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Analytical approximate solutions for conservative nonlinear
oscillators by modified rational harmonic balance method
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An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is
a modification of the generalized harmonic balance method in which analytical approximate solutions
have a rational form. This approach gives us not only a truly periodic solution but also the frequency of
motion as a function of the amplitude of oscillation. Three truly nonlinear oscillators including the cubic
Duffing oscillator, fractional-power restoring force and anti-symmetric quadratic nonlinear oscillators are
presented to illustrate the usefulness and effectiveness of the proposed technique. We find that this method
works very well for the cubic oscillator, and excellent agreement of the approximate frequencies with the
exact one has been demonstrated and discussed. For the second-order approximation, we have shown that
the relative error in the analytical approximate frequency is as low as 0.0046%. We also compared the
Fourier series expansions of the analytical approximate solution and the exact one. This has allowed us to
compare the coefficients for the different harmonic terms in these solutions. For the other two nonlinear
oscillators considered, the relative errors in the analytical approximate frequencies are 0.098 and 0.066%,
respectively. The most significant features of this method are its simplicity and its excellent accuracy for
the whole range of oscillation amplitude values, and the results reveal that this technique is very effective
and convenient for solving conservative truly nonlinear oscillatory systems.

Keywords: truly nonlinear oscillators; approximate solutions; generalized harmonic balance method

AMS Subject Classification: Q1

1. Introduction

Nonlinear oscillator models have been widely used in many areas not only in physics and engineer-
ing, but also they are of significant importance in other areas. Physical and mechanical oscillatory
systems are often governed by nonlinear differential equations. In many cases, it is possible
to replace a nonlinear differential equation by a corresponding linear differential equation that
approximates the original nonlinear equation closely to give useful results [34]. Often such lin-
earization is not feasible and for this situation the original nonlinear differential equation itself must
be directly dealt with. There are a large variety of approximate methods commonly used for solving
nonlinear oscillatory systems. The most common and most widely studied of all approximation
methods for nonlinear differential equations are perturbation methods [1,2,25,34,38,47]. Some of
the other techniques include variational [18,20,28,30,41,44], decomposition [42], homotopy per-
turbation [5,6,8,11–13,15,19,24,26,39,45], homotopy analysis [31,51], harmonic balance [34],
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2 A. Beléndez et al.

standard and modified Lindstedt–Poincaré [21–23,27,34,40,43], artificial parameter [27,43],
parameter expanding [29,49], equivalent linearization [7,16], linearized and quasilinearized har-
monic balance [3,4,9,14,32,50] methods, etc. Surveys of the literature with numerous references
and useful bibliography and a review of these methods can be found in detail in [1,2,25,27,32,34].
These nonlinear equations can be also solved using an exponential fitting method proposed by
Vigo-Aguiar et al. [46–48].

The method of harmonic balance is a well-established procedure for determining analytical
approximations to the solutions of differential equations, the time domain response of which can
be expressed as a Fourier series. In the usual harmonic balance methods (HBM), the solution of a
nonlinear system is assumed to be of the form of a truncated Fourier series [34]. This method can
be applied to nonlinear oscillatory systems where the nonlinear terms are not small and no pertur-
bation parameter is required. Being different from the other nonlinear analytical methods, such
as perturbation techniques, the HBM does not depend on small parameters, such that it can find a
wide application in nonlinear problems without linearization or small perturbations. Various gen-
eralizations of the HBM have been made and one of them is the rational representation proposed
by Mickens and coworkers [17, 33,34,36]. In this paper, a modified generalized, rational HBM is
proposed for constructing approximate analytical solutions to conservative nonlinear oscillations
in which the nonlinear restoring-force f (x) is an odd function of x (i.e., f (−x) = −f (−x));
here x represents the displacement measured from the stable equilibrium position. In this method,
the approximate solution obtained approximates all of the harmonics in the exact solution [36],
whereas the usual harmonic balance techniques provide an approximation to only the lowest
harmonic components. For most cases, the application of the rational HBM leads to very com-
plicated sets of algebraic equations with a very complex nonlinearity that have to be solved even
for the second-order approximation. In an attempt to provide a better solution methodology, a
modification in this technique is proposed for constructing the second-order analytical approx-
imate solution to conservative nonlinear oscillators governed by differential equations with odd
nonlinearity. The most interesting features of the proposed method are its simplicity and its
excellent accuracy in a wide range of values of oscillation amplitude. We present three exam-
ples to illustrate the applicability and the effectiveness of the proposed approximate analytical
solutions.

