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Abstract

We consider the fundamental problem of computing an optimal portfolio based on a
quadratic mean-variance model for the objective function and a given polyhedral represen-
tation of the constraints. The main departure from the classical quadratic programming
formulation is the inclusion in the objective function of piecewise linear, separable functions
representing the transaction costs. We handle the nonsmoothness in the objective function by
using spline approximations. The problem is first solved approximately using a primal-dual
interior-point method applied to the smoothed problem. Then, we crossover to an active set
method applied to the original nonsmooth problem to attain a high accuracy solution. Our
numerical tests show that we can solve large scale problems efficiently and accurately.
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1 Introduction

We consider the problem of selecting an optimal portfolio that includes transaction costs. (See
e.g. [7].) We let x = (x1, x2, . . . , xn)T denote the vector of proportions (weights) for each of n
given assets of the portfolio. Under the classical mean-variance model, an investor minimizes
the quadratic function F (x) = 1

2xT Qx− tdT x, under linear inequality constraints, i.e. he solves
a quadratic program, QP . Here: −d is the vector of the expected returns of the assets; Q is
a covariance matrix; and t is a fixed positive scalar parameter. Thus, the utility function F (x)
combines the two objectives of “maximizing expected return” (i.e. min−dT x) and “minimizing
the expected risk” (i.e. minxT Qx). The function F (x) combines these two ingredients with
the weighting parameter t > 0; 1

t
represents the degree of risk aversion of the investor. The

additional linear inequality constraints in QP arise from e.g. budget, diversity, and short-selling
constraints.

In this paper, we consider the portfolio optimization problem with transaction costs, i.e. the
minimization of f(x) = F (x) +

∑n
i=1 fi(xi) subject to linear constraints, where the additional

functions fi(x) are piecewise linear, convex functions that represent the transaction costs as-
sociated with changing the holdings in asset i from the current holding x̂i to xi. Rather than
applying a classical active set approach to handle the piecewise linear constraints, we smooth
these nondifferentiable functions with splines and approximately solve the resulting smooth prob-
lem using a specialized primal-dual interior-point method, denoted IP M . Then, once we are
close enough to the set of optimal solutions, we apply a crossover technique to an active set
method on the original nonsmooth problem. The specialized interior-point method ensures a
major savings in total computation time. The active set method guarantees high accuracy of
our final solution. We include numerical tests and comparisons.

1.1 Background and Motivation

The portfolio optimization problem with transaction costs involves the minimization of the
nonsmooth function f(x). The classical approach to these problems is to apply an active set
method and replace gradients by subgradients, see e.g. the work on ℓ1 penalty methods [33, 26],
and more recently, the discussion in [19]. A second approach involves lifting the problem into a
higher dimensional space so that the resulting problem is differentiable. Again, the advantage
of this approach is that standard active set and IP Ms for QP s can be applied.

For the ℓ1 penalty problems, one can expect relatively few components of the optimum x
to be at points of nondifferentiability, see e.g. [19]. However (as seen in our Section 4), we can
expect a relatively large number of components at points of nondifferentiability (at breakpoints).
Therefore, active set methods that deal with the nondifferentiability can be inefficient. Our aim
is to test a third approach based on smoothing the objective function using splines. Then, we
take advantage of the efficiency of IP Ms on large scale smooth problems, and also exploit the
special structure of the portfolio optimization problem.
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Transaction costs arise from e.g. brokerage fees and market impact. (See e.g. [4, 22, 31,
3, 3].) Though brokerage fees are often modeled by concave functions, they are dominated by
market impact costs for large transactions, and the latter can be modeled using piecewise linear,
separable, convex functions.

For more details on the transaction cost model, see Appendix A. Related work on portfolio
optimization with transaction costs appears in e.g. [27, 21, 23, 11, 15, 31]. See e.g. [1, 5,
6, 9, 16, 17, 24, 32, 34] for approaches to partially separable optimization problems; and see
[35, 20] for smoothing techniques. To the best of our knowledge, none of the pre-existing work
in portfolio optimization problems with transaction costs seems to have the versatility of our
approach in terms of speed and accuracy. For example, the approaches utilizing second-order
cone programming formulations (or semidefinite optimization formulations) with interior-point
algorithms cannot obtain the high accuracy solutions that our approach generates with proper
choices for the smoothing parameter and stopping criteria to switch to the active set algorithm.
Since we handle the portfolio optimization problem by utilizing a combination of an IP M and
an active set approach, and since we control the smoothness parameter of the smoothed problem,
depending on the application and needs of the final user, our algorithm is more adaptable to
reach a satisfactory compromise (involving speed and accuracy) for the final user.

1.2 Outline; Main Results

In Section 2, we present the details of the problem as well as the associated duality and optimality
conditions. The smoothing by splines is done in Section 3.1. We include a sensitivity analysis. In
particular, this proves that more accurate spline approximations yield more accurate solutions of
the original problem, i.e. with exact arithmetic, we get continuity of the spline approximations.
An alternative approach that replaces the nondifferentiability with additional variables and
constraints, a lifting, is presented in Section 3.2.

In Section 4, we study the expected number of variables xi that have values at points of
nondifferentiability. These theoretical observations agree with our empirical results.

Computational results are reported in Section 5. These results show the advantage of the
smoothing technique for large, sparse, problems, compared to the lifting approach. Concluding
remarks are given in Section 6.

2 Problem Formulation and Optimality Conditions

2.1 Formulation

We consider the problem of minimization of the function f(x) subject to linear inequality con-
straints:

(P )
min f(x)
s.t. Ax ≤ b,

(2.1)
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where A is an m × n-matrix and b ∈ R
m, the objective function

f(x) := F (x) +
n

∑

i=1

fi(xi), F (x) :=
1

2
xT Gx + cT x, (2.2)

G is symmetric positive definite, and fi(α) is a convex, piecewise linear function on R, with
break-points at dik, i = 1, . . . ,Mi, i.e.

fi(α) :=
{

fil(α) := pilα + hil, for dil ≤ α ≤ dil+1, l = 0, . . . ,Mi, (2.3)

with di0 << 0 arbitrarily small, and diMi+1 >> 0 arbitrarily large. Our approach does not
really need strict convexity (mere convexity is sufficient); however, we assume strict convexity
for the sake of a cleaner presentation and notational convenience.

