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Here we present a primal-dual interior point nonmonotone line search filter method for nonlinear programming. The filter relies on three
measures, the feasibility, the centrality and the optimality presented in the optimality conditions, considers relaxed acceptability criteria
for the step size and includes a feasibility restoration phase. The evaluation of the method is until now made on small problems and a
comparison is provided with a merit function approach.
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1. Introduction

In this paper we propose a primal-dual interior point method for nonlinear optimization that relies on a
line search filter strategy to allow convergence from poor starting points. Some line search frameworks use
penalty merit functions to enforce progress toward the solution. Fletcher and Leyffer [1] recently proposed
a filter method, as an alternative to merit functions, as a tool to guarantee global convergence in algorithms
for nonlinear optimization. This technique incorporates the concept of nondominance to build a filter that
is able to accept trial points if they improve the objective function or the constraints violation instead
of a combination of those two measures defined by a merit function. The filter replaces the use of merit
functions, so avoiding the update of penalty parameters that are associated with the penalization of the
constraints in a merit function. The filter technique has already been adapted to interior point methods.
The authors in [2] define two entries for the filter and use a trust-region strategy. The two entries combine
the three criteria of the first order optimality conditions: the first entry is a measure of quasi-centrality
and the second is an optimality measure combining complementarity and criticality. Work done in [3–6]
also considers two entries in the filter, one is the barrier objective function and the other is the constraints
violation, but uses a line search strategy.

The algorithm herein presented considers three entries in the filter and uses a line search approach. Fur-
ther, a nonmonotone strategy, similar to the one proposed in [7], is imposed on the trial point acceptability
conditions of the algorithm. Primal-dual interior point methods seem adequate to the filter implementation
as the feasibility, centrality and optimality measures in the optimality conditions are natural candidates
to the components of the filter. The nonmonotone line search technique that has been successfully applied
in an unconstrained optimization context [7,8] and in systems of nonlinear equations [9] seems quite inter-
esting in the sense that the conditions that are used to define a new acceptable point are relaxed without
affecting the global convergence.

∗Corresponding author. Email: emgpf@dps.uminho.pt

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 online c© 200x Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/0020716YYxxxxxxxx

Page 1 of 11

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 7, 2007 10:18 International Journal of Computer Mathematics costa˙cmmse˙rev˙2

2 M. Fernanda P. Costa and Edite M.G.P. Fernandes

The paper is organized as follows. Section 2 briefly describes the interior point framework, Section 3
presents the main ideas of the nonmonotone line search filter method and Section 4 contains the numerical
experiments. The conclusions and future developments make Section 5.

2. The interior point framework

The herein adopted formulation of a general nonlinear constrained optimization problem with simple
bounds is as follows:

minx∈Rn F (x)
s.t. b ≤ h(x) ≤ b + r

l ≤ x ≤ u
(1)

where hj : Rn → R for j = 1, . . . ,m and F : Rn → R are nonlinear and twice continuously differentiable
functions. r is the vector of ranges on the constraints h, u and l are the vectors of upper and lower bounds
on the variables and b is assumed to be a finite real vector. Elements of the vectors r, l and u are real
numbers subject to the following limitations: 0 ≤ rj ≤ ∞, −∞ ≤ li, ui ≤ ∞ for j = 1, . . . ,m, i = 1, . . . , n.
Constraints of the form b ≤ h(x) ≤ b+r are denoted by range constraints. When upper and lower bounds
on the x variables do not exist, the vector x is considered free. Equality constraints are treated as range
constraints with r = 0.

This section briefly describes an infeasible primal-dual interior point method for solving (1). We refer
to [10] for details. Adding nonnegative slack variables w, p, g and t, problem (1) becomes

min F (x)
s.t. h(x)−w = b

h(x) + p = b + r
x− g = l
x + t = u

w,p, g, t ≥ 0.

(2)

Incorporating the nonnegativity constraints in logarithmic barrier terms in the objective function, prob-
lem (2) is transformed into

minΦµ(x,w,p, g, t) ≡ F (x)− µ
m∑

j=1

ln(wj)− µ
m∑

j=1

ln(pj)− µ
n∑

i=1

ln(gi)− µ
n∑

i=1

ln(ti)

subject to the same set of equality constraints, where µ is a positive barrier parameter. The optimality
conditions for this problem produce the standard primal-dual system

∇F (x)−∇h(x)Ty − z + s = 0
y + q − v = 0
WVe1 = µe1

PQe1 = µe1

GZe2 = µe2

TSe2 = µe2

h(x)−w − b = 0
w + p− r = 0
x− g − l = 0

x + t− u = 0,

(3)

where we have introduced a new vector y = v − q and used an equivalent condition w + p = r instead of
h(x) + p = b + r in order to put the system to be solved as efficient as possible. The vectors v, q, z and
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s are the dual variables, ∇F is the gradient vector of F , ∇h is the Jacobian matrix of the constraints h,
W = diag(wj), P = diag(pj), G = diag(gi), T = diag(ti), V = diag(vj), Q = diag(qj), Z = diag(zi) and
S = diag(si) are diagonal matrices, e1 and e2 are m and n vectors of all ones.

