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In this paper, we present a new stochastic hybrid technique for constrained global optimiza-
tion. It is a combination of the electromagnetism-like (EM) mechanism with a random local
search, which is a derivative-free procedure with high ability of producing a descent direc-
tion. Since the original EM algorithm is specifically designed for solving bound constrained
problems, the approach herein adopted for handling the inequality constraints of the problem
relies on selective conditions that impose a sufficient reduction either in the constraints vio-
lation or in the objective function value, when comparing two points at a time. The hybrid
EM method is tested on a set of benchmark engineering design problems and the numerical
results demonstrate the effectiveness of the proposed approach. A comparison with results
from other stochastic methods is also included.
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1. Introduction

The problem that is addressed in the paper considers finding a global solution of
a nonlinear optimization problem in the following form:

min
x∈IRn

f(x)

subject to g(x) ≤ 0, x ∈ Ω,
(1)

where f : IRn → IR and g : IRn → IRp are nonlinear continuous functions and
Ω = {x ∈ IRn : l ≤ x ≤ u}. We do not assume that the objective function
f is convex. This class of global optimization problems is very important and
frequently encountered in engineering applications. Some algorithms for solving
this type of problem require substantial gradient information and aim to improve
the solution in a neighborhood of a given initial approximation. When the problem
has more than one local solution, the convergence to the global solution may depend
on the provided initial approximation. Stochastic-type methods with incorporated
heuristics have been proposed to solve constrained global optimization problems
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with success. This paper presents a new stochastic hybrid technique for solving
problems like (1).

A well-known approach for solving constrained optimization problems is based
on penalty functions. The penalty techniques transform the constrained problem
into an unconstrained problem by penalizing f when constraints are violated and
then minimizing the penalty function using methods for unconstrained problems
[4, 7, 9, 21, 27]. The main difficulty here is the updating of a positive penalty
parameter. Large values give feasible solutions that have low accuracy, while small
values generate infeasible with good accuracy solutions. An alternative to penalty
functions in gradient-based or derivative-free methods for constrained optimization
is the filter method. See, for example [1, 3, 11, 31]. Another approach for handling
the constraints g(x) ≤ 0 of problem (1) relies on a simple heuristic consisting on
three selective rules, denoted by feasibility and dominance (FAD) rules [10, 17, 33].
We remark that these rules can be used for pairwise comparison with methods
that have a population of points in every iteration. Other techniques that aim to
preserve and force feasibility can be found in [15, 28–30].

In this paper, we are interested in the electromagnetism-like (EM) algorithm
proposed in [5]. This is a population-based algorithm that simulates the electro-
magnetism theory of physics by considering each point in the population as an
electrical charge. The method uses an attraction-repulsion mechanism to move
a population of points towards optimality. The EM algorithm is specifically de-
signed for solving optimization problems with bound constraints [4–6]. A natural
extension to inequality and equality constrained optimization problems based on
penalty and barrier functions is proposed in [4]. The integration of the FAD rules
into the original EM algorithm is a simple task [26]. During a pairwise point com-
parison, these rules are used to select the best point as follows: (i) among two
feasible points, the one that has better objective function value is preferred; (ii)
any feasible point is preferred to any infeasible solution; and (iii) among two infea-
sible points, the one that has smaller constraints violation is preferred. However,
convergence to optimality may not be guaranteed with these simple reduction con-
ditions. Strong conditions may have to be imposed in order to consider a point
preferred to any other point in the population. Imposing a sufficient reduction ei-
ther in the constraints violation or in the objective function value is a challenge
for constraint-handling techniques in stochastic type methods.

In this paper, we describe new selective conditions that aim to detect the best
point of the population, to attract points to promising regions and to guaran-
tee progress around the best point, imposing a sufficient reduction either in the
constraints violation or in the objective function value. To improve accuracy of
the solutions, we propose to use a derivative-free heuristic method to produce an
approximate descent search direction to move the best point of the population,
followed by a classical backtracking line search. We then test the new hybrid EM
algorithm with a benchmark set of engineering design problems gathered from the
literature. A comparison with the numerical results obtained by other stochastic
methods from the literature is also included.

