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The convergence of numerical approximations to the solutions of differen-
tial equations is a key aspect of Numerical Analysis and Scientific Computing.
Iterative solution methods for the systems of linear(ised) equations which of-
ten result are also underpinned by analyses of convergence. In the function
space setting, it is widely appreciated that there are appropriate ways in
which to assess convergence and it is well-known that different norms are
not equivalent. In the finite dimensional linear algebra setting, however, all
norms are equivalent and little attention is often payed to the norms used.

In this paper, we highlight this consideration in the context of precondi-
tioning for minimum residual methods (minres and gmres/gcr/ or-

thomin) and argue that even in the linear algebra setting there is a ‘right’
norm in which to consider convergence: stopping an iteration which is rapidly
converging in an irrelevant or highly scaled norm at some tolerance level may
still give a poor answer.
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1 Introduction

There are two important concepts of convergence in Numerical Analysis:

• convergence of an approximation uh as h → 0 to a desired function u

• convergence of a sequence of vector iterates {u(k)} as k → ∞ to a desired vector
u.

When solving elliptic (and other) differential equations with numerical methods both of
these concepts usually come into play: one requires a fine enough mesh so that adequate
accuracy can be achieved and a sufficiently rapidly convergent iterative solver so that
not too many iterations are required to get close enough to the exact solution of the
linear(ized) equations which result from the approximation scheme. More generally one
requires an approximation space in which true solutions can be accurately enough repre-
sented and an iterative solver which requires little work per iteration and few iterations
to achieve a good enough approximation of the exact solution vector.

Suppose that u ∈ X is a function that we want to find - the exact solution of a
differential equations for example - and a (conforming) Finite Element approximation is
employed so that

uh =
∑

j

ujφj(x) ∈ Xh ⊂ X (1.1)

is an approximating function which we will compute. The vector of coefficients u =
(u1,u2, . . . ,un)T will be the discrete (nodal) values of the approximating function (so-
lution) with the usual definition of (Lagrange) finite element basis φj(xi) = δi,j where
x1,x2, . . . are the nodal positions. Solution of the linear(ized) equation system which
derives from the relevant approximation method:

Au = f

will then yield the coefficient vector and hence the finite element solution via (1.1). When
the dimension of this system is large an iterative method would usually be employed
which would yield vector iterates

u(k) = (u
(k)
1 ,u

(k)
2 , . . . ,u(k)

n )T , k = 1, 2, . . .

from some starting guess u(0). The errors committed are then the approximation error
‖u − uh‖ and the iteration error ‖u − u(k)‖ each measured in an appropriate norm.

In order to compare these errors it is useful to introduce the iterate functions defined
for each k by

u
(k)
h =

∑

j

u
(k)
j φj(x) ∈ Xh.

The actual error at iteration k will therefore be

‖u − u
(k)
h ‖. (1.2)
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Now consider some possible choices of norm in (1.2). For the case X = L2(Ω) we
have for any vh =

∑

j vjφj(x) ∈ Xh

‖vh‖
2
L2(Ω) =

∫

Ω

v2
h =

∑

j

vj

∑

i

vi

∫

Ω

φiφj = vT Qv = ‖v‖2
Q (1.3)

where Q is the Gram matrix (the mass matrix) given by

Q = {qi,j : i, j = 1, . . . , n}, qi,j =

∫

Ω

φiφj. (1.4)

For second order differential equations, the Sobolev space

H1(Ω) =

{

w : Ω → R|w,
∂w

∂x
,
∂w

∂y
,
∂w

∂z
∈  L2(Ω)

}

= X

and the related energy norm ‖v‖2
e = ‖∇v‖2

L2(Ω) =
∫

Ω
∇v · ∇v are important and for any

vh =
∑

j vjφj(x) ∈ Xh we have

‖∇vh‖
2
L2(Ω) =

∫

Ω

∇vh · ∇vh =
∑

j

vj

∑

i

vi

∫

Ω

∇φi · ∇φj = vT Av = ‖v‖2
A (1.5)

where A is the discrete Laplacian matrix (the stiffness matrix) given by

A = {ai,j : i, j = 1, . . . , n}, ai,j =

∫

Ω

∇φi · ∇φj. (1.6)

We use the notation Q and A only for the matrices defined by (1.4) and (1.6) respec-
tively throughout this paper.