The first two equations define the conditions of dual feasibility, the next four equations are the centrality
conditions and the last four define the primal feasibility. This is a nonlinear system of 5n + 5m equations
in 5n + 5m unknowns. Applying the Newton’s method to solve system (3), we obtain the linear system of
equations

−H(x,y)∆x + ∇h(x)T∆y + ∆z −∆s = ∇F (x)−∇h(x)Ty − z + s ≡ σ
∆y −∆q + ∆v = y + q − v ≡ β

∆w + V−1W∆v = µV−1e1 −w ≡ γw

P−1Q∆p + ∆q = µP−1e1 − q ≡ γq

G−1Z∆g + ∆z = µG−1e2 − z ≡ γz

T−1S∆t + ∆s = µT−1e2 − s ≡ γs

∇h(x)∆x−∆w = w + b− h(x) ≡ ρ
∆p + ∆w = r −w − p ≡ α
∆x−∆g = l− x + g ≡ υ
∆x + ∆t = u− x− t ≡ τ

(4)

for the search directions ∆x,∆w,∆p,∆g,∆t,∆y,∆v,∆q,∆z and ∆s, where H(x,y) = ∇2F (x) −
m∑

j=1
yj∇2hj(x).

Based on the computed search directions, the algorithm proceeds iteratively, choosing a step size α ∈
(0, αmax] at each iteration and determining the new iterates by xk+1 = xk + α∆xk, wk+1 = wk + α∆wk,
. . ., sk+1 = sk + α∆sk. αmax is the longest step size that can be taken, with an upper bound of 1, along
the search directions to ensure the nonnegativity of the slack and dual variables.

Implementation details to provide initial values for all the variables, as well as to solve system (4) and
to compute αmax are described in [10]. The strategy to recover µ at each iteration considers a fraction of
the average complementarity

µ = δµ
wTv + pTq + gTz + tTs

2m + 2n
(5)

where δµ ∈ [0, 1).
The procedure that decides which trial step size is accepted in this interior point paradigm is a non-

monotone line search filter method.

3. Nonmonotone line search filter method

In this section we present the main ideas of a triple entry filter method based on a nonmonotone line
search approach. To abbreviate the notation we set

u = (x,w,p, g, t,y,v, q,z, s), ∆ = (∆x,∆w,∆p,∆g,∆t,∆y,∆v,∆q,∆z,∆s),
u1 = (x,w,p, g, t), ∆1 = (∆x,∆w,∆p,∆g,∆t),

u2 = (w,p, g, t,v, q,z, s), ∆2 = (∆w,∆p,∆g,∆t,∆v,∆q,∆z,∆s),
u3 = (x,y,v, q,z, s), ∆3 = (∆x,∆y,∆v,∆q,∆z,∆s).

To adapt the methodology of a filter as outline in [1] to this interior point method, we propose three
quantities for the filter entries. The first component corresponds to feasibility, the second component
corresponds to centrality and the third to optimality. With this choice of filter components, it seems
natural to use the optimality conditions (3) to define these components. Therefore, in terms of our filter
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approach, we choose the following measures of feasibility, centrality and optimality :

θfeas(u1) = ‖ρ‖2 + ‖α‖2 + ‖υ‖2 + ‖τ‖2 ,
θc(u2) = ‖γw‖2 +

∥∥γq

∥∥
2
+ ‖γz‖2 + ‖γs‖2 ,

θop(u3) = 1
2

(
‖σ‖22 + ‖β‖22

)
.

After a search direction ∆k has been computed, we borrow the ideas in [7] and consider a backtracking
nonmonotone line search procedure, where a decreasing sequence of step sizes αk,l ∈ (0, αmax

k ] (l = 0, 1, . . .),
with liml αk,l = 0, is tried until an acceptance criterion is satisfied. Here, we use l to denote the iteration
counter for the inner loop.

3.1. Nonmonotone sufficient reduction

Nonmonotone line search methods that use a merit function ensure sufficient progress toward the solution
by imposing that the merit function value at each new iterate satisfies an Armijo condition with respect
to the maximum merit function value of a prefixed number of previous iterates. We refer to [7] for details.
Thus, the normal condition which implies a monotonic decrease of the merit function is relaxed without
affecting the global convergence.

