
For Peer Review
 O

nly

A virtual pegging approach to the max-min optimization of the bi-criteria
knapsack problem

Journal: International Journal of Computer Mathematics

Manuscript ID: GCOM-2007-0049.R2

Manuscript Type: Original Article

Date Submitted by the
Author:

12-Aug-2007

Complete List of Authors: Taniguchi, Fumiaki; National Defense Academy, Computer Science
Yamada, Takeo; National Defense Academy, Computer Science
Kataoka, Seiji; National Defense Academy, Computer Science

Keywords:
Knapsack problem, Bi-objective combinatorial optimization, Pegging
test, 90C27, 65K05

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

For Peer Review
 O

nly
A virtual pegging approach to the max-min

optimization of the bi-criteria knapsack problem

FUMIAKI TANIGUCHI, TAKEO YAMADA∗ and SEIJI KATAOKA

Department of Computer Science, The National Defense Academy,
Yokosuka, Kanagawa 239-8686, Japan

Abstract

We are concerned with a variation of the knapsack problem, the bi-objective
max-min knapsack problem (BKP), where the values of items differ under two
possible scenarios. We give a heuristic algorithm and an exact algorithm to solve
this problem. In particular, we introduce a surrogate relaxation to derive upper
and lower bounds very quickly, and apply the pegging test to reduce the size of
BKP. We also exploit this relaxation to obtain an upper bound in the branch-and-
bound algorithm to solve the reduced problem. To further reduce the problem
size, we propose a ‘virtual pegging’ algorithm and solve BKP to optimality. As a
result, for problems with up to 16000 items we obtain a very accurate approximate
solution in less a few seconds. Except for some instances, exact solutions can also
be obtained in less than a few minutes on ordinary computers. However, the
proposed algorithm is less effective for strongly correlated instances.

Keywords: Knapsack problem; Bi-objective combinatorial optimization;
Pegging test.

2000 Math Subject Classifications: 90C27; 90C29; 49K35

∗Corresponding author. yamada@nda.ac.jp

1

Page 1 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

1 Introduction

Knapsack problem [1, 2] has been studied extensively in operations research and com-
puter science. Although it is an NP-hard [3] combinatorial optimization problem, it
can be solved relatively easily in practice. In this article, we are concerned with a
variation of this problem, where the values of items differ under possible two scenarios.
By pk

j we denote the value of item j under scenario k (= 1, 2), and xj is the decision
variable that takes value 1 if item j is adopted and 0 otherwise for j = 1, 2, . . . , n.
Then,

zk(x) :=
n∑

j=1

pk
j xj (1)

is the total value of the solution x = (xj) under scenario k, and thus we have two
objective functions to maximize. On the other hand, the weight of item j is assumed
to be constant wj through all scenarios, and the knapsack capacity is c.

Then, we formulate the bi-objective max-min knapsack problem [4, 5, 6] as

BKP:

maximize min{
n∑

j=1

p1
jxj,

n∑
j=1

p2
jxj} (2)

subject to
n∑

j=1

wjxj ≤ c, (3)

xj ∈ {0, 1}, j = 1, 2..., n. (4)

Without much loss of generality, we assume in the sequel that

A1: pk
j (j = 1, 2, . . . , n; k = 1, 2) are non-negative integers.

A2: wj (j = 1, 2, . . . , n) and c are positive integers.

A3:
∑n

j=1 wj > c.

By rewriting BKP as the following equivalent linear integer programming problem,
we may solve small instances using free or commercial IP solvers [7].

BKP]:

maximize v (5)

subject to
n∑

j=1

pk
j xj ≥ v, k = 1, 2, (6)

(3), (4), v ≥ 0.

Bi-objective knapsack problem has been studied by Eben-Chaime [4] and Zhang et
al. [6], who presented parametric or heuristic algorithms to solve the problem. Yu
[8], Iida [9] and Kouvelis [5] gave branch-and-bound algorithms for the multi-scenario

2

Page 2 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

max-min knapsack problem (MKP) respectively, and solved problems with n ≤ 90 items
and 30 scenarios.

In a companion paper [10], we gave reduction and exact algorithms to
solve MKP with more than two scenarios. Here, we focus on the case of
two scenarios, and present an algorithm that can solve much larger problems than the
previous algorithms by employing a virtual pegging approach [11]. First, we
introduce in Section 2 the surrogate relaxation to find upper and lower bounds quickly.
Then in Section 3, following [10], we introduce a pegging test to reduce the size of
the problem, and extend this to the virtual pegging test in Section 4. Through these,
the original BKP is reduced (often remarkably) in size, and finally we solve the reduced
problem by the ‘surrogate relaxation-based’ branch-and-bound algorithm of Section 5.
Through this approach, we are often able to solve BKPs with up to 16000 items in less
than a few minutes. However, in strongly correlated instances, we frequently
encounter difficulty in solving small problems with a few hundred items.

2 Upper and lower bounds

This section derives an upper bound by applying the surrogate relaxation [12, 8] to BKP].
At the same time, we obtain an approximate solution, and thus a lower bound to BKP.

2.1 Surrogate relaxation

For an arbitrary λ ∈ [0, 1] we define the surrogate relaxation of BKP as follows.

