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In this work we introduce a new method for solving nonsmooth equations

with simple constraints. The method is based on the inexact and quasi-Newton
approaches with backtracking strategy. Some conditions are given that ensure
global superlinear convergence to a solution of the equation. Moreover, we
propose a nonmonotone scheme of algorithm. Both versions of algorithm
was constructed for the Lipschitz continuous equations.

Keywords: nonsmooth equation, inexact-Newton method, quasi-Newton me-
thod, superlinear convergence, constrained system

2000 Mathematics Subject classification codes: 65H10 CCS: G.1.5, F.2.1

1 Introduction

The problem considered in this work is to find x ∈ Ω ⊂ Rn, which is a solution
of the system of nonlinear equations

F (x) = 0, (1)

where Ω is closed and convex, F : Rn → Rn is Lipschitz continuous on an open
set that contains Ω.

Newton’s method is the most known method for solving nonlinear systems,
which arise from other important problems. Pang and Qi in [16] established a
lot of the motivations of nonsmooth equations. Constrained nonlinear sys-
tems appear in applications when we need to solve real-life problems.
However, not all solutions of the mathematical model have physical
meaning, only the ones belonging to a constraint set Ω. Often, Ω is
an n-dimensional box {x ∈ Rn : l ≤ x ≤ u}, where l, u ∈ Rn. A formulation
as nonlinear programming problem using the squared norm of F as objective
function can be inefficient in some cases.

An efficient method for solving the equation (1) without constraint is
the inexact Newton method. The general idea of this method was presented by
Dembo, Eisenstat and Steihaug in [7]. A sequence

{
x(k)

}
of approximations

to solution x∗ is generated as follows: find the step s(k) ∈ Rn which satisfies

∥∥∥J
(
x(k)

)
s(k) + F

(
x(k)

)∥∥∥ ≤ ηk
∥∥∥F
(
x(k)

)∥∥∥

and set x(k+1) = x(k) + s(k), where ηk ∈ [0, 1), k = 0, 1, 2, ... are the scalar
parameters and J(x) denotes the Jacobian of F . The inexact-Newton iteration
was analyzed from various points of view, e.g. global convergence by Eisenstat
and Walker in [8], nonsmooth version by Martínez and Qi in [13], nonmonotone
smooth version by Bonettini in [4]. Moreover, Kozakevich, Martínez and Santos
introduced in [11] global convergent inexact-Newton algorithm for solving a
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smooth constrained equations. In quasi-Newton methods the direction (step) is
computed by solving

Bks
(k) = −F

(
x(k)

)
,

where, in general Bk is not the Jacobian, e.g. in generalized Newton method
Bk is taken from Clarke’s generalized Jacobian ∂F (x) (see [20]) or from B-
differential ∂BF (x) (see [18]). In [17] one type of globally convergent inexact
generalized Newton’s method to solve nonsmooth equations was proposed by Pu
and Tian. The combination of the ideas of inexact-Newton and quasi-Newton
method was described in several papers. Some versions of the inex-
act quasi-Newton method for solving smooth equations was proposed
e.g. by Bergamaschi, Moret, Zilli in [2] (inexact Newton-Cimmino
method for sparse systems) and Birgin, Krejíc, Martínez in [3] (in-
exact quasi-Newton algorithm with backtracking). Another study on
the inexact quasi-Newton method with preconditioners can be found
in Bergamaschi, Bru, Martínez, Putti [1]. Our approach is to general-
ize the smooth inexact quasi-Newton method for nonsmooth case and
to modify the general framework in a nonmonotone way. Our pro-
posed algorithms was constructed for solving the Lipschitz continuous
equations for which some mild assumptions are fulfilled.

In whole work we assume that function F : Rn → Rn is Lipschitz continuous,
i.e. there exists L > 0 such that, for any x, y ∈ Rn it holds

‖F (x)− F (y)‖ ≤ L ‖x− y‖ .

According to the Rademacher’s theorem the Lipschitz continuity of F implies
that F is differentiable almost everywhere. Let DF be the set where F is
differentiable. Then

∂BF (x) =

{
lim
xi→x

JF (xi) , xi ∈ DF

}

is called B-differential of F at x [18]. The generalized Jacobian of F at x in the
sense of Clarke [6] is

∂F (x) = conv ∂BF (x).