Following this idea, the trial point uk(αk,l) = uk + αk,l∆k in the backtracking line search technique is
considered acceptable, if it leads to sufficient progress in one of the three measures compared to a previous
iterate that yields the maximum value of the corresponding measure within the last m(k) iterates, where
m(0) = 0 and 0 ≤ m(k) ≤ min{m(k − 1) + 1,M}, k ≥ 1 (M is a nonnegative integer), i.e., if

θfeas(u1
k(αk,l)) ≤

(
1− γθf

)
θk−j
feas or θc(u2

k(αk,l)) ≤ (1− γθc
) θk−j

c or θop(u3
k(αk,l)) ≤ θk−j

op − γθo
θk−j
feas (6)

holds for fixed constants γθf
, γθc

, γθo
∈ (0, 1), where we define

θk−j
feas = max

0≤j≤m(k)
θfeas(u1

k−j
), θk−j

c = max
0≤j≤m(k)

θc(u2
k−j

) and θk−j
op = max

0≤j≤m(k)
θop(u3

k−j
).

However, to prevent convergence to a feasible but nonoptimal point, and whenever, for the current iterate
θfeas(u1

k) ≤ θmin
feas, for some θmin

feas ∈ (0,∞], and the following switching conditions

∇θop(u3
k)

T∆3
k < 0 and αk,l

[
−∇θop(u3

k)
T∆3

k

]sop
> δ

[
θk−j
feas

]sfeas

(7)

hold with fixed constants δ > 0, sfeas > 1, sop > 2sfeas, a different nonmonotone reduction criterion is
imposed on the trial point uk(αk,l)

θop(u3
k(αk,l)) ≤ θk−j

op + ηopαk,l∇θop(u3
k)

T∆3
k, (8)

instead of (6) [4–6]. Here ηop ∈ (0, 0.5) is a constant.
According to a previous publication on filter methods [11], a trial step size αk,l for which (7) holds, is

called a “θop -step”. Similarly, if a “θop-step” is accepted as the final step size αk in iteration k, then k is
referred as a “θop-type iteration”.

In order to prevent cycling between iterates that improve either the feasibility, the centrality or the
optimality, at each iteration k, the algorithm maintains a filter, here denoted by

F k ⊆
{
(θfeas, θc, θop) ∈ R3 : θfeas ≥ 0, θc ≥ 0, θop ≥ 0

}
.
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Following the ideas in [2, 4–6], the filter here is a set F k that contains those combinations of values of
θfeas, θc and θop that are prohibited for a successful trial point in iteration k. So, during the line search,
a trial point uk(αk,l) is rejected, if(

θfeas(u1
k(αk,l)), θc(u2

k(αk,l)), θop(u3
k(αk,l))

)
∈ F k.

At the beginning of the optimization, the filter is initialized to

F 0 ⊆
{
(θfeas, θc, θop) ∈ R3 : θfeas ≥ θmax

feas, θc ≥ θmax
c , θop ≥ θmax

op

}
(9)

for some θmax
feas, θ

max
c and θmax

op , so that the algorithm will never allow trial points to be accepted that have
values of θfeas, θc and θop larger than θmax

feas, θmax
c and θmax

op , respectively.
The filter is augmented, using the update formula

F k+1 = F k ∪
{

(θfeas, θc, θop) ∈ R3 : θfeas >
(
1− γθf

)
θk−j
feas and

θc > (1− γθc
) θk−j

c and θop > θk−j
op − γθo

θk−j
feas

} (10)

after every iteration in which the accepted trial step size satisfies (6). On the other hand, if (7) and (8)
hold for the accepted step size, the filter remains unchanged.

Finally, in some cases it is not possible to find a trial step size αk,l that satisfies the above criteria. A
minimum desired step size is defined using linear models of the involved functions

αmin
k = ξ


min

{
γθf

,
θop(u3

k)−θk−j
op +γθoθk−j

feas

−∇θop(u3
k)T∆3

k
,

δ
h
θk−j

feas

isfeas

[−∇θop(u3
k)T∆3

k]sop

}
, if ∇θop(u3

k)
T∆3

k < 0 and θfeas(u1
k) ≤ θmin

feas

min
{

γθf
,

θop(u3
k)−θk−j

op +γθoθk−j
feas

−∇θop(u3
k)T∆3

k

}
, if ∇θop(u3

k)
T∆3

k < 0 and θfeas(u1
k) > θmin

feas

γθf
, otherwise

(11)
with a safety factor ξ ∈ (0, 1]. If the backtracking nonmonotone line search technique finds a trial step
size αk,l < αmin

k , the algorithm reverts to a feasibility restoration phase. Here, the algorithm tries to find
a new iterate uk+1 which is acceptable to the current filter for which (6) holds, by decreasing either the
infeasibility or the centrality.