The remaining part of this paper is organized as follows. In Section 2 we briefly
list the modifications that are introduced in the original EM algorithm to incorpo-
rate the FAD rules for constraint-handling. Section 3 presents the new hybrid EM
algorithm that imposes sufficient reduction either in the constraints violation or in
the objective function value, and uses a random descent search direction to improve
accuracy around the best point of the population. Section 4 contains the results of
the numerical experiments on a set of twelve benchmark engineering optimization
problems. We conclude the paper in Section 5.
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2. FAD rules for constraint-handling in the EM algorithm

In this section, we briefly present a simple extension of the EM algorithm proposed
in [5, 6], to solve problem (1), that incorporates the FAD rules for constraint-
handling. These rules are easily incorporated into the original algorithm, by modi-
fying some of the main procedures of the algorithm. We use the following notation:
xi is the ith point of the population, xi

k is the kth (k = 1, . . . , n) coordinate of the
point xi, and psize is the number of points in the population.

The original EM algorithm starts with a population of randomly generated points
from the feasible set Ω. The FAD rules are then implemented to select the best
point, xbest, of the population. Analogous to electromagnetism, each point is a
charged particle that is released to the space. The charge of each point determines
the magnitude of attraction of the point over the others in the population. Thus,
the charge qi considers now a measure of optimality and feasibility of the point xi

given by a fitness function,

qi = exp

(
−n(fitness(xi)− fitness(xbest))∑psize

j=1 (fitness(xj)− fitness(xbest))

)
, (2)

with

fitness(x) =
{

f(x), if x is feasible
fmax + CV(x), otherwise , (3)

being fmax the maximum function value of the feasible points of the population,
and CV(x) = ‖max {0, g(x)} ‖2 is used to measure constraints violation. This way,
a point x with CV(x) = 0 is feasible, whereas the point is infeasible if CV(x) > 0.
If the current population has no feasible points, we set fmax = 0.

The total force vector F i exerted on each point xi by the other psize − 1 points
is the sum of individual component forces, F i

j , for j = 1, . . . , psize and j 6= i, each
depending on the charges qi and qj [5]. Then, the normalized total force vector
exerted on the point xi is used to move the point in the direction of the force by
a random step size. Here, the best point, xbest, is not moved and is carried out
to the subsequent iteration. The FAD rules are then used to select the best point
of the new population. Finally, a local procedure performs a local refinement only
to the best point in the population, see [5]. The reader is referred to [26] for the
details concerning the implementation of the FAD rules in the EM algorithm, and
the discussion of some experimental results with a set of academic problems [33].

3. Sufficient reduction conditions in a hybrid EM algorithm

We now present the new EM algorithm that imposes a sufficient reduction either
in the constraints violation or in the objective function value, in order to detect
the best point of the population, to attract points to promising regions and to
guarantee progress around the best point. The hybridization relies on a local search
that generates an approximate descent direction of a fitness function at the best
point of the population.

First, we describe the sufficient reduction conditions to handle inequality con-
straints in the EM algorithm. Deterministic methods that use a penalty function
ensure sufficient progress towards the solution by enforcing a sufficient reduction
in the penalty function. To avoid the use of a merit function and the updating of



March 30, 2009 12:34 International Journal of Computer Mathematics IJCM˙RF˙rev˙red˙2

4 Hybridizing electromagnetism with descent search

the penalty parameter, while promoting global convergence from arbitrary initial
approximations, Fletcher and Leyffer [11] proposed a filter technique in a deter-
ministic optimization algorithm context. In a filter framework, for example in [3]
and [31], a new point y might be considered to be acceptable, when compared with
the current point x, if it leads to sufficient progress in one of the two measures
(feasibility or optimality):

CV(y) ≤ (1− γ) CV(x) or f(y) ≤ f(x)− γ CV(x), for γ ∈ (0, 1).

To adapt the methodology of a filter as outline in [11] to this population-based
stochastic framework, a point is preferred to any other point in the population if
selective sufficient reduction conditions hold.

3.1 Selective sufficient reduction conditions

The selective conditions herein proposed impose a sufficient reduction in one of the
measures f or CV and aim to guarantee sufficient progress around the best point
and around other points of attraction. They are implemented as follows. If both
points in comparison are feasible, then xi is considered to be preferred to xj only
if a sufficient decrease in f is verified

f(xi) ≤ (1− γ) f(xj), (4)

where γ ∈ (0, 1) is a fixed constant. On the other hand, if only one point is feasible
or both points in comparison are infeasible then xi is considered to be preferred to
xj if

CV(xi) ≤ (1− γ)CV(xj) (5)

holds. We remark that points are not compared in terms of both objective function
value and constraints violation, in this adopted constraint-handling technique. In
practice, we first measure constraints violation of all points in the population. If
the point is feasible, the objective function value is evaluated. On the other hand,
if the point is infeasible, its objective function value is not required.