SBKP(λ):

maximize
n∑

j=1

p̄j(λ)xj (7)

subject to
n∑

j=1

wjxj ≤ c, (8)

0 ≤ xj ≤ 1, j = 1, ..., n, (9)

where

p̄j(λ) := λp1
j + (1 − λ)p2

j . (10)

Here, we note that xj is also relaxed to a continuous variable.
For a fixed λ ∈ [0, 1], SBKP(λ) is the continuous knapsack problem whose solution

is easily found [2]. Let x̄(λ) = (x̄j(λ)) denote an optimal solution to SBKP(λ) with the
corresponding optimal value z̄(λ), and z? is the optimal objective value to the original
BKP. Then, we have

z? ≤ z̄(λ)

i.e., z̄(λ) gives an upper bound to BKP.
Analogous to the Lagrangian relaxation [13, 14], z̄(λ) satisfies the following proper-

ties [10].

3

Page 3 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Proposition 1

(i) z̄(λ) is a piecewise-linear, convex function of λ.

(ii) If z̄(λ) is differentiable at λ,

dz̄(λ)/dλ = z1(x̄(λ)) − z2(x̄(λ)). (11)

(iii) For λ ∈ [0, 1], if x̄(λ) is feasible to BKP and

z1(x̄(λ)) = z2(x̄(λ)), (12)

then x̄(λ) is an optimal solution to BKP.

2.2 Binary search method

For an arbitrary λ ∈ [0, 1], z̄(λ) gives an upper bound to BKP. However, to find an upper
bound with z̄(λ) as small as possible, we solve the following surrogate dual problem [12]

minimize z̄(λ)

subject to λ ∈ [0, 1].

Then, taking (11) into account, the following binary search method solves the dual
problem.

Algorithm BINARY

Step 1. Let λL := 0 and λR := 1.

Step 2. Let λ := (λL + λR)/2 and solve SBKP(λ) to obtain x̄(λ) and z̄(λ).

Step 3. If λR − λL < ε, or the condition (12) is met, go to Step 5.

Step 4. If z1(x̄(λ)) > z2(x̄(λ)) let λR := λ, else let λL := λ. Go to Step 2.

Step 5. Output x̄(λ) and z̄(λ), and stop.

Here ε is a sufficiently small ‘tolerance limit’ of computation, and by λ† we denote λ
upon termination of the above algorithm. Thus, we obtain an optimal upper bound to
BKP as z̄ := z̄(λ†).

2.3 Lower bounds

For an arbitrary λ ∈ [0, 1], x̄(λ) satisfies (3). If this also satisfies the 0-1 constraint (4),
this is feasible to BKP; hence, the corresponding objective value gives a lower bound
to the original problem. If, on the other hand, some components of x̄(λ) violate (4),
we still obtain a feasible solution by replacing all the fractional components with 0. In
BINARY, each time we solve SBKP(λ) we thus get a lower bound, and the largest one
found this way gives the best lower bound. This is henceforth denoted as z.

4

Page 4 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

3 Pegging test

Pegging test [15, 16, 17] is well known for the ordinary 0-1 knapsack problem. By
applying this test, some variables are fixed either at 0 or 1, and after removing these
we obtain a problem of (often significantly) reduced size. In this section, we show that
the same pegging test can be applied to BKP by introducing the surrogate relaxation
first, as we have shown in [10] for MKP in general.

Assume that we have the optimal surrogate multiplier λ†, the corresponding upper
bound z̄ = z̄(λ†) and a lower bound z to BKP, and let us consider SBKP(λ†). In what
follows, we write p̄j := p̄j(λ

†) for simplicity. For an arbitrary u ∈ {1, 2, . . . , n}, let z̄u,δ

denote the optimal objective value to SBKP(λ†) with an additional constraint xu = δ,
where δ is either 0 or 1. Then, if

z̄u,0 < z (13)

it is not possible that x?
u = 0 in any optimal solution x? = (x?

j) to BKP, i.e., we
necessarily have x?

u = 1. Similarly, in the case that

z̄u,1 < z (14)

x?
u = 0 must follow.

To determine (13) and (14) quickly, the following shortcut is usually taken. First of
all, without loss of generality, we assume the following.

B1: The items are numbered in the non-increasing order of p̄j/wj.

Let Wj and Pj be, respectively the accumulated weight and profit, i.e.,

Wj :=
j∑

i=1

wi, Pj :=
j∑

i=1

p̄i

where W0 = P0 = 0. Then, the broken line connecting {(Wj, Pj) | j = 0, · · · , n} gives a
piecewise-linear, monotonically non-decreasing, concave function [2].

The intersection of this broken line with the vertical line W = c gives an upper
bound z̄. The item s satisfying Ws−1 ≤ c < Ws is said to be the critical item. Here, if
for any u < s we set xu = 0, it is known [15, 16] that

z̄u,0 ≤ z̄ − θu, (15)

where we define

θu := p̄u − (p̄s/ws)wu. (16)

This is referred to as the threshold for item u. Then, we have the following [10].

5

Page 5 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Theorem 1 For any optimal solution x? = (x?
j) to BKP, both of the followings hold.

(i) z̄ − z < θj ⇒ x?
j = 1,

(ii) z̄ − z < −θj ⇒ x?
j = 0.

For a pair of upper and lower bounds, by applying this theorem some variables are
fixed, and removing these variables we obtain a BKP of (often significantly) reduced
size.