Our interior point nonmonotone line search filter algorithm for solving constrained optimization problems
is as follows:

Algorithm 1 (nonmonotone line search filter algorithm)
Given: Starting point u0, constants θmax

feas ∈ (θfeas(u1
0),∞]; θmax

c ∈ (θc(u2
0),∞]; θmax

op ∈ (θop(u3
0),∞];

θmin
feas > 0; γθf

, γθc
, γθo

∈ (0, 1); δ > 0; ξ ∈ (0, 1]; sfeas > 1; sop > 2sfeas; ηop, ηθ2,f
, ηθ2,c

, ε ∈ (0, 1]; M ;
εtol > 0 (� 1).

1. Initialize. Initialize the filter (using (9)), the iteration counter k ← 0 and m(0)← 0.
2. Check convergence. Stop if the relative measures of primal and dual infeasibilities are less or equal to

a given error tolerance εtol.
3. Compute search direction. Compute the search direction ∆k from the linear system (4).
4. Backtracking line search.

4.1 Initialize line search. Compute the longest step size αmax
k to ensure positivity of slack and dual

variables. Set l← 0, αk,l = αmax
k .

4.2 Compute new trial point. If the trial step size becomes too small, i.e., αk,l < αmin
k with αmin

k defined
by (11), go to feasibility restoration phase in step 8. Otherwise, compute the trial point uk(αk,l)
and recalculate µ using (5).
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4.3 Check acceptability to the filter. If
(
θfeas(u1

k(αk,l)), θc(u2
k(αk,l)), θop(u3

k(αk,l))
)
∈ F k, reject the trial

step size and go to step 4.6.
4.4 Check sufficient decrease with respect to last m(k) iterates.

If αk,l is a θop-step size ((7) holds) and the generalization of the Armijo condition (8) for the θop

function holds, accept the trial step and go to step 5.
4.5 Check sufficient decrease with respect to last m(k) iterates. If (6) holds, accept the trial step and go

to step 5. Otherwise go to step 4.6.
4.6 Choose new trial step size. Set αk,l+1 = αk,l/2, l← l + 1, and go back to step 4.2.

5. Accept trial point. Set αk ← αk,l and uk ← uk(αk).
6. Augment the filter if necessary. If k is not a θop-type iteration, augment the filter using (10). Otherwise,

leave the filter unchanged.
7. Continue with next iteration. Increase the iteration counter k ← k + 1, m(k) = min{m(k − 1) + 1,M}

and go back to step 2.
8. Feasibility restoration phase. Use a restoration algorithm to produce a point uk+1 that is acceptable

to the filter, i.e.,
(
θfeas(u1

k+1), θc(u2
k+1), θop(u3

k+1)
)

/∈ F k. Augment the filter using (10) and continue
with the regular iteration in step 7.

3.2. Feasibility restoration phase

In this section we present a restoration algorithm. The task of the restoration phase is to compute a
new iterate acceptable to the filter by decreasing either the infeasibility or the centrality, whenever the
nonmonotone backtracking line search procedure cannot make sufficient progress and the step size becomes
too small. Thus, the purpose of a restoration algorithm is to decrease the value of θfeas(u1) or θc(u2). To
achieve this goal we introduce the functions

θ2,f (u1) = 1
2

(
‖ρ‖22 + ‖α‖22 + ‖υ‖22 + ‖τ‖22

)
,

θ2,c(u2) = 1
2

(
‖γw‖

2
2 +

∥∥γq

∥∥2

2
+ ‖γz‖

2
2 + ‖γs‖

2
2

)
.

The restoration algorithm herein presented works with the steps ∆1 and ∆2, computed from (4), that
should be descent directions for θ2,f (u1) and θ2,c(u2), respectively. In fact,

∇θ2,f (u1)T∆1 = −ρT (∇h∆x−∆w)− υT (∆x−∆g) + τT (−∆x−∆t) +
+αT (−∆w −∆p)
= −ρTρ− υTυ − τTτ −αTα = −2θ2,f (u1) < 0

and

∇θ2,c(u2)T∆2 = γT
w(−∆w −WV−1∆v) + γT

q

(
−QP−1∆p−∆q

)
+

+γT
z

(
−ZG−1∆g −∆z

)
+ γT

s

(
−ST−1∆t−∆s

)
= −γT

wγw − γT
q γq − γT

z γz − γT
s γs = −2θ2,c(u2) < 0.

