

A virtual pegging approach to the max-min optimization of the bi-criteria knapsack problem

Journal:	International Journal of Computer Mathematics
Manuscript ID:	GCOM-2007-0049.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	12-Aug-2007
Complete List of Authors:	Taniguchi, Fumiaki; National Defense Academy, Computer Science Yamada, Takeo; National Defense Academy, Computer Science Kataoka, Seiji; National Defense Academy, Computer Science
Keywords:	Knapsack problem, Bi-objective combinatorial optimization, Pegging test, 90C27, 65K05

Scholarone"
Manuscript Central

A virtual pegging approach to the max-min optimization of the bi-criteria knapsack problem

[^0]
1 Introduction

Knapsack problem [1, 2] has been studied extensively in operations research and computer science. Although it is an $\mathcal{N} \mathcal{P}$-hard [3] combinatorial optimization problem, it can be solved relatively easily in practice. In this article, we are concerned with a variation of this problem, where the values of items differ under possible two scenarios. By p_{j}^{k} we denote the value of item j under scenario $k(=1,2)$, and x_{j} is the decision variable that takes value 1 if item j is adopted and 0 otherwise for $j=1,2, \ldots, n$. Then,

$$
\begin{equation*}
z^{k}(x):=\sum_{j=1}^{n} p_{j}^{k} x_{j} \tag{1}
\end{equation*}
$$

is the total value of the solution $x=\left(x_{j}\right)$ under scenario k, and thus we have two objective functions to maximize. On the other hand, the weight of item j is assumed to be constant w_{j} through all scenarios, and the knapsack capacity is c.

Then, we formulate the bi-objective max-min knapsack problem $[4,5,6]$ as

BKP:

$$
\begin{array}{ll}
\text { maximize } \quad & \min \left\{\sum_{j=1}^{n} p_{j}^{1} x_{j}, \sum_{j=1}^{n} p_{j}^{2} x_{j}\right\} \\
\text { subject to } \quad & \sum_{j=1}^{n} w_{j} x_{j} \leq c, \\
& x_{j} \in\{0,1\}, \quad j=1,2 \ldots, n . \tag{4}
\end{array}
$$

Without much loss of generality, we assume in the sequel that
$\mathbf{A}_{1}: p_{j}^{k}(j=1,2, \ldots, n ; k=1,2)$ are non-negative integers.
$\mathbf{A}_{2}: w_{j}(j=1,2, \ldots, n)$ and c are positive integers.
$\mathbf{A}_{3}: \sum_{j=1}^{n} w_{j}>c$.
By rewriting BKP as the following equivalent linear integer programming problem, we may solve small instances using free or commercial IP solvers [7].

BKP ${ }^{\sharp}$:

$$
\begin{array}{ll}
\operatorname{maximize} & v \\
\text { subject to } & \sum_{j=1}^{n} p_{j}^{k} x_{j} \geq v, k=1,2 \tag{6}
\end{array}
$$

(3), (4), $v \geq 0$.

Bi-objective knapsack problem has been studied by Eben-Chaime [4] and Zhang et al. [6], who presented parametric or heuristic algorithms to solve the problem. Yu [8], Iida [9] and Kouvelis [5] gave branch-and-bound algorithms for the multi-scenario
max-min knapsack problem (MKP) respectively, and solved problems with $n \leq 90$ items and 30 scenarios.

In a companion paper [10], we gave reduction and exact algorithms to solve MKP with more than two scenarios. Here, we focus on the case of two scenarios, and present an algorithm that can solve much larger problems than the previous algorithms by employing a virtual pegging approach [11]. First, we introduce in Section 2 the surrogate relaxation to find upper and lower bounds quickly. Then in Section 3, following [10], we introduce a pegging test to reduce the size of the problem, and extend this to the virtual pegging test in Section 4. Through these, the original BKP is reduced (often remarkably) in size, and finally we solve the reduced problem by the 'surrogate relaxation-based' branch-and-bound algorithm of Section 5. Through this approach, we are often able to solve BKPs with up to 16000 items in less than a few minutes. However, in strongly correlated instances, we frequently encounter difficulty in solving small problems with a few hundred items.

2 Upper and lower bounds

This section derives an upper bound by applying the surrogate relaxation $[12,8]$ to BKP ${ }^{\sharp}$. At the same time, we obtain an approximate solution, and thus a lower bound to BKP.

2.1 Surrogate relaxation

For an arbitrary $\lambda \in[0,1]$ we define the surrogate relaxation of BKP as follows.
$\operatorname{SBKP}(\lambda):$

$$
\begin{array}{ll}
\text { maximize } & \sum_{j=1}^{n} \bar{p}_{j}(\lambda) x_{j} \\
\text { subject to } & \sum_{j=1}^{n} w_{j} x_{j} \leq c, \\
& 0 \leq x_{j} \leq 1, \quad j=1, \ldots, n \tag{9}
\end{array}
$$

where

$$
\begin{equation*}
\bar{p}_{j}(\lambda):=\lambda p_{j}^{1}+(1-\lambda) p_{j}^{2} . \tag{10}
\end{equation*}
$$

Here, we note that x_{j} is also relaxed to a continuous variable.
For a fixed $\lambda \in[0,1], \operatorname{SBKP}(\lambda)$ is the continuous knapsack problem whose solution is easily found [2]. Let $\bar{x}(\lambda)=\left(\bar{x}_{j}(\lambda)\right)$ denote an optimal solution to $\operatorname{SBKP}(\lambda)$ with the corresponding optimal value $\bar{z}(\lambda)$, and z^{\star} is the optimal objective value to the original BKP. Then, we have

$$
z^{\star} \leq \bar{z}(\lambda)
$$

i.e., $\bar{z}(\lambda)$ gives an upper bound to BKP.

Analogous to the Lagrangian relaxation $[13,14], \bar{z}(\lambda)$ satisfies the following properties [10].