3.2 Moving the points

The procedures that involve the initialization of the population, and the definition
of the total force vectors (with charges computed as shown in (2)) are similar to
those described in [5] and [26]. The herein adopted procedure to move the points
considers a strategy commonly used in the interior point methods [31]. The total
force vector, F i, is used to move the point xi in the direction of the force by a
random step size as follows xi = xi + λαi

max F i (for i = 1, . . . , psize and i 6= best)
where λ is a uniformly distributed random variable in (0, 1) (λ ∼ U(0, 1)) and αi

max

is the longest step size that can be taken along the force vector before violating
the bound constraints, i.e.,

αi
max = min

1≤k≤n
αi

k ≡





(uk − xi
k)

F i
k

, if F i
k > 0

(lk − xi
k)

F i
k

, if F i
k < 0

M, if F i
k = 0

(6)
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where M is a sufficiently large positive value. A pairwise comparison is then carried
out to detect the best point of the new population imposing conditions (4) or (5).

3.3 The local descent search

This section gives a detailed description of a derivative-free heuristic method that
produces an approximate descent direction and aims to generate a new trial point
around the best point of the population. First, two exploring points are randomly
generated in a neighborhood of the best point xbest using

xrand, i
k = xbest

k ± λεr, for k = 1, 2, . . . , n (7)

and i = 1, 2, where λ ∼ U(0, 1) and εr is a sufficiently small positive value. Then, an
approximate descent direction d for the fitness function, see (3), at xbest is defined.
Based on the two random points from (7), a descent direction is generated by

d = − 1∑2
j=1 |∆j |

2∑

i=1

∆i
xbest − xrand, i

‖xbest − xrand, i‖ , (8)

where ∆j = fitness(xbest) − fitness(xrand, j). Theoretical properties related to this
direction vector are shown in [13], where the authors use this descent direction in
a point-to-point search context, a simulated annealing method. It is shown in [13]
that for a set of l exploring points close to xbest, (8) has a high ability of producing
an approximate descent direction if: (i) they are randomly generated in a small
neighborhood of xbest and l = 2, or (ii) they are in equal distance to xbest, define
with xbest a set of orthogonal directions, and l = n.

A trial point is generated along the descent direction with a prescribed step size,

y = xbest + sαmax d, (9)

where s ∈ (0, 1] represents the step size, and αmax is computed similarly to (6)
with F i replaced by d and xi replaced by xbest. The selection of the step size uses
a classical backtracking strategy. To decide if the trial point leads to a sufficient
improvement when compared with the best point, one of the selective conditions
(4) or (5) must hold.

Finally, we present a formal description of the local descent search. See Algo-
rithm 3.1. First, we generate two exploring points and a descent direction. These
two steps in the Algorithm 3.1 are executed whenever flag is set to 1. Then, a trial
point y is calculated and, according to the selective sufficient reduction conditions,
(5) or (4), either y or xbest is preferred. If xbest is the preferred point, then y is
discarded, the step size is halved (i.e., s ← s/2) and a new point is evaluated along
that descent direction (flag is set to 0 in the Algorithm 3.1). However, when y is
preferred, another approximate descent direction is computed (flag is set to 1, and
s is reset to 1) and the process is repeated.

3.4 Dealing with integer variables

Some engineering design problems have integer as well as continuous variables. The
technique implemented in the new hybrid EM algorithm to deal with the integer
variables can be summarized as follows. Whenever new points are evaluated, for
example, after the initialization of the population, after the movement of the points
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Algorithm 3.1 (Local descent search in the hybrid EM)
input: LsItmax, xbest, εr, γ
flag ← 1, s ← 1, iteration ← 0
while iteration ≤ LsItmax do

if flag = 1 then
Generate two random points using (7)
Compute descent direction d using (8)

end if
Compute trial point y using (9)

if both y and xbest are feasible then
if f(y) ≤ (1− γ)f(xbest) then

xbest ← y, s ← 1, flag ← 1
else

s ← s/2, flag ← 0
end if

else
if CV(y) ≤ (1− γ)CV(xbest) then

xbest ← y, s ← 1, flag ← 1
else

s ← s/2, flag ← 0
end if

end if
iteration ← iteration + 1
end while

and during the local search, the coordinates of each point that should be integer
are rounded to the nearest integer. Then, the measure of violation CV of the
new point is computed, and if the point is feasible, the objective function value is
also evaluated, since this will be required during points comparison. All the other
procedures in the algorithm proceed as before. This approach was also implemented
in the EM algorithm that is based on the FAD rules for constraint-handling.