Additionally, we also ensure that the new iterate xk+1 does not deviate too much from the current
iterate xk (see step 5 in Algorithm 2).

Although other restoration algorithms could be used, the following one seems appropriate considering the
step calculation of our interior point nonmonotone line search filter method. Note that in general, this type
of algorithm does not switch to the feasibility restoration phase if the current iterate is almost a feasible
point. However, the restoration phase might be called at an iterate with very small θfeas which would
not lead to a sufficient reduction on the θ2,f measure. Thus, to promote some progress our restoration
algorithm tries to enforce some reduction of the centrality measure θ2,c.
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Algorithm 2 (restoration algorithm)

0. Set αmax
k,0 = αmax

k , uk,0 = uk, l = 0, m(0) = 0 and start with step 4.
1. If uk,l is acceptable to the filter (6) then set uk+1 = uk,l and stop restoration.
2. Compute ∆k,l by solving (4), with uk = uk,l.
3. Define the vectors ∆1

k,l, ∆2
k,l which are used as search directions for the variables u1

k,l, u2
k,l. Compute

αmax
k,l .

4. Set αk = αmax
k,l .

5. Compute the trial point uk(αk) and recalculate µ using (5).

If
(
θ2,f (u1

k,l (αk)) ≤ max0≤j≤m(l) θ2,f (u1
k,l−j

) + αkηθ2,f
∇θ2,f (u1

k,l)
T∆1

k,l

or θ2,c(u2
k,l (αk)) ≤ max0≤j≤m(l) θ2,c(u2

k,l−j
) + αkηθ2,c

∇θ2,c(u2
k,l)

T∆2
k,l

)
and ‖xk,l(αk)− xk‖2 ≤ ε

(
1 + ‖xk,l(αk)‖2

)
then set uk,l+1 = uk,l (αk) , l = l + 1, m(l) = min{m(l − 1) + 1,M} and return to step 1. Otherwise
αk ← αk/2, and repeat step 5.

4. Numerical experiments

To test this interior point framework with a nonmonotone line search filter technique we selected 50
constrained problems from the Hock and Schittkowski (HS) collection [12]. This preliminary selection
aims to consider small and simple to code problems mainly with inequality constraints and/or simple
bounds, although there is also a set of problems with equality constraints. The problems were coded in
Fortran according to the general formulation (1). The tests were done in double precision arithmetic with
a Pentium 4 and Fortran 90.

The chosen values for the constants are similar to the ones used in [6]: θmin
feas = 10−4 max

{
1, θfeas(u1

0)
}
,

θmax
feas = 104 max

{
1, θfeas(u1

0)
}
, θmax

c = 104 max
{
1, θc(u2

0)
}
, θmax

op = 104 max
{
1, θop(u3

0)
}
, γθf

= γθc
=

γθo
= 10−5, δ = 1, ξ = 0.05, sfeas = 1.1, sop = 2.3, ηop = ηθ2,f

= ηθ2,c
= 10−4. We also used δµ = 0.1,

ε = 0.1, M = 5 and εtol = 10−4.
We exercised the algorithm using a symmetric positive definite quasi-Newton BFGS approximation to

the matrix H. The iterative process uses a positive definite approximation to ∇2F (x0) in the first iteration,
except on those problems where singularity or ill-conditioning was encountered on that matrix and the
identity matrix was used instead.

4.1. Comparative results

Table 1 summarizes the results under the “Filter Method” indication. Results inside parentheses were
obtained with the identity matrix in the first iteration. We compare the nonmonotone line search filter
method with a merit function approach based on the l2 merit function (“Merit Function” in the table).
Each set of two columns contains the number of iterations (Nit) needed to achieve a solution according to
the convergence tolerance referred to in Algorithm 1, and the number of θop evaluations (Nop) in the filter
method or the number of merit function evaluations (Nmf ) in the merit function approach.

Except with the problems HS1, HS5, HS16 and HS38, we managed to obtain a significant reduction in
the number of Nop when compared with Nmf in 17 problems and a slight improvement in 4 problems. For
the remaining 25 problems the two methods gave identical results.