Let the feasible set of the problem (2.1) be denoted by S; and, for each x ∈ R
n, let the set

of active breakpoints, and its complement, be denoted by

E(x) := {i : xi = dil for some l ∈ {1, ..,Mi}}, N(x) := {1, . . . , n}\E(x). (2.4)

2.2 Duality and Optimality

The Lagrangian dual of (P) is maxu≥0 minx L(x, u) := f(x)+uT (Ax−b). The inner-minimization
is an unconstrained convex minimization problem. Therefore, we can write down the Wolfe dual
program

(D)
max L(x, u)
s.t. 0 ∈ ∂xL(x, u), u ≥ 0,

(2.5)

where ∂xL(x, u) denotes the subgradient of L [30], i.e.

∂xL(x, u) = {φ ∈ R
n : φT (y − x) ≤ L(y, u) − L(x, u), ∀y ∈ R

n}.

Theorem 2.1 ([2]) A point x ∈ R
n minimizes f over S if and only if the following system is

consistent
u ≥ 0, 0 ∈ ∂xL(x, u) dual feas.

Ax ≤ b primal feas.
uT (Ax − b) = 0 compl. slack.

To further simplify the optimality conditions, we use the following property of subgradients:
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Proposition 2.1 ([2]) Let θ =
∑m

i=1 θi, where θi : R
n → R are convex functions, i = 1, . . . ,m.

Then ∂θ(x) is equal to the Minkowski sum

∂θ(x) =

m
∑

i=1

∂θi(x).

From Proposition 2.1, we get

∂L(x, u) = ∇F (x) +
n

∑

i=1

∂fi(xi) + AT u.

Moreover, the definition of fi(α) (2.3) yields ∇fil = pil and

∂fi(α) =

{

pil if dil < α < dil+1, l = 0, ...,Mi,
[pil−1, pil] if α = dil, l = 1, ...,Mi,

By abuse of notation, we think of fi as a function both on R and on R
n, i.e. fi(x) ∼= fi(xi). Then

we can identify ∂fi(x) = ∂fi(xi)ei (where ei is the ith unit vector). Now, by Proposition 2.1,

0 ∈ ∂L(x, u) ⇔ 0 ∈ (∇F (x))i + ∂fi(xi) + (AT u)i, i = 1, . . . , n.

Corollary 2.1 A point x ∈ R
n is optimal for (P) if and only if there exists u ∈ R

m such that

u ≥ 0

(Gx)i + ci + (AT u)i ∈

{

−{pil} if i ∈ N(x), xi ∈ (dil, dil+1)
−(pil−1, pil) if i ∈ E(x), xi = dil

(dual feas.)

s ≥ 0, Ax + s = b (primal feas.)
uisi = 0, i = 1, . . . ,m (compl. slack.)

(2.6)

Applying an IP M directly to the nondifferentiable system (2.6) would force us to follow a
nondifferentiable “central path”. Note that (x, s, u) is on this central path corresponding to the
barrier parameter µ > 0, if and only if it is a solution of the system (2.6) with the complementary
slackness conditions perturbed to

uisi = µ, i = 1, . . . ,m.
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Remark 2.1 An alternative derivation of the central path starts with the family of convex op-
timization problems

min f(x) − µ
∑m

i=1 ln(si)
s.t. Ax + s = b,

parameterized by µ > 0. Under the assumptions that there exists x̄ such that Ax̄ < b and
{x : Ax ≤ b} is bounded, we conclude that for every µ > 0, the above convex optimization
problem has a unique optimal solution. This set of optimal solutions also defines the central
path and establishes the existence and uniqueness of central points for each µ > 0.

3 Smoothing

We consider two techniques for smoothing (P). The first one approximates the piecewise linear
functions using smooth splines. The second one extends the linear pieces and maintains the
correct values by lifting the problem into a higher dimensional space and adding constraints.

3.1 Splines

Approximating the nondifferentiable functions fi(xi) by smooth functions allows us to fully use
the theory of differentiable optimization, and in particular, interior-point methods. In many
cases the nondifferentiable functions are themselves an approximation of some smooth function.
Then, using a convex cubic spline would give a better approximation of the original function,
e.g. [29]; for a general reference on splines, see [10].

However, for our portfolio optimization problem, transaction cost functions are generally
nonsmooth. Therefore, in this paper, we focus on using smooth convex splines that approximate
the given piecewise linear convex functions fi(xi).

3.1.1 Interior-Point Method for Smooth Approximations

We suppose that the function fi(α) is approximated by a smooth family of functions f̄i(α, ǫ),
parameterized by ǫ. We denote the first and second derivatives, with respect to α, by f̄ ′

i(α, ǫ) and
f̄ ′′

i (α, ǫ), respectively. For a fixed ǫ > 0, and for each µ > 0, the following system of perturbed
optimality conditions is considered at each iteration of the IP M , e.g. [13],

u > 0
(Gx)i + ci + f̄ ′

i(xi, ǫ) + (AT u)i = 0, ∀i = 1, . . . , n
dual feas.

s > 0, Ax + s = b primal feas.
uisi = µ, i = 1, . . . ,m pert. compl. slack.

(3.1)

Let (x, u, s) be a current iterate for solving (3.1), with (u, s) > 0. We set the barrier

parameter µ := uT s
m

, and define the vector of first derivatives g := (f̄ ′
1(x1, ǫ), . . . , f̄

′
n(xn, ǫ))T ,
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and the diagonal matrices

U := Diag(u1, . . . , um), S := Diag(s1, . . . , sm), H := Diag(f̄ ′′
1 (x1, ǫ), . . . , f̄

′′
n(xn, ǫ)).

Then the search direction for (3.1) is found from the linearized system (Newton’s equation)




G + H AT 0
A 0 I
0 S U









∆x
∆u
∆s



 =





−rc

−rb

−Us + σµe



 , (3.2)

where the residuals
rc := Gx + c + g + AT u, rb := Ax + s − b,

e is the vector of ones, and σ ∈ [0, 1] is the centering parameter.
We can use block eliminations to simplify the linearized system. We first solve

∆s = −U−1S∆u − s + σµU−1e.

Then we can eliminate ∆s and rewrite (3.2) as the symmetric, indefinite, linear system (n + m
sized, augmented or quasidefinite system)

[

G + H AT

A −U−1S

](

∆x
∆u

)

=

[

−rc

−rb + s − σµU−1e

]

. (3.3)

Further, since

∆u = S−1U [A∆x + rb − s + σµU−1e] = −u + S−1[U(A∆x + rb) + σµe],

we can eliminate ∆u and obtain the (n sized, normal equation system)

[G + H + AT (S−1U)A]∆x = −rc + AT (S−1U)[−rb + s − σµU−1e]
= −rc + AT [u − S−1(Urb + σµe)]
= −(Gx + c + g) − AT S−1[Urb + σµe].