4 Virtual pegging test

In Theorem 1 we see that the smaller the gap = z̄ − z between the upper and lower
bounds, the more variables are fixed. If the gap is not small enough, the effectiveness of
the pegging method is limited, since the size of the problem will not be reduced much
in such a case. In the present section, we introduce a virtual pegging test [11], which
we originally presented for the precedence constrained knapsack problem,
to BKP to cope with this problem.

4.1 Virtual pegging principle

In the pegging test based on Theorem 1, the upper and lower bounds necessarily satisfy

z ≤ z? ≤ z̄.

However, we may carry out this test using an arbitrary value l ≤ z̄ as an ‘assumed’
lower bound.

Let the set of all the feasible solutions to BKP be X, i.e.,

X := {(x1, x2, . . . , xn) |
n∑

j=1

wjxj ≤ c, xj ∈ {0, 1},∀j}.

Then, if we carry out the pegging test (Theorem 1) with z̄ and l as upper and lower
bounds, some xj’s will be ‘fixed’ either at 0 or 1. But this is not necessarily a correct
pegging because l is not a guaranteed lower bound to BKP. Let the index sets of
variables, which are (temporally) fixed at 0 and 1 by Theorem 1, be F0(l) and F1(l)
respectively. Then, we have the following reduced problem.

R(l):

maximize min{
n∑

j=1

p1
jxj,

n∑
j=1

p2
jxj} (17)

subject to x ∈ X,

xj = 0, ∀j ∈ F0(l), (18)

xj = 1, ∀j ∈ F1(l). (19)

6

Page 6 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

The optimal objective value to this problem will be denoted as z?
l . If R(l) is infea-

sible, we define z?
l := −∞. Then, for the optimal objective value z? to BKP we have

the following [11].

Theorem 2

(i) l ≤ z? ⇒ z?
l = z?.

(ii) l > z? ⇒ z?
l ≤ z?.

(iii) l ≤ l′ ⇒ z?
l ≥ z?

l′.

(iv) l ≤ z?
l ⇒ z?

l = z?.

As a direct corollary to (iii), if R(l) is infeasible, then R(l′) is also infeasible for all
l′ ≥ l.

4.2 A virtual pegging algorithm

For an arbitrary value l ≤ z̄, by carrying out the virtual pegging test and solving the
reduced problem R(l), we obtain z?

l . Then, if (iv) is satisfied in Theorem 2, BKP is
solved. In addition, if gap := z̄− l is small, it is probable that R(l) is much smaller than
the original in size. The reduced R(l) may be solved by some free or commercial IP
solver, but in section 5 we present a branch-and-bound algorithm to solve this problem,
and the following algorithm solves BKP completely.

Algorithm VIRTUAL PEGGING

Step 1. Set l := max{z̄ − α, z}.
Step 2. Carry out the pegging test with l and z̄ as lower and upper bounds, solve

R(l) (by BRANCH AND BOUND given in Section 5) and obtain z?
l .

Step 3. If l ≤ z?
l , go to Step 5.

Step 4. Update z := max{z, z?
l } and l := max{l − α, z}, and go to Step 2.

Step 5. The optimal value is obtained as z? = z?
l .

Here, α is an arbitrary small margin between the upper bound and the initially
assumed lower bound. We set l := z̄ − α at first if this is not smaller than z. Then, if
the optimal value is not found in Step 3, l is further lowered by α, and we repeat Steps
2 - 4 all over again until an optimal solution is found.

5 Surrogate-based branch-and-bound

For two disjoint subsets F0 and F1 of {1, 2, . . . , n} we consider the subproblem (also
referred to as a ‘node’) of BKP as

7

Page 7 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

P(F0, F1):

maximize min{
n∑

j=1

p1
jxj,

n∑
j=1

p2
jxj}

subject to x ∈ X,

xj = 0, ∀j ∈ F0,

xj = 1, ∀j ∈ F1.

Here F0 (F1) is the set of variables fixed at 0 (1, resp.), and by z?(F0, F1) we denote
the optimal objective value to this problem. Clearly P(∅, ∅) is identical to BKP, and
the problem P(F0(l), F1(l)) is identical to R(l).

Next, using λ† obtained by BINARY we define its relaxation as

SP(F0, F1):

maximize
n∑

j=1

p̄jxj

subject to
n∑

j=1

wjxj ≤ c,

xj = 0, ∀j ∈ F0,

xj = 1, ∀j ∈ F1,

0 ≤ xj ≤ 1, ∀j /∈ F0 ∪ F1,

and its optimal solution x̄(F0, F1) with the corresponding objective value z̄(F0, F1).
Note that SP(F0, F1) is a continuous knapsack problem which is easily solved. If these
are infeasible, we define z?(F0, F1) := −∞ and z̄(F0, F1) := −∞, respectively.

Then, a branch-and-bound algorithm [14] can be constructed as follows. We call
BRANCH AND BOUND in Step 2 of the VIRTUAL PEGGING with F0 := F0(l) and
F1 := F1(l), and upon termination of this we obtain the optimal objective value as
z?
opt := z?

l .

8

Page 8 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Algorithm BRANCH AND BOUND(F0, F1)

Step 1. (Initialization) Let the incumbent optimal objective value be z?
opt = −∞.