2. Formulation and solution method

Consider a single-degree-of-freedom, conservative nonlinear oscillator governed by the following
dimensionless differential equation

d2x

dt2
+ f (x) = 0 (1)

subject to the initial conditions

x(0) = A,
dx

dt
(0) = 0, (2)

where the nonlinear restoring-force function f (x) is odd, i.e. f (−x) = −f (−x), and satisfies
xf (x) > 0 for x ∈ [−A, A], x #= 0. It is obvious that x = 0 is the equilibrium position. The system
oscillates between the symmetric bounds [−A, A]. The period and the corresponding solution are
dependent on the oscillation amplitude A.
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A new independent variable τ = ωt is introduced. Then Equations (1) and (2) can be rewritten as

ω2 d2x

dτ 2
+ f (x) = 0, (3)

x(0) = A,
dx

dτ
(0) = 0. (4)

The new independent variable is chosen in such a way that the solution of Equation (3) is a periodic
function of τ of period 2π . The corresponding frequency of the nonlinear oscillator is ω and both
periodic solution x(τ ) and frequency ω depend on the initial amplitude A.

Following the lowest order harmonic balance approximation, we set

x1(τ ) = A cos τ, (5)

which satisfies the initial conditions in Equation (4). Substituting Equation (5) into Equation (3)
and setting the coefficient of the resulting cos τ to zero yield the first approximation to the
frequency in terms of A

ω1(A) =
√

c1

A
, (6)

where

c1 = 4
π

∫ π/2

0
f (x1(τ )) cos τdτ (7)

is the first coefficient of the Fourier series expansion of function f (x1(τ ))

f (x1(τ )) =
∞∑

n=0

c2n+1 cos[(2n + 1)τ ], (8)

where only the odd multiples of are presented because the nonlinear function f (x) is odd. Q2
In order to determine an improved approximation, we use a generalized, rational form given

by the following expression [34,36]:

x2(τ ) = A1 cos τ

1 + B2 cos 2τ
. (9)

In this equation, A1, B2 and ω are to be determined as functions of the initial conditions expressed
in Equation (4) and |B1| < 1. From Equation (4), we obtain A1 = (1 + B2)A, and Equation (9)
can be rewritten as follows:

x2(τ ) = (1 + B2)A cos τ

1 + B2 cos 2τ
. (10)

Substituting Equation (10) into Equation (3) leads to

ω2h(τ ) + f (x2(τ )) = 0, (11)

where

h(τ ) = d2x2(τ )

dτ 2
= 4AB2(1 + B2) cos τ cos 2τ

(1 + B2 cos 2τ )2
− A(1 + B2) cos τ

1 + B2 cos 2τ

− 4AB2(1 + B2) sin τ sin 2τ

(1 + B2 cos 2τ )2
+ 8AB2

2 (1 + B2) cos τ sin2 2τ

(1 + B2 cos 2τ )3

(12)
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and

f (x2(τ )) = f

(
(1 + B2)A cos τ

1 + B2 cos 2τ

)
. (13)

As |B2| < 1, we can do the following Taylor series expansions

h(τ ) =
∞∑

n=0

αn(τ )Bn
2 , (14)

f (x2(τ )) =
∞∑

n=0

βn(τ )Bn
2 . (15)