We have (see [6])
(a) ∂F (x) is nonempty, convex and compact;
(b) ∂F is upper semicontinuous at x.

We say that F is BD-regular at x if F is locally Lipschitz at x and if all
V ∈ ∂BF (x) are nonsingular. Qi in [18] (Lemma 2.6) proved that if F is BD-
regular at x, then there exist a neighborhood N of x and a constant C > 0 such
that for any y ∈ N and V ∈ ∂BF (y), V is nonsingular and

∥∥V −1
∥∥ ≤ C.

This paper is organized as follows. In section 2 we describe the model algorithm
of our nonsmooth inexact quasi-Newton method, we prove the superlinear con-
vergence and we state convergence theorem for main algorithm of method. In
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section 3 we present a nonmonotone version of algorithm. Section 4 reports
some numerical results concerning the application of the new algo-
rithms to the different problems. Finally, we draw some conclusions
in section 5.
Notation. Throughout the paper, x∗ ∈ Ω is a solution of (1). Moreover,

‖·‖ denotes the Euclidean norm. However, it is easy to verify that results are
independent of this choice.

2 Algorithm and its properties

The main algorithm in this work is Algorithm 2. Before its statement, we
define a more general method, that helps to understand the structure of the
main algorithm.

Algorithm 1. (Model algorithm)
Assume that σ ∈ (0, 1), γ ∈ (0, 1], τ1, τ2 ∈ (0, 1), τ1 < τ2 are given indepen-
dently of k. Let x(0) ∈ Rn be an arbitrary initial point and α0 = 1. Given a
point x(k), the steps for obtaining x(k+1) are:
Step 1. Find some s(k) ∈ Rn such that

x(k) + s(k) ∈ Ω.

Step 2. If ∥∥∥F
(
x(k) + αks

(k)
)∥∥∥ ≤

∥∥∥F
(
x(k)

)∥∥∥ (2)

define
x(k+1) = x(k) + αks

(k). (3)

Otherwise set x(k+1) = x(k).
Step 3. If ∥∥∥F

(
x(k) + αks

(k)
)∥∥∥ ≤

(
1−

σγαk

2

)∥∥∥F
(
x(k)

)∥∥∥ (4)

set αk+1 = 1. Otherwise choose

αk+1 ∈ [τ1αk, τ2αk] , (5)

Let us denote K1 = {k ∈ N : (4) holds}.

Lemma 1 Let
{
x(k)

}
be the sequence generated by Algorithm 1. IfK1 is infinite

and lim supk∈K1
αk > 0 then

lim
k→∞

∥∥∥F
(
x(k)

)∥∥∥ = 0.

Proof. Assume that K2 is an infinite subset of K1 such that

αk ≥ ᾱ > 0 for all k ∈ K2.

4
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Then

1−
σγαk

2
≤ 1−

σγᾱ

2
≡ c < 1

for all k ∈ K2. Therefore
{∥∥F

(
x(k)

)∥∥} is a nonincreasing sequence such that∥∥F
(
x(k+1)

)∥∥ ≤ c
∥∥F
(
x(k)

)∥∥ for all k ∈ K2. This implies that
∥∥F
(
x(k)

)∥∥ → 0.

For convenience, the sum of squares of F (x) as merit function

f(x) =
1

2
‖F (x)‖2

will be used. Note that F
(
x(k)

)
is reduced monotonically in algorithm. The

sufficient reduction criterion imposed depends on the norm of F not on its
generalized Jacobian.

Assumption A: Assume that function F is Lipschitz continuous. We say
that F satisfies A at x if for any y ∈ Rn and any Vy ∈ ∂BF (y), the following
equality holds

F (y)− F (x) = Vy (y − x) + o (‖y − x‖) .

Moreover, we say that F satisfies A at x with degree ρ if F is Lipschitz contin-
uous and the following equality holds

F (y)− F (x) = Vy (y − x) +O (‖y − x‖
ρ) .