Step 2. (Evaluate the current subproblem) Solve SP(F0, F1) and obtain x̄(F0, F1)
and z̄(F0, F1).

Step 3. (Feasible solution) If x̄(F0, F1) is feasible to P(F0, F1), go to Step 6.

Step 4. (Inprospective node) If z̄(F0, F1) ≤ z?
opt, return.

Step 5. (Branch and recursive call) Do the followings.

(i) Find u := min{j | j /∈ F0 ∪ F1}.
(ii) Call BRANCH AND BOUND(F0 ∪ {u}, F1).

(iii) Call BRANCH AND BOUND(F0, F1 ∪ {u}).
(iv) return.

Step 6. (Update incumbent) If z?
opt < z̄(F0, F1), update z?

opt := z̄(F0, F1) and re-
turn.

By assumption B1 and the definition of u above, the branching is made in the non-
increasing order of p̄j/wj among the unfixed variables. Also, by the recursive structure
of the algorithm, subproblems are generated and examined in a depth-first fashion.
The characteristic feature of this algorithm is that the upper bound z̄(F0, F1) can be
computed quite rapidly, since SP(F0, F1) is a continuous knapsack problem.

6 A numerical example

Let us consider BKP with n = 10, c = 2500 and the data of Table 1. Table 2 shows
the binary search process, where we obtain λ†

1 = 0.241, z̄ = 2652.75 and z = 2440. The
gap between the bounds is 212.75. Table 3 shows the items in the non-increasing order
of p̄j/wj. Here the critical item is s = 6, and the thresholds are shown in the row of θj.
The row of x?

j is the result of pegging, where ‘-’ indicates the unfixed variables.

********** [[Insert tables 1-3 about here]] **********

Solving this BKP directly by calling BRANCH AND BOUND(∅, ∅), we obtain the
optimal z? = 2440 after examining 29 branch-and-bound nodes. If we apply the same
method after reducing the problem by the pegging test (Theorem 1) with z̄−z = 212.75,
the same solution is obtained after generating 15 subproblems. By the virtual pegging
test with α = 100, we get the solution after examining only 7 subproblems. However, in
this case (iv) of Theorem 2 is not satisfied since l = z̄ − α = 2552.75 > z?

l = 2440, and
we need to run VIRTUAL PEGGING again with l lowered to 2440 to get a guaranteed

9

Page 9 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

optimal solution. All these solutions coincide with those obtained from NUOPT [18],
an MP/IP solver popular in Japan which is considered competitive to such solvers as
LINDO, EXPESS-MP, CPLEX, etc. [7].

7 Numerical experiments

7.1 Design of experiments

For BKP with n =100-16000 items, we evaluate the performance of the ‘surrogate
relaxation + (virtual) pegging test + branch-and-bound’ approach developed in the
previous sections. Weight wj of item j is randomly and unformly distributed over
integer interval [1,1000], and the values of items are generated according to

• UNCOR (uncorrelated): pk
j (k = 1, 2) are distributed independently and

uniformly over [1,1000],

• WEAK (weakly correlated): pk
j (k = 1, 2) are distributed independently

and uniformly over [wj, wj + 200],

• STRONG (strongly correlated): p1
j := wj + 100, and p2

j is distributed
uniformly over [wj, wj + 200].

Knapsack capacity is set to
c := 500n · ρ

where ρ is either 0.25, 0.50 or 0.75. Since the average weight of an item is 500.5, ρ = 0.50
means that approximately a half of all items can be accommodated in the knapsack.

To compute surrogate relaxation, pegging test and BRANCH AND BOUND, we
have implemented the algorithm in ANSI C language on an IBM RS/6000 SP 44 Model
270 workstation (CPU: POWER 3-II, 375Mhz). We also solved small instances using
NUOPT Ver. 3.3.0 on the same machine.

7.2 Bounds and reduction

Tables 4 and 5 give the results of computation of the upper and lower bounds, as well
as of the pegging test. Here, in addition to the bounds z̄ and z, we show the gap (z̄−z),
the relative error defined by

rerror (%) = 100 · (z̄ − z)/z,

the number of unfixed variables (n′), and the CPU time in seconds (CPU0) to evaluate
the bounds and the effect of the pegging test. Each row is the average over 10 randomly
generated instances.

From these tables, we observe the following.

1. By the surrogate relaxation we obtain an upper bound and a heuristic solution of
very high precision in a few CPU seconds.

10

Page 10 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

2. Gaps are smaller in WEAK case, but the reduced problems are of almost com-
parable size. In both of UNCOR and WEAK cases, problems are reduced
considerably in size.

3. CPU0 increases with n, but this is rather insensitive to the correlation type of
instances.

4. The objective value (z̄ and z) increases with ρ, but no significant influence of ρ is
seen on the accuracy of heuristic solutions or CPU time.

********** [[Insert tables 4-5 about here]] **********

7.3 Exact solution

To solve BKP exactly, we compare the following three methods.

• PEG-NUOPT: Apply the pegging test (Theorem 1) to BKP, and solve the reduced
problem using NUOPT.

• PEG-BAB: Apply the same pegging test, and then solve the reduced problem by
calling BRANCH AND BOUND.

• VPEG-BAB: Solve BKP by calling VIRTUAL PEGGING with l := z̄ − α.