Proposition 1

(i) $\bar{z}(\lambda)$ is a piecewise-linear, convex function of λ.
(ii) If $\bar{z}(\lambda)$ is differentiable at λ,

$$
\begin{equation*}
d \bar{z}(\lambda) / d \lambda=z^{1}(\bar{x}(\lambda))-z^{2}(\bar{x}(\lambda)) . \tag{11}
\end{equation*}
$$

(iii) For $\lambda \in[0,1]$, if $\bar{x}(\lambda)$ is feasible to BKP and

$$
\begin{equation*}
z^{1}(\bar{x}(\lambda))=z^{2}(\bar{x}(\lambda)) \tag{12}
\end{equation*}
$$

then $\bar{x}(\lambda)$ is an optimal solution to BKP.

2.2 Binary search method

For an arbitrary $\lambda \in[0,1], \bar{z}(\lambda)$ gives an upper bound to BKP. However, to find an upper bound with $\bar{z}(\lambda)$ as small as possible, we solve the following surrogate dual problem [12]

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{z}(\lambda) \\
\text { subject to } & \lambda \in[0,1]
\end{array}
$$

Then, taking (11) into account, the following binary search method solves the dual problem.

Algorithm BINARY

Step 1. Let $\lambda_{L}:=0$ and $\lambda_{R}:=1$.
Step 2. Let $\lambda:=\left(\lambda_{L}+\lambda_{R}\right) / 2$ and solve $\operatorname{SBKP}(\lambda)$ to obtain $\bar{x}(\lambda)$ and $\bar{z}(\lambda)$.
Step 3. If $\lambda_{R}-\lambda_{L}<\epsilon$, or the condition (12) is met, go to Step 5.
Step 4. If $z^{1}(\bar{x}(\lambda))>z^{2}(\bar{x}(\lambda))$ let $\lambda_{R}:=\lambda$, else let $\lambda_{L}:=\lambda$. Go to Step 2.
Step 5. Output $\bar{x}(\lambda)$ and $\bar{z}(\lambda)$, and stop.

Here ϵ is a sufficiently small 'tolerance limit' of computation, and by λ^{\dagger} we denote λ upon termination of the above algorithm. Thus, we obtain an optimal upper bound to BKP as $\bar{z}:=\bar{z}\left(\lambda^{\dagger}\right)$.

2.3 Lower bounds

For an arbitrary $\lambda \in[0,1], \bar{x}(\lambda)$ satisfies (3). If this also satisfies the $0-1$ constraint (4), this is feasible to BKP; hence, the corresponding objective value gives a lower bound to the original problem. If, on the other hand, some components of $\bar{x}(\lambda)$ violate (4), we still obtain a feasible solution by replacing all the fractional components with 0 . In BINARY, each time we solve $\operatorname{SBKP}(\lambda)$ we thus get a lower bound, and the largest one found this way gives the best lower bound. This is henceforth denoted as \underline{z}.

3 Pegging test

Pegging test $[15,16,17]$ is well known for the ordinary $0-1$ knapsack problem. By applying this test, some variables are fixed either at 0 or 1 , and after removing these we obtain a problem of (often significantly) reduced size. In this section, we show that the same pegging test can be applied to BKP by introducing the surrogate relaxation first, as we have shown in [10] for MKP in general.

Assume that we have the optimal surrogate multiplier λ^{\dagger}, the corresponding upper bound $\bar{z}=\bar{z}\left(\lambda^{\dagger}\right)$ and a lower bound \underline{z} to BKP, and let us consider $\operatorname{SBKP}\left(\lambda^{\dagger}\right)$. In what follows, we write $\bar{p}_{j}:=\bar{p}_{j}\left(\lambda^{\dagger}\right)$ for simplicity. For an arbitrary $u \in\{1,2, \ldots, n\}$, let $\bar{z}_{u, \delta}$ denote the optimal objective value to $\operatorname{SBKP}\left(\lambda^{\dagger}\right)$ with an additional constraint $x_{u}=\delta$, where δ is either 0 or 1 . Then, if

$$
\begin{equation*}
\bar{z}_{u, 0}<\underline{z} \tag{13}
\end{equation*}
$$

it is not possible that $x_{u}^{\star}=0$ in any optimal solution $x^{\star}=\left(x_{j}^{\star}\right)$ to BKP, i.e., we necessarily have $x_{u}^{\star}=1$. Similarly, in the case that

$$
\begin{equation*}
\bar{z}_{u, 1}<\underline{z} \tag{14}
\end{equation*}
$$

$x_{u}^{\star}=0$ must follow.
To determine (13) and (14) quickly, the following shortcut is usually taken. First of all, without loss of generality, we assume the following.
\mathbf{B}_{1} : The items are numbered in the non-increasing order of \bar{p}_{j} / w_{j}.

Let W_{j} and P_{j} be, respectively the accumulated weight and profit, i.e.,

$$
W_{j}:=\sum_{i=1}^{j} w_{i}, \quad P_{j}:=\sum_{i=1}^{j} \bar{p}_{i}
$$

where $W_{0}=P_{0}=0$. Then, the broken line connecting $\left\{\left(W_{j}, P_{j}\right) \mid j=0, \cdots, n\right\}$ gives a piecewise-linear, monotonically non-decreasing, concave function [2].

The intersection of this broken line with the vertical line $W=c$ gives an upper bound \bar{z}. The item s satisfying $W_{s-1} \leq c<W_{s}$ is said to be the critical item. Here, if for any $u<s$ we set $x_{u}=0$, it is known $[15,16]$ that

$$
\begin{equation*}
\bar{z}_{u, 0} \leq \bar{z}-\theta_{u} \tag{15}
\end{equation*}
$$

where we define

$$
\begin{equation*}
\theta_{u}:=\bar{p}_{u}-\left(\bar{p}_{s} / w_{s}\right) w_{u} \tag{16}
\end{equation*}
$$

This is referred to as the threshold for item u. Then, we have the following [10].

Theorem 1 For any optimal solution $x^{\star}=\left(x_{j}^{\star}\right)$ to BKP, both of the followings hold.
(i) $\bar{z}-\underline{z}<\quad \theta_{j} \Rightarrow x_{j}^{\star}=1$,
(ii) $\bar{z}-\underline{z}<-\theta_{j} \Rightarrow x_{j}^{\star}=0$.