Before applying the HBM to Equation (11), we consider the following approximation in
Equations (14) and (15)

h(τ ) ≈ h2(τ ) = α0(τ ) + α1(τ )B2 + α0(τ )B2
2 , (16)

f (x2(τ )) ≈ f2(x2(τ )) = β0(τ ) + β1(τ )B2 + β0(τ )B2
2 , (17)

where

α0(τ ) = −A cos τ, (18a)

α1(τ ) = A(9 cos 2τ − 5) cos τ, (18b)

α2(τ ) = −1
2
A(17 − 34 cos 2τ + 25 cos 4τ ) cos τ, (18c)

β0(τ ) = f (A cos τ ), (19a)

β1(τ ) = A cos τ (1 − cos 2τ )fx(A cos τ ), (19b)

β2(τ ) = −A cos τ cos 2τ (1 − cos 2τ )fx(A cos τ )

+ 1
2
A2 cos2 τ (1 − cos 2τ )2fxx(A cos τ ), (19c)

where the subscript x denotes the derivative of f (x) with respect to x. Substituting Equations (16)
and (17) into Equation (11) gives

G2(A, B2, ω, τ ) = ω2h2(A, B2, τ ) + f2(A, B2, τ ) ≈ 0. (20)

Expanding F2(A, B2, τ ) in a trigonometric series yields

G2(A, B2, ω, τ ) = [ω2H20(A, B2) + F20(A, B2)] cos τ

+ [ω2H21(A, B2) + F21(A, B2)] cos 3τ + HOH, (21)

where HOH stands for higher-order harmonics, and

H20(A, B2) = 4
π

∫ π/2

0
h2(A, B2, τ ) cos τdτ = −1

2
(2 + B2)A, (22)

H21(A, B2) = 4
π

∫ π/2

0
h2(A, B2, τ ) cos 3τdτ = 9

4
(2 + B2)AB2, (23)

F20(A, B2) = 4
π

∫ π/2

0
f2(A, B2, τ ) cos τdτ, (24)

F21(A, B2) = 4
π

∫ π/2

0
f2(A, B2, τ ) cos 3τdτ. (25)
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Substituting Equations (22)–(25) into Equation (21) and setting the coefficients of cos τ and cos 3τ

to zeros, respectively, yield

− 1
2
(2 + B2)Aω2 + F20(A, B2) = 0, (26)

9
4
(2 + B2)AB2ω

2 + F21(A, B2) = 0. (27)

Solving Equations (26) and (27), we can obtain B2 and the second-order approximate frequency
ω as a function of A. It should be clear how the procedure works for constructing the second-
order analytical approximate solution. We will show in the following examples that this technique
provides excellent analytical approximations to frequency and corresponding periodic solutions
of conservative nonlinear oscillators.

3. Illustrative examples

In this section, we present three examples to illustrate the usefulness and effectiveness of the
proposed technique.

Example 1 Truly nonlinear cubic Duffing oscillator. This oscillator is governed by the following
differential equation with initial conditions

d2x(t)

dt2
+ x3(t) = 0, x(0) = A,

dx

dt
(0) = 0. (28)

For the oscillator above, one has f (x) = x3, fx(x) = 3x2 and fxx(x) = 6x. Equation (28) cor-
responds to a mechanical oscillator for which the restoring force is proportional to the cube of
the displacement. As we can see, the linear term, x, is omitted in the equation and for all values
of x, the motion is always nonlinear. One example of this nonlinear oscillator is the motion of a Q3
ball-bearing oscillating in a glass tube that is bent into a curve [27] is another example, as well as
the motion of a mass attached to two identical stretched elastic wires for small amplitudes when
the length of each wire without tension is the same as half the distance between the ends of the
wires [4].