Remarks: (i) Pu and Tian in [17] established three classes of functions
that satisfied assumption A. Semismoothness (introduced by Mifflin in [15]),
second order C-differentiability (introduced by Qi in [19]) and H-differentiability
(introduced by Gowda and Ravindran in [9]) are properties that imply A.
(ii) If F is BD-regular at x and satisfies A at x, then there exist a neighborhood
N of x and a constant C > 0 such that for any y ∈ N and V ∈ ∂BF (y)

‖y − x‖ ≤ C ‖Vy (y − x)‖ . (6)

Lemma 2 Let

l = max

{
2β,

1

2β
+ ‖Vy‖

}
,

where β =
∥∥V −1y

∥∥, Vy ∈ ∂BF (y). If F is BD-regular at x∗ and satisfies assump-
tion A at x∗ then

1

l
‖y − x∗‖ ≤ ‖F (y)‖ ≤ l ‖y − x∗‖

for all y ∈ Nx∗, where Nx∗ is some neighborhood of x
∗.

Proof. By assumption A, there exists a neighborhood Nx∗ of x∗ such that for
any y ∈ Nx∗ and any Vy ∈ ∂BF (y)

‖F (y)− F (x∗)− Vy (y − x
∗)‖ ≤

1

2β
‖y − x∗‖ .

5

Page 5 of 16

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Since for all Vy ∈ ∂BF (y)

F (y) = Vy (y − x
∗) + [F (y)− F (x∗)− Vy (y − x

∗)] ,

taking norms,

‖F (y)‖ ≤ ‖Vy‖ ‖y − x
∗‖+ ‖F (y)− F (x∗)− Vy (y − x

∗)‖ ≤

≤

(
‖Vy‖+

1

2β

)
‖y − x∗‖ ,

and

‖F (y)‖ ≥
∥∥V −1y

∥∥−1 ‖y − x∗‖ − ‖F (y)− F (x∗)− Vy (y − x∗)‖ ≥

≥

(∥∥V −1y

∥∥−1 −
1

2β

)
‖y − x∗‖ =

1

2β
‖y − x∗‖ ,

whenever y ∈ Nx∗ .

Remark: A similar lemma as the above one was established by Dembo,
Eisenstat and Steihaug in [7] for continuously differentiable functions to prove
superlinear convergence of the classical inexact Newton method.

Theorem 3 Assume that LF = {x ∈ Ω : ‖F (x)‖ ≤ ‖F (x0)‖} is bounded. Let
θ ∈ [0, 1) and

{
x(k)

}
be the sequence generated by Algorithm 1 with γ = 1− θ2.

Assume that there exists M > 0 such that for all k = 0, 1, 2, ...
∥∥∥s(k)

∥∥∥ ≤M (7)

and ∥∥∥Vks(k) + F
(
x(k)

)∥∥∥ ≤ θ
∥∥∥F
(
x(k)

)∥∥∥ , (8)

where Vk ∈ ∂BF
(
x(k)

)
.

If F is BD-regular at x∗, satisfies assumption A at x∗ and for every sequence{
x(k)

}
converging to x∗, every convergent sequence

{
s(k)

}
and every sequence

{λk} of positive scalars converging to 0

lim sup
k→∞

f
(
x(k) + λks

(k)
)
− f

(
x(k)

)

λk
≤ lim
k→∞

F
(
x(k)

)T
Vks

(k), (9)

whenever the limit in the left-hand side exists, then every limit point of the se-
quence

{
x(k)

}
is a solution of equation (1) and

{
x(k)

}
converges superlinearly

to x∗.

Proof. If K1 is infinite and lim supk∈K1
αk > 0 the result follows from Lemma

1 and Lipschitz continuity of F . Now, assume that

K1 is infinite and lim
k∈K1

αk = 0. (10)

6
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Because LF is bounded, there exist x∗ ∈ Ω and K2, an infinite subset of K1,
such that

lim
k∈K2

x(k) = x∗.

Assume, by contradiction, that F (x∗) �= 0. So, F
(
x(k)

)
�= 0 for all k = 0, 1, 2, ....