For a pair of upper and lower bounds, by applying this theorem some variables are fixed, and removing these variables we obtain a BKP of (often significantly) reduced size.

4 Virtual pegging test

In Theorem 1 we see that the smaller the gap $=\bar{z}-\underline{z}$ between the upper and lower bounds, the more variables are fixed. If the gap is not small enough, the effectiveness of the pegging method is limited, since the size of the problem will not be reduced much in such a case. In the present section, we introduce a virtual pegging test [11], which we originally presented for the precedence constrained knapsack problem, to BKP to cope with this problem.

4.1 Virtual pegging principle

In the pegging test based on Theorem 1, the upper and lower bounds necessarily satisfy

$$
\underline{z} \leq z^{\star} \leq \bar{z}
$$

However, we may carry out this test using an arbitrary value $l \leq \bar{z}$ as an 'assumed' lower bound.

Let the set of all the feasible solutions to BKP be X, i.e.,

$$
X:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \sum_{j=1}^{n} w_{j} x_{j} \leq c, x_{j} \in\{0,1\}, \forall j\right\}
$$

Then, if we carry out the pegging test (Theorem 1) with \bar{z} and l as upper and lower bounds, some x_{j} 's will be 'fixed' either at 0 or 1 . But this is not necessarily a correct pegging because l is not a guaranteed lower bound to BKP. Let the index sets of variables, which are (temporally) fixed at 0 and 1 by Theorem 1 , be $F_{0}(l)$ and $F_{1}(l)$ respectively. Then, we have the following reduced problem.
$\mathbf{R}(l):$

$$
\begin{array}{ll}
\operatorname{maximize} & \min \left\{\sum_{j=1}^{n} p_{j}^{1} x_{j}, \sum_{j=1}^{n} p_{j}^{2} x_{j}\right\} \\
\text { subject to } & x \in X, \\
& x_{j}=0, \forall j \in F_{0}(l), \\
& x_{j}=1, \forall j \in F_{1}(l) . \tag{19}
\end{array}
$$

The optimal objective value to this problem will be denoted as z_{l}^{\star}. If $\mathrm{R}(l)$ is infeasible, we define $z_{l}^{\star}:=-\infty$. Then, for the optimal objective value z^{\star} to BKP we have the following [11].

Theorem 2

(i) $l \leq z^{\star} \Rightarrow z_{l}^{\star}=z^{\star}$.
(ii) $l>z^{\star} \Rightarrow z_{l}^{\star} \leq z^{\star}$.
(iii) $l \leq l^{\prime} \Rightarrow z_{l}^{\star} \geq z_{l^{\prime}}^{\star}$.
(iv) $l \leq z_{l}^{\star} \Rightarrow z_{l}^{\star}=z^{\star}$.

As a direct corollary to (iii), if $\mathrm{R}(l)$ is infeasible, then $\mathrm{R}\left(l^{\prime}\right)$ is also infeasible for all $l^{\prime} \geq l$.

4.2 A virtual pegging algorithm

For an arbitrary value $l \leq \bar{z}$, by carrying out the virtual pegging test and solving the reduced problem $\mathrm{R}(l)$, we obtain z_{l}^{\star}. Then, if (iv) is satisfied in Theorem 2, BKP is solved. In addition, if gap $:=\bar{z}-l$ is small, it is probable that $R(l)$ is much smaller than the original in size. The reduced $\mathrm{R}(l)$ may be solved by some free or commercial IP solver, but in section 5 we present a branch-and-bound algorithm to solve this problem, and the following algorithm solves BKP completely.

Algorithm VIRTUAL_PEGGING

Step 1. Set $l:=\max \{\bar{z}-\alpha, \underline{z}\}$.
Step 2. Carry out the pegging test with l and \bar{z} as lower and upper bounds, solve $\mathrm{R}(l)$ (by BRANCH_AND_BOUND given in Section 5) and obtain z_{l}^{\star}.
Step 3. If $l \leq z_{l}^{\star}$, go to Step 5 .
Step 4. Update $\underline{z}:=\max \left\{\underline{z}, z_{l}^{\star}\right\}$ and $l:=\max \{l-\alpha, \underline{z}\}$, and go to Step 2 .
Step 5. The optimal value is obtained as $z^{\star}=z_{l}^{\star}$.

Here, α is an arbitrary small margin between the upper bound and the initially assumed lower bound. We set $l:=\bar{z}-\alpha$ at first if this is not smaller than \underline{z}. Then, if the optimal value is not found in Step $3, l$ is further lowered by α, and we repeat Steps 2-4 all over again until an optimal solution is found.

5 Surrogate-based branch-and-bound

For two disjoint subsets F_{0} and F_{1} of $\{1,2, \ldots, n\}$ we consider the subproblem (also referred to as a 'node') of BKP as
$\mathbf{P}\left(F_{0}, F_{1}\right):$

$$
\begin{array}{ll}
\operatorname{maximize} & \min \left\{\sum_{j=1}^{n} p_{j}^{1} x_{j}, \sum_{j=1}^{n} p_{j}^{2} x_{j}\right\} \\
\text { subject to } & x \in X, \\
& x_{j}=0, \forall j \in F_{0}, \\
& x_{j}=1, \forall j \in F_{1} .
\end{array}
$$

Here $F_{0}\left(F_{1}\right)$ is the set of variables fixed at $0\left(1\right.$, resp.), and by $z^{\star}\left(F_{0}, F_{1}\right)$ we denote the optimal objective value to this problem. Clearly $\mathrm{P}(\emptyset, \emptyset)$ is identical to BKP, and the problem $\mathrm{P}\left(F_{0}(l), F_{1}(l)\right)$ is identical to $\mathrm{R}(l)$.