From Equations (5)–(7), we obtain the first analytical approximate formula for the frequency as

ω1(A) =
√

3
2

A ≈ 0.866025A. (29)

From Equations (19), (24) and (25), we obtain

F20(A, B2) = 3
8
(2 + 2B2 + B2

2 )A3, (30)

F21(A, B2) = −1
8
(2 − 3B2 − 6B2

2 )A3. (31)



251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

6 A. Beléndez et al.

Substituting Equations (30) and (31) into Equations (26) and (27) and solving for B2 and ω yield
the second analytical expression for the frequency as

B2 = 1
27



−14 − 118(4)1/3

(
2435 + 27

√
12641

)1/3 +
(

4870 + 54
√

12641
)1/3





1/3

≈ −0.0900126,

(32)

ω2(A) = A

√
3(2 + 2B2 + B2

2 )

4(2 + B2)
≈ 0.84725206A. (33)

Therefore, the second approximation to the periodic solution of the nonlinear oscillator is given
by the following equation:

x2(t)

A
= 0.9099874 cos(0.84725206At)

1 − 0.0900126 cos(1.69450412At)
. (34)

This periodic solution has the following Fourier series expansion:

x2(t)

A
=

∞∑

n=0

a2n+1 cos[(2n + 1)ω2t], (35)

where

a2n+1 = 4
π

∫ π/2

0

0.9099874 cos τ

1 − 0.0900126 cos 2τ
cos[(2n + 1)τ ]dτ . (36)

As we can see, Equation (34) gives an expression that approximates all of the harmonics in the
exact solution, whereas the usual harmonic balancing techniques provide an approximation to
only the lowest harmonic components.

We illustrate the accuracy of the modified approach by comparing the approximate solutions
previously obtained with the exact frequency ωex and other results in the literature. In particular,
we will consider the solution of Equation (28) by means of the homotopy perturbation method
(HPM) [6], the standard HBM [34] and a linearized HBM [50]. The last method incorporates
salient features of both Newton’s method and the HBM.

Direct integration of Equation (1) yields the exact frequency as [6]

ωex(A) = π A

2K(1/2)
= 0.847213085A, (37)

where K(m) is the complete elliptical integral of the first kind [37]. The exact solution to
Equation (28) is [6]

xex(t)

A
= cn

(
At; 1

2

)
(38)

where cn is the Jacobi elliptic function which has the following Fourier expansion [6,34]:

cn(u; m) = 2π√
m K(m)

∞∑

n=0

qn+1/2

1 + q2n+1
cos

[
(2n + 1)πu

2K(m)

]
, (39)

where

q(m) = exp
[
−π K(m′)

K(m)

]
, (40)
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and m′ = 1 − m. With these results, the Fourier expansion of Equation (40) becomes

xex(t)

A
= cn

(
At; 1

2

)
= 2π

√
2

K(1/2)

∞∑

n=0

(
exp[(n + 1/2)π ]

1 + exp[(2n + 1)π ]

)
cos[(2n + 1)ωext]

= 0.95501 cos ωext + 0.043050 cos 3ωext + 0.0018605 cos 5ωext

+ 0.0000804 cos 7ωext + · . (41)

By applying the first and the second approximation based on the HBM, Mickens [34] achieved
the following expressions for the frequency:

ωM1(A) =
√

3
2

A = 0.86602540A, Relative error = 2.2%, (42)

ωM2(A) = 0.8507A, Relative error = 0.41%, (43)

and for the second-order approximate solution, he obtained

xM2(t) = 0.9569A cos ωM2t + 0.0431A cos 3ωM2t. (44)

Wu et al. [50] approximately solved Equation (28) using an improved harmonic balance method
(LHBM), which incorporates salient features of both Newton’s method and the HBM. They
achieved the following results for the first, second and third approximation orders

ωWSL1(A) =
√

3
2

A = 0.86602540A, Relative error = 2.2%, (45)

ωWSL2(A) =
√

23
32

A = 0.84779125A, Relative error = 0.068%, (46)

ωWSL3(A) =
√

65856986475
91739270448

A = 0.84727284A, Relative error = 0.0070%, (47)

and for the second-order approximate solution, they obtained

xWSL2(t)