4. Numerical experiments

Problems of practical interest are important for assessing the effectiveness of a
given approach. Thus, to evaluate the performance of the herein proposed hybrid
electromagnetism-like algorithm for constrained problems, a set of 12 benchmark
engineering problems is used. The algorithm is coded in the C programming lan-
guage and it contains an interface to connect to AMPL so that the problems coded
in AMPL could be easily read and solved [12]. The set of AMPL coded problems
may be obtained from the first author upon request. We tested the original EM
algorithm incorporating the FAD rules for constraint-handling, denoted in the sub-
sequent tables only by ”EM”, and compared with the herein proposed hybrid EM
algorithm, ”hybridEM”. A comparison with other published results is also included.

Some parameters are set to their standard values reported in the literature. The
maximum number of iterations imposed on the Algorithm 3.1 is LsItmax = 10,
like in [5]. We follow the suggestion made in [13] for the ray of the neighborhood
of xbest, εr = 0.001. The selected value for the constant γ is proposed in [31],
γ = 0.00001. Both implemented algorithms terminate after 1000 iterations, since
this is the most common value used in the literature, related to the stochastic
population-based methods that we use for comparison. To obtain with stochastic
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algorithms reliable estimates of the average performance, with an approximate
normal distribution, one has to perform a large enough number of runs with each
problem (more than 30). We run each problem 50 times, each starting from a
random population with a different seed. In our study we use the number of points
in the population dependent on n, psize = 10n.

Values listed in the Tables 1-12 correspond to: (i) the obtained optimal design
variables; (ii) the best objective function value achieved after 50 independent runs,
fbest; (iii) the number of objective function evaluations of the best run, nfeval; (iv)
the standard deviation of the function values over the 50 runs, SD; (v) the number
of points in the population, psize; and (vi) the number of runs, ”runs”. In the tables,
”-” means unavailable information.

4.1 Design of a welded beam

The design of a welded beam [2, 10, 14, 15, 18–20, 22, 24] is the most used problem
to assess the effectiveness of an algorithm. The objective is to minimize the cost
of a welded beam, subject to constraints on the shear stress, bending stress in the
beam, buckling load on the bar, end deflection of the beam, and side constraints.
There are 4 design variables and 5 inequality constraints. We remark that this
problem has also been formulated as a multiobjective optimization problem. See,
for example, [23] and [25]. In this situation, the problem deals with the design of a
welded beam with a minimum cost and minimum end deflection.

Table 1 contains the values of the design variables at the best solution found
in the 50 runs. For comparative purposes, we include similar results published in
[10], which implements a genetic-based algorithm, in [2] and [24], where a social-
behavioural simulation algorithm is used, in [14], where a simulated annealing
based method is used (a point-to-point search method), in [18], where a harmony
search method is tested, and in [32], with a hybrid evolutionary algorithm. The EM
algorithm found a solution having objective function value within 2.2% of the best-
known solution, 2.38, after 29985 function evaluations, while the hybrid EM found a
solution within 0.26% of the best-known solution, after 28650 function evaluations.
When solving this problem, hybrid EM outperforms the EM algorithm.

Table 1. Comparative results for the beam problem

Values Best solution found
EM hybridEM in [2] in [10] in [14] in [18] in [24] in [32]

x1 0.235393 0.243532 0.2407 0.2088 0.244353 0.2442 0.244438 0.244369
x2 5.844572 6.167268 6.4851 3.4205 6.215792 6.2231 6.237967 6.217518
x3 9.069322 8.377163 8.2399 8.9975 8.293904 8.2915 8.288576 8.291477
x4 0.239513 0.243876 0.2497 0.2100 0.244353 0.2443 0.244566 0.244369

fbest 2.431621 2.386269 2.4426 2.38119 2.381065 2.38 2.385435 2.380957
nfeval 29985 28650 19259 40080 56243 110000 33095 30000
SD 5.6e-2 3.1e-2 - - - - -
psize 40 40 100 80 20 40 100
runs 50 50 10 50 50 - 50 30