(3.4)

We can add upper and lower bounds bl ≤ x ≤ bu to the problem and exploit the special
structure of these constraints, rather than treating them as part of A. (The details are well-
known and can be found in [28] and the references therein.)

So, far, we focused on the general structure of our choice for the search direction. Another
very important ingredient of interior-point algorithms is the step size selection (in our case, step
size choices for the dual are particularly critical). We used an adaptive approach to find the
search direction and the step size choices. We based the choice of the centering parameter σ
on the size of the step from the previous iteration, i.e. we decreased (respectively increased) σ
if the last step size was large (respectively small). (E.g. if the step size was less than 0.001,
we chose σ = 2.1, which results in an increase in the current value of µ.) We also monitored
the changes in the dual constraints. If a step size of α resulted in the infinity norm of the dual
residual vector to more than double, we replaced α by 0.9α repeatedly, until the dual residual
was under control.
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3.1.2 Quadratic and Cubic Splines

We actually approximate the piecewise linear convex function fi(α) with a parameterized (by ǫ)
family of quadratic and cubic convex splines

f̄i(α, ǫ) := fi(α) + si(α, ǫ). (3.5)

Let ∆pil := pil − pil−1. For the quadratic spline we get

si(xi, ǫ) =

{

∆pil

4ǫ
(xi − dil + ǫ)2 if ǫ > 0, xi ∈ [dil − ǫ, dil + ǫ], for some l ∈ {1, . . . ,Mi}

0 otherwise.
(3.6)

For the cubic spline, we have

si(xi, ǫ) =







∆pil

6ǫ2
(xi − dil + ǫ)3 if ǫ > 0, xi ∈ [dil − ǫ, dil], for some l ∈ {1, . . . ,Mi}

−∆pil

6ǫ2
(xi − dil − ǫ)3 + (∆pil)xi if ǫ > 0, xi ∈ [dil, dil + ǫ], for some l ∈ {1, . . . ,Mi}

0 otherwise.
(3.7)

For 0 < ǫ < 1
2 mini,l(dil − dil−1), the functions f̄i(xi, ǫ) defined above are continuously differen-

tiable; while in the case of the cubic spline, they are twice continuously differentiable. We define
a conservative upper bound for ǫ with

ǭ :=
1

3
min
i,l

(dil − dil−1). (3.8)

Note that the smooth spline functions above provide uniform approximations to the non-
smooth objective function. Therefore, it follows easily that the objective value of the smooth
problem is continuous in ǫ on [0, ǭ] . For related classical results, see e.g. Fiacco [12].

3.2 Lifting

Because of the special piecewise linear structure of the nondifferentiable part of the objective
function, it is common practice to convert problem (2.1) to a smooth one by introducing new
variables and constraints. For example, for each i = 1, . . . , n, we can introduce new sets of
variables x+

il
, l = 0, . . . ,M+

i , and x−
il
, l = 0, . . . ,M−

i . We can then rewrite problem (2.1) in the
form

min F (x) +
∑n

i=1

∑M
+

i

l=0 f+
il (x+

il ) +
∑n

i=1

∑M
−
i

l=0 f−
il (x−

il )
s.t. Ax ≤ b,

xi −
∑M+

i

l=0 x+
il +

∑M−
i

l=0 x−
il = x̂i, for i = 0, ..., n,

0 ≤ x+
il ≤ d+

il+1, for i = 1, ..., n, l = 0, ...,M+
i ,

0 ≤ x−
il ≤ d−il+1, for i = 1, ..., n, l = 0, ...,M−

i .

(3.9)
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(The functions f+
il , f−

il ,and indices M+
i ,M−

i are defined in Appendix A.) The problem (3.9) is
a linearly constrained, convex and twice differentiable problem; and, standard techniques can
be used to solve it. However, this higher dimensional problem is computationally expensive to
solve.

We can design an interior-point algorithm for this problem in a way analogous to our deriva-
tion in Section 3.1.1. To compare the underlying interior-point algorithms, we can eliminate
the “new variables”, i.e. those not present in the formulations of Section 3.1.1. Let v ∈ R

n

denote the dual variables corresponding to the linear equations expressing x in terms of x̂, x+,
and x−. After eliminating all of these new variables except v, the nonlinear system of equations
and inequalities are equivalently written as

Gx + c + AT u + v(x) = 0, u > 0;

Ax + s = b, s > 0;

Su = µe.

In the above v(x) : R
n → R

n is continuously differentiable at all interior points and is completely
separable, that is, [v(x)]i only depends on xi. Therefore, if we derive the search directions based
on this latest system, we end up with the normal equations determining ∆x whose coefficient
matrix is:

G + Diag
[

v′(x)
]

+ AT (S−1U)A.

Compared to the search directions from Section 3.1.1, the search direction derived here has
only a diagonal perturbation to the left-hand-side matrix and this perturbation Diag [v′(x)] is
independent of A, b, c,G and only depends on the nondifferentiable part of the data.

Another approach to comparing different interior-point algorithms in our setting would be
to derive the search directions for each formulation in their own space and then consider the
∆x components of each of these search directions, i.e., compare the projections of the search
directions in the x-space. This way of comparing the search directions could lead to different
conclusions than the above. As it will become clear, our way of comparing these different
formulations exposes the similarities in an extremely easy and elegant way. One drawback of
the compact central path system that we derived is, the compact system is “more nonlinear”
than the high dimensional, original formulation. The latter is the usual approach to quadratic
programming and yields a bilinear system of equations and strict linear inequalities. In our
compact system above, in addition to the usual bilinear equations (such as Su = µe), we also
have the nonlinear system involving v′(x).

3.2.1 Local Lifting

We can introduce a pair of new variables x+
i , x−

i for each i ∈ E(x) with xi = dil. This converts
the problem into a differentiable one in the neighborhood of the current iterate. The problem
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becomes

min F (x) +
∑

i∈N(x) fi(xi) +
∑

i∈E(x)(f
+
il

(x+
i ) + f−

il
(x−

i ))

s.t. Ax ≤ b,
xi = dil + x+

i − x−
i , i ∈ E(x),

x+
i , x−

i ≥ 0, i ∈ E(x).