We may assume that αk < 1 for all k ∈ K2 without loss of generality. By (5)
and (4) we have that, for all k ∈ K2

αk ∈ [τ1αk−1, τ2αk−1] (11)

and ∥∥∥F
(
x(k−1) + αk−1s

(k−1)
)∥∥∥ >

(
1−

σγαk−1

2

)∥∥∥F
(
x(k−1)

)∥∥∥ . (12)

By (10) and (11) we have limk∈K2
αk−1 = 0.

So, using (7), we obtain that

lim
k∈K2

x(k−1) = x∗.

Moreover, by (12)

f
(
x(k−1) + αk−1s(k−1)

)
− f

(
x(k−1)

)

αk−1
>

[
σ2γ2αk−1

4
− σγ

]
f
(
x(k−1)

)
(13)

for all k ∈ K2.
Since

∥∥s(k−1)
∥∥ ≤ M for all k, there exists K3, an infinite subset of K2, such

that
lim
k∈K3

s(k−1) = s.

Taking limits for k ∈ K3 on both sides of (13), we obtain

lim
k∈K3

f
(
x(k−1) + αk−1s

(k−1)
)
− f

(
x(k−1)

)

αk−1
≥ −σγf (x∗) .

Exploiting the assumption (9), we obtain

lim
k∈K3

F
(
x(k−1)

)T
Vk−1s

(k−1) ≥ −σγf (x∗) .

So, for large enough k ∈ K3
〈
Vk−1s

(k−1), F
(
x(k−1)

)〉
> −γf

(
x(k−1)

)
(14)

Now, observe that (8) implies that for all k = 0, 1, 2, ...
〈
Vks

(k), F
(
x(k)

)〉
≤ −γf

(
x(k)

)

where Vk ∈ ∂BF
(
x(k)

)
, which contradicts (14). This proves that original

assumption F (x∗) �= 0 is false. Since
{∥∥F

(
x(k)

)∥∥} is monotone, any other

7
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limit point of

{
x(k)

}
has to be solution of (1).

Now assume that K1 is finite. Hence, there exists k0 ∈ N such that (4) does not
hold for all k ≥ k0. Therefore, αk → 0 and we can repeat the former proof with
some minor modifications.
Observe that, since F is BD-regular and θ ∈ [0, 1), then (8) implies
that, for k large enough,
∥∥∥s(k)

∥∥∥ =
∥∥∥V −1k Vks

(k)
∥∥∥ =

∥∥∥V −1k

[
Vks

(k) + F
(
x(k)

)]
− V −1k F

(
x(k)

)∥∥∥ ≤

≤
∥∥V −1k

∥∥ θ
∥∥∥F
(
x(k)

)∥∥∥+
∥∥V −1k

∥∥
∥∥∥F
(
x(k)

)∥∥∥ =

= (θ + 1)
∥∥V −1k

∥∥
∥∥∥F
(
x(k)

)∥∥∥ ≤ 2
∥∥V −1k

∥∥
∥∥∥F
(
x(k)

)∥∥∥ .

Therefore, by the above inequality, assumption A and (8), we have
for k large enough

∥∥∥F
(
x(k) + s(k)

)∥∥∥ ≤
∥∥∥F
(
x(k)

)
+ Vks

(k)
∥∥∥+ o

(∥∥∥s(k)
∥∥∥
)
≤

≤ θ
∥∥∥F
(
x(k)

)∥∥∥+ o
(∥∥∥F

(
x(k)

)∥∥∥
)
.

Since θ ∈ [0, 1) and
∥∥F
(
x(k)

)∥∥→ 0, this implies that

lim
k→∞

∥∥F
(
x(k) + s(k)

)∥∥
∥∥F
(
x(k)

)∥∥ = 0.

So, for k large enough
∥∥∥F
(
x(k) + s(k)

)∥∥∥ ≤
(
1−

σγ

2

)∥∥∥F
(
x(k)

)∥∥∥ .

Therefore (4) holds with αk = 1. Hence for k large enough x(k+1) = x(k)+ s(k).
Then we have

lim
k→∞

∥∥F
(
x(k+1)

)∥∥
∥∥F
(
x(k)

)∥∥ = 0. (15)

By the Lemma 2 there exists a number l > 0 such that

1

l
‖y − x∗‖ ≤ ‖F (y)‖ ≤ l ‖y − x∗‖

for all y in a neighborhood of x∗. Then, by (15)

lim
k→∞

∥∥x(k+1) − x∗
∥∥

∥∥x(k) − x∗
∥∥ = 0.