4.2 Design of a disc brake

The second example is a typical multiobjective optimization problem. In the design
of a multiple disc brake, the objective is to minimize both the mass of the brake
and the stopping time. The reader is referred to [23] for a full description. If the
objective of stopping time minimization is dropped, then a constraint on maximum
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stopping time ought to be added to the set of constraints1. The 4 design variables
are the inner radius of the discs, outer radius of the discs, the engaging force
and the number of friction surfaces. The problem has 6 inequality constraints.
The constraints include minimum distance between the radii, maximum length of
the brake, pressure, temperature and torque limitations. Table 2 lists the optimal
designs obtained by both EM and hybrid EM algorithms. Values in the first row
are from the Pareto front of [23] with a swarm size of 500 points. Although both
solutions are similar, we may conclude that the hybrid EM algorithm has a higher
consistency solution due to the lower value of SD.

Table 2. Comparative results for the brake problem

x1 x2 x3 x4 fbest nfeval SD psize runs

in [23] - - - - 0.2-2.7† 6385 - 500 -
EM 55.00 75.00 3000.00 2.00 0.127400 33961 2.4e-4 40 50
hybridEM 55.00 75.00 1862.87 2.00 0.127400 43480 2.8e-7 40 50

† range of values in the Pareto front

4.3 Design of a heat exchanger

The design of a heat exchanger involves minimizing the sum of the heat transfer
areas of the three exchangers [10, 18, 19]. The problem has 8 design variables and
6 inequality constraints. Our results are presented in Table 3. The best objective
function value 7057.274, reported by Lee and Geem in [18] that use a new meta-
heuristic based on the harmony search theory, is obtained after 150000 function
evaluations. The solution reported in [10], which implements a genetic algorithm
based on a penalty parameter approach, 7060.221, was obtained after 4000 itera-
tions and 320080 function evaluations. When our algorithm is allowed to run for
4000 iterations, the best solution is 7358.973 after 139748 function evaluations.
Although the solution obtained by the hybrid EM algorithm is within 5.9% of
the best-known solution in [18], it has been reached with 18% of the function
evaluations required in [18]. Using a population of 20 points and terminating the
iterative process after 150000 function evaluations, the algorithm reached the so-
lution 7318.825. The reported results in [19] correspond to a fuzzy-based method
with a proportional-derivative controller.

4.4 Design of a speed reducer

The design of a speed reducer has been previously analyzed by other authors [2, 8,
19, 22, 24, 32]. The objective here is to minimize the total weight of a speed reducer,
subject to constraints on bending stress of the gear teeth, surface stress, transverse
deflections of the shafts and stresses in the shafts. There are 7 design variables
and 11 inequality constraints. Variable x3 is integer. Here, we implemented the
strategy previously described at the end of Section 3. The solution found by the
run that reached the best function value is registered in the Table 4. The solutions
obtained by the EM and hybrid EM algorithms are comparable to the others - both
within 0.2% of the best-known solution 2988.49 achieved in [8] after 300 iterations.
(The number of function evaluations is not therein reported.) Chen, Ge and Wei

1We used a value of 32 for the maximum stopping time constraint, taken from the Pareto front in [23].
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Table 3. Comparative results for the heat problem

Values Best solution found
EM hybridEM in [10] in [18] in [19]

x1 423.769 607.211 - 500.004 951.8
x2 1090.221 1560.399 - 1359.31 1529.5
x3 5760.479 5303.680 - 5197.96 4807.3
x4 166.3717 173.3244 - 174.726 206.6
x5 272.9555 287.9510 - 292.0817 307.9
x6 230.5197 205.4482 - 224.7054 193.4
x7 288.5768 284.1103 - 282.6446 298.7
x8 371.4911 387.9249 - 392.0817 407.8

fbest 7274.468 7471.29 7060.221 7057.274 7288.8
nfeval 2683 27050 320080 150000 -
SD 1.6e3 1.4e3 - -
psize 80 80 80 20
runs 50 50 50 -

[8] propose an improved particle swarm optimization (PSO) algorithm that uses a
random mutation modification of the movement particle equation.