Next, using λ^{\dagger} obtained by BINARY we define its relaxation as
$\mathbf{S P}\left(F_{0}, F_{1}\right):$

$$
\begin{array}{ll}
\text { maximize } & \sum_{j=1}^{n} \bar{p}_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} w_{j} x_{j} \leq c, \\
& x_{j}=0, \forall j \in F_{0}, \\
& x_{j}=1, \forall j \in F_{1}, \\
& 0 \leq x_{j} \leq 1, \forall j \notin F_{0} \cup F_{1},
\end{array}
$$

and its optimal solution $\bar{x}\left(F_{0}, F_{1}\right)$ with the corresponding objective value $\bar{z}\left(F_{0}, F_{1}\right)$. Note that $\mathrm{SP}\left(F_{0}, F_{1}\right)$ is a continuous knapsack problem which is easily solved. If these are infeasible, we define $z^{\star}\left(F_{0}, F_{1}\right):=-\infty$ and $\bar{z}\left(F_{0}, F_{1}\right):=-\infty$, respectively.

Then, a branch-and-bound algorithm [14] can be constructed as follows. We call BRANCH_AND_BOUND in Step 2 of the VIRTUAL_PEGGING with $F_{0}:=F_{0}(l)$ and $F_{1}:=F_{1}(l)$, and upon termination of this we obtain the optimal objective value as $z_{\text {opt }}^{\star}:=z_{l}^{\star}$.

Algorithm BRANCH_AND_BOUND $\left(F_{0}, F_{1}\right)$
Step 1. (Initialization) Let the incumbent optimal objective value be $z_{\mathrm{opt}}^{\star}=-\infty$.
Step 2. (Evaluate the current subproblem) Solve $\mathrm{SP}\left(F_{0}, F_{1}\right)$ and obtain $\bar{x}\left(F_{0}, F_{1}\right)$ and $\bar{z}\left(F_{0}, F_{1}\right)$.
Step 3. (Feasible solution) If $\bar{x}\left(F_{0}, F_{1}\right)$ is feasible to $\mathrm{P}\left(F_{0}, F_{1}\right)$, go to Step 6.
Step 4. (Inprospective node) If $\bar{z}\left(F_{0}, F_{1}\right) \leq z_{\mathrm{opt}}^{\star}$, return.
Step 5. (Branch and recursive call) Do the followings.
(i) Find $u:=\min \left\{j \mid j \notin F_{0} \cup F_{1}\right\}$.
(ii) Call BRANCH_AND_BOUND $\left(F_{0} \cup\{u\}, F_{1}\right)$.
(iii) Call BRANCH_AND_BOUND $\left(F_{0}, F_{1} \cup\{u\}\right)$.
(iv) return.

Step 6. (Update incumbent) If $z_{\mathrm{opt}}^{\star}<\bar{z}\left(F_{0}, F_{1}\right)$, update $z_{\mathrm{opt}}^{\star}:=\bar{z}\left(F_{0}, F_{1}\right)$ and return.

By assumption \mathbf{B}_{1} and the definition of u above, the branching is made in the nonincreasing order of \bar{p}_{j} / w_{j} among the unfixed variables. Also, by the recursive structure of the algorithm, subproblems are generated and examined in a depth-first fashion. The characteristic feature of this algorithm is that the upper bound $\bar{z}\left(F_{0}, F_{1}\right)$ can be computed quite rapidly, since $\mathrm{SP}\left(F_{0}, F_{1}\right)$ is a continuous knapsack problem.

6 A numerical example

Let us consider BKP with $n=10, c=2500$ and the data of Table 1. Table 2 shows the binary search process, where we obtain $\lambda_{1}^{\dagger}=0.241, \bar{z}=2652.75$ and $\underline{z}=2440$. The gap between the bounds is 212.75 . Table 3 shows the items in the non-increasing order of \bar{p}_{j} / w_{j}. Here the critical item is $s=6$, and the thresholds are shown in the row of θ_{j}. The row of x_{j}^{\star} is the result of pegging, where '-' indicates the unfixed variables.

********** [[Insert tables 1-3 about here]] ${ }^{* * * * * * * * * * * ~}$

Solving this BKP directly by calling BRANCH_AND_BOUND (\emptyset, \emptyset), we obtain the optimal $z^{\star}=2440$ after examining 29 branch-and-bound nodes. If we apply the same method after reducing the problem by the pegging test (Theorem 1) with $\bar{z}-\underline{z}=212.75$, the same solution is obtained after generating 15 subproblems. By the virtual pegging test with $\alpha=100$, we get the solution after examining only 7 subproblems. However, in this case (iv) of Theorem 2 is not satisfied since $l=\bar{z}-\alpha=2552.75>z_{l}^{\star}=2440$, and we need to run VIRTUAL_PEGGING again with l lowered to 2440 to get a guaranteed
optimal solution. All these solutions coincide with those obtained from NUOPT [18], an MP/IP solver popular in Japan which is considered competitive to such solvers as LINDO, EXPESS-MP, CPLEX, etc. [7].

7 Numerical experiments

7.1 Design of experiments

For BKP with $n=100-16000$ items, we evaluate the performance of the 'surrogate relaxation + (virtual) pegging test + branch-and-bound' approach developed in the previous sections. Weight w_{j} of item j is randomly and unformly distributed over integer interval $[1,1000]$, and the values of items are generated according to

- UNCOR (uncorrelated): $p_{j}^{k}(k=1,2)$ are distributed independently and uniformly over [1,1000],
- WEAK (weakly correlated): $p_{j}^{k}(k=1,2)$ are distributed independently and uniformly over $\left[w_{j}, w_{j}+200\right]$,
- STRONG (strongly correlated): $p_{j}^{1}:=w_{j}+100$, and p_{j}^{2} is distributed uniformly over $\left[w_{j}, w_{j}+200\right]$.

Knapsack capacity is set to

$$
c:=500 n \cdot \rho
$$

where ρ is either $0.25,0.50$ or 0.75 . Since the average weight of an item is $500.5, \rho=0.50$ means that approximately a half of all items can be accommodated in the knapsack.