A
= 23

24
cos ωWSL2t + 1

24
cos 3ωWSL2t

= 0.958333 cos ωWSL2t + 0.041667 cos 3ωWSL2t. (48)

Beléndez et al. [6] approximately solved Equation (28) using He’s HPM. They achieved the
following results for the first, second and third approximation orders:

ωB1(A) =
√

3
2

A = 0.86602540A, Relative error = 2.2%, (49)

ωB2(A) = 1
4

√
6 +

√
30A = 0.84695136A, Relative error = 0.031%, (50)

ωB3(A) = 1
4

√
6 +

√
30A = 0.84695136A, Relative error = 0.031%. (51)

The approximate solution they obtained for the second approximation was

xB2(t)

A
= 0.954538 cos ωB2t + 0.043564 cos 3ωB2t + 0.0018979 cos 5ωB2t. (52)
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The frequency values and their relative errors obtained in this paper applying a modified
generalized harmonic balance method (GHBM) are the following:

ω1(A) =
√

3
2

A = 0.86602540A, Relative error = 2.2%, (53)

ω2(A) = 0.84725206A, Relative error = 0.0046%. (54)

From Equations (35) and (36), the Fourier series expansion for the second-order approximate
solution obtained in this paper is

x2(t)

A
= 0.954902 cos ω2t + 0.043064 cos 3ω2t + 0.00194209 cos 5ω2t

+ 0.0000875842 cos 7ω2t + · · · (55)

which has an infinite number of harmonics.
In Table 1, we present, for the second-order approximation, the comparison between the approx-Q4

imate and exact frequencies and the first four coefficients of the Fourier series expansions of the
exact solution and the second-order the analytical approximate solution using different methods.
Note that for HBM, LHBM and HPM, the number of Fourier coefficients is finite. It is clear
that the second-order approximate frequency obtained in this paper is better not only than the
second-order approximate frequency obtained using other approximate techniques but also than
the third-order approximate frequency obtained using these methods. The normalized periodic
exact solution, xex/A, achieved using Equation (38) and the proposed second-order approximate
solution, x2/A (Equation (34)), are plotted in Figure 1, whereas in Figure 2, we plotted the
difference (xex − x2)/A. In these figures, h is defined as follows:

h = t

Tex
. (56)

As we can see, x2(t)/A coincides with the exact solution xex/A. Figures 1 and 2 show that
Equations (33) and (34) can provide high accurate approximations to the exact frequency and the
exact periodic solution. These results are an indication of the accuracy of the proposed modified
GHBM as applied to this particular problem, and show that it provides an excellent approximation
to the solution of Equation (28).

Example 2 Oscillator with fractional-power restoring force. This oscillator is governed by the
following differential equation with initial conditions

d2x(t)

dt2
+ x1/3(t) = 0, x(0) = A,

dx

dt
(0) = 0. (57)

For this problem, we have f (x) = x1/3, fx(x) = (1/3)x−2/3 and fxx(x) = −(2/9)x−5/3. This
system was introduced as a model ‘truly nonlinear oscillator’ by Mickens [35].

Table 1. Comparison of the exact and approximate frequencies and the first four coefficients for the Fourier expansions
of the exact and the second-order approximate solutions obtained using different methods.

Exact solution GHBM (this paper) HBM [34]† LHBM [50]‡ HPM [6]§

ω/A (% error) 0.847213 0.847252 (0.0046%) 0.8507 (0.41%) 0.846779 (0.068%) 0.846951 (0.031%)
a1(% error) 0.955010 0.954902 (0.011%) 0.9569 (0.20%) 0.958333 (0.35%) 0.954538 (0.049%)
a3(% error) 0.043050 0.043064 (0.033%) 0.0431 (0.12%) 0.041667 (3.2%) 0.043564 (1.2%)
a5(% error) 0.0018605 0.00194209 (4.4%) 0 0 0.0018979 (2.0%)
a7(% error) 0.0000804 0.00008758 (8.9%) 0 0 0

† a2n+1 = 0 (n ≥ 2). ‡ a2n+1 = 0 (n ≥ 2). §a2n+1 = 0 (n ≥ 3).
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Figure 1. Comparison of normalized second-order approximate solution (circles) with the exact solution (continuous
line) in Example 1.

