMt‖cinit‖2

L2([0,L]), (8)

where M = max{−2γ, −2/τ }.
Proof Multiplying (5) by c with respect to the L2 inner product, (., .), and integrating by
parts we obtain(

∂c

∂t
(t), c(t)

)
= −D

τ

(∫ t

0
e−((t−s)/τ)∇c(s) ds, ∇c(t)

)
− γ ‖c(t)‖2

L2([0,L]). (9)

Considering(∫ t

0
e−((t−s)/τ)∇c(s) ds, ∇c(t)

)
= 1

2

d

dt

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])

+ 1

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])
,

in (9), we obtain

1

2

d

dt
‖c(t)‖2

L2([0,L]) = −1

2

D

τ

d

dt

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])

− D

τ 2

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])
− γ ‖c(t)‖2

L2([0,L]),
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454 S. Barbeiro and J. A. Ferreira

which allows us to get

d

dt

(
‖c(t)‖2

L2([0,L]) + D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])

)

≤ M

(
‖c(t)‖2

L2([0,L]) + D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])

)
.

Taking

y(t) = ‖c(t)‖2
L2([0,L]) + D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
2

L2([0,L])

we obtain the inequality

d

dt
y(t) ≤ My(t).

Then

y(t) ≤ eMty(0)

and we conclude (8). �

Theorem 1 is crucial to establish the uniqueness of the solution of the IBVP (5)–(7) with
Dirichlet boundary conditions as well as to study the sensitivity of the solution of the problem
with respect to perturbations of the initial condition.

COROLLARY 1 Let c and c̃ be solutions of (5)–(7) with Dirichlet boundary conditions and
initial conditions cinit and c̃init, respectively. Then

‖(c − c̃)(t)‖2
L2([0,L]) + D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇(c − c̃)(s) ds

∥∥∥∥
2

L2([0,L])
≤ eMt‖cinit − c̃init‖2

L2([0,L]),

where M = max{−2γ, −2/τ }.

Let us now consider the model usually presented in the literature: the IBVP (3), (6), (7)
with homogeneous Dirichlet boundary conditions. It is well known that for the solution of this
problem we must have

‖c(t)‖2
L2([0,L]) ≤ e−2((D/L2)+γ )t‖ci‖2

L2([0,L]). (10)

Estimate (10) does not give any information on the behaviour of the gradient of the con-
centration while for the solution of (5)–(7) with homogeneous Dirichlet boundary conditions
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Integro-differential models for percutaneous drug absorption 455

we have

lim
t→+∞ ‖c(t)‖L2([0,L]) = 0 (11)

and

lim
t→+∞

∥∥∥∥
∫ t

0
e−((t−s)/τ)∇c(s) ds

∥∥∥∥
L2([0,L])

= 0. (12)

We remark that if the Dirichlet boundary condition at x = L is replaced by the natural
boundary condition

D

τ

∫ t

0
e−((t−s)/τ)∇c(L, s) ds = 1

2
νc(L, t) (13)

then Theorem 1 holds. In fact we only need to observe that

(∫ t

0
e−((t−s)/τ)�c ds, c

)
− 1

2
ν(∇c, c) =

∫ t

0
e−((t−s)/τ)∇c(L, s) dsc(L, t)

−
(∫ t

0
e−((t−s)/τ)∇c ds, ∇c(t)

)
− 1

2
νc2(L, t)

= −
(∫ t

0
e−((t−s)/τ)∇c ds, ∇c(t)

)
.

Finally we consider the Neumann boundary condition at x = L. Noting that if ∇c(L, t) = 0
then (13) holds provided that ν = 0, we conclude, in this case, that Theorem 1 also holds.

3. Supraconvergence in semi-discretizations

The numerical method that we consider in section 4 can be constructed considering spatial
discretization combined with time integration. Attending to this fact, in this section we start
by studying the properties of the semi-discrete approximation, i.e. the solution of the ordinary
differential system obtained by considering only the spatial discretization.

We consider a spatially uniform grid Ih = {0 = x0, x2, . . . , xN = L}, with step size h. By
ci(t) we denote the semi-discrete approximation to c(xi, t) defined by

dci

dt
(t) = D

τ

∫ t

0
e−((t−s)/τ)D2,xci(s) ds + νDc,xci(t) − γ ci(t) + μ, 1 ≤ i ≤ N − 1, t > 0,

(14)
and

c0(t), cN(t), t ≥ 0, ci(0), 0 ≤ i ≤ N, given, (15)

if Dirichlet boundary conditions are considered. In (14), Dc,x and D2,x are defined by

Dc,xci(t) = ci+1(t) − ci−1(t)

2h
, D2,xci(t) = ci+1(t) − 2ci(t) + ci−1(t)

h2
.