To compute surrogate relaxation, pegging test and BRANCH_AND_BOUND, we have implemented the algorithm in ANSI C language on an IBM RS/6000 SP 44 Model 270 workstation (CPU: POWER 3-II, 375 Mhz). We also solved small instances using NUOPT Ver. 3.3.0 on the same machine.

7.2 Bounds and reduction

Tables 4 and 5 give the results of computation of the upper and lower bounds, as well as of the pegging test. Here, in addition to the bounds \bar{z} and \underline{z}, we show the gap $(\bar{z}-\underline{z})$, the relative error defined by

$$
\operatorname{rerror}(\%)=100 \cdot(\bar{z}-\underline{z}) / \underline{z},
$$

the number of unfixed variables $\left(n^{\prime}\right)$, and the CPU time in seconds $\left(\mathrm{CPU}_{0}\right)$ to evaluate the bounds and the effect of the pegging test. Each row is the average over 10 randomly generated instances.

From these tables, we observe the following.

1. By the surrogate relaxation we obtain an upper bound and a heuristic solution of very high precision in a few CPU seconds.
2. Gaps are smaller in WEAK case, but the reduced problems are of almost comparable size. In both of UNCOR and WEAK cases, problems are reduced considerably in size.
3. CPU_{0} increases with n, but this is rather insensitive to the correlation type of instances.
4. The objective value (\bar{z} and \underline{z}) increases with ρ, but no significant influence of ρ is seen on the accuracy of heuristic solutions or CPU time.
$* * * * * * * * * *[[$ Insert tables 4-5 about here]] $* * * * * * * * * *$

7.3 Exact solution

To solve BKP exactly, we compare the following three methods.

- PEG-NUOPT: Apply the pegging test (Theorem 1) to BKP, and solve the reduced problem using NUOPT.
- PEG-BAB: Apply the same pegging test, and then solve the reduced problem by calling BRANCH_AND_BOUND.
- VPEG-BAB: Solve BKP by calling VIRTUAL_PEGGING with $l:=\bar{z}-\alpha$.

Tables 6 and 7 compare PEG-NUOPT against PEG-BAB. For each value of ρ and n, we computed the randomly generated 10 instances, with the computation truncated at the time limit of $\mathrm{TL}=1800$ seconds. The column of ' $\#$ sol' show the number of runs completed within TL, and all the rows are the average over the finished instances. In all solved cases, we obtained the identical objective values. In these tables, 'BBN' is the number (in millions) of the branch-and-bound nodes generated, and ' CPU ' is the time in seconds to solve the problem completely by respective methods.
*********** [[Insert tables 6-7 about here]] $* * * * * * * * * *$

The observation from these tables are:

1. PEG-NUOPT was able to solve problems of $n=2000$ or smaller, but for larger n it often fails; especially for $n \geq 10000$ this approach is almost hopeless irrespective to ρ and correlation type of instances.
2. PEG-BAB solved all problems with $n \leq 6000$, and frequently solved larger problems. No clear difference was seen in the difficulty of solving UNCOR and WEAK instances.

7.4 Virtual pegging result

VPEG-BAB was run with the initial margin

$$
\begin{equation*}
\alpha:=1000 \cdot \log ^{2} n / n \tag{20}
\end{equation*}
$$

This follows Lueker [19], who proved for the 0-1 knapsack problem (KP)

$$
\bar{z}_{\mathrm{KP}}-z_{\mathrm{KP}}^{\star}=O\left(\log ^{2} n / n\right)
$$

where \bar{z}_{KP} and z_{KP}^{\star} are, respectively, the continuously relaxed upper bound and the optimal objective value. After some preliminary experiments, we set the constant in (20) as 1000. In all our computation with (20),

$$
\bar{z}-\alpha<z^{\star}
$$

was confirmed a posteriori, and thus $\bar{z}-\alpha$ was indeed a correct lower bound in all instances tested. Therefore, in VIRTUAL_PEGGING Steps 2 through 4 were actually repeated only once. The results are shown in Tables 8 and 9 , where in addition to BBN, CPU and \#sol, the number of unfixed variables by virtual pegging ($n^{\prime \prime}$), and the optimal objective value (z^{\star}) are shown.
*********** [[Insert table 8-9 about here]] $* * * * * * * * * *$

Except for a few correlated instances, almost all problems were solved within a few minutes. Comparing Tables 6 and 8 (also 7 and 9), the effectiveness of the virtual pegging approach is evident.

7.5 Comparison against other commercial solvers

We further evaluate PEG-BAB against two leading IP solvers CPLEX 10.1 [20] and XPRESS-MP release 2005B [21] on an even faster computer DELL Dimension 8400 (Pentium(R) 4 CPU, 3.40 GHz). Table 10 gives the summary of CPU times in solving UNCOR and WEAK instances with $\rho=0.25$ and $n=2000,4000,8000$. Ten instances solved in each row are identical to those in the corresponding rows of Tables 6 and 7 . Here the columns show the CPU time in seconds of the following solution methods:

- CPLEX: Solve BKP ${ }^{\sharp}$ directly by using CPLEX.
- PEG-CPLEX: Apply the pegging test, and then solve the reduced problem by CPLEX.
- PEG-XPRESS: Also, solve the reduced problem by XPRESS-MP.

We observe the pegging test effective as a pre-processing in solving the problem, and PEG-BAB is substantially advantageous to these commercial solvers.

7.6 Small and strongly correlated instances

In standard 0-1 knapsack problems, it is known that small instances are often harder to solve to optimality than the larger ones [22]. Table 11 summerizes the result of experiments for BKP with n between 100-500, where we compare PEG-CPLEX and VPEG-BAB. As in previous tables, each row is the average over the solved cases out of 10 randomly generated instances, and $n^{\prime \prime}$ is the number of variables in the reduced problem.