Whichever of these or other norms is used, a simple use of the triangle inequality
gives

‖u − u
(k)
h ‖ ≤ ‖u − uh‖ + ‖uh − u

(k)
h ‖.

Thus for example for the energy norm

‖∇(u − u
(k)
h )‖L2(Ω) ≤ ‖∇(u − uh)‖L2(Ω) + ‖∇(uh − u

(k)
h )‖L2(Ω)

= ‖∇(u − uh)‖L2(Ω) + ‖u − u(k)‖A (1.7)

because of (1.5) above. (If the Galerkin method is used then we have more precisely
that

‖∇(u − u
(k)
h )‖2

L2(Ω) = ‖∇(u − uh)‖2
L2(Ω) + ‖u − u(k)‖2

A

because of Galerkin orthogonality:
∫

Ω
∇(u − uh) · ∇vh = 0 for every vh ∈ Xh). The key

observation here is that the actual error ‖u−u
(k)
h ‖ is bounded by the sum of the approx-

imation error ‖∇(u − uh)‖L2(Ω) and the iteration error ‖u − u(k)‖A. More specifically,
for any PDE problem for which ‖ · ‖e is the natural norm for the problem, the norm
‖ · ‖A is identified as the appropriate norm for the linear algebra. For any error estimate
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(a priori or a posteriori) which bounds ‖∇(u− uh)‖L2(Ω), a stopping criterion should be
chosen so that the iteration error ‖u − u(k)‖A is comparable but smaller (typically an
order of magnitude less). The same points apply to other norms: for example if ‖ ·‖L2(Ω)

is the natural norm for a problem, then ‖ · ‖Q is identified as the appropriate norm for
the linear algebra.

Such interconnection between approximation error and iteration error has been used
in connection with iterative stopping criteria [1] and is more broadly understood (see for
example [2]). In [2] chapter 2, for example, it is highlighted why the Conjugate Gradient
method and the Multigrid method are ideally suited for second order self-adjoint elliptic
boundary value problems because they each monotonically reduce the iteration error
precisely in ‖ · ‖A.

In the next section we show how preconditioning affects this balance between ap-
proximation and iteration error. In particular for widely used iterative methods which
minimise the residual (minres [3] for symmetric indefinite systems and gmres/gcr/
orthomin[4]/[5]/[6] for nonsymmetric systems) we show that care is needed to avoid
selection of preconditioners which apparently give rapid convergence, but which in fact
merely distort the relevant norm so that poor solutions are achieved for all but extremely
small convergence tolerences. The following section is devoted to examples which high-
light the issue addressed here and our brief conclusions follow. We begin with a simple
discussion of preconditioning and iterative methods.

2 Preconditioning and Krylov subspace methods

For A which is symmetric and positive definite, the Conjugate Gradient (cg) method for
solving Au = f from a starting vector u(0) with corresponding residual r(0) = f −Au(0)

computes for each k the iterate u(k) in the shifted (affine) Krylov subspace

u(0) + Kk(A, r(0)) = u(0) + span{r(0),Ar(0),A2r(0), . . . ,Ak−1r(0)}

for which the error u−u(k) is minimal in ‖ · ‖A. With a symmetric and positive definite
preconditioner, M the cg method solves the equivalent system

H−1AH−Tv = H−1f , HTu = v

where M = HHT . It is therefore easily seen that for this system the (preconditioned)
cg method will minimise HT (u − u(k)) in ‖ · ‖H−1AH−T . That is

(u − u(k))T HH−1AH−THT (u − u(k)) = (u − u(k))TA(u − u(k)) = ‖u − u(k)‖2
A

is the quantity minimised whatever (symmetric and positive definite) preconditioner is
employed. It is emphasised that this quantity is independent of the preconditioner used.
Of course the preconditioner affects the Krylov subspaces so that with preconditioning
the iterates lie in

u(0) + span{M−1r(0),M−1AM−1r(0), (M−1A)2M−1r(0), . . . , (M−1A)k−1M−1r(0)};
(2.1)
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faster convergence with preconditioning will occur if u is better approximated from these
spaces than from u(0) + Kk(A, r(0)) for each k. We emphasise that this description is
purely formal – H is not needed in practice, only M.