The obtained improvements are mainly due to the filter approach. The proposed nonmonotone strategy
which aims to relax the acceptability criteria for the step size accounts only for changes in a small number
of problems. In fact, if M = 0 is considered in the algorithm, meaning that a monotone sufficient reduction
is imposed by the criteria (6) and (8) as well as by the conditions presented in the step 5 of the Algorithm
2, the results are identical to the ones presented in the table, except for the following problems: HS5
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Table 1. Numerical results

Filter Method Merit Function Filter Method Merit Function
Problem Nit Nop Nit Nmf Problem Nit Nop Nit Nmf

HS1 35 36 24 27 HS34 10 11 10 12
HS2 42 43 42 44 HS35 2 3 2 3
HS3 1 2 1 2 HS36 (9) (10) (9) (10)
HS4 5 6 5 6 HS37 (13) (14) (13) (14)
HS5 15 16 9 26 HS38 43 44 25 38
HS6 8 9 8 9 HS41 (9) (10) (9) (11)
HS10 (13) (14) (13) (14) HS42 12 13 12 13
HS11 8 9 8 9 HS43 12 13 12 13
HS12 15 16 15 16 HS44 19 20 19 20
HS14 8 9 8 9 HS45 4 5 4 5
HS15 (17) (18) (18) (20) HS46 15 16 15 194
HS16 (12) (15) (11) (12) HS48 7 8 7 8
HS17 5 6 7 10 HS49 14 15 14 15
HS18 11 12 12 76 HS50 14 15 14 64
HS19 25 26 31 48 HS51 6 7 6 57
HS20 (22) (23) (22) (25) HS52 9 10 9 10
HS21 5 6 5 6 HS53 8 9 9 14
HS23 27 28 31 78 HS55 11 12 11 12
HS24 15 16 16 19 HS60 12 13 11 18
HS27 16 17 17 70 HS63 11 12 11 12
HS28 6 7 6 7 HS64 (46) (108) (55) (235)
HS30 8 9 8 9 HS65 9 10 9 10
HS31 13 14 13 14 HS76 4 5 7 8
HS32 8 9 8 34 HS77 (18) (19) (18) (48)
HS33 10 11 10 11 HS79 13 14 11 65

(Nit = 13, Nop = 15), HS16 (Nit = 13, Nop = 19), HS24 (Nit = 18, Nop = 148), HS27 (Nit = 19, Nop = 29),
HS37 (Nit = 17, Nop = 76) and HS64 (Nit = 45, Nop = 104).

4.2. Tuning some algorithm parameters

This primal-dual interior point algorithm has some parameters that can be tuned so that the best solution
for a problem is obtained. In what follows we briefly describe what we have observed when three particular
parameters were altered. Two of them aim to provide initial approximations to the algorithm (recompute
and δpos), and the other is the convergence error tolerance (εtol).

(1) When an initial approximation to the variable x is provided, x0, the algorithm either recomputes a
better x̃0 and the variable y0 using a simplified reduced KKT system (see [10]) or uses the given x0

and sets y0 = 1. In the first case, the parameter recompute is set to on (the default value), and in the
second one, the parameter has to be off.

(2) Besides the initial values for x and y, the algorithm has to initialize the dual and slack variables. In
order to guarantee that all these variables are positive, the algorithm relies on the parameter δpos, whose
default value is 0.01.

The results shown in Table 1 were obtained with recompute=on and δpos = 0.01. The obtained local
optima for the problems HS45, HS46 and HS60 are not as good as the ones in [12]. However, if we set
recompute=off then the solution in [12] is obtained for problem HS45 with Nit = 34 and Nop = 67.
Furthermore, if we set δpos = 1 the algorithm also converges to the solution with Nit = 18 and Nop = 23.
For the problem HS60, when recompute is set to off, the algorithm reaches the solution in [12] with
Nit = 15 and Nop = 16 with either δpos = 0.01 or δpos = 1. Finally, for the problem HS46, with
recompute=off the algorithm still converges to the previous solution.

(3) We now consider the convergence error tolerance εtol. The default value is 10−4.

We rerun all problems setting εtol = 10−6. With the default values for recompute and δpos, the obtained
results were similar to the ones in the Table 1. We observed some slightly better approximations and
very few differences on Nit and Nop except for the problems HS41, HS45, HS46 and HS49. In these
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Two of them aim to provide initial approximations to the algorithm (recompute
and �pos), and the other is the convergence error tolerance (�tol).

ef
1) When an initial approximation to the variable x is provided, x0, the algorithm either recomputes a
better 0 and the variable y0 using a simplified reduced KKT system (see [10]) or uses the given x0
and sets y0 = 1. In the first case, the parameter recompute is set to on (the default value), and in the
second one, the parameter has to be off.
(2) Besides the initial values for x and y, the algorithm

ef
has to initialize the dual and slack variables. In
order to guarantee that all these variables are positive, the algorithm relies on the parameter �pos, whose
default value is 0.01.