In what follows we also need the backward finite differences with respect to x,

D−xci(t) = ci(t) − ci−1(t)

h
.
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456 S. Barbeiro and J. A. Ferreira

Let us consider in the space of grid functions which are null at x0 and xN , denoted by L2(Ih),
the following norm

‖vh‖2
L2(Ih)

= h

N−1∑
i=1

v2
i .

This norm is induced by the L2 discrete inner product

(vh, wh)h = h

N−1∑
i=1

viwi, vh, wh ∈ L2(Ih).

For easier notation we introduce also ‖ · ‖L2(+Ih), defined by

‖vh‖2
L2(+Ih)

= h

N∑
i=1

v2
i ,

and

(vh, wh)h,+ = h

N∑
i=1

viwi.

Using the energy method a discrete version of Theorem 1 can be shown. In this section
we only study the convergence properties of the solution of (14)–(15) but in the next section
we establish a fully discrete version of that theorem. Let Rh be the restriction operator to the
mesh.

THEOREM 2 Let ch(t) = (ci(t))
N
i=0 be the solution of (14)–(15). Then, for Eh(t) = ch(t) −

(Rhc)(t), we have

‖Eh(t)‖2
L2(Ih)

+ D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

≤
∫ t

0
‖Th(s)‖2

L2(Ih)
eM(t−s) ds, (16)

where

Th(t) = D

τ

∫ t

0
e−((t−s)/τ)D2,x(Rhc)(s) − Rh

(
∂2c

∂x2

)
(s) ds

+ νDc,x(Rhc)(t) − νRh

(
∂c

∂x

)
(t)

and M = max{−2γ + 1, −2/τ }.
Proof The semi-discrete approximation error, Eh(t), satisfies

dEh

dt
(t) = D

τ

∫ t

0
e−((t−s)/τ)D2,xEh(s) ds + νDc,xEh(t) − γEh(t) + Th(t). (17)

Multiplying (17) by Eh(t) with respect to the inner product (., .)h and using summation by
parts we get(

dEh

dt
(t), Eh(t)

)
h

= −D

τ

(∫ t

0
e−((t−s)/τ)D−xEh(s) ds, D−xEh(t)

)
h,+

− γ ‖Eh(t)‖2
L2(Ih)

+ (Th(t), Eh(t))h. (18)
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Integro-differential models for percutaneous drug absorption 457

Considering that we have

(
dEh

dt
(t), Eh(t)

)
h

= 1

2

d

dt
‖Eh(t)‖2

L2(Ih)
,

(Th(t), Eh(t))h ≤ η2‖Eh(t)‖2
L2(Ih)

+ 1

4η2
‖Th(t)‖2

L2(Ih)

for any constant η 
= 0, and

(∫ t

0
e−((t−s)/τ)D−xEh(s) ds, D−xEh(t)

)
h,+

= 1

2

d

dt

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

+ 1

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

,

we obtain

1

2

d

dt
‖Eh(t)‖2

L2(Ih)
= −1

2

D

τ

d

dt

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

− D

τ 2

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

− γ ‖Eh(t)‖2
L2(Ih)

+ η2‖Eh(t)‖2
L2(Ih)

+ 1

4η2
‖Th(t)‖2

L2(Ih)
. (19)

The inequality (16) follows by taking η = 1/
√

2 in (19) and using the Gronwall Lemma. �

Since Th(t) is a second-order term, from (16),
∫ t

0 e−((t−s)/τ)D−xEh(s) ds is also a second-
order term. While this convergence order was expected for Eh, it is not standard for∫ t

0 e−((t−s)/τ)D−xEh(s) ds.
If mixed boundary conditions are considered – the Dirichlet boundary condition at x = L

is replaced by a Neumann boundary condition for the particular case ν = 0 – we consider the
semi-discrete approximation ch(t) defined by

dci

dt
(t) = D

τ

∫ t

0
e−((t−s)/τ)D2,xci(s) ds − γ ci(t) + μ, 1 ≤ i ≤ N, t > 0, (20)

and

c0(t), Dc,xcN(t), t ≥ 0, ci(0), 0 ≤ i ≤ N, given. (21)

For the definition of Dc,xcN(t) we need the point xN+1 = L + h. In this case, in the space of
grid functions defined in Ih null at x = x0, L2(I h), we consider the inner product

(vh, wh)h,xN
= h

N−1∑
i=1

viwi + h

2
vNwN, vh, wh ∈ L2(I h).