(3.10)

A point x ∈ R
n is a point on a central path corresponding to (3.10), if and only if

Ax + s = b, s > 0
(Gx)i + ci + pil + (AT u)i = 0, for all i ∈ N(x)

with xi ∈ (dil, dil+1)
(Gx)i + ci + pil−1 + (AT u)i + vi = 0, for all i ∈ E(x)

with xi = dil

u > 0,
uisi = µ, i = 1, . . . ,m
x+

i , > 0, x− > 0, i ∈ E(x)
wi > 0, vi > 0, i ∈ E(x)
vi + wi = ∆pil, i ∈ E(x)
xi = dil + x+

i − x−
i , i ∈ E(x)

vix
−
i = µ, i ∈ E(x)

wix
+
i = µ, i ∈ E(x).



























































































(3.11)

The last four groups of equations form the system:

vi + wi = ∆pil

xi = dil + x+
i − x−

i

vix
−
i = µ

wix
+
i = µ















(3.12)

This allows us to express the dual variable vi as a function of xi

vi(xi) =
2µ∆pil

2µ − ∆pil(xi − dil) + (4µ2 + ∆p2
il(xi − dil)2)

1

2

. (3.13)

Note that vi(dil) = ∆pil

2 > 0. In a neighborhood of dil the variables wi, x+
i and x−

i are
positive and solving the system (3.11) is equivalent to solving

Ax + s = b, s > 0
(Gx)i + ci + pil + (AT u)i = 0, for all i ∈ N(x)

with xi ∈ (dil, dil+1)
(Gx)i + ci + pil−1 + (AT u)i + vi(xi) = 0, for all i ∈ E(x)

with xi = dil

u > 0,
uisi = µ, i = 1, . . . ,m.







































(3.14)
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Therefore, this approach is similar to the spline approximation approach, i.e. we model the
jumps in the gradient of fi(xi) by a function si(xi), such that

s′i(xi) = vi(xi).

Proposition 3.1 Suppose an interior-point method is applied to the problem (3.10) and a search
direction (∆x,∆u,∆s) is obtained at a point (x, u, s). Then the same direction is obtained by
applying the interior-point method to the problem (3.1), with f̄i(xi) := fi(xi) + si(xi), and
s′i(xi) = vi(xi) in (3.13).

Therefore, the search direction computed in this local lifting approach is also in the class of
search directions ∆x obtained from solving the system

[G + D + AT (S−1U)A]∆x = −(Gx + c + d) − AT S−1[Urb + σµe], (3.15)

where D and d are, respectively, a diagonal matrix and a vector determined by a particular
approach (e.g., smoothing via quadratic spline, smoothing via cubic spline, global lifting, local
lifting). This follows from the fact that we derived our algorithms from the necessary and
sufficient conditions for optimality, and these conditions vary slightly between formulations. We
did not experiment with this local lifting approach (the above derivation aims at establishing
the fact that all of the approaches can be studied in the same framework from the point-of-view
of search directions generated from the underlying normal equation system). Indeed, derivation
of the underlying theory and robust algorithms is expected to require significantly more effort
than the other approaches; moreover, because of the above derivation of the search direction for
the local lifting approach, it is clear that we can simulate the generation of underlying search
direction by utilizing a proper spline whose s′i leads to the desired vi above for each i.

4 Probabilistic Estimates for the Number of Breakpoints

Recall that the objective function for (P), f : R
n → R

n, is convex and differentiable everywhere,
except at the breakpoints of the piecewise linear components. For every v ∈ R, define the level
set of f :

C(v) := {x ∈ R
n : f(x) ≤ v} .

Suppose that our optimization problem has an optimal value v∗ and it is attained. Then we ask

Question 4.1 How likely is it that there exist

x̄ ∈ C(v∗) ∩ S and i ∈ {1, 2, . . . , n} such that

x̄i is a breakpoint of fi?

12



We first note the following elementary result.

Proposition 4.1 Let f , C(v), S, and v∗ be as defined above. Then, C(v) is a compact, convex
set for every v ∈ R. Moreover, if S 6= ∅, then v∗ exists and is attained by a unique x∗ ∈ S.

Proof. Since f is the sum of a strictly convex quadratic function and n, convex, piecewise
linear functions, f is strictly convex and coercive. Thus, C(z) is convex and compact for every
z ∈ R

n. We deduce that if S 6= ∅, then v∗ is finite and attained. Strict convexity of f now yields
the uniqueness.

Recall that x̂ denotes the current investment holdings. Without loss of generality (after a
translation), we can assume that x̂ = 0 ∈ S. Then, for each j, xj > 0 represents buying and
xj < 0 represents selling. Since neither of these two activities is free, we conclude that each
piecewise linear function fi has a breakpoint at xi = 0. Therefore, the objective function f is
nondifferentiable on the hyperplanes, {x ∈ R

n : xj = 0}, for every j.
From a practical viewpoint, we immediately have an answer to Question 4.1. Since the

investor cannot be expected to trade every single stock/commodity in every planning horizon,
breakpoints at optimality are unavoidable! From the theoretical viewpoint, the answers depend
on the probabilistic model used and calculating the probabilities exactly is difficult.

In order to find an estimate for the number of coordinates of the optimal solution that
are at breakpoints, we use a simplified problem: we consider an unconstrained minimization of
f(x); and we assume that the matrix G is diagonal, the functions fi(xi) are the same for each
coordinate i, and the breakpoints dil and the gradients pil are equally spaced. We denote the
common differences/spaces by ∆d = dil+1 − dil and ∆p = pil+1 − pil.

From the optimality conditions (2.6), x minimizes f(x) if and only if 0 ∈ ∂f(x) or

0 ∈ Gixi + ci + ∂fi(xi), i = 1, . . . , n.

If a coordinate xi = dil is at a breakpoint, then the i-th component of the subdifferential is an
interval and the probability of having xi = dil is equal to the probability of zero being in this
interval,

0 ∈ [Gidil + ci + pil−1, Gidil + ci + pil].

Note that the length of this interval is equal to ∆p. If the coordinate xi ∈ (dil, dil+1) is not at
a breakpoint,

0 = Gixi + ci + pil.

The interval (dil, dil+1) is mapped to an interval [Gidil + ci + pil, Gidil+1 + ci + pil] of length
Gi∆d. Thus, when we focus on the space of subgradients and assume that the locations of these
two intervals are uniformly chosen over a large interval containing zero, we deduce that the two
probabilities are proportional to the lengths of the two intervals.