Remark: If F satisfies A at x∗ with degree 2, then we obtain quadratic
convergence of the algorithm.
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Now, we will present Algorithm 2 which is a particular case of Algorithm

1, where either conditions (7) and (8) are fulfilled or the execution is stopped.
If θ is close to 1 and M is large then failure in satisfying (7) and (8) reflects
near-stationarity of the current point.

Algorithm 2. (Inexact quasi-Newton method)
Assume that θ ∈ [0, 1), σ ∈ (0, 1), γ = 1 − θ2, τ1, τ2 ∈ (0, 1), τ1 < τ2, M > 0
are given independently of k. Let x(0) ∈ Rn be an arbitrary initial point and
α0 = 1. Given a point x(k), the steps for obtaining x(k+1) are:
Step 1. Find some sk ∈ R

n such that

x(k) + s(k) ∈ Ω and
∥∥∥s(k)

∥∥∥ ≤M (16)

and ∥∥∥Vks(k) + F
(
x(k)

)∥∥∥ ≤ θ
∥∥∥F
(
x(k)

)∥∥∥ , (17)

where Vk ∈ ∂BF
(
x(k)

)
.

If such choice is not possible, the algorithm breaks down.
Step 2. If ∥∥∥F

(
x(k) + αks

(k)
)∥∥∥ ≤

∥∥∥F
(
x(k)

)∥∥∥ (18)

define
x(k+1) = x(k) + αks

(k). (19)

Otherwise set x(k+1) = x(k).
Step 3. If ∥∥∥F

(
x(k) + αks

(k)
)∥∥∥ ≤

(
1−

σγαk

2

)∥∥∥F
(
x(k)

)∥∥∥ (20)

set αk+1 = 1. Otherwise choose

αk+1 ∈ [τ1αk, τ2αk] .

The proof of the below theorem follows straightforward from Theorem
3 and definition of Algorithm 2.

Theorem 4 Assume that LF = {x ∈ Ω : ‖F (x)‖ ≤ ‖F (x0)‖} is bounded. Let{
x(k)

}
be the sequence generated by Algorithm 2. Then every limit point of

the sequence
{
x(k)

}
is a solution of (1). Moreover, if F is BD-regular at x∗,

satisfies A at x∗ and (9) holds, then
{
x(k)

}
converges superlinearly to x∗.

Remark: Assumption with condition (9) is a weaker version of the assump-
tion (A4) in [13]. Such condition is not required in the smooth case, because
the function F and its Jacobian have the strong properties.
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3 Nonmonotone version of algorithm

In this section we describe a nonmonotone version of algorithm, modificating
the general framework (17) and (20) by substituting these conditions (17) and
(20) with the inequalities in which an element xℓ(k) is used. xℓ(k) is the point
with the following property

∥∥∥F
(
xℓ(k)

)∥∥∥ = max
0≤j≤min(n̄,k)

∥∥∥F
(
x(k−j)

)∥∥∥ (21)

for given n̄ ∈ N. Note that k −min (n̄, k) ≤ ℓ(k) ≤ k.
The nonmonotone approach is well known for their effectiveness in the

choice of the step in many linesearch procedures (see e.g. [10]). The smooth
nonmonotone inexact Newton method was proposed by Bonettini in [4]. Bonet-
tini and Tinti in [5] modified the general inexact Newton algorithm in a non-
monotone way for a semismooth equations. Our approach is similar as both
versions presented in [4] (smooth) and [5] (semismooth). In these papers
the authors are mainly concerned with convergence of inexact New-
ton method for solving unconstrained semismooth equations while we
study the inexact quasi-Newton method for the Lipschitz continuous equations
with simple constraint. Moreover, the particular case of the below algo-
rithm that corresponds to Ω = Rn consists a feature of the acceptance
of x(k)+αks(k) as new iterate whenever

∥∥F
(
x(k) + αks(k)

)∥∥ ≤
∥∥F
(
xℓ(k)

)∥∥.
Let us note that this approach allow to alleviate the tendency to tak-
ing "smaller than necessary" steps in backtracking.