Figure 2. Difference between the normalized exact and second-order approximate solution obtained using the modified
GHBM presented in this paper as a function of h (Example 1).

From Equations (5)–(7), we obtain the first analytical approximate formula for the frequency as

ω1(A) =
√

3&(7/6)√
π&(2/3)A2/3

≈ 1.07685
A1/3

, (58)

where &(z) is the Euler gamma function.
From Equations (19), (24) and (25), we obtain

F20(A, B2) = 3A1/3(20 + 4B2 − B2
2 )&(7/6)

20
√

π &(2/3)
, (59)

F21(A, B2) = −3A1/3(44 + 55B2 + 2B2
2 )&(7/6)

220
√

π &(2/3)
. (60)
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10 A. Beléndez et al.

Substituting Equations (59) and (60) into Equations (26) and (27) and solving for B2 and ω yield
the second analytical expression for the frequency as

B2 ≈ 0.0466088, (61)

ω2(A) =
√

3(20 + 4B2 − B2
2 )&(7/6)

10A2/3(2 + B2)&(2/3)
≈ 1.0694051

A1/3
. (62)

Therefore, the second approximation to the periodic solution of the nonlinear oscillator is given
by the following equation:

x2(t)

A
= 1.0466088 cos(1.0694051A−1/3t)

1 + 0.0466088 cos(2.1388102A−1/3t)
. (63)

Direct integration of Equation (57) yields the exact frequency as [12]

ωex(A) = 2
√

π&(5/4)√
6&(3/4)A1/3

≈ 1.0704505
A1/3

. (64)

By applying the first and the second approximation based on the HBM, Mickens [35] achieved
the following expressions for the frequency

ωM1(A) = 1.04912
A1/3

, Relative error = 2.0%, (65)

ωM2(A) = 1.06341
A1/3

, Relative error = 0.70%. (66)

Wu et al. [50] approximately solved Equation (57) using an LHBM. They achieved the following
results for the first and second approximation orders

ωWSL1(A) = 1.07685
A1/3

, Relative error = 0.60%, (67)

ωWSL2(A) = 1.06922
A1/3

, Relative error = 0.12%. (68)

Beléndez et al. [12] approximately solved Equation (57) using a modified He’s homotopy
perturbation method (MHPM). They achieved the following results for the first and second
approximation orders:

ωB1(A) = 1.07685
A1/3

, Relative error = 0.60% (69)

ωB2(A) = 1.06861
A1/3

, Relative error = 0.17%. (70)

The frequency values and their relative errors obtained in this paper applying a modified GHBM
are the following:

ω1(A) = 1.07685
A1/3

, Relative error = 0.60%, (71)

ω2(A) = 1.06941
A1/3

, Relative error = 0.098%. (72)

It is clear that the second-order approximate frequency obtained in this paper is better than that
obtained using other approximate techniques. The comparison of the (numerical) exact normalized
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Figure 3. Comparison of normalized second-order approximate solution (circles) with the exact solution (continuous
line) in Example 2.

periodic solution, xex/A, obtained by numerically integrating Equation (57) and the proposed
second-order approximate solution, x2/A (Equation (63)), is shown in Figure 3. This figure
shows that the second approximation obtained in this paper is excellent as compared with the
exact periodic solution.