The norm induced by this inner product is denoted by ‖ · ‖L2(I h)
.
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458 S. Barbeiro and J. A. Ferreira

As we have

(D2,xvh, wh)h,xN
= −(D−xvh, D−xwh)h,+ + Dc,xvNwN, vh, wh ∈ L2(I h), (22)

an estimate for the semi-discrete error Eh(t) associated with the discretization (20)–(21) is
obtained following the proof of Theorem 2 and being aware of the new term

D

τ

∫ t

0
e−((t−s)/τ)Dc,xEN(s) dsEN(t).

Since for any constant δ

D

τ

∫ t

0
e−((t−s)/τ)Dc,xEN(s) dsEN(t) = D

τ

∫ t

0
e−((t−s)/τ)

√
h3

6

∂3c

∂x3
(ξ, s)ds

√
hEN(t)

≤ h3

4δ2

(
D

τ

∫ t

0
e−((t−s)/τ) 1

6

∂3c

∂x3
(ξ, s)ds

)2

+ hδ2E2
N(t),

with ξ ∈ (L − h, L + h), in the same way as before, taking δ2 = η2 = γ /4, it can be shown
that

‖Eh(t)‖2
L2(Īh)

+ D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

≤
∫ t

0
T̃h(s)e

M(t−s) ds, (23)

where M = max{−γ, −2/τ } and

T̃h(ρ) = h3 2

γ

(
D

τ

∫ ρ

0
e−((ρ−s)/τ) ∂3c

∂x3
(ξ, s)ds

)2

+ 2

γ
‖Th(ρ)‖2

L2(Īh)
.

We observe that in the last estimate there is an error term of order 3/2 which corresponds
to the discretization of the boundary. We can improve this result and obtain a second-order
estimate by adding a new diffusive term to the equation:

∂c

∂t
= χ�c(x, t) + D

τ

∫ t

0
e−((t−s)/τ)�c(x, s) ds − γ c, (24)

with χ arbitrary small. The error of the semi-discretization of (24) satisfies

dEh

dt
(t) = χD2,xEh(t) + D

τ

∫ t

0
e−((t−s)/τ)D2,xEh(s) ds − γEh(t) + Th(t).

Using the equality

EN(t) =
N∑

j=1

hD−xEj (t),

we obtain(
χDc,xEN(t) + D

τ

∫ t

0
e−((t−s)/τ)Dc,xEN(s) ds

)
EN(t) ≤ ξ 2‖D−xEh(t)‖2

L2(+Ih)

+ L

4ξ 2

(
χ

h2

6

∂3c

∂x3
(ξ1, t) + D

τ

∫ t

0
e−((t−s)/τ) h

2

6

∂3c

∂x3
(ξ2, s) ds

)2

,
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where ξ1, ξ2 ∈ (L − h, L + h). Let us consider ξ 2 = χ/2. Using (22) and following the proof
of Theorem 2 (considering η2 = γ /2) we conclude that

‖Eh(t)‖2
L2(Īh)

+ D

τ

∥∥∥∥
∫ t

0
e−((t−s)/τ)D−xEh(s) ds

∥∥∥∥
2

L2(+Ih)

≤
∫ t

0
T̂h(s)e

M(t−s) ds,

where M = max{−γ, −2/τ } and

T̂h(ρ) = L

2χ

(
χ

h2

6

∂3c

∂x3
(ξ1, ρ) + D

τ

∫ ρ

0
e−((ρ−s)/τ) h

2

6

∂3c

∂x3
(ξ2, s) ds

)2

+ γ ‖Th(ρ)‖2
L2(Īh)

.

4. Fully numerical discretizations

We now present a complete numerical discretization for the IBVP (5)–(7). We consider a
uniform temporal grid {tj , j = 0, . . . , M} with t0 = 0, tM = T and with step size k. By cn

i

we denote a numerical approximation to c(xi, tn). The method is obtained by discretizing the
integral with a rectangular rule and ∂c

∂t
(xi, tn) with backward finite differences, i.e.