13



We now have an estimate to the answer of Question 4.1 in the special case that G is diagonal
and the functions fi are equal ∀i, i.e. the ratio of: the probability of the i0-th coordinate of the
optimal x being at a breakpoint to the probability of the complementary event is approximately

∆p

Gi0i0∆d
. (4.1)

Our tests in Table 5.3 in Section 5.3, below, show the strength of the estimate (4.1) for the
original problem (P).

5 Computational Experiments

Our algorithm, using smoothing with splines and the crossover, was implemented in the MAT-
LAB 7.3 environment; and it was tested on randomly generated data. In Section 5.2 we show
how the parameters of the problem affect the performance of the algorithm. In Section 5.3 we
look at the connection between these parameters and the number of the coordinates of the opti-
mal solution xi that have values at points of nondifferentiability. The crossover to an active set
algorithm is tested in Section 5.4. Implementation details are discussed in Section 5.5. Results
with large scale sparse data sets are reported in Section 5.6. Comparisons are done using the
commercial package MOSEK 3 as the main competitor, i.e. we use the global lifting procedure
in Section 3.2 to obtain a QP problem and then solve this problem with the general purpose
interior-point software in Mosek 3.

The tests were run on a SUNW, UltraSparc-IIIi, (1002 MHz, 2048 Megabytes of RAM).
Execution times are in CPU seconds. We repeat each experiment 10 times for the smaller dense
problems and 5 times for the large sparse ones. The average execution times are reported in
each table. The requested accuracy for our MATLAB code is ǫ/100, where ǫ is the parameter of
the spline approximation. In Section 5.6, we request this same accuracy from MOSEK; though
in Section 5.4 where the crossover method is tested, the relative gap termination tolerance for
MOSEK was increased to 10−14, to match our termination criteria.

5.1 Data Generation

The vector c corresponding to the vector of the expected returns was randomly generated with
elements in the interval (1, 1.3). The current holdings x̂ was set to zero. The number of points
of nondifferentiability was the same for each transaction cost function, i.e. Mi = M,∀i.

1. Dense Data. We set the matrix G = αCT C where C is n×n with random entries in the
interval (–0.5, 0.5). Thus, the constant α corresponds to the inverse of the risk parameter
t. (The effect of changing α is discussed in in Section 5.2.) The data A, b are randomly
generated with entries in the interval (–0.5, 0.5); we call this Type 1 data. In the second
series of experiments, we generate A with random integer entries from the set {0, 1, 2, 3}.

14
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H
H

H
H

HH
M

ǫ
0.001 0.0005 0.0001 0.00005 0.00001

Quadratic Spline

3 44 (20) 55 (23) 109 (38) 148 (46) 407(98)
25 36 (17) 38 (17) 52 (21) 61 (23) 107 (31)
51 36 (17) 37 (17) 43 (19) 52 (20) 87 (28)
75 36 (16) 37 (17) 41 (18) 46 (19) 77 (26)

101 35 (16) 38 (17) 43 (19) 45 (19) 71 (25)

Cubic Spline

3 43 (20) 53 (24) 97 (39) 133 (48) 348 (104)
25 35 (16) 37 (17) 49 (21) 59 (24) 98 (33)
51 34 (16) 36 (17) 44 (20) 49 (21) 84 (30)
75 33 (16) 35 (16) 42 (19) 47 (20) 70 (26)

101 33 (15) 35 (16) 42 (19) 45 (20) 71 (26)

Table 5.1: CPU (iter) for MATLAB IPM ; n = 1000, m = 500.

We refer to this as Type 2 data. For both data types, the transaction costs were chosen
randomly in the same interval (–0.5, 0.5). In addition, each dense problem includes one
(budget) constraint x1+x2+. . .+xn = 1. Note that for portfolio optimization applications,
an equality budget constraint is common and without loss of much generality, since each
investor has access to a risk free asset (e.g., a bank account). Moreover, replacing the above
equality by an inequality does not have any notable impact on the number of iterations or
on the computation time per iteration.

2. Sparse Data. We used the sprandsym command in MATLAB to generate both sparse
matrices G as well as sparse matrices G with nonzero pattern made up of overlapping
diagonal blocks. The sparse constraint and transaction data were randomly generated as
for the dense case above. We did ensure that the constraints did not have a zero row or
column.

5.2 Effect of Parameters Related to Smoothness

5.2.1 Number of Breakpoints M ; Size of Spline Neighborhood ǫ

Table 5.1 presents the CPU time and the number of iterations for our IPM MATLAB code. We
varied the number of breakpoints M from 3 to 101 and the size of the spline intervals ǫ from
10−3 to 10−5. The dimension and number of constraints are n = 1000,m = 500. Figure 5.1
illustrates the CPU time for just the cubic spline case, with the inverse of the risk parameter
α = 1.
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Figure 5.1: CPU for MATLAB IPM ; n = 1000, m = 500, cubic spline.

We can see that increasing ǫ consistently decreases the number of iterations and the CPU
time. Though the theory shows that the accuracy relative to the true optimum decreases. Also,
increasing the number of intervals (breakpoints) decreases the number of iterations and the CPU
time. As expected, in both cases the problem is farther from nondifferentiability, which results
in better behaviour for the IP M .

5.2.2 Scaling the Quadratic Term, Risk Aversion

We then ran our IP M code on the same set of problems, as in Section 5.2.1 above, but we
changed the value of the parameter α in the definition of the matrix G. We used only the cubic
spline and all the remaining parameters were fixed: M = 101, ǫ = 0.0001, n = 1000,m = 500.
We see that decreasing α increases the CPU time, see Table 5.2. We also report the expected
return for the optimal solutions of the problems with transaction costs. Note that smaller values
of α correspond to larger values of the parameter t. For example α = 0.05 gives an extremely
risky portfolio with expected return of 321%. In all the remaining experiments, we used values
of α that correspond to realistic risks.
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α=1 α=0.5 α=0.1 α=0.05

Problem from Figure 5.1 43 (20) 51 (22) 129 (46) 216 (74)
with M = 101, ǫ = 0.0001

Table 5.2: CPU (iter) for MATLAB IPM ; n = 1000, m = 500.

5.3 Expected Number of Active Breakpoints

We now test the estimate given in (4.1) in Section 4. The data is generated as described above
in Section 5.1. We first restrict G = αI. These results are presented in Table 5.3. Next, we

α = 1 α = 2 α = 4 α = 8

∆p = ∆d
Experiment 167 (42%) 110 (28%) 68 (17%) 48 (12%)
Predicted 50% 33% 20% 11%

∆p = 2∆d
Experiment 232 (58%) 179 (45%) 122 (31%) 78 (20%)
Predicted 66% 50% 33% 20%

2∆p = ∆d
Experiment 109 (27%) 72 (18%) 33 (8%) 21 (5%)
Predicted 33% 20% 11% 6%

Table 5.3: # (%) of coordinates of optimum at breakpoint; n = 400, m = 800.

restrict G to be diagonal with integer diagonal entries 1, 2, 3, 4 in equal proportion of occurrence.
Table 5.4 shows the number of coordinates of the optimal solution at a breakpoint in each of
these subgroups.