Tables 6 and 7 compare PEG-NUOPT against PEG-BAB. For each value of ρ and
n, we computed the randomly generated 10 instances, with the computation truncated
at the time limit of TL=1800 seconds. The column of ‘#sol’ show the number of runs
completed within TL, and all the rows are the average over the finished instances. In
all solved cases, we obtained the identical objective values. In these tables, ‘BBN’ is
the number (in millions) of the branch-and-bound nodes generated, and ‘CPU’ is the
time in seconds to solve the problem completely by respective methods.

*********** [[Insert tables 6-7 about here]] **********

The observation from these tables are:

1. PEG-NUOPT was able to solve problems of n = 2000 or smaller, but for larger n
it often fails; especially for n ≥ 10000 this approach is almost hopeless irrespective
to ρ and correlation type of instances.

2. PEG-BAB solved all problems with n ≤ 6000, and frequently solved larger prob-
lems. No clear difference was seen in the difficulty of solving UNCOR and
WEAK instances.

11

Page 11 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

7.4 Virtual pegging result

VPEG-BAB was run with the initial margin

α := 1000 · log2 n/n. (20)

This follows Lueker [19], who proved for the 0-1 knapsack problem (KP)

z̄KP − z?
KP = O(log2 n/n)

where z̄KP and z?
KP are, respectively, the continuously relaxed upper bound and the

optimal objective value. After some preliminary experiments, we set the constant in
(20) as 1000. In all our computation with (20),

z̄ − α < z?

was confirmed a posteriori, and thus z̄ − α was indeed a correct lower bound in all
instances tested. Therefore, in VIRTUAL PEGGING Steps 2 through 4 were actually
repeated only once. The results are shown in Tables 8 and 9, where in addition to
BBN, CPU and #sol, the number of unfixed variables by virtual pegging (n′′), and
the optimal objective value (z?) are shown.

*********** [[Insert table 8-9 about here]] **********

Except for a few correlated instances, almost all problems were solved within a few
minutes. Comparing Tables 6 and 8 (also 7 and 9), the effectiveness of the virtual
pegging approach is evident.

7.5 Comparison against other commercial solvers

We further evaluate PEG-BAB against two leading IP solvers CPLEX 10.1 [20] and
XPRESS-MP release 2005B [21] on an even faster computer DELL Dimension 8400
(Pentium(R) 4 CPU, 3.40 GHz). Table 10 gives the summary of CPU times in solving
UNCOR and WEAK instances with ρ = 0.25 and n = 2000, 4000, 8000. Ten instances
solved in each row are identical to those in the corresponding rows of Tables 6 and 7.
Here the columns show the CPU time in seconds of the following solution methods:

• CPLEX: Solve BKP] directly by using CPLEX.

• PEG-CPLEX: Apply the pegging test, and then solve the reduced problem by
CPLEX.

• PEG-XPRESS: Also, solve the reduced problem by XPRESS-MP.

12

Page 12 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

*********** [[Insert table 10 about here]] **********

We observe the pegging test effective as a pre-processing in solving the problem,
and PEG-BAB is substantially advantageous to these commercial solvers.

7.6 Small and strongly correlated instances

In standard 0-1 knapsack problems, it is known that small instances are
often harder to solve to optimality than the larger ones [22]. Table 11
summerizes the result of experiments for BKP with n between 100-500,
where we compare PEG-CPLEX and VPEG-BAB. As in previous tables,
each row is the average over the solved cases out of 10 randomly generated
instances, and n′′ is the number of variables in the reduced problem.

From this, we observe that UNCOR and WEAK instances of this size
are easily solved by both CPLEX and VPEG-BAB. On the other hand, in
STRONG we often encounter instances that can not be solved within the
fixed time limit of 1800 seconds, while some instances are solved within a few
seconds. Especially, in STRONG case the virtual pegging method becomes
less effective as n increases, and this makes VPEG-BAB unsatisfactory in
such a case.

*********** [[Insert table 11 about here]] **********

8 Conclusion

We gave heuristic and exact algorithms to solve BKP. In addition to the surrogate
relaxation, the pegging test and the surrogate-based branch-and-bound method, we
presented a virtual pegging algorithm. For problems with n ≤ 16000 we were able to
obtain approximate solutions of quite high accuracy in less than a few seconds, and
except for some instances, exact solutions were obtained by VPEG-BAB in less than
a few minutes on an ordinary computer. However, strongly correlated instances were
difficult to solve by this method, unless the problem size was very small.

Acknowledgements The authors are greatful to anonymous referees for their
careful reading of the manuscript and helpful comments.

13

Page 13 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

References

[1] Kellerer, H., Pferschy, U. and Pisinger, D., 2004, Knapsack Problems(Berlin:
Springer).

[2] Martello, S. and Toth, P., 1990, Knapsack Problems: Algorithms and Computer
Implementations, (New York: Wiley).

[3] Garey, M.R. and Johnson, D.S., 1979, Computers and Intractability: A Guide to
the Theory of NP-Completeness(New York: Freeman and Company).

[4] Eben-Chaime, M., 1996, Parametric solution for linear bicriteria knapsack models.
Management Science, 42, 1565-1575.

[5] Kouvelis, P. and Yu, G., 1997, Robust Discrete Optimization and Its Applica-
tions(Dordrecht: Kluwer).