Table 4. Comparative results for the speed problem

Values Best solution found
EM hybridEM in [2] in [8] in [19] in [24] in [32]

x1 3.500008 3.500062 3.506122 3.500 3.5197 3.500000 3.500023
x2 0.700000 0.700000 0.700006 0.700 0.7039 0.700000 0.700000
x3 17 17 17 17 17.3831 17 17.000013
x4 7.300004 7.367704 7.549126 7.300 7.3000 7.327602 7.300428
x5 7.715424 7.731763 7.859330 7.800 7.7152 7.715322 7.715377
x6 3.350228 3.351341 3.365576 3.350 3.3498 3.350267 3.350231
x7 5.286655 5.286937 5.289773 5.274 5.2866 5.286655 5.286664

fbest 2994.365 2995.804 3008.08 2988.49 3007.8 2994.744 2994.499
nfeval 27668 51989 19154 - - 54456 40000
SD 2.3e-2 1.3e0 - - - -
psize 70 70 100 - 70 100
runs 50 50 10 40 50 30

4.5 Design of a tension/compression spring

The problem that considers the design of a tension/compression spring minimizes
the weight of the spring, subject to constraints on the minimum deflection, shear
stress, surge frequency, limits on outside diameter and on the design variables [9,
14, 15, 19, 20, 24]. The problem has 3 design variables and 4 inequality constraints.
Table 5 contains the results of the spring design problem. The best solutions found
by both EM algorithms, 0.01266765 and 0.01266707, are between the best-known
solutions in the literature, and were found after 5379, in one case, and 9605, in the
other, objective function evaluations. We can see that the results are consistent in
the sense that the standard deviations of the 50 solutions are small, in particular
in the hybrid EM algorithm. Results taken from [9] correspond to a genetic-based
algorithm and those from [15] and [30] correspond to PSO-type algorithms.

4.6 Design of a tanker fleet

This multiobjective optimization problem considers the minimization of cost, which
includes the cost of fuel, cost of hull and cost of machinery, and the maximization
of cargo transportation capacity [25]. It has 9 decision variables (8 continuous and
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Table 5. Comparative results for the spring problem

Values Best solution found
EM hybridEM in [9] in [14] in [15] in [24] in [30] in [32]

x1 0.361564 0.353534 0.351661 0.358005 0.351384 0.368159 0.310414 0.356729
x2 0.051891 0.051557 0.051480 0.051743 0.051466 0.052160 0.05 0.051690
x3 11.01150 11.47952 11.63220 11.21391 11.60866 10.64844 15.06 11.28829

fbest 0.012668 0.012667 0.012705 0.012665 0.012666 0.012669 0.013193 0.012665
nfeval 5379 9605 - 49531 - 25167 757800 24000
SD 2.3e-4 8.0e-6 - - - -
psize 30 30 60 20 30 - 100
runs 50 50 11 30 11 50 - 30

1 integer) and 13 inequality constraints. Here, we consider the uniobjective for-
mulation of the tanker design optimization problem (where the objective of cargo
capacity maximization is dropped and the constraint on minimum annual cargo
transport capacity is maintained). The variable x5 is integer and it was dealt as
previously described. The results reported in [25] consider both the multiobjective
and uniobjective optimization formulations. In the latter, the found optimal de-
sign is registered in Table 6 and has a cost of 135 500000 dollars. In both cases,
Ray and Tai [25] use an evolutionary algorithm with a multilevel pairing strategy.
Both herein tested algorithms reached the optimal designs listed in Table 6, with
costs around 24 025120 and 21 216265 dollars. The 50 runs were carried out with a
population of 90 points.

Table 6. Comparative results for the tanker problem

Method x1 x2 x3 x4 x5 x6 x7

in [25] 27.63 12.090 15200.000 165.200 44 7.4060 0.928
EM 39.83650 17.07769 51561.901 227.4075 17 10.78351 0.707421
hybridEM 48.31752 19.95852 79071.998 279.4188 8 12.41858 0.734665

x8 x9 fbest nfeval SD

10.910 22660 135500000 - -
11.02364 60083.19 24025120 1140 8.5e6
14.49254 118646.56 21216265 2452 6.1e6

4.7 Design of a gear train

In the design of a gear train, the cost of a gear ratio is minimized, subject to
constraints on the design variables [20]. The problem has 4 integer design variables.
We implemented the strategy previously described at the end of Section 3. The
obtained solutions are reported in Table 7. EM found a solution in 43042 function
evaluations, while the hybrid EM needed 51040 objective function evaluations. In
this problem, the least standard deviation is obtained by the EM algorithm. For
comparison, the best result reported in [20], a PSO-type algorithm, is also included.
No information about the optimal design variables is therein included.