Both Tables 5.3 and 5.4 show that the predicted values and empirical values are close. In
addition, the number (percentage) of active breakpoints decreases as the parameter α increases,
i.e., as the risk factor decreases. Therefore, problems with high risk factor should be more
difficult/expensive to solve.

Gii=4 Gii=3 Gii=2 Gii=1

Experiment 18(18%) 23(23%) 30(30%) 39(39%)

Predicted 20% 25% 33% 50%

Table 5.4: # (%) of coordinates of optimum at breakpoint in each subgroup; n=400, m=800, ∆p = ∆d.
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5.4 Crossover for Obtaining Higher Accuracy

Rather than forcing the interior-point algorithm to obtain highly accurate solutions (which may
be futile because it would require smaller intervals for the spline approximation and can result
in numerical instability as well as a significant increase in computation time), we use relatively
large intervals for the spline approximation, run the interior-point algorithm on this smooth
problem to a rough tolerance, and then apply a crossover technique to an active set algorithm
on the original problem.

At each iteration of the active set method, the indices i = 1, . . . , n are subdivided into basic
and nonbasic sets. (A coordinate i is nonbasic if xi is equal to one of the breakpoints. The
indices for the set of constraints also provides elements for the basic/nonbasic sets.) We apply
a standard active set approach, e.g. [14]. 1

We tested two variations for the crossover. The first variation used the last iterate of the
interior-point method as an initial point for the active set method. However, the result is that
the number of iterations needed for the active set method to finish the problem is at least
the number of the constraints active at the optimum. Since our active set algorithm takes a
Newton step at each iteration, this method is time consuming. It could perform well if only few
constraints were active and few coordinates were at breakpoints for the optimum.

The second variation first applied a purification step, i.e. we also use the last iterate from
the IP M and then perform several iterations of the gradient projection method, e.g. [25] to
increase the size of the active set as much as we can (without sacrificing the objective function
value). We stop if the optimal solution is found or if a constraint should be dropped. In the
latter case the last iterate of the purification step is used to start the active set algorithm. This
variation has the guarantee that the true objective function value of the final solution from the
purification is at least as good as that of the final IP M solution. This method performed best
in most cases.

The numerical tests are summarized in Tables 5.5 and 5.6. From Table 5.5, we see that
doing the purification step before the crossover is always faster. We only present the faster
purify option in the remaining Table 5.6.

For problems where the number of breakpoints is large, our program performs faster than
MOSEK (overall run times). We found that terminating the IP M when the relative gap is equal
to ǫ gives slightly better timings. Also note that our IP M was implemented in MATLAB and
is generally slower than MOSEK on differentiable problems. (For benchmarking purposes, we
ran MOSEK and our code on the same differentiable problems, and MOSEK was approximately
2.5 times faster than our MATLAB code.)

1 FORTRAN routines for inverse updates were kindly provided by Professor M.J. Best, University of Waterloo.

These routines were converted to C by an automatic translator. To further improve efficiency we used CBLAS

routines to perform basic matrix and vector operations.
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MOSEK 102 (25)

MATLAB Purification Active Set Crossover
IP M Step (MATLAB) step total

termin. tol=10−3

With Pur.Step 24 (10) 18 (250) 85 (65) 127
No Pur.Step 24 (10) - 430 (333)

termin. tol=10−4

With Pur.Step 32 (14) 18 (250) 50 (32) 100
No Pur.Step 32 (14) - 390 (281)

termin. tol=10−5

With Pur.Step 35 (16) 18 (246) 48 (30) 101
No Pur.Step 35 (16) - 389 (278)

Table 5.5: CPU (iter) for: Crossover, Data Type 1; n = 1000, m = 500, M = 101, ǫ = .0001.

5.5 Comparing Linear System Solvers

We considered four different ways of solving the linear system for the search direction, i.e. the
augmented system in (3.3) or the normal equation system (3.4).

1. Cholesky: Form AT (S−1U)A using sparse arithmetic; then use a (dense) Cholesky fac-
torization of the matrix

[

G + H + AT (S−1U)A
]

(5.1)

to solve the system (3.4).

2. Augmented: Directly solve the augmented system (3.3) using the MATLAB ’backslash,\’
command. (The \ command is based on an LU factorization but also takes advantage of
sparsity.)

3. Backsolve: Use the MATLAB ’backslash’ command as in the Augmented approach above
in Item 2, but apply it to the normal equations system (3.4).

4. Block LU: We solve the augmented system (3.3) using a block LU approach: first compute
the LU factorization of the upper left block G + H = L11U11; then solve the triangular
systems L11U12 = AT and L21U11 = A for U12 and L21, respectively; finally, form a matrix
Z = −U−1S − L21U12 (a Schur complement of G + H) and find the LU factorization
L22U22 = Z. Then

[

G + H AT

A −U−1S

]

=

[

L11 0
L21 L22

] [

U11 U12

0 U22

]

is the LU factorization of the augmented system.
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MOSEK 217 (31)

MATLAB MATLAB Purification Active Set Crossover
Termin. Tol. IP M Step (MATLAB) step total

10−3 25 (11) 18 (247) 76 (56) 119

10−4 34 (15) 18 (248) 52 (33) 104

10−5 36 (16) 18 (248) 57 (37) 111

Table 5.6: CPU (iter) for: Crossover with purif. step, Data Type 2; n = 1000, m = 500, M = 101, ǫ =
0.0001,

H
H

H
H

HH
G

A
100% dense 60% dense 40% dense 5% dense

Chol Aug Bcksl Chol Aug Bcksl Chol Aug Bcksl Chol Aug Bcksl

100% 1.8 3.3 2.1 6.6 3.3 6.5 4.1 3.3 4 1.8 8.7 1.7
40% 12 6.3 10.2 6.8 5.3 6.6 4.2 10.4 4.1 1.8 3.1 1.8
5% 12 6.7 11.8 6.7 6.3 6.5 4.2 7.6 4.1 1.6 4.5 1.6

Table 5.7: CPU for: different densities and different linear solvers; n = 1000, m = 500, M = 101, ǫ =
0.0001.