Algorithm 3. (Nonmonotone inexact quasi-Newton method)
Assume that θ ∈ [0, 1), σ ∈ (0, 1), γ = 1 − θ2, τ1, τ2 ∈ (0, 1), τ1 < τ2, M > 0
are given independently of k. Let x(0) ∈ Rn be an arbitrary initial point and
α0 = 1. Given a point x(k), the steps for obtaining x(k+1) are:
Step 1. Find some sk ∈ R

n such that

x(k) + s(k) ∈ Ω and
∥∥∥s(k)

∥∥∥ ≤M (22)

and ∥∥∥Vks(k) + F
(
x(k)

)∥∥∥ ≤ θ
∥∥∥F
(
xℓ(k)

)∥∥∥ , (23)

where Vk ∈ ∂BF
(
x(k)

)
.

If such choice is not possible, the algorithm breaks down.
Step 2. If ∥∥∥F

(
x(k) + αks

(k)
)∥∥∥ ≤

∥∥∥F
(
xℓ(k)

)∥∥∥ (24)

define
x(k+1) = x(k) + αks

(k). (25)

Otherwise set x(k+1) = x(k).
Step 3. If ∥∥∥F

(
x(k) + αks

(k)
)∥∥∥ ≤

(
1−

σγαk

2

)∥∥∥F
(
xℓ(k)

)∥∥∥ (26)
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set αk+1 = 1. Otherwise choose

αk+1 ∈ [τ1αk, τ2αk] .

Remark: The sequence
{∥∥F

(
x(k)

)∥∥} satisfying (23) and (26) is nonmonotone
but

{∥∥F
(
xℓ(k)

)∥∥} is a monotone nonincreasing subsequence of it.
We will assume that at each iteration step k it is possible to obtain the vector

s(k) which is an inexact quasi-Newton step for some Vk ∈ ∂BF
(
x(k)

)
. We can

use the following sufficient condition, which is the special case of assumption
(A1) given by Martinez, Qi [13]: there exists δ ≥ 0 such that for all x, v ∈ Rn,
the intersection of the ball N (v, δ) = {u ∈ Rn : ‖u− v‖ ≤ δ} and the range set
R(x) = {u ∈ Rn : u = Vks for some s ∈ R

n and Vk ∈ ∂BF (x)} is not empty.
The below lemma shows that the sequence generated by Algorithm 3 sat-

isfies conditions (23) and (24).

Lemma 5 Let θ ∈ [0, 1), σ ∈ (0, 1), γ = 1−θ2 and M > 0. Suppose that exists
s̄ satisfying

x(k) + s̄ ∈ Ω and ‖s̄‖ ≤M

and ∥∥∥Vks̄+ F
(
x(k)

)∥∥∥ ≤ θ
∥∥∥F
(
xℓ(k)

)∥∥∥

for some Vk ∈ ∂BF
(
x(k)

)
.

Then, there exist αmax ∈ (0, 1] and a vector s such that

∥∥∥F
(
x(k) + αs

)∥∥∥ ≤
(
1−

σγα

2

)∥∥∥F
(
xℓ(k)

)∥∥∥

holds for any α ∈ (0, αmax].

Proof. Let s = αs̄. Then we have
∥∥∥Vks+ F (x(k))

∥∥∥ =
∥∥∥αVks̄+ αF (x(k))− αF (x(k)) + F (x(k))

∥∥∥ ≤

≤ α
∥∥∥Vks̄+ F (x(k))

∥∥∥+ (1− α)
∥∥∥F (x(k))

∥∥∥ ≤

≤ αθ
∥∥∥F (xℓ(k))

∥∥∥+ (1− α)
∥∥∥F (xℓ(k))

∥∥∥ =

= [1− α(1− θ)]
∥∥∥F (xℓ(k))

∥∥∥ .