Example 3 Anti-symmetric quadratic nonlinear oscillator. The anti-symmetric quadratic non-
linear oscillator is governed by the following differential equation with initial conditions

d2x(t)

dt2
+ |x(t)|x(t) = 0, x(0) = A,

dx

dt
(0) = 0, (73)

which is an example of a nonsmooth oscillator for which f (x) is a nonlinear, nonsmooth function
of x. For this problem, we have f (x) = |x|x, fx(x) = 2|x| and fxx(x) = 2 sgn(x), where

sgn(x) =
{

−1, x < 0,

+1, x > 0.
(74)

From Equations (5)–(7), we can easily find that the first-order approximate frequency for this
oscillator is

ω1(A) =
√

8A

2π
= 0.921318

√
A. (75)

Applying Equations (19), (24) and (25) to this oscillator, we obtain

F20(A, B2) = 8
105π

(35 + 28B2 + 8B2
2 )A2, (76)

F21(A, B2) = 8
105π

(7 − 20B2 − 24B2
2 )A2. (77)
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Substituting Equations (76) and (77) into Equations (26) and (27) and solving for B2 and ω yield
the second analytical expression for the frequency as

B2 = −17
18

+

(
20155 + 9

√
5387191

)1/3

41/318

− 247

18
(

40310 + 18
√

5387191
)1/3 ≈ −0.0529501, (78)

ω2(A) =
√

16(35 + 28B2 + 8B2
2 )A

105π(2 + B2)
≈ 0.9140759

√
A. (79)

Therefore, the second approximation to the periodic solution of the nonlinear oscillator is given
by the following equation:

x2(t)

A
= 0.9470499 cos(0.9140759

√
At)

1 − 0.0529501 cos(1.828152
√

At)
. (80)

Direct integration of Equation (73) yields the exact frequency as [10]

ωex(A) =
√

3π

2
&(5/6)

&(1/3)

√
A = 0.914681

√
A. (81)

By applying the first approximation based on the HBM and a second-order rational HBM,
Mickens [10,34] achieved the following expressions for the frequency:

ωM1(A) =
√

8A

2π
= 0.921318

√
A, Relative error = 0.73%, (82)

ωM2(A) = 0.914044
√

A, Relative error = 0.070%. (83)

Beléndez et al. [10] approximately solved Equation (73) using an MHPM. They achieved the
following results for the first and second approximation orders:

ωB1(A) =
√

8A

2π
= 0.921318

√
A, Relative error = 0.73%, (84)

ωB2(A) = 0.914274
√

A, Relative error = 0.045%. (85)

The frequency values and their relative errors obtained in this paper applying a modified GHBM
are the following:

ω1(A) =
√

8A

2π
= 0.921318

√
A, Relative error = 0.73%, (86)

ω2(A) = 0.914076
√

A, Relative error = 0.066%. (87)

For this nonlinear oscillator, the second-order approximate frequency obtained using the HPM
is a little better than that obtained using the rational HBM.
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Figure 4. Comparison of normalized second-order approximate solution (circles) with the exact solution (continuous
line) in Example 3.

The comparison of the (numerical) exact normalized periodic solution, xex/A, obtained by
numerically integrating Equation (73) and the proposed second-order approximate solution, x2/A,
computed by Equation (80) is shown in Figure 4. This figure show that the second approximation
obtained in this paper is excellent as compared with the exact periodic solution.

4. Conclusions

A modified generalized, rational HBM has been applied to obtain analytical approximate solu-
tions for nonlinear problems that are conservative and periodic. The major conclusion is that
this scheme provides excellent approximations to the solution of these nonlinear systems with
high accuracy. Three examples have been presented to illustrate the excellent accuracy of the
analytical approximate frequencies. The analytical representations obtained using this technique
give excellent approximations to the exact solutions for the whole range of values of oscillation
amplitudes. For the cubic oscillator, these approximate solutions are better than that obtained
using other approximate methods presented in the literature. For the second-order approximation,
the relative error of the analytical approximate frequency obtained using the approach considered
in this paper for the cubic oscillator is 0.0046%. An interesting feature considered in this paper is
the comparison between the analytical approximate solutions and the Fourier series expansion of
the exact solution. This has allowed us to compare the coefficients for the different harmonics. In
summary, this modified GHBM is very simple in its principle, and it can be used to solve other
conservative truly nonlinear oscillators with complex nonlinearities.
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