Remark 5.1 In the Block LU approach, Item 4, since the system is symmetric and the matrix
G + H is positive definite, it would make more sense to perform the Cholesky decomposition of
G + H. But the sparse LU decomposition proved to be much faster in MATLAB.

This approach is beneficial when the matrix G + H has some special structure, for example
banded or block-diagonal with n >> m. Note that the above approach can be used in solving
smooth convex quadratic problems with n >> m, since the blocks L11, L21, U11 and U12 have to
be calculated only once. At each iteration, only the m×m matrix Z has to be factored. MATLAB
is 2-3 times faster than MOSEK on such QP examples.

In Table 5.7, we summarize CPU times for the Cholesky/Augmented/Backsolve techniques
for solving the linear system for various densities of the data matrices A,G. For n

4 ≤ m ≤ n
2 ,

we found that whenever G and A were both full dense, CPU times for Chol. were half of those
for Aug.. When we made A more sparse (while keeping G full dense), the CPU times became
equal around 40% density for A. When A had only 5% of its entries as nonzeros, Chol. beat
Aug. by a factor of five.
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H
H

H
H

HH
G

A
5% dense 1% dense

Chol Aug Bcksl Chol Aug Bcksl Dense Chol

m=1000

1% 22 26 33 13 12 34 33
0.5% 26 23 33 16 7 34 33

m=300

1% 17 5 28 12 3 24 17
0.5% 16 3 28 12 1 19 17

Table 5.8: CPU for: different densities and different linear solvers; n = 3000, M = 101, ǫ = 0.0001.

Table 5.8 is similar to Table 5.7, but Only sparse data is considered and CPU times for
the Dense Cholesky option is given in a separate column. We can see that the Cholesky
factorization is always faster than the backslash command. When G and A are 1% to 5% dense,
Cholesky outperforms all other methods. We notice that increasing the sparsity and decreasing
the number of constraints improves the performance of the augmented system. When the sparsity
is around 0.5% and the number of constraints is 10% of the number of variables, the augmented
system becomes the fastest choice.

In the next series of experiments we model real-life, large-scale portfolio optimization prob-
lems with thousands of variables. Consider a multi-stage decision making environment. In such
applications, large n, sparse G, and banded (or near-banded) matrix structures make sense,
see e.g. [21]. As another application, consider a particular sector for investment opportunities,
say the energy sector, where there is no limit on the nationality of the companies. In this
case there may be a lot of correlation among all energy stocks. These correlations are strong
within a geographical region and across regions, but strongest within the similar products (e.g.,
oil). Again, we find that the block diagonal structures (with moderate overlap) provides a good
mathematical model.

For these experiments, we generate G with overlapping blocks on the diagonal. We also add
upper and lower bounds on all the variables. The number of constraints is equal to the number
of blocks. We also add a budget constraint x1+x2+. . .+xn = 1. We noticed that addition of the
lower/upper bounds does not change the timings significantly. But the budget constraint makes
the matrix of a normal equation system dense. For these problems, the augmented system gives
much better results. Therefore, we only present results for the Aug. and Block LU methods
in Table 5.9.
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A density 10% 5% 1%

Aug Block LU Aug Block LU Aug Block LU

n=3000 (15 blocks) 2.1 1.7 1.6 1.5 0.6 1.2

n=6000 (30 blocks) 5.4 3.5 3.2 3.2 1.4 2.6

n=9000 (45 blocks) 10.6 5.6 5.6 5.1 2.4 4.0

n=12000 (60 blocks) 7.2 7.9 9.1 7.0 3.8 5.6

Table 5.9: CPU for: different linear solvers with up/low bnds; G 200 × 200 blocks, 10% den.; m =
200, M = 101, ǫ = 0.0001.

Number of Breakpoints MATLAB MOSEK

M = 101 83 (15) 456 (13)

M = 51 78 (14) 230(12)

M = 25 82(15) 129 (12)

M = 11 80 (15) 70 (11)

M = 3 85 (15) 42 (10)

No Trans. Costs 74 (15) 30 (9)

Table 5.10: CPU (iter) for: n = 5000, G 0.5% dens.; m = 300, A 1% dens.

5.6 Experiments with Sparse Data

In this section, we compare the CPU times for MOSEK (using the global lifting formulation) and
our algorithm (in MATLAB using the smoothed formulation) on sparse large scale data. We set
the spline approximation parameter ǫ = 10−5. Both MOSEK and MATLAB were terminated
when the relative gap was less than 10−7. For all experiments, the objective function f(x) at
the solutions given by MOSEK and MATLAB agreed to seven digits accuracy.

For the Tables 5.10, 5.11 and 5.12 matrix G was sparse but had no special structure. (See
also Figures 5.2 and 5.3.) In Table 5.10 we solve the same problems changing only the number
of the breakpoints. The CPU times for our method stays virtually unchanged; while the CPU
times for the lifted problem solved by MOSEK increase. (See also Figure 5.2.)

In the next series of tests we increase the dimension of the problem so that G has 20 nonzeros
per row, M = 25, and all the remaining parameters are fixed. In this case our code beats
MOSEK by a constant factor, see Table 5.11. For Table 5.12, we also increase the dimension of
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Dimension MATLAB MOSEK

n=21000 902 (13) 1000 (15)

n=18000 695 (14) 788 (15)

n=15000 433 (14) 588(15)

n=12000 262 (13) 370 (13)

n=9000 146 (13) 224 (11)

n=6000 71 (14) 143 (11)

n=3000 24 (14) 64 (11)

Table 5.11: CPU (iter) for: G has 20 nonzeros per row; m = 300, A 1% dens.; M = 25.

Dimension MATLAB MOSEK

n=12000 1980 (13) 1026(11)

n=9000 593(14) 425 (11)

n=6000 117 (13) 162 (11)

n=3000 16 (13) 63 (11)

Table 5.12: CPU (iter) for: G 0.5% dens.; m = 300, A 1% dens.; M = 25.

the problem, but keep the sparsity of G constant. In this case, MOSEK performs better with
the increase in dimension.

In the remaining tables, the matrix G is block-diagonal with block size approximately 200×
200. The blocks are overlapping by 10 diagonal elements on average. Each block is sparse. As
before, CPU times for our method stays virtually unchanged with an increase in the number
of breakpoints; while the CPU times for the lifted problem solved in MOSEK increases, see
Table 5.13 and Figure 5.4.