[6] Zhang, C.-N. and Ong, H.-L., 2004, Solving the bicriteria zero-one knapsack prob-
lem by an efficient LP-based heuristic. European Journal of Operational Research,
159, 545-557.

[7] Fourer, R., 1999, Software survey: linear programming. OR/MS Today, 26, 64-71.

[8] Yu, G., 1996, On the max-min 0-1 knapsack problem with robust optimization
applications. Operations Research, 44, 407-415.

[9] Iida, H., 1999, A note on the max-min 0-1 knapsack problem. Journal of Combi-
natorial Optimization, 3, 89-94.

[10] Taniguchi, F., Yamada, T. and Kataoka, S., 2007, Heuristic and exact
algorithms for the max-min optimization of the multi-criteria knapsack
problem. to appear in Computers & Operations Research.

[11] You, B.-J. and Yamada, T., 2007, A virtual pegging approach to the
precedence constrained knapsack problem. European J. Operational Re-
search, 183, 618-632.

[12] Glover, F., 1975, Surrogate constraint duality in mathematical programming. Op-
erations Research, 23, 434-451.

[13] Fisher, M., 2004, The Lagrangian relaxation method for solving integer program-
ming problems. Management Science, 50, 1861-1871.

[14] Wolsey, L.A., 1998, Integer Programming(New York: Wiley).

[15] Dembo, R.S. and Hammer, P.L., 1980, A reduction algorithm for knapsack prob-
lems. Methods of Operations Research, 36, 49-60.

14

Page 14 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

[16] Fayard, D. and Plateau, G., 1975, Resolution of the 0-1 knapsack problem: com-
parison of methods. Mathematical Programming, 8, 272-307.

[17] Ingargiola, G.P. and Korsh, F.F., 1973, Reduction algorithms for zero-one single
knapsack problems. Management Science, 20, 460-463.

[18] NUOPT Ver. 3.3.0, 2002, http://www.msi.co.jp/nuopt.

[19] Lueker, G., 1982, On the average difference between the solutions to linear and
integer knapsack problems. Applied Probability-Computer Science, The Interface
I, 489-504.

[20] CPLEX 10.0, ILOG, 2007, http://www.ilog.com/products/cplex/news/whatsnew.
cfm.

[21] XPRESS-MP release 2005B, Dash Optimization, 2005, http://www.dashoptimiza-
tion.com.

[22] Balas, E. and Zemel, E., 1980, An algorithm for large zero-one knapsack
problems. Operations Research, 28, 1130-1154.

15

Page 15 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 1: Data for the example of Section 6.

j 1 2 3 4 5 6 7 8 9 10
wj 618 595 586 427 695 816 833 624 353 611
p1

j 298 97 24 866 936 252 135 535 386 399
p2

j 274 102 129 433 859 674 114 407 561 212

16

Page 16 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 2: Binary search process to find λ†.

cycle λL λR λ1 z̄(λ) z(λ) z1 − z2

0 0.000 1.000 0.500 2719.03 2260 +
1 0.000 0.500 0.250 2655.12 2260 +
2 0.000 0.250 0.125 2657.80 2440 −
3 0.125 0.250 0.188 2655.04 2440 −
4 0.188 0.250 0.219 2653.67 2440 −
5 0.219 0.250 0.234 2652.98 2440 −
6 0.234 0.250 0.242 2653.12 2260 +
7 0.234 0.242 0.238 2652.80 2440 −
8 0.238 0.242 0.240 2652.72 2440 −
9 0.240 0.242 0.241 2652.88 2260 +

10 0.240 0.241 0.241 2652.75 2260 +

17

Page 17 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 3: Threshold θj and pegging result.

j 9 5 4 8 6 1 10 3 2 7
wj 353 695 427 624 816 618 611 586 595 833

p̄j(λ†) 518.9 877.5 537.2 437.8 572.4 279.8 257.0 103.7 100.8 119.8
θj 271.2 390.0 237.7 0.1 0.0 -153.7 -171.6 -307.3 -316.6 -465.3
x?

j 1 1 1 - - - - 0 0 0

18

Page 18 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 4: Upper and lower bounds and pegging result (UNCOR case).

ρ n z̄ z gap rerror (%) n′ CPU0

0.25 2000 539586.4 539419.6 166.8 0.031 609.1 0.06
4000 1079071.4 1078929.9 141.5 0.013 1043.2 0.16
6000 1624944.1 1624749.8 194.3 0.012 2090.5 0.42
8000 2154276.5 2154148.5 128.0 0.006 1848.7 0.52

10000 2690716.2 2690584.6 131.6 0.005 2414.9 0.64
12000 3230946.9 3230737.7 209.2 0.006 4397.7 1.53
14000 3771746.4 3771598.3 148.1 0.004 3714.2 1.40
16000 4312959.8 4312774.5 185.3 0.004 5194.8 2.39

0.50 2000 763914.3 763752.9 161.4 0.021 690.5 0.07
4000 1525945.2 1525821.5 123.7 0.008 1101.2 0.26
6000 2290905.1 2290762.2 142.9 0.006 1721.7 0.41
8000 3043770.1 3043450.6 319.5 0.010 4697.2 1.47