ef
The results shown in Table 1 were obtained with recompute=on and �pos = 0.01. The obtained local
optima for the problems HS45, HS46 and HS60 are not as good as the ones in [12]. However, if we set
recompute=off then the solution in [12] is obtained for problem HS45 with Nit = 34 and Nop = 67.
Furthermore, if we set �pos = 1 the algorithm also converges to the solution with Nit = 18 and Nop = 23.
For the problem HS60, when recompute is set to off, the algorithm reaches the solution in [12] with
Nit = 15 and Nop = 16 with either �pos = 0.01 or �pos = 1. Finally, for the problem HS46, with
recompute=off the algorithm still converges to the previous solution.

ef
3) We now consider the convergence error tolerance �tol. The default value is 10−4.

ef
˜x
We rerun all problems setting �tol = 10−6. With the default values for recompute and �pos, the obtained
results were similar to the ones in the Table 1. We observed some slightly better approximations and
very few di�erences on Nit and Nop except for the problems HS41, HS45, HS46 and HS49. these

ef
In
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cases, the level of accuracy (either primal or dual) was not attained and the algorithm continues until
the maximum number of iterations is reached (in our case 100). However, if we set recompute =off and
δpos = 1, problems HS41, HS45 and HS49 converge to the solution in [12]. Problem HS46 was the only
one that did not converge within 100 iterations.

4.3. Open issues

We are aware that using the acceptability conditions (6) or (7) and (8), this filter algorithm while promoting
convergence to a stationary point does not enforce a sufficient decrease in a measure of optimality, for
example in the barrier function Φµ.

It has been proven for this type of interior point method that if the matrix N = H(x,y) + D +
∇h(x)TE−1∇h(x), known as the dual normal matrix in this paradigm, where D = G−1Z + T−1S and
E−1 = VW−1 + QP−1, is positive definite then the search direction ∆1

k, computed from system (4), is a
descent direction for Φµ at a feasible u1

k [13]. Our algorithm uses a positive definite approximation to the
matrix H to be able to guarantee descent directions. So, it is likely that Φµ is reduced although the step
size selection is based on the violation of the optimality measure θop.

To see how the algorithm behaves on some problems where saddle points and/or maximizers are present,
we selected the following problems. We set recompute=off and the other two parameters mentioned in
the previous subsection maintain their default values.

Example 1 : A concave quadratic in two variables

min a(−x2
1 − x2

2 + bx1) + 2 s.t. − 1 ≤ xi ≤ 1, i = 1, 2

where first we consider a = 2 and b = 0.5. The problem has a maximizer at (0.25, 0) inside the box
constraints. With the initial (1, 1) the algorithm converges to x∗ ≈ (1, 1)T(f∗ ≈ −1) with Nit = 6 and
Nop = 7. From the initial (0, 2) the algorithm gives the minimizer (−1, 1) (f∗ ≈ −3) with Nit = 10 and
Nop = 11.

Then, if a = 1 and b = 4 are considered, the quadratic has a maximizer (2, 0) outside the box. With both
initial points, the algorithm converges to a minimizer x∗ ≈ (−1, 1)T(f∗ ≈ −4) (with Nit = 9 / Nop = 10
and Nit = 8 / Nop = 9 respectively).

Example 2 : An indefinite quadratic in two variables

min 3x2
1 − 4x1x2 − 4x2

2 s.t. − 5 ≤ xi ≤ 5, i = 1, 2

with a saddle point at (0, 0). From the initial point (1, 1), the algorithm reaches the point x∗ =
(3.3333, 5)T(f∗ = −133.3333) (with Nit = 20 and Nop = 180). When the variables are considered free
(no bounds on xi, i = 1, 2) the algorithm diverges.

Example 3 : A function with a maximizer at (−2, 0) and a saddle point at (0, 0) in two variables

min 3x2
1 − x2

2 + x3
1 s.t. − 5 ≤ xi ≤ 5, i = 1, 2.

Starting from (1, 1) the algorithm converges to the solution x∗ ≈ (0, 5)T(f∗ ≈ −25) (with Nit = 9 and
Nop = 10); starting from (−2,−2) the algorithm converges to x∗ ≈ (0,−5)T(f∗ ≈ −25) (with Nit = 12
and Nop = 13). If we consider the variables free, the algorithm diverges.

Example 4 : A function with two minimizers at (−1,−1) and (0, 0) and a saddle point at (−0.5,−0.5)

min 2x2
1 + x2

2 − 2x1x2 + 2x3
1 + x4

1 s.t. − 5 ≤ xi ≤ 5, i = 1, 2.