For Table 5.14, we increase the dimension of the problem, but keep the block size constant. In
this case our MATLAB code beats MOSEK by a constant factor. Also note that MOSEK is
approximately 2 times faster on a smooth problem without transaction costs than our MATLAB
code. (See also Figure 5.5.)

Some additional experiments on very large data are reported in Table 5.15. Note that for
these problems, MOSEK spends around 50% of the time on preprocessing.
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Number of Breakpoints MATLAB MOSEK

M = 101 97 (13) 825 (13)

M = 51 95 (13) 440 (13)

M = 25 94 (13) 215 (11)

M = 11 95 (13) 117 (10)

M = 3 101 (14) 78 (10)

No Trans. Costs 93 (13) 46 (9)

Table 5.13: CPU (iter) for: G has 45 200× 200 blocks, 10% dens.; m = 200, A 10% dens.; with up/low
bnds.

Number of Blocks MATLAB MOSEK

75 blocks
n=15000 164 (13) 401 (11)

60 blocks
n=12000 131 (13) 303(11)

45 blocks
n=9000 94 (13) 215 (11)

30 blocks
n=6000 53 (12) 135 (11)

15 blocks
n=3000 26 (12) 64 (11)

Table 5.14: CPU (iter) G has 200×200 blocks; 10% den.; m = 200, A 10% den.; up/low bnds, M = 25.

n Blocks A M MATLAB MOSEK
Number Size Density Overlap m Density

53400 89 600 0.006 9 500 0.1 51 3114 (15) 8797 (11)

100000 1000 100 0.1 10 200 0.01 25 2966 (15) 5595 (16)

near opt.
150000 5000 30 0.1 5 300 0.01 11 8890 (18) 5674 (28)

can’t
200000 10000 20 0.1 5 300 0.01 11 18010 (17) solve

Table 5.15: CPU (iter) for: large-scale problems.
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Figure 5.2: CPU for: n = 5000, G 0.5% den.; m = 300, A 1% dense.

6 Conclusion

In this paper, we considered the optimal portfolio problem with convex, piecewise linear trans-
action costs and linear inequality constraints. We solved these problems efficiently with a three
stage approach. First, we smoothed the problem by approximating the transaction costs with
spline functions; and we solved the smoothed problem with an IP M . Second, using a purifi-
cation algorithm (including a gradient projection method) on the final solution from IP M , we
generated good feasible solutions to start the active set algorithm on the original nonsmooth
portfolio optimization problem. Thirdly, we obtained very high accuracy solutions by employing
an active set method from the good feasible solution generated by the purification stage.

Our numerical tests showed that we can solve large scale problems efficiently and accurately.
These numerical tests suggest that this approach is useful for general nonsmooth problems
with piecewise linear portions in the objective function and for which one can expect many
components of the optimum at breakpoints.

Hastie et al. [18] work with a nondifferentiable unconstrained problem, where nondifferen-
tiability arises from penalization of the residual [Ax − b]+. In their case, A and b come from
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Figure 5.3: CPU for: G has 20 nonzeros per row; m = 300, A 1% den.; M = 25.

statistical observations and the constraints Ax ≤ b are of a different nature (e.g., small viola-
tion in a few constraints may be attributed to measurement errors). However, in our problems,
Ax ≤ b represents many hard constraints such as budget requirements, no short selling etc.
Moreover, in many cases no violation is tolerated. Therefore, an approach analogous to that of
[18] may be useful as an initialization heuristic for our IP M .

Acknowledgments: We thank three anonymous referees for many, constructive and helpful
comments, in particular, for pointing out the references [18, 19, 35].

A Transaction Costs

Recall that x̂ ∈ R
n represents the current holdings in assets (given). fi(xi) denotes the transac-

tion cost of changing the holdings in asset i from x̂i to xi. d−il and d+
il denote the absolute values

of breakpoints on the transaction costs (d−il on the negative side, corresponding to selling). M−
i

denotes the number of breakpoints on the negative side (for selling asset i) and M+
i denotes the

number of breakpoints on the positive side (for buying asset i). f−
il

and f+
il

are the corresponding
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Figure 5.4: CPU (iter) for: G has 45 blocks 200× 200, 10% den.; m = 200, A 10% den.; up/low bnds.

cost functions. So, x̂, Mi−, M+
i , d−il , d+

il , f−
il and f+

il are all given as part of the data. We assume
that the transaction costs are given by the following function

fi(xi) =



















f−
il (−xi + x̂i − d−il ) +

∑l
j=1 f−

ij−1(d
−
ij), if xi − x̂i ∈ [−d−il+1,−d−il ],

for some l ∈ {0, ..,M−
i },

f+
il (xi − x̂i − d+

il ) +
∑l

j=1 f+
ij−1(d

+
ij), if xi − x̂i ∈ [d+

il , d
+
il+1],

for some l ∈ {0, ..,M+
i }.

where d+
i0 = d−i0 = 0, d+

iM
+

i
+1

= d−
iM

−
i

+1
= +∞.

If the holding in the asset number i has not changed, i.e. xi = x̂i, the transaction costs
associated with this asset should be equal to zero. Therefore fi(x) should satisfy the conditions

fi(x̂i) = 0. (A.1)

The above notation comes naturally from the statement of the problem, but we can simplify
it for the purpose of formulating the solution algorithm. Let Mi = M+

i + M−
i + 1, so that Mi
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Figure 5.5: CPU (iter); G 200 × 200 blocks; 10% den.; m = 200, A 10% den.; up/low bnds, M = 25.

is the total number of end points of the intervals (“breakpoints”). We further denote

dil = x̂i − d−
i(M−

i
−l+1)

, l = 0, ...,M−
i + 1,

dil = x̂i + d+
i(l−M

+

i
+1)

, l = M−
i + 2, ...,Mi + 1,

and

fil(xi) = f−

i(M−
i
−l)

(−xi + x̂i − d−
i(M−

i
−l)

) +
∑(M−

i
−l)

j=1 f−
ij−1(d

−
ij), l = 0, ...,M−

i ,

fil(xi) = f+
i(l−M

+

i
)
(xi − x̂i − d+

i(l−M
+

i
)
) +

∑(l−M
+

i
)

j=1 f+
ij−1(d

+
ij), l = M−

i + 1, ...,Mi.

Thus we can rewrite the cost functions in the following more compact way:

fi(xi) =







fi0(xi), if xi ≤ di1,
fil(xi), if xi ∈ [dil, dil+1], l = 1, ..,Mi,
fiMi

(xi), if xi ≥ diMi
.

(A.2)
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