For minimum residual methods however, the situation is different. Consider first
minres which is used when A is symmetric but not necessarily positive definite. Here
a positive definite preconditioner is required in order to preserve symmetry in the pre-
conditioned system. Thus, as described above for cg, one formally considers solving
the symmetric system H−1AH−Tv = H−1f where HTu = v. Here instead though it is
the Euclidean norm of the residual ‖H−1(f − AH−Tv)‖2 = ‖H−1(f − Au)‖2 (perhaps
‖H−1(f − Au)‖I is a better notation here) which is minimised for u(k) in the shifted
Krylov subspace (2.1). Thus for the real residuals r(k) = f −Au(k) of the original system
it is

‖r(k)‖H−T H−1 = ‖r(k)‖M−1 = ‖u − u(k)‖AM−1A (2.2)

which is minimised in the preconditioned case. Thus if it were possible that M ' A so
that M would then be a very good preconditioner for A we would have AM−1A ' A
and convergence of preconditioned minres would occur in a norm similar to ‖ · ‖A.
There are two dificulties here: for indefinite A, ‖·‖A does not define a norm and even for
indefinite matrices A, M has to be positive definite for use with minres. The definition
of an appropriate norm for an indefinite problem has therefore to be identified in this
case. For the important class of indefinite matrices of saddle-point form, however, there
does exist a natural choice of norm and a class of positive definite preconditioners which
give convergence in this right norm – see example 2 below. For weaker preconditioners
such as M = diag(A), ‖ · ‖AM−1A becomes almost the A2 norm which may or may not
be so desirable. With minres, as with cg, only M is required, not H in practical
computation (see eg. [2]).

Similar consideration applies even if A is nonsymmetric in the unusual situation
that a symmetric and positive definite preconditioner is employed in a centered way;
in this case explicit knowledge of H - for example an incomplete Cholesky factor of
the symmetric part - would be needed. Usually, however, when A is nonsymmetric, a
preconditioner (whether it be nonsymmetric or symmetric) is used on the right giving
the right preconditioned system

AM−1v = f , Mu = v

or on the left giving the left preconditioned system

M−1Au = M−1f .

Another possibility is to have M = HLHR and solve

H−1
L AH−1

R v = H−1
L f , HRu = v

in which case explicit knowledge of the factors HL, HR (or rather routines for the ef-
fective application of H−1

L , H−1
R to known vectors) is required. Since this case covers
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the more common right and left preconditioning cases with HL = I or HR = I respec-
tively we continue only with it. A minimum residual method such as gmres, gcr or
orthomin will compute iterates u(k) in (2.1) which minimise

‖r(k)‖H−T

L
H−1

L

.

It is often argued that right preconditioning is therefore to be prefered because it is then
the Euclidean norm of the residual of the original system which is minimised. We would
argue that this may be a reasonable choice in the situation where the origin of the linear
system gives no guidance but that the real question is whether

‖r(k)‖2 = ‖A(u − u(k))‖2 = ‖u − u(k)‖AT A

is the appropriate norm in which to measure the error vector; in the case of some PDE
problems we contest that it is not - see the examples in the next section!

We comment that there are few, but important, examples where nonsymmetric pre-
conditioners M can yield symmetric and positive definite preconditioned systems M−1A
or AM−1 when A itself is not symmetric and positive definite ([7], [8]). Further, if A is
symmetric and M is symmetric and positive definite, M−1A is self-adjoint (symmetric)
in the non-standard inner product defined by 〈·, ·〉M where 〈x,y〉2M = xTMy and if M
is symmetric and A is symmetric and positive definite then AM−1 is self-adjoint in the
non-standard inner product 〈·, ·〉A−1 defined analogously.

3 Examples

In this section some simple expository examples are presented.

3.1 Example 1.

The first example is a well-conditioned symmetric and positive definite matrix, the nice
matrix A ∈ R

21×21 obtainable in matlab via the command gallery(’wathen’,2,2).

Table 1:

cg minres cg minres

k ‖u − u(k)‖Q ‖u − u(k)‖Q ‖r(k)‖M−1 ‖r(k)‖M−1

1 19.835 19.835 25.159 25.159
2 13.671 13.871 11.123 10.173
3 7.401 8.963 8.853 6.678
4 4.512 5.304 5.009 4.007
5 2.982 3.176 2.306 1.998
6 1.021 1.118 0.963 0.876
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It is precisely a finite element mass matrix for an 8-node serendipity element com-
puted here for a 2 × 2 grid on the unit square and thus to be consistent with our
nomenclature above we denote it by A = Q. The diagonal of the matrix provides a
preconditioner, M, for which the precise analytic bounds 1

4
≤ λ ≤ 9

2
on the eigenvalues

λ of the preconditioned matrix have been established [9]. Most iterative methods will
converge rapidly for this matrix with this preconditioner; we employ it here simply to
show how the convergence of cg and minres compare in terms of ‖u − u(k)‖Q and
‖r(k)‖M−1 . The exact solution is chosen to be the vector of ones and f is constructed
accordingly. The smallest diagonal entry of M is approximately 0.508 and the largest
diagonal entry is approximately 50.579. The initial vector is random. The results for
the first six iterations are shown in Table 1.