D−t c
n
i = D

τ
k

n∑
j=1

(e−((tn−tj )/τ )D2,xc
j

i ) + νDc,xc
n
i − γ cn

i + μ, 1 ≤ i ≤ N − 1, n ≥ 1, (25)

and

c
j

0, c
j

N , j = 1, . . . , M, c0
i , i = 1, . . . , N − 1, given, (26)

if Dirichlet boundary conditions are considered. In (25) we use the notation

D−t c
n
i = cn

i − cn−1
i

k
, Dc,xc

n
i = cn

i+1 − cn
i−1

2h
, D2,xc

n
i = cn

i+1 − 2cn
i + cn

i−1

h2
.

In Theorem 3 we study the behaviour of the total drug mass at each discrete time tn and the
norm of the integral over time of the concentration gradient of the numerical solution which
is effectively computed by our method. This result is a discrete version of Theorem 1 and
allows us to establish the stability properties of c

j

h, j = 1, . . . , M, with Dirichlet boundary
conditions.

THEOREM 3 Let cn
h = (cn

i )
N
i=0 be the solution of (25)–(26) with μ = 0 at the temporal level n

with homogeneous Dirichlet boundary conditions. Then

‖cn+1
h ‖2

L2(Ih)
+ D

τ
k2

∥∥∥∥∥∥
n+1∑
j=1

e−((tn+1−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

≤ 1

min{2, 1 + 2kγ }‖c
0
h‖2

L2(Ih)
. (27)
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Proof Let n ≥ 1. Multiplying (25) by cn+1
h with respect to the inner product (., .)h and using

summation by parts we obtain

‖cn+1
h ‖2

L2(Ih)
= (cn

h, c
n+1
h )h − D

τ
k2

n+1∑
j=1

e−((tn+1−tj )/τ )(D−xc
j

h, D−xc
n+1
h )h,+

− kγ ‖cn+1
h ‖2

L2(Ih)
. (28)

Noting that

n+1∑
j=1

e−((tn+1−tj )/τ )(D−xc
j

h, D−xc
n+1
h )h,+ = 1

2

∥∥∥∥∥∥
n+1∑
j=1

e−((tn+1−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

− e−2 k
τ

2

∥∥∥∥∥∥
n∑

j=1

e−((tn−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

+ 1

2
‖D−xc

n+1
h ‖2

L2(+Ih)
, (29)

then from (28), we deduce

‖cn+1
h ‖2

L2(Ih)
≤ 1

2
‖cn

h‖2
L2(Ih)

+
(

1

2
− kγ

)
‖cn+1

h ‖2
L2(Ih)

− D

2τ
k2

∥∥∥∥∥∥
n+1∑
j=1

e−((tn+1−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

+ D

2τ
k2e−(2k/τ)

∥∥∥∥∥∥
n∑

j=1

e−((tn−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

− D

2τ
k2‖D−xc

n+1
h ‖2

L2(+Ih)
. (30)

The following inequality is obtained from (30)

[
1 + 2k

(
γ + Dk

2τL2

)]
‖cn+1

h ‖2
L2(Ih)

+ D

τ
k2

∥∥∥∥∥∥
n+1∑
j=1

e−((tn+1−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

≤ ‖cn
h‖2

L2(Ih)
+ D

τ
k2e−(2k/τ)

∥∥∥∥∥∥
n∑

j=1

e−((tn−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

, (31)

using the discrete Poincaré–Friedrichs inequality

‖cn+1
h ‖2

L2(Ih)
≤ L2‖D−xc

n+1
h ‖2

L2(+Ih)
.
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Finally, from (31) we obtain

‖cn+1
h ‖2

L2(Ih)
+ D

τ
k2

∥∥∥∥∥∥
n+1∑
j=1

e−((tn+1−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

≤ ‖cn
h‖2

L2(Ih)
+ D

τ
k2

∥∥∥∥∥∥
n∑

j=1

e−((tn−tj )/τ )D−xc
j

h

∥∥∥∥∥∥
2

L2(+Ih)

. (32)

From (32) we conclude inequality (27) noting that

‖c1
h‖2

L2(Ih)
+ D

τ
k2‖D−xc

1
h‖L2(+Ih) ≤ 1

min{2, 1 + 2kγ }‖c
0
h‖2

L2(Ih)

holds. �

As an immediate consequence of Theorem 3 we conclude that if cn
h and c̃n

h satisfy (25)–(26)
then cn

h = c̃n
h. As a corollary of Theorem 3 we have the following stability result.