Now, let

ε =
(1− θ)[2− δ(1 + θ)]

2α ‖s̄‖

∥∥∥F (xℓ(k))
∥∥∥ (27)

and δ > 0 be sufficiently small that

∥∥∥F
(
x(k) + αs

)
− F

(
x(k)

)
− Vks

∥∥∥ ≤ εα ‖s‖ (28)

11

Page 11 of 16

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
for all Vk ∈ ∂BF

(
x(k)

)
whenever ‖s‖ ≤ δ.

Choosing αmax = min
(
1, δ
‖s̄‖

)
, for any α ∈ (0, αmax] we have ‖s‖ ≤ δ and,

using (27) and (28) we obtain the following inequality

∥∥∥F
(
x(k) + αs

)∥∥∥ ≤
∥∥∥F
(
x(k) + αs

)
− F

(
x(k)

)
− Vks

∥∥∥+
∥∥∥F
(
x(k)

)
+ Vks

∥∥∥ ≤

≤ εα2 ‖s̄‖+ [1− α(1− θ)]
∥∥∥F (xℓ(k))

∥∥∥ =

=
(
1−

σγα

2

)∥∥∥F
(
xℓ(k)

)∥∥∥ ,

which completes the proof.

So, the above lemma yields that Algorithm 3 breaks down if and only if it
is impossible to find a nonmonotone inexact quasi-Newton step.

Since
{
xℓ(k)

}
is a subsequence of

{
x(k)

}
, also the sequence

{∥∥F
(
xℓ(k)

)∥∥}

converges to 0 when k goes to infinity, the proof of the below theorem
follows from Theorem 4 and definition of Algorithm 3.

Theorem 6 Assume that LF = {x ∈ Ω : ‖F (x)‖ ≤ ‖F (x0)‖} is bounded. Let
θ ∈ [0, 1) and

{
x(k)

}
be the sequence generated by Algorithm 3 with γ = 1− θ2.

Assume that there exists M > 0 such that for all k = 0, 1, 2, ...
∥∥∥s(k)

∥∥∥ ≤M (29)

and ∥∥∥Vks(k) + F
(
x(k)

)∥∥∥ ≤ θ
∥∥∥F
(
xℓ(k)

)∥∥∥ , (30)

where Vk ∈ ∂BF
(
x(k)

)
.

If F is BD-regular at x∗, satisfies assumption A at x∗, at each iteration step k
it is possible to find a vector s(k) such that condition (29) is satisfied and for
every sequence

{
x(k)

}
converging to x∗, every convergent sequence

{
s(k)

}
and

every sequence {λk} of positive scalars converging to 0

lim sup
k→∞

f
(
x(k) + λks

(k)
)
− f

(
xℓ(k)

)

λk
≤ lim
k→∞

F
(
x(k)

)T
Vks

(k), (31)

whenever the limit in the left-hand side exists, then every limit point of the se-
quence

{
x(k)

}
is a solution of equation (1) and

{
x(k)

}
converges superlinearly

to x∗.

4 Numerical examples

In this section, we present some preliminary numerical results for constructed
algorithms. We solved some nonsmooth equation from Spedicato [21] and the
box-constrained nonlinear system related to the computation of singular points
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of homotopic paths (defined in [11]). In the last one we used second test problem
taken from collection of Melhem and Rheinboldt [14].

All the experiments were performed on a Pentium IV 2.4 GHz using Dev-
C++ and double precision arithmetic. The parameters used in Algorithms 2
and 3 are specified as follows:

θ = 0.999, σ = 10−3, τ1 = τ2 = 0.5 and M = 10.

Moreover, we declare a failure of the algorithm when the stopping criterion∥∥F
(
x(k)

)∥∥ ≤ 10−10 is not reached after 1000 iterations or when, in order to
satisfy the backtracking condition (20) or (26), more than 25 reductions of the
parameter αk have been performed. Tables 1 and 2 summarize the results in
terms of number of iterations and of backtracking reductions, reported in the
rows with the "iter" and "back" symbols, respectively. Our aim is to compare
the performances of Algorithm 2 (monotone case) and the ones of Algorithm
3 with different nonmonotonicity degrees. For the nonmonotone algorithm the
parameter n̄ has been chosen equal 2, 5 and 8.