A natural context in which this algebraic problem arises is in the best L2 approxi-
mation (L2 projection) of a function u ∈ X = L2(Ω) from the 21-dimensional subspace
Xh of piecewise polynomials defined by the 4 square 8-node seredipity finite elements of
side length 1

2
on Ω = [0, 1] × [0, 1]. That is piecewise bi-quadratic bivariate polynomials

without the quartic term x2y2. In this context the overall error is

‖u − u
(k)
h ‖2

L2(Ω) = ‖u − uh + uh − u
(k)
h ‖2

L2(Ω)

= ‖u − uh‖
2
L2(Ω) + ‖uh − u

(k)
h ‖2

L2(Ω)

= ‖u − uh‖
2
L2(Ω) + ‖u − u(k)‖2

Q (3.1)

where the equality in the second line follows because the best approximation uh is defined
by the orthogonality of u − uh to (every function in) Xh and the final line because of
(1.3). Similarly to above it is therefore the cg method which is reducing exactly the
right quantity ‖u − u(k)‖Q in this case, though the differences in the different norm
quantities are not large in this nice example. Given an estimate of the approximation
error, an appropriate stopping criteron for the iteration is indicated by (3.1).

3.2 Example 2.

Problems with constraints lead to saddle-point systems – an important class of symmetric
(and nonsymmetric) indefinite matrices. The general structure is

[

F BT

B 0

] [

u

p

]

=

[

f

g

]

(3.2)

where F may either be symmetric (giving the classical saddle-point system) or non-
symmetric (giving a generalized saddle-point system). For a comprehensive survey on
solution methods for saddle-point systems see [10].

One of the more important PDE examples is the Stokes problem:

ν∇2u + ∇p = f

∇ · u = 0,
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see for example [2] chapters 5 and 6. This problem arises as the most common model
for the slow flow of an incompressible fluid. This problem is self-adjoint and most
discretisations including conforming mixed finite elements in any domain Ω ⊂ R

d lead
to a symmetric matrix block F which is in the usual case a d× d block diagonal matrix
with diagonal blocks which are just discrete Lapacians given by (1.6). We thus write
F = A in this situation to denote a d×d block diagonal matrix with diagonal blocks each
equal to A. The full incompressible Navier-Stokes equations are used in situations were
fluid inertia is important and then the diagonal blocks in F typically become matrices
representing discrete advection-diffusion operators and are hence non-symmetric – again
see [2] for a complete description. Whichever of these problems is being considered, the
weak form of these problems are defined for velocity vectors u ∈ H1(Ω)d and scalar
pressures p ∈  L2(Ω) and it is in these spaces that natural error estimates of the form

‖∇(u − uh)‖L2(Ω) + ‖p − ph‖L2(Ω)

≤ C( inf
vh∈Xh

‖∇(u − vh)‖L2(Ω) + inf
qh∈Mh

‖p − qh‖L2(Ω))

≤ C h2
(

‖D3u‖L2(Ω) + ‖D2p‖L2(Ω)

)

,

are found. Thus directly from (1.5) and (1.3), the natural norm for the linear algebra is

‖u − u(k)‖A + ‖p − p(k)‖Q;

if we write the Stokes saddle-point system as Ax = b, that is the right norm for iterative
convergence is ‖ · ‖E where

E =

[

A 0
0 Q

]

.

Thus when iterates x(k) are computed with some iterative method, as shown in [2] page
291, it is desirable to get convergence of

‖x − x(k)‖2
E = ‖r(k)‖A−1EA−1 = ‖r(k)‖(AE−1A)−1

where r(k) are the corresponding residuals.