With the initial approximations (1, 1) and (−2,−2), the algorithm converges to the minimizers (0, 0) and
(−1,−1) respectively with Nit = 8 and Nop = 9. If we do not use bounds on the variables, the algorithm
behaves as before using Nit = 10 and Nop = 11 in the first case and Nit = 9 and Nop = 10 in the second
one.
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cases, the level of accuracy (either primal or dual) was not attained and the algorithm continues until
the maximum number of iterations is reached (in our case 100).

ef
However, if we set recompute =off and
�pos = 1, problems HS41, HS45 and HS49 converge to the solution in [12]. Problem HS46 was the only
one that did not converge within 100 iterations.
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Example 5 : A concave function in one variable [13] with a global maximum at 0.5

min 4x(1− x) s.t. 0 ≤ x ≤ 1.

In this problem, the matrix N is indefinite and for any initial approximation inside the set 0.4 ≤ x ≤ 0.6,
an interior point method might converge to the maximizer 0.5. However, our quasi-Newton interior point
implementation guarantees positive definite N matrices and, for both x0 = 0.6 and x0 = 0.8, converges to
x∗ ≈ 1, (f∗ ≈ 0) with Nit = 11 and Nop = 17.

Thus, in practice we may say that our algorithm has been able to escape from maximizers and saddle
points and converges to stationary points that are minimizers.

4.4. Results of some typical problems

To further understand the behavior of this interior point filter method we consider four problems that
might cause some numerical difficulties to some algorithms.

Example 6 : This is a nonconvex problem where the system (3) may not have a real solution for some
µ [14]

minx− x2 s.t. x ≥ 0.

The problem has a local minimum at 0 and a global minimum at ∞. Our algorithm converges to x∗ ≈ 0
(f∗ ≈ 0) with Nit = 6 and Nop = 7 for both x0 = 3 and x0 = −2. When we set recompute= off the
algorithm converges to 0 if x0 = −2 (Nit = 7 and Nop = 8) and diverges if x0 = 3.

To see how the algorithm behaves with respect to the Maratos effect we solved the problem proposed
in [15]:

Example 7 :

min 2(x2
1 + x2

2 − 1)− x1 s.t. x2
1 + x2

2 = 1.

Considering an initial approximation (cos(α), sin(α)), which is feasible for any α, and in particular for
α = π/2, we managed to reach a good approximation to the solution (1, 0.1206×10−3), f∗ = −0.9998 with
Nit = 7 and Nop = 8. Exactly the same results are obtained with the monotone version of the algorithm
(M = 0). We also tested the merit function approach and obtained the same solution with Nit = 7 and
Nmf = 32. Note that in the merit function implementation we set αk = αmax

k whenever the trial step size
αk,l in the backtracking line search procedure verifies αk,l

∥∥∆1
k

∥∥
2
≤ 10−8.

We also consider the Wächter-Biegler problem [16]. The problem-input format for the implementation
of our algorithm is as follows:

Example 8 :

minx s.t. x2 + a ≥ 0, x− b ≥ 0

where a, b ∈ R and b ≥ 0. For a 6= −b2 the problem is well-posed. According to the conditions specified
in [16], we consider a = b = 1 and the initial approximation x0 = −3. Our interior point filter algorithm
was able to successfully converge to x∗ = 1 (f∗ = 1) with Nit = 6 and Nop = 7. If a = −1, b = 1 and
x0 = −2 [17] the algorithm still converges to the same solution (Nit = 22 and Nop = 91). The success of the
algorithm is certainly due to the implementation of a shift strategy on the slack variables that maintains
these variables far away from zero. We refer to [17] for details.

Finally we tried to solve the problem HS13 from [12]. The constraint qualification is not satisfied at the
solution (1, 0). This means that the vector σ is not zero at the solution. In this problem the vector β is
zero. With the initial approximation (−2,−2) our algorithm stopped at the point (0.9997,−0.1529×10−20)
because the maximum number of iterations was reached. The relative measure of dual infeasibility in our
stopping criterion is not satisfied. This is in fact an interesting topic for future research.
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5. Conclusions

We present an interior point nonmonotone line search filter method for solving a nonlinear constrained
optimization problem. The novelty here is that each entry in the filter has three components measuring
feasibility, centrality and optimality. The use of the nonmonotone strategy aims to relax the conditions
that are normally used to consider a trial point to be acceptable.

The algorithm was tested with a set of small problems and compared with a similar interior point method
with a merit function approach. These preliminary numerical results seem encouraging in such a way that
we intend to go on testing the algorithm with larger problems and perform a global convergence analysis
of the algorithm. The extension of the nonmonotone strategy to the filter approach and the viability of a
triple entry filter need adequate theoretical understanding.
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suggestions that improved the presentation of the paper.
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