From this, we observe that UNCOR and WEAK instances of this size are easily solved by both CPLEX and VPEG-BAB. On the other hand, in STRONG we often encounter instances that can not be solved within the fixed time limit of 1800 seconds, while some instances are solved within a few seconds. Especially, in STRONG case the virtual pegging method becomes less effective as n increases, and this makes VPEG-BAB unsatisfactory in such a case.
*********** [[Insert table 11 about here]] ${ }^{* * * * * * * * * * ~}$

8 Conclusion

We gave heuristic and exact algorithms to solve BKP. In addition to the surrogate relaxation, the pegging test and the surrogate-based branch-and-bound method, we presented a virtual pegging algorithm. For problems with $n \leq 16000$ we were able to obtain approximate solutions of quite high accuracy in less than a few seconds, and except for some instances, exact solutions were obtained by VPEG-BAB in less than a few minutes on an ordinary computer. However, strongly correlated instances were difficult to solve by this method, unless the problem size was very small.

Acknowledgements The authors are greatful to anonymous referees for their careful reading of the manuscript and helpful comments.

References

[1] Kellerer, H., Pferschy, U. and Pisinger, D., 2004, Knapsack Problems(Berlin: Springer).
[2] Martello, S. and Toth, P., 1990, Knapsack Problems: Algorithms and Computer Implementations, (New York: Wiley).
[3] Garey, M.R. and Johnson, D.S., 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness(New York: Freeman and Company).
[4] Eben-Chaime, M., 1996, Parametric solution for linear bicriteria knapsack models. Management Science, 42, 1565-1575.
[5] Kouvelis, P. and Yu, G., 1997, Robust Discrete Optimization and Its Applications(Dordrecht: Kluwer).
[6] Zhang, C.-N. and Ong, H.-L., 2004, Solving the bicriteria zero-one knapsack problem by an efficient LP-based heuristic. European Journal of Operational Research, 159, 545-557.
[7] Fourer, R., 1999, Software survey: linear programming. OR/MS Today, 26, 64-71.
[8] Yu, G., 1996, On the max-min 0-1 knapsack problem with robust optimization applications. Operations Research, 44, 407-415.
[9] Iida, H., 1999, A note on the max-min 0-1 knapsack problem. Journal of Combinatorial Optimization, 3, 89-94.
[10] Taniguchi, F., Yamada, T. and Kataoka, S., 2007, Heuristic and exact algorithms for the max-min optimization of the multi-criteria knapsack problem. to appear in Computers ${ }^{8}$ Operations Research.
[11] You, B.-J. and Yamada, T., 2007, A virtual pegging approach to the precedence constrained knapsack problem. European J. Operational Research, 183, 618-632.
[12] Glover, F., 1975, Surrogate constraint duality in mathematical programming. Operations Research, 23, 434-451.
[13] Fisher, M., 2004, The Lagrangian relaxation method for solving integer programming problems. Management Science, 50, 1861-1871.
[14] Wolsey, L.A., 1998, Integer Programming(New York: Wiley).
[15] Dembo, R.S. and Hammer, P.L., 1980, A reduction algorithm for knapsack problems. Methods of Operations Research, 36, 49-60.
[16] Fayard, D. and Plateau, G., 1975, Resolution of the 0-1 knapsack problem: comparison of methods. Mathematical Programming, 8, 272-307.
[17] Ingargiola, G.P. and Korsh, F.F., 1973, Reduction algorithms for zero-one single knapsack problems. Management Science, 20, 460-463.
[18] NUOPT Ver. 3.3.0, 2002, http://www.msi.co.jp/nuopt.
[19] Lueker, G., 1982, On the average difference between the solutions to linear and integer knapsack problems. Applied Probability-Computer Science, The Interface I, 489-504.
[20] CPLEX 10.0, ILOG, 2007, http://www.ilog.com/products/cplex/news/whatsnew. cfm.
[21] XPRESS-MP release 2005B, Dash Optimization, 2005, http://www.dashoptimization.com.
[22] Balas, E. and Zemel, E., 1980, An algorithm for large zero-one knapsack problems. Operations Research, 28, 1130-1154.

Table 1: Data for the example of Section 6.

j	1	2	3	4	5	6	7	8	9	10
w_{j}	618	595	586	427	695	816	833	624	353	611
p_{j}^{1}	298	97	24	866	936	252	135	535	386	399
p_{j}^{2}	274	102	129	433	859	674	114	407	561	212

Table 2: Binary search process to find λ^{\dagger}.

cycle	λ_{L}	λ_{R}	λ_{1}	$\bar{z}(\lambda)$	$\underline{z}(\lambda)$	$z^{1}-z^{2}$
0	0.000	1.000	0.500	2719.03	2260	+
1	0.000	0.500	0.250	2655.12	2260	+
2	0.000	0.250	0.125	2657.80	2440	-
3	0.125	0.250	0.188	2655.04	2440	-
4	0.188	0.250	0.219	2653.67	2440	-
5	0.219	0.250	0.234	2652.98	2440	-
6	0.234	0.250	0.242	2653.12	2260	+
7	0.234	0.242	0.238	2652.80	2440	-
8	0.238	0.242	0.240	2652.72	2440	-
9	0.240	0.242	0.241	2652.88	2260	+
10	0.240	0.241	0.241	2652.75	2260	+

Table 3: Threshold θ_{j} and pegging result.

j	9	5	4	8	6	1	10	3	2	7
w_{j}	353	695	427	624	816	618	611	586	595	833
$\bar{p}_{j}\left(\lambda^{\dagger}\right)$	518.9	877.5	537.2	437.8	572.4	279.8	257.0	103.7	100.8	119.8
θ_{j}	271.2	390.0	237.7	0.1	0.0	-153.7	-171.6	-307.3	-316.6	-465.3
x_{j}^{\star}	1	1	1	-	-	-	-	0	0	0

Table 4: Upper and lower bounds and pegging result (UNCOR case).