10000 3803532.2 3803369.6 162.6 0.004 3591.2 1.32
12000 4561522.5 4561323.5 199.0 0.004 4671.0 2.29
14000 5328017.5 5327728.5 289.0 0.005 7073.0 4.26
16000 6089334.2 6089105.5 228.7 0.004 7195.4 4.00

0.75 2000 918868.2 918757.5 110.7 0.012 435.6 0.05
4000 1838039.1 1837938.1 101.0 0.005 798.4 0.23
6000 2754998.5 2754871.3 127.2 0.005 1412.7 0.50
8000 3665178.5 3665075.7 102.8 0.003 1657.0 0.38

10000 4579119.1 4579022.7 96.4 0.002 1913.0 1.02
12000 5490787.8 5490581.2 206.6 0.004 4365.2 2.23
14000 6413209.0 6413037.1 171.9 0.003 3938.6 3.02
16000 7326788.9 7326515.2 273.7 0.004 6804.6 5.32

19

Page 19 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 5: Upper and lower bounds and pegging result (WEAK case)

ρ n z̄ z gap rerror (%) n′ CPU0

0.25 2000 357159.9 357120.3 39.6 0.001 720.7 0.08
4000 714453.0 714417.4 35.6 0.005 1204.7 0.21
6000 1072339.1 1072307.9 31.2 0.003 1724.4 0.51
8000 1429168.4 1429140.6 27.8 0.002 2089.0 0.57

10000 1786782.7 1786748.8 33.9 0.002 3078.3 0.90
12000 2143235.6 2143196.7 38.9 0.002 4288.6 1.71
14000 2501692.2 2501650.9 41.3 0.002 5220.0 2.42
16000 2859882.9 2859830.3 52.6 0.002 7239.7 3.82

0.50 2000 651452.4 651415.3 37.1 0.006 805.4 0.10
4000 1302535.2 1302488.6 46.6 0.004 1918.8 0.39
6000 1954819.6 1954775.3 44.3 0.002 2667.3 0.58
8000 2606223.9 2606167.5 56.4 0.002 4530.3 1.44

10000 3257987.2 3257950.2 37.0 0.001 4064.5 1.84
12000 3908854.0 3908793.7 60.3 0.002 7088.5 3.34
14000 4561511.9 4561454.2 57.7 0.001 7603.3 4.82
16000 5213789.2 5213744.0 45.2 0.001 7604.7 4.99

0.75 2000 932043.5 931997.9 45.6 0.005 849.1 0.14
4000 1863882.4 1863840.3 42.1 0.002 1648.4 0.44
6000 2796998.2 2796951.7 46.5 0.002 2555.2 0.73
8000 3729220.2 3729178.1 42.1 0.001 3199.7 1.07

10000 4662129.1 4662087.8 41.3 0.001 3790.4 2.34
12000 5593840.7 5593811.9 28.8 0.001 3472.7 3.00
14000 6527118.2 6527070.5 47.7 0.001 6112.9 3.91
16000 7460437.6 7460387.5 50.1 0.001 7433.5 5.87

20

Page 20 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 6: Exact solution (UNCOR case).

ρ n
PEG-NUOPT PEG-BAB
CPU #sol BBN (×106) CPU #sol

0.25 2000 90.1 10 3.02 1.31 10
4000 383.5 10 11.98 5.03 10
6000 478.6 4 68.69 28.33 10
8000 608.2 3 22.48 9.72 10

10000 - 0 318.88 129.68 9
12000 - 0 60.19 25.49 6
14000 1129.2 1 142.23 59.02 9
16000 1100.5 2 618.84 254.49 9

0.50 2000 148.1 10 4.01 1.73 10
4000 630.4 5 19.47 8.21 10
6000 752.7 4 200.81 81.57 10
8000 828.1 1 105.55 45.00 8

10000 488.3 1 165.03 68.55 10
12000 871.9 1 529.60 218.42 8
14000 - 0 38.48 16.18 3
16000 - 0 101.27 229.45 8

0.75 2000 93.3 10 2.79 1.22 10
4000 418.8 8 6.79 3.01 10
6000 225.8 4 13.69 6.21 10
8000 705.1 6 64.44 26.50 8

10000 535.8 2 32.57 14.18 9
12000 1119.1 1 65.21 29.17 7
14000 - 0 29.55 13.60 8
16000 1078.4 1 61.65 28.15 5

21

Page 21 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 7: Exact solution (WEAK case).

ρ n
PEG-NUOPT PEG-BAB
CPU #sol BBN (×106) CPU #sol

0.25 2000 222.3 10 5.48 2.31 10
4000 616.5 6 7.84 3.43 10
6000 725.5 2 61.53 25.50 10
8000 1537.9 2 18.49 8.13 10

10000 - 0 19.73 8.83 8
12000 - 0 201.81 84.09 10
14000 934.0 1 23.67 12.53 10
16000 - 0 127.45 309.85 7

0.50 2000 545.9 10 5.87 2.51 10
4000 693.5 3 24.90 10.60 10
6000 761.4 3 108.03 44.83 10
8000 694.9 1 17.81 9.46 7

10000 - 0 36.42 17.06 9
12000 - 0 591.22 244.76 8
14000 - 0 727.68 303.20 9
16000 - 0 110.93 51.25 8

0.75 2000 399.7 10 7.07 3.05 10
4000 978.8 4 13.89 6.15 10
6000 218.4 1 226.01 92.21 10
8000 1574.7 1 24.62 11.13 9

10000 998.6 3 25.32 13.17 8
12000 - 0 23.77 12.85 8
14000 1208.0 2 171.23 74.40 9
16000 - 0 154.53 70.37 8

22

Page 22 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 8: Exact solution by VPEG-BAB (UNCOR case).