Table 7. Comparative results for the train problem

Method x1 x2 x3 x4 fbest nfeval SD psize runs

in [20] - - - - 2.70085e-12 - - 20 100
EM 43 19 16 49 2.700857e-12 43042 1.6e-27 40 50
hybridEM 49 19 16 43 2.700857e-12 51040 3.5e-10 40 50
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4.8 Design of three-bar truss

This problem considers the minimization of the volume of a 3-bar truss structure,
subject to stress constraints. The problem is fully described in [24], has 2 design
variables, representing cross-sectional areas of two bars (two of the bars are equal)
and 3 inequality constraints. The results reported in Table 8 correspond to the
best designs found in [24, 32] and in our study. Our results are competitive. When
comparing both EM algorithms, we observe a slight reduction in the standard
deviation of the hybrid EM. We remark that the author in [19] uses a formulation
that minimizes the weight of the truss structure.

Table 8. Comparative results for the 3-truss problem

Method x1 x2 fbest nfeval SD psize runs

in [19] 0.7511 0.5262 2.6507 -
in [24] 0.788621 0.408401 263.8958 17610 - 20 50
in [32] 0.788680 0.408234 263.8959 15000 - 100 30
EM 0.788666 0.408274 263.8959 9747 1.9e-2 20 50
hybridEM 0.788764 0.408000 263.8960 17479 6.5e-3 20 50

4.9 Design of a four-bar truss

This is a problem where the structural volume and the displacement at a particular
joint, of a 4-bar truss structure, are to be minimized subject to the stress constraints
on the members. This multiobjective optimization problem is shown by Ray and
Liew in [23]. If the objective of displacement at the particular joint minimization
is dropped while a constraint on the maximum displacement (at that particular
joint) is added to the constraints2, a uniobjective formulation is obtained. The
cross sectional areas of the members are the 4 design variables. The problem has
1 inequality constraint. Results obtained by our study are listed in Table 9. With
less function evaluations and a standard deviation of zero, the EM algorithm that
is based on the FAD rules outperforms the hybrid EM algorithm.

Table 9. Comparative results for the 4-truss problem

Method x1 x2 x3 x4 fbest nfeval SD psize runs

in [23] - - - - 1400-3000† 2525 - 100 -
EM 1 1.414214 1.414214 1 1400.000 17969 0 40 50
hybridEM 1.000003 1.414214 1.414214 1 1400.001 51106 2.4e-3 40 50

† range of values in the Pareto front

4.10 Design of a tubular column

The design of a tubular column is described in full detail in [19, 22]. The objective
in this problem is to minimize the total cost of the material and construction of a
tubular column. The problem has 2 design variables and 2 inequality constraints.
The results reported in Table 10 for comparison are taken from [19], a fuzzy-based
method, and [22], a deterministic-type algorithm. Both EM algorithms give similar
optimal designs.

2We used a value of 0.04 for the maximum joint displacement constraint, taken from the Pareto front [23].
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Table 10. Comparative results for the tubular problem

Method x1 x2 fbest nfeval SD psize runs

in [19] 5.4507 0.2920 25.5316 -
in [22] 5.44 0.293 26.53 -
EM 5.452383 0.29190 26.53380 17308 7.7e-2 20 50
hybridEM 5.451083 0.29199 26.53227 25136 3.5e-3 20 50

4.11 Design of a cylindrical vessel

This example is the design of a cylindrical pressure vessel with both ends capped
with a hemispherical head [2, 8, 9, 14, 15, 18, 20]. This problem consists of mini-
mizing the total cost of the material, forming and welding of the cylindrical vessel,
and has 4 design variables and 4 inequality constraints. Variables x1 and x2 are
integer multiples of 0.0625. For this problem, we consider xi = 0.0625ni, (i = 1, 2)
and work with the integer variables n1 and n2. We implemented the strategy men-
tioned in Subsection 3.4. The results obtained when solving the pressure vessel
design problem are reported in Table 11. The solution obtained by EM is 6071.167
(with 24182 function evaluations). The hybrid EM found the solution 6072.232
after 20993 function evaluations. Our solutions are competitive with those in the
literature that use the same bound constraints (for example, [2],[9],[30]).