ρ	n	\bar{z}	\underline{z}	gap	rerror $(\%)$	n^{\prime}	CPU_{0}
0.25	2000	539586.4	539419.6	166.8	0.031	609.1	0.06
	4000	1079071.4	1078929.9	141.5	0.013	1043.2	0.16
	6000	1624944.1	1624749.8	194.3	0.012	2090.5	0.42
	8000	2154276.5	2154148.5	128.0	0.006	1848.7	0.52
	10000	2690716.2	2690584.6	131.6	0.005	2414.9	0.64
	12000	3230946.9	3230737.7	209.2	0.006	4397.7	1.53
	14000	3771746.4	3771598.3	148.1	0.004	3714.2	1.40
	16000	4312959.8	4312774.5	185.3	0.004	5194.8	2.39
0.50	2000	763914.3	763752.9	161.4	0.021	690.5	0.07
	4000	1525945.2	1525821.5	123.7	0.008	1101.2	0.26
	6000	2290905.1	2290762.2	142.9	0.006	1721.7	0.41
	8000	3043770.1	3043450.6	319.5	0.010	4697.2	1.47
	10000	3803532.2	3803369.6	162.6	0.004	3591.2	1.32
	12000	4561522.5	4561323.5	199.0	0.004	4671.0	2.29
	14000	5328017.5	5327728.5	289.0	0.005	7073.0	4.26
	16000	6089334.2	6089105.5	228.7	0.004	7195.4	4.00
0.75	2000	918868.2	918757.5	110.7	0.012	435.6	0.05
	4000	1838039.1	1837938.1	101.0	0.005	798.4	0.23
	6000	2754998.5	2754871.3	127.2	0.005	1412.7	0.50
	8000	3665178.5	3665075.7	102.8	0.003	1657.0	0.38
	10000	4579119.1	4579022.7	96.4	0.002	1913.0	1.02
	12000	5490787.8	5490581.2	206.6	0.004	4365.2	2.23
	14000	6413209.0	6413037.1	171.9	0.003	3938.6	3.02
	16000	7326788.9	7326515.2	273.7	0.004	6804.6	5.32

Table 5: Upper and lower bounds and pegging result (WEAK case)

ρ	n	\bar{z}	\underline{z}	gap	rerror (\%)	n^{\prime}	CPU_{0}
0.25	2000	357159.9	357120.3	39.6	0.001	720.7	0.08
	4000	714453.0	714417.4	35.6	0.005	1204.7	0.21
	6000	1072339.1	1072307.9	31.2	0.003	1724.4	0.51
	8000	1429168.4	1429140.6	27.8	0.002	2089.0	0.57
	10000	1786782.7	1786748.8	33.9	0.002	3078.3	0.90
	12000	2143235.6	2143196.7	38.9	0.002	4288.6	1.71
	14000	2501692.2	2501650.9	41.3	0.002	5220.0	2.42
	16000	2859882.9	2859830.3	52.6	0.002	7239.7	3.82
0.50	2000	651452.4	651415.3	37.1	0.006	805.4	0.10
	4000	1302535.2	1302488.6	46.6	0.004	1918.8	0.39
	6000	1954819.6	1954775.3	44.3	0.002	2667.3	0.58
	8000	2606223.9	2606167.5	56.4	0.002	4530.3	1.44
	10000	3257987.2	3257950.2	37.0	0.001	4064.5	1.84
	12000	3908854.0	3908793.7	60.3	0.002	7088.5	3.34
	14000	4561511.9	4561454.2	57.7	0.001	7603.3	4.82
	16000	5213789.2	5213744.0	45.2	0.001	7604.7	4.99
0.75	2000	932043.5	931997.9	45.6	0.005	849.1	0.14
	4000	1863882.4	1863840.3	42.1	0.002	1648.4	0.44
	6000	2796998.2	2796951.7	46.5	0.002	2555.2	0.73
	8000	3729220.2	3729178.1	42.1	0.001	3199.7	1.07
	10000	4662129.1	4662087.8	41.3	0.001	3790.4	2.34
	12000	5593840.7	5593811.9	28.8	0.001	3472.7	3.00
	14000	6527118.2	6527070.5	47.7	0.001	6112.9	3.91
	16000	7460437.6	7460387.5	50.1	0.001	7433.5	5.87

Table 6: Exact solution (UNCOR case).

ρ	n	PEG-NUOPT		PEG-BAB		
		CPU	\#sol	$\operatorname{BBN}\left(\times 10^{6}\right)$	CPU	\#sol
0.25	2000	90.1	10	3.02	1.31	10
	4000	383.5	10	11.98	5.03	10
	6000	478.6	4	68.69	28.33	10
	8000	608.2	3	22.48	9.72	10
	10000	-	0	318.88	129.68	9
	12000	-	0	60.19	25.49	6
	14000	1129.2	1	142.23	59.02	9
	16000	1100.5	2	618.84	254.49	9
0.50	2000	148.1	10	4.01	1.73	10
	4000	630.4	5	19.47	8.21	10
	6000	752.7	4	200.81	81.57	10
	8000	828.1	1	105.55	45.00	8
	10000	488.3	1	165.03	68.55	10
	12000	871.9	1	529.60	218.42	8
	14000		0	38.48	16.18	3
	16000	-	0	101.27	229.45	8
0.75	2000	93.3	10	2.79	1.22	10
	4000	418.8	8	6.79	3.01	10
	6000	225.8	4	13.69	6.21	10
	8000	705.1	6	64.44	26.50	8
	10000	535.8	2	32.57	14.18	9
	12000	1119.1	1	65.21	29.17	7
	14000	-	0	29.55	13.60	8
	16000	1078.4	1	61.65	28.15	5

Table 7: Exact solution (WEAK case).