Example 1. Consider the equation (1) with function F : Rn → Rn defined
by

F i(x) =

{
c1gi(x) for gi(x) ≥ 0,
c2gi(x) for gi(x) ≤ 0,

where

gi(x) = i−
i∑

j=1

{cos(xj − 1) + j [1− cos(xj − 1)]− sin(xj − 1)} .

If c1 = c2, F is differentiable. Therefore |c1 − c2| may be interpreted as the
degree of nondifferentiability of F . See [21]. The system F (x) = 0 has the
solutions (1 + 2k1π, ..., 1 + 2knπ)

T ,where k1, ..., kn are arbitrary integers. We
executed both algorithms for three nonsmooth cases: c1 = −c2 = 1, 10, 100 with
Ω = {−100 ≤ xi ≤ 100, i = 1, ..., n}. Table 2 shows the nonmonotone scheme
differs to the monotone one only on the backtracking rule for larger systems.

Example 2. Given H : Rm+1 → Rm, H = H(y, t), we say that (y∗, t∗)
is a singular point of H(y, t) = 0 if H (y∗, t∗) = 0 and Hy (y∗, t∗) is singular.
Singular points are solutions of system

H(y, t) = 0

Hy (y, t) v = 0

‖v‖2 = 1

which has 2m+1 equations and unknowns. We used the problem with Freudenstein-
Roth function (m = 2, n = 5)

h1(y, t) = y1 − y
3
2 + 5y

2
2 − 2y2 − 13 + 34 (t− 1)

h2(y, t) = y1 + y
3
2 + y

2
2 − 14y2 − 29 + 10 (t− 1)
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with Ω = {−100 ≤ y1, y2 ≤ 100 and − 10 ≤ t ≤ 10}. Table 3 shows that the
general reduction of the number of iteration can be observed in nonmonotone
approach.

Table 1. Numerical results for Example 1.
c1 = −c2 = 1 c1 = −c2 = 10 c1 = −c2 = 100

n n̄=0 n̄=2 n̄=5 n̄=0 n̄=2 n̄=5 n̄=0 n̄=2 n̄=5
2 iter 6 6 6 6 6 6 6 6 6

back 0 0 0 0 0 0 0 0 0
3 iter 6 6 6 6 6 6 7 7 7

back 0 0 0 0 0 0 0 0 0
4 iter 7 7 7 7 7 7 8 8 8

back 0 0 0 0 0 0 0 0 0
5 iter 8 8 8 8 8 8 8 8 8

back 0 0 0 0 0 0 0 0 0
8 iter 9 9 9 9 9 8 9 9 8

back 0 0 0 0 0 0 1 0 0
10 iter 10 10 9 10 10 9 10 10 9

back 0 0 0 1 0 0 1 1 0
12 iter 10 10 9 10 10 9 10 9 9

back 1 0 0 1 0 0 1 1 0
15 iter 11 12 10 11 10 10 11 10 10

back 1 0 0 1 1 0 2 1 1
20 iter 12 12 11 12 11 11 12 11 11

back 4 1 1 5 1 1 7 2 2

Table 2. Numerical results for Freudenstein-Roth function (Example 2)
x0 n̄=0 n̄=2 n̄=5 n̄=8
1 iter 35 29 29 43

back 1 1 1 2
2 iter 20 18 17 18

back 0 0 0 0

5 Conclusions

A family of Newton-type methods is important for solving nonlinear equations.
The are especially useful when the system has many variables and inexact ap-
proach is practical. In this paper, we have studied the new version of inexact
quasi-Newton method for solving nonsmooth equations with simple constraint.
We have first proved that under mild assumptions, the every limit point of
sequence generated by the inexact quasi-Newton algorithm is solution of equa-
tion (1) and this sequence is globally and superlinearly convergent. Then we
proposed the nonmonotone technique which can reduce the number of steps of
iteration. The numerical experiments with the inexact quasi-Newton method
for solving some constrained equations are promising. The numerical tests show
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that the nonmonotone approach can produce a sensible decrease both the num-
ber of iterations and of backtracking reductions. However, a degenerate behav-
iour of the algorithm can be observed in some problems for a too large value of
parameter n̄.
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