COROLLARY 2 If cn
h and c̃n

h are defined by (25)–(26) with initial conditions c0
h and c̃0

h,

respectively, then vn
h = cn

h − c̃n
h satisfies

‖vn+1
h ‖2

L2(Ih)
+ D

τ
k2

∥∥∥∥∥∥
n+1∑
j=1

e−((tn+1−tj )/τ )D−xv
j

h

∥∥∥∥∥∥
2

L2(+Ih)

≤ 1

min{2, 1 + 2kγ }‖c
0
h − c̃0

h‖2
L2(Ih)

.

In what follows we establish an upper bound to the error En+1
h = cn+1

h − Rhc(., tn+1). It is
easy to show that truncation error at (xi, tn) given by

T n
i = D−t c(xi, tn) − D

τ
k

n∑
j=1

e−((tn−tj )/τ )D2,xc(xi, tj ) − νDc,xc(xi, tn) + γ c(xi, tn),

is of first order with respect to k and of second order with respect to h. The next convergence
result can be shown by following the proof of Theorem 3.

THEOREM 4 The error at tn+1, En+1
h , satisfies

‖En+1
h ‖2

L2(Ih)
+ D

τ

∥∥∥∥∥∥k

n+1∑
j=1

e−((tn+1−tj )/τ )D−xE
j

h

∥∥∥∥∥∥
2

L2(+Ih)

≤ k

2γ

n+1∑
j=1

‖T j

h ‖2
L2(Ih)

. (33)
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Proof It can be shown that, for n ≥ 1, En+1
h satisfies

[
1 + 2k(γ − η2) + D

τL2

]
‖En+1

h ‖2
L2(Ih)

+ D

τ

∥∥∥∥∥∥k

n+1∑
j=1

e−((tn+1−tj )/τ )D−xE
j

h

∥∥∥∥∥∥
2

L(+Ih)

≤ ‖En
h‖2

L2(Ih)
+ D

τ

∥∥∥∥∥∥k

n∑
j=1

e−((tn−tj )/τ )D−xE
j

h

∥∥∥∥∥∥
2

L(+Ih)

+ k

2η2
‖T n+1

h ‖2
L2(Ih)

, (34)

for any constant η 
= 0. Choosing η = √
γ and noting that

‖E1
h‖2

L2(Ih)
+ Dk2

τ
‖D−xE

1
h‖2

L2(+Ih)
≤ k

2γ
‖T 1

h ‖2
L2(Ih)

,

we conclude (33). �

Finally we consider the fully discretization when mixed boundary conditions are imposed:
a Dirichlet boundary condition at x = 0 and Neumann boundary condition at x = L. In this
case, (25)–(26) are replaced by

D−t c
n
i = D

τ
k

n∑
j=1

e−((tn−tj )/τ )D2,xc
j

i − γ cn
i + μ, 1 ≤ i ≤ N, n ≥ 1, (35)

c
j

0, Dc,xc
j

N , j = 1, . . . , M, c0
i , i = 1, . . . , N − 1, given. (36)

If we assume homogeneous boundary conditions and μ = 0, then for cn
h defined by (35)–(36)

a characterization analogous to that established in Theorem 3 is true. The convergence of
cn
h to the solution of the correspondent differential problem can be shown by following the

proof of Theorem 4, and using similar reasoning as for the semi-discrete approximation. More
precisely, it can be shown that the error En+1

h satisfies:

‖En+1
h ‖2

L2(Īh)
+ D

τ

∥∥∥∥∥∥k

n+1∑
j=1

e−((tn+1−tj )/τ )D−xE
j

h

∥∥∥∥∥∥
2

L2(+Ih)

≤
n+1∑
j=1

T̃
j

h , (37)

where

T̃
j

h = h3 3

2γ
k2

⎛
⎝D

τ

j∑
ρ=1

e−((tj −tρ )/τ ) 1

6

∂3c

∂x3
(ξρ, tρ)

⎞
⎠

2

+ 3k

2γ
‖T j

h ‖2
L2(Īh)

,

with ξρ ∈ (L − h, L + h) and T
j

h being the truncation error.
As for the semi-discrete approximation, it is possible to prove second-order convergence

in relation to the spatial discretization of equation (24) with Dirichlet boundary condition at
x = 0 and Neumann boundary condition at x = L. The method is only first-order convergent
in relation to time discretization.