Table 11. Comparative results for the vessel problem

Values Best solution found
EM hybridEM in [2] in [8] in [9] in [14] in [18] in [30]

x1 0.8125 0.8125 0.8125 0.75 0.8125 0.768326 1.125 0.778169
x2 0.4375 0.4375 0.4375 0.375 0.4375 0.379784 0.625 0.384649
x3 42.00476 42.07007 41.9768 38.860 40.3239 39.80962 58.2789 40.3196
x4 177.8015 177.3762 182.2845 221.582 200.0 207.2256 43.7549 200.0

fbest 6071.167 6072.232 6171.000 5854.738 6288.745 5868.765 7198.433 5885.33
nfeval 24182 20993 12630 - - 108883 - 879000
SD 1.3e2 5.3e1 - - - - -
psize 40 40 100 - 60 20 -
runs 50 50 10 40 11 30 - -

4.12 Design of a water distribution system

The last problem is related with the design of a water distribution system in a
building. The case herein solved is fully described in [16] and has 21 pipes. The
decision variables xi, i = 1, . . . , 21, are the interior pipe diameters. Bounds for the
variables and data concerning the length and the design flow for each pipe are
reported in [16]. We solved the problem 50 times and recorded the optimal design
variables that gave the least function value. The best solutions obtained by both
EM algorithms are reported in columns ”optimal” of Table 12 (fbest = 2673.580
for EM and fbest = 2660.577 for hybrid EM).

Table 12. Comparative results for the water distribution problem

Values EM hybridEM in [16]
optimal real optimal real optimal real optimal real

fbest 2673.580 2726.08 2660.577 2726.08 2661.976 2726.08 2714.177 2726.08
nfeval 174331 184577 44804 - -
psize 210 210 50
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We then need to adjust the diameters to the real commercially available di-
ameters3. Our strategy considers rounding each coordinate of the solution to the
nearest real diameter value that belongs to the set Ω. These values, for both EM
and hybrid EM algorithms, are x1 = x3 = x4 = 0.0603, x2 = 0.0721, x5 = x6 =
x8 = 0.0516, x7 = x9 = x10 = 0.0396, x11 = x12 = x13 = x14 = 0.0330, x15 = x16 =
x17 = x18 = x19 = 0.0264, x20 = x21 = 0.0166, and correspond to fbest = 2726.080,
see Table 12 under the columns headed by ”real”. These results are equal to those
reported in [16] where a branch-and-bound type algorithm is used. The solution
obtained by the hybrid EM algorithm required 184577 function evaluations and the
EM algorithm needed 174331 function evaluations (for a population of 210 points).
When psize = 50, the algorithm reached the solution 2661.976 after 44804 function
evaluations. After adjusting the optimal diameters to their real available values,
the solution 2726.080 was obtained.

5. Conclusions

This paper presents a new version of the electromagnetism-like optimization algo-
rithm for solving global constrained optimization problems. The new version in-
corporates selective conditions that aim to detect the best point of the population,
to attract points to promising regions and to guarantee progress around the best
point. The selective conditions herein proposed impose a sufficient reduction either
in the constraints violation or in the objective function value, instead of implement-
ing a penalty technique [4], avoiding therefore the update of the penalty parameter
that is associated with the penalization of the constraints in a penalty function.
Further, we hybridize the electromagnetism-like mechanism with a random local
search procedure that is able to produce an approximate descent direction and re-
fine locally the best point in the population. A backtracking line search technique
is also incorporated into the local search procedure to give faster progress towards
optimality.

To assess the performance of the herein proposed hybrid EM algorithm, a set of
twelve constrained engineering problems of practical interest is solved. A compari-
son with results from other stochastic-type methods is included. The results show
the effectiveness of our hybrid EM method. Analyzing the standard deviation of
the function values, one is able to conclude about the consistency of the solutions.
We observe that the solutions reached by the new hybrid EM algorithm have in
general slightly smaller standard deviations than those of the EM FAD-based al-
gorithm. Together with the accuracy, this is a measure of solutions quality. The
computational costs, measured by the number of function evaluations required to
achieve a high accuracy solution, of the herein proposed hybrid EM are in some
cases lower than those of other population-based algorithms. It is however note-
worthy the reduced computational costs of the EM FAD-based algorithm when
compared with the others. It seems that the efficiency of the hybrid EM is worse
than that of the EM FAD-based algorithm in most of experiments in terms of the
number of function evaluations. Since computational cost is an important factor
considered in optimization algorithms, future developments will focus on this issue.
Solving NP-problems with integer/binary variables, namely asymmetric traveling
salesman problems, using this new hybrid algorithm is a matter for future research.

3{0.0138, 0.0166, 0.0206, 0.0264, 0.0330, 0.0396, 0.0516, 0.0603, 0.0721, 0.0849, 0.104}, as shown in [16].
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