ρ	n	PEG-NUOPT		PEG-BAB		
		CPU	\#sol	$\operatorname{BBN}\left(\times 10^{6}\right)$	CPU	\#sol
0.25	2000	222.3	10	5.48	2.31	10
	4000	616.5	6	7.84	3.43	10
	6000	725.5	2	61.53	25.50	10
	8000	1537.9	2	18.49	8.13	10
	10000	-	0	19.73	8.83	8
	12000	-	0	201.81	84.09	10
	14000	934.0	1	23.67	12.53	10
	16000	-	0	127.45	309.85	7
0.50	2000	545.9	10	5.87	2.51	10
	4000	693.5	3	24.90	10.60	10
	6000	761.4	3	108.03	44.83	10
	8000	694.9	1	17.81	9.46	7
	10000	-	0	36.42	17.06	9
	12000	-	0	591.22	244.76	8
	14000	-	0	727.68	303.20	9
	16000	-	0	110.93	51.25	8
0.75	2000	399.7	10	7.07	3.05	10
	4000	978.8	4	13.89	6.15	10
	6000	218.4	1	226.01	92.21	10
	8000	1574.7	1	24.62	11.13	9
	10000	998.6	3	25.32	13.17	8
	12000	-	0	23.77	12.85	8
	14000	1208.0	2	171.23	74.40	9
	16000	-	0	154.53	70.37	8

Table 8: Exact solution by VPEG-BAB (UNCOR case).

ρ	n	α	$n^{\prime \prime}$	z^{\star}	BBN $\left(\times 10^{6}\right)$	CPU	\#sol
0.25	2000	28.89	115.7	539572.2	1.24	0.55	10
	4000	17.20	131.8	1079062.3	2.89	1.27	10
	6000	12.61	137.5	1624937.1	10.64	4.48	10
	8000	10.10	148.9	2154272.2	5.04	2.22	10
	10000	8.48	158.3	2690712.3	40.07	16.45	10
	12000	7.35	167.1	3230943.6	38.94	16.03	10
	14000	6.51	173.7	3771743.7	17.11	7.26	10
	16000	5.86	174.0	4312957.7	17.58	7.49	10
0.50	2000	28.89	132.7	763902.3	1.72	0.75	10
	4000	17.20	167.1	1525938.1	7.52	3.13	10
	6000	12.61	183.6	2290900.8	12.04	5.01	10
	8000	10.10	192.6	3043766.6	17.92	7.43	10
	10000	8.48	207.2	3803529.5	14.19	5.94	10
	12000	7.35	211.0	4561519.8	25.63	10.62	10
	14000	6.51	218.4	5328015.1	391.06	160.32	10
	16000	5.86	229.6	6089332.0	44.27	18.24	10
0.75	2000	28.89	118.7	918854.7	1.64	0.72	10
	4000	17.20	140.9	1838031.7	2.49	1.09	10
	6000	12.61	159.4	2754994.0	5.72	2.46	10
	8000	10.10	170.1	3665174.7	35.04	14.46	10
	10000	8.48	170.1	4579116.2	19.10	7.94	10
	12000	7.35	177.2	5490784.4	65.82	27.89	10
	14000	6.51	185.5	6413206.3	48.47	19.99	10
	16000	5.86	190.8	7326786.7	189.54	81.75	10

Table 9: Exact solution by VPEG-BAB (WEAK case).

ρ	n	α	$n^{\prime \prime}$	z^{\star}	BBN $\left(\times 10^{6}\right)$	CPU	\#sol
0.25	2000	28.89	500.0	357157.3	4.55	1.85	10
	4000	17.20	602.4	714451.8	5.15	2.13	10
	6000	12.61	694.0	1072338.4	14.40	5.86	10
	8000	10.10	755.7	1429167.8	7.28	3.07	10
	10000	8.48	788.1	1786782.0	91.46	37.46	10
	12000	7.35	821.2	2143235.3	10.64	4.51	10
	14000	6.51	836.3	2501691.6	6.29	2.83	10
	16000	5.86	879.8	2859882.3	160.19	238.81	10
0.50	2000	28.89	629.0	651449.6	5.43	2.21	10
	4000	17.20	811.8	1302534.1	8.81	3.58	10
	6000	12.61	890.8	1954818.7	12.01	4.91	10
	8000	10.10	940.7	2606223.1	588.09	377.09	10
	10000	8.48	991.2	3257986.8	10.20	4.27	10
	12000	7.35	1020.6	3908853.7	160.21	64.09	10
	14000	6.51	1058.3	4561511.8	157.68	62.61	10
	16000	5.86	1110.8	5214818.3	41.33	16.70	8
0.75	2000	28.89	564.1	932040.4	6.95	2.82	10
	4000	17.20	699.5	1863881.2	9.39	3.82	10
	6000	12.61	738.7	2796997.4	140.28	56.95	10
	8000	10.10	810.2	3729219.5	29.56	11.99	10
	10000	8.48	843.6	4662087.1	161.29	66.85	9
	12000	7.35	891.3	5594031.2	376.50	149.46	9
	14000	6.51	918.3	6527118.0	72.05	28.84	10
	16000	5.86	930.2	7460150.6	30.00	12.29	9

24

Table 10: CPU seconds of IP solvers vs. PEG-BAB for instances with $\rho=0.25$.

Problem	n	CPLEX	PEG-CPLEX	PEG-XPRESS	PEG-BAB
UNCOR	2000	15.46	6.01	9.64	0.41
	4000	55.33	16.29	21.61	1.57
	8000	266.31	81.59	87.33	3.11
WEAK	2000	49.11	21.21	21.13	0.75
	4000	66.83	22.55	31.86	1.19
	8000	147.53	62.32	167.18	10.80

Table 11: Small size instances.

Problem		n	PEG-CPLEX			VPEG-BAB		
		CPU	\#sol		$n^{\prime \prime}$	CPU	\#sol	
UNCOR	100	0.06	10		31.8	0.00	10	
	200	0.12	10		43.9	0.00	10	
	300	0.40	10		58.7	0.01	10	
	400	0.81	10		65.3	0.01	10	
	500	0.56	10		71.0	0.01	10	
WEAK	100	0.16	10		81.9	0.00	10	
	200	0.57	10		149.8	0.01	10	
	300	1.60	10		191.6	0.05	10	
	400	1.23	10		171.3	0.06	10	
	500	2.17	10		317.0	0.06	10	
STRONG	100	0.22	10		64.0	0.75	10	
	200	19.40	9		150.9	18.82	8	
	300	10.93	9		239.1	41.76	6	
	400	1.16	9		313.9	22.82	5	
	500	1.37	6		384.5	101.48	1	

[^0]: *Corresponding author. yamada@nda.ac.jp