Comparing this with (2.2), the ‘ideal’ preconditioner

M = AE−1A =

[

A + BT Q−1B BT

B BA−1BT

]

for the Stokes problem is identified. Of course this is not a practical choice since solution
of linear systems involving M is at least as difficult as solving systems with A! Never-
theless, it leads to practical block diagonal preconditioners which give norms equivalent
up to small constants which are independent of problem parameters – see [2], theorem
6.9.

We comment that similar considerations arise whenever mixed finite element approx-
imations are used (see[11]).
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3.3 Example 3.

Our final example also involves the saddle point system (3.2). In a number of situations,
notably when F has a significant null space (see for example [12]), it has been suggested
to employ an Augmented Lagrangian formulation; that is to solve

[

F + BT WB BT

B 0

] [

u

p

]

=

[

f + BT Wg

g

]

(3.3)

for some matrix W ([13],[14]) or to use a preconditioner based on an Augmented La-
grangian [12], [15]. In this context a preconditioner which is frequently suggested is the
block triangular matrix

[

F + γBT WB BT

0 −γ−1W−1

]

(3.4)

or the related block diagonal matrix
[

F + γBT WB 0
0 ±γ−1W−1

]

(3.5)

where W is taken to be a simple matrix in either case; for example W = I which we shall
consider here. This is a common choice even though it can be a poor choice depending
on the application: for example for the Stokes problem, Benzi and Olshanskii [14] argue
why the inverse of the mass matrix Q or the inverse of the diagonal of Q (using the
results of [9]) give the right scaling and are thus the appropriate choice for W . Indeed
this choice gives slightly better numerical results than those we present below for W = I,
but they are not so different and the choice of γ remains key.

For reasons of practicality, the leading (1,1) block in (3.4),(3.5) is often approximated,
a multigrid cycle being the choice in [14] for example, however since such considerations
are motivated by the exact form of (3.4) or (3.5), we consider only this exact form here
and use a direct solver for the blocks in the preconditioner. It is a considerable challenge
in practice to find a robust iterative solver for the (1,1) block which works effectively
over a range of values of γ.

To fix ideas we address the particular situation in which the saddle point matrix and
preconditioner are given by

A =

[

F BT

B 0

]

, M =

[

F + γBT B 0
0 γ−1I

]

. (3.6)

A number of variants of this precise pairing have been proposed, but this is sufficient for
our purpose and similar structures exist with triangular preconditioners and/or when
augmentation of A is also used (see the references above). Note that invertibility of A
requires that B be of full rank and additionally a sufficient condition for invertibility is
that F + F T is positive semi-definite and ker(F + F T ) ∩ ker(B) = {0} and we shall
assume this.

Firstly we consider the case when F (and thus A and M also) are symmetric. It
is a simple task to calculate the eigenvalues of M−1A on which minres convergence
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depends: see [12], theorem 2.2. There turn out to be eigenvalues of 1, of −1 and the
remaining eigenvalues are λ satisfying

λ = −
γµ

γµ + 1

where µ are the non-zero eigenvalues of µFv = BT Bv. Thus for large values of γ these
eigenvalues cluster at −1 and rapid minres convergence should result: indeed only
two minres iterations should be required to compute the exact solution as γ → ∞.
Unfortunately, the sensitivity of the iteration to values of the augmentation parameter γ

is somewhat hidden: it can significantly distort the norm in which minres converges.
Note that (F + γBT B)−1 is a matrix with entries which do not grow with increasing

values of γ. It is evident therefore from (2.2) that the residuals are minimised in the
matrix norm defined by the matrix

M−1 =

[

(F + γBT B)−1 0
0 γI

]

which heavily emphasises satisfying the second equation Bu = g in the saddle point
system for large γ. Similar distortion can be seen also in terms of the error which is
minimised–see again (2.2)–in the matrix norm defined by

AM−1A =

[

F (F + γBT B)−1F + γBT B F (F + γBT B)−1BT

B(F + γBT B)−1F B(F + γBT B)−1BT

]

.

Since it is only the term γBT B in the (1,1) block which grows with increasing values of
γ, it can be expected that poorer accuracy will be observed in the second component,
p, with the above preconditioner.

In order to illustrate, we present the results for just one set of computations using
a saddle point system coming from mixed finite element approximation of the Stokes
problem generated by the ifiss software ([16]). The specific problem is approximation
of flow over a backwards facing step using the Q2-Q1 (Taylor-Hood) mixed finite element
pair on a 16 × 48 grid. minres is used as the iterative method with the coefficient
matrix A and preconditioner M as above. We present results for the first 8 iterates for
the values γ = 103, γ = 1 and γ = 10−3 in the tables below.
Tabulated are the residual of the combined vector [u,p]T in ‖ · ‖M−1 which is the min-
imised quantity, the errors of the velocity (u) components in ‖ · ‖A and the pressure
(p) components in ‖ · ‖Q which are the natural norms for the problem as well as the
Euclidean norm of Bu.