ρ n α n′′ z? BBN (×106) CPU #sol
0.25 2000 28.89 115.7 539572.2 1.24 0.55 10

4000 17.20 131.8 1079062.3 2.89 1.27 10
6000 12.61 137.5 1624937.1 10.64 4.48 10
8000 10.10 148.9 2154272.2 5.04 2.22 10

10000 8.48 158.3 2690712.3 40.07 16.45 10
12000 7.35 167.1 3230943.6 38.94 16.03 10
14000 6.51 173.7 3771743.7 17.11 7.26 10
16000 5.86 174.0 4312957.7 17.58 7.49 10

0.50 2000 28.89 132.7 763902.3 1.72 0.75 10
4000 17.20 167.1 1525938.1 7.52 3.13 10
6000 12.61 183.6 2290900.8 12.04 5.01 10
8000 10.10 192.6 3043766.6 17.92 7.43 10

10000 8.48 207.2 3803529.5 14.19 5.94 10
12000 7.35 211.0 4561519.8 25.63 10.62 10
14000 6.51 218.4 5328015.1 391.06 160.32 10
16000 5.86 229.6 6089332.0 44.27 18.24 10

0.75 2000 28.89 118.7 918854.7 1.64 0.72 10
4000 17.20 140.9 1838031.7 2.49 1.09 10
6000 12.61 159.4 2754994.0 5.72 2.46 10
8000 10.10 170.1 3665174.7 35.04 14.46 10

10000 8.48 170.1 4579116.2 19.10 7.94 10
12000 7.35 177.2 5490784.4 65.82 27.89 10
14000 6.51 185.5 6413206.3 48.47 19.99 10
16000 5.86 190.8 7326786.7 189.54 81.75 10

23

Page 23 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 9: Exact solution by VPEG-BAB (WEAK case).

ρ n α n′′ z? BBN (×106) CPU #sol
0.25 2000 28.89 500.0 357157.3 4.55 1.85 10

4000 17.20 602.4 714451.8 5.15 2.13 10
6000 12.61 694.0 1072338.4 14.40 5.86 10
8000 10.10 755.7 1429167.8 7.28 3.07 10

10000 8.48 788.1 1786782.0 91.46 37.46 10
12000 7.35 821.2 2143235.3 10.64 4.51 10
14000 6.51 836.3 2501691.6 6.29 2.83 10
16000 5.86 879.8 2859882.3 160.19 238.81 10

0.50 2000 28.89 629.0 651449.6 5.43 2.21 10
4000 17.20 811.8 1302534.1 8.81 3.58 10
6000 12.61 890.8 1954818.7 12.01 4.91 10
8000 10.10 940.7 2606223.1 588.09 377.09 10

10000 8.48 991.2 3257986.8 10.20 4.27 10
12000 7.35 1020.6 3908853.7 160.21 64.09 10
14000 6.51 1058.3 4561511.8 157.68 62.61 10
16000 5.86 1110.8 5214818.3 41.33 16.70 8

0.75 2000 28.89 564.1 932040.4 6.95 2.82 10
4000 17.20 699.5 1863881.2 9.39 3.82 10
6000 12.61 738.7 2796997.4 140.28 56.95 10
8000 10.10 810.2 3729219.5 29.56 11.99 10

10000 8.48 843.6 4662087.1 161.29 66.85 9
12000 7.35 891.3 5594031.2 376.50 149.46 9
14000 6.51 918.3 6527118.0 72.05 28.84 10
16000 5.86 930.2 7460150.6 30.00 12.29 9

24

Page 24 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 10: CPU seconds of IP solvers vs. PEG-BAB for instances with ρ = 0.25.

Problem n CPLEX PEG-CPLEX PEG-XPRESS PEG-BAB
UNCOR 2000 15.46 6.01 9.64 0.41

4000 55.33 16.29 21.61 1.57
8000 266.31 81.59 87.33 3.11

WEAK 2000 49.11 21.21 21.13 0.75
4000 66.83 22.55 31.86 1.19
8000 147.53 62.32 167.18 10.80

25

Page 25 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 11: Small size instances.

Problem n
PEG-CPLEX VPEG-BAB
CPU #sol n′′ CPU #sol

UNCOR 100 0.06 10 31.8 0.00 10
200 0.12 10 43.9 0.00 10
300 0.40 10 58.7 0.01 10
400 0.81 10 65.3 0.01 10
500 0.56 10 71.0 0.01 10

WEAK 100 0.16 10 81.9 0.00 10
200 0.57 10 149.8 0.01 10
300 1.60 10 191.6 0.05 10
400 1.23 10 171.3 0.06 10
500 2.17 10 317.0 0.06 10

STRONG 100 0.22 10 64.0 0.75 10
200 19.40 9 150.9 18.82 8
300 10.93 9 239.1 41.76 6
400 1.16 9 313.9 22.82 5
500 1.37 6 384.5 101.48 1

26

Page 26 of 26

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