5. Numerical results

For the simulation we consider a simple example of the model where the skin is taken to be a
single barrier of unit thickness. In all numerical experiments we take D = 1 and ν = μ = γ = 0.
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Suppose that the concentration at the skin surface is maintained at c = 1 and that the
concentration at the skin-capillary boundary is c = r . Then, the boundary conditions are

c(0, t) = 1, c(1, t) = r, t > 0.

We consider the case where initially there is no drug in the skin, i.e. for initially condition
we have

c(x, 0) = 0, 0 < x < 1.

In figure 1 we plot the numerical approximations obtained with method (25)–(26).
Let us now consider the following mixed boundary conditions

c(0, t) = 1, t > 0, ∇c(1, t) + 1 − r

r
c(1, t) = 0, t > 0, (38)

where we assume that the flux at the end point x = 1 is proportional to the concentration
at this point. In order to compare the behaviour of the solutions of both models: (3), (38)
(K&I model) and the integro-differential model (5), (38) (I-D model), we consider for the
first model the method studied in [1] defined using the second-order finite difference operator
on the discretization of the second-order spatial derivative and the Padé approximation to
the exponential matrix of the resulting problem. For the model introduced in this paper, we
consider the method (25)–(26). In both methods the discretization of the first-order derivative
which arises in the third kind boundary condition at x = 1 is made by using central differences.

Figures 2 and 3 illustrate the behaviour of the numerical approximations for the solutions
of models (3), (38) and (5), (38). As we expected, the propagation velocity of the numerical
approximations to the solution of (5), (38) is lower.

The influence of the increment of the parameter r in the behaviour of the two models can
be seen by comparing figures 2 and 3.
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Figure 1. Concentration obtained with method (25) for r = 0.001, τ = 0.01 using k = 0.01 and h = 0.01.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
2
:
0
5
 
1
3
 
N
o
v
e
m
b
e
r
 
2
0
0
8



464 S. Barbeiro and J. A. Ferreira

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distance

C
on

ce
nt

ra
tio

n

t=0.01

I−D model
K & I model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distance

C
on

ce
nt

ra
tio

n

t=0.5

I−D model
K & I model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distance

C
on

ce
nt

ra
tio

n

t=0.1

I−D model
K & I model

Figure 2. Concentration with r = 0.001, τ = 0.01, using k = 0.001 and h = 0.01.
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Figure 3. Concentration with r = 0.999, τ = 0.01, using k = 0.001 and h = 0.01.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
2
:
0
5
 
1
3
 
N
o
v
e
m
b
e
r
 
2
0
0
8



466 S. Barbeiro and J. A. Ferreira

6. Conclusions

In this paper we consider new models for percutaneous absorption of a drug. The models
are established introducing a memory term in the classical Fick’s law. Then the traditional
advection–diffusion equations (3), considered for instance in [1, 2] (see also [3]), are replaced
by the integro-differential equations (5).

The new models allow us to characterize the drug concentration distribution in time and
space for each time and for its time past. In fact, the estimate for the concentration established
in Theorem 1, (8), characterizes the evolution in time of the concentration and the integral
over time of the gradient of the concentration. It is known that for the solution of (3) with
μ = 0 and homogeneous Dirichlet boundary conditions we have

‖c(t)‖L2[a,b] ≤ e
−

(
D

(b−a)2
+γ

)
t‖Cinit‖L2[a,b], t ≥ 0. (39)

From (39) we can characterize the distribution of the drug concentration only for each time t.

It is well known that the solution of equation (3) has the unphysical property that if a sudden
change in drug concentration occurs at a certain point it is felt instantaneously everywhere.
Moreover, there is an overestimation of the travelling waves velocities. Since (5) can be written
in the following form

∂2c

∂t2
= D

τ
�c − ν

τ
∇ ∂c

∂t
−

(
1

τ
+ γ

)
∂c

∂t
+ ν

τ
∇c − γ

τ
c + μ

τ
, (40)

which is a hyperbolic equation, we overcome the limitations of the parabolic equation (3).
In what concerns the numerical methods for the integro-differential problem we consider the

semi-discretization (14)–(15) and the fully discrete scheme (25)–(26). The stability properties
and the convergence of both discretizations were shown. We also observed that these schemes
have the same qualitative properties of continuous integro-differential models. Numerically
we compared the discretization (25)–(26) with the discretization of (3), (38) studied in [1].
As expected, we observe that the numerical approximations for the solution of the integro-
differential model present lower propagation velocities than the propagation velocities of
numerical approximations for the solutions of the differential model (3), (38).
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