It can be seen that convergence is quickest for the largest value γ = 103, however
this convergence is actually measured. The quantity ‖Bu‖ reduces very rapidly (in the
context of this problem Bu = 0 is the discrete statement of conservation of mass, thus
the quantity ‖Bu‖ is a measure of by how much the mass is not conserved), however,
the pressure error is two orders of magnitude greater at all iterations and one order
of magnitude greater than the velocity error. For γ = 1 the residual norm and ‖Bu‖
reduce quickly even though the velocity and pressure errors remain reasonably large.
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Table 2: Stokes Augmented Lagrangian Preconditioning: γ = 103

k ‖r(k)‖M−1 ‖u − u(k)‖A ‖p − p(k)‖Q ‖Bu(k)‖I

1 102.8321 72.6571 15.3214 2.3662
2 87.1623 36.9047 196.2536 2.2998
3 3.2999 1.5564 18.8032 0.0787
4 0.6591 0.4421 5.3614 0.0164
5 0.1172 0.0604 0.5790 0.0028
6 0.0168 0.0104 0.0614 0.0004
7 0.0035 0.0020 0.0158 0.0001
8 0.0004 0.0002 0.0014 0.0000

Table 3: Stokes Augmented Lagrangian Preconditioning: γ = 1

k ‖r(k)‖M−1 ‖u − u(k)‖A ‖p − p(k)‖Q ‖Bu(k)‖I

1 72.6282 72.6571 15.3214 2.3662
2 0.3941 3.6037 15.3369 0.3885
3 0.1862 2.8639 14.4748 0.1847
4 0.1294 2.5406 13.6403 0.1288
5 0.1024 2.2466 12.5859 0.1021
6 0.0784 1.8421 10.8597 0.0782
7 0.0603 1.4981 9.1325 0.0601
8 0.0481 1.2501 7.6958 0.0480

Table 4: Stokes Augmented Lagrangian Preconditioning: γ = 10−3

k ‖r(k)‖M−1 ‖u − u(k)‖A ‖p − p(k)‖Q ‖Bu(k)‖I

1 72.6288 72.6571 15.3214 2.3662
2 0.0126 3.6369 15.3214 0.3986
3 0.0061 2.8878 14.4901 0.1919
4 0.0042 2.5648 13.6945 0.1323
5 0.0042 2.5647 13.6943 0.1323
6 0.0033 2.2773 12.6883 0.1043
7 0.0026 1.8920 11.0749 0.0810
8 0.0020 1.5415 9.3567 0.0625

For γ = 10−3, the situation is even more distorted with rapid residual reduction even
though velocity errors remain O(1) and pressure errors remain O(10).

Disparity in the reduction of the various tabulated quantities could lead to larger
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errors than expected in all cases if inappropriate stopping criteria are used.
In the case above when F is nonsymmetric, gmres with right preconditioning at

least gives residual reduction and correspondingly error reduction in norms which do
not depend on γ, whereas left preconditioning would give residual resuction in ‖ · ‖M−2

and thus correspondingly error reduction in the matrix norm defined by the matrix

[

F (F + γBT B)−2F + γ2BT B F (F + γBT B)−2BT

B(F + γBT B)−2F B(F + γBT B)−2BT

]

for which clearly similar but even more extreme issues arise than for the centred precon-
ditioner considered for minres above. If augmentation was used also in A then even
with right preconditioning, gmres would give residual and error reduction in norms
dependent on the augmentation parameter γ.

A number of variants of this preconditioning approach are described in the literature,
but we expect similar behaviour for extreme values of any parameter having an analogous
role to γ.

4 Conclusions

There are situations where it is important to consider the effect of preconditioning on
convergence; whilst preconditioning can lead to fewer iterations - indeed this is exactly
why preconditioning is usually used - inaccurate solutions may be obtained with inappro-
priate convergence criteria in situations where preconditioning leads to highly distorted
norms.
Acknowledgement I am grateful to an anonymous referee for comments which improved
this manuscript and to Ke Chen for his patience.
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