
ar
X

iv
:0

90
5.

24
99

v1
 [

nl
in

.S
I]

 1
5

M
ay

 2
00

9
October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–27

RESEARCH ARTICLE

A symbolic algorithm for computing recursion operators of

nonlinear PDEs

D.E. Baldwin†∗ and W. Hereman‡

†Department of Applied Mathematics, University of Colorado, UCB 526, Boulder, CO

80309-0526, USA; ‡Department of Mathematical and Computer Sciences, Colorado

School of Mines, Golden, CO 80401-1887, USA

(Received 31 March 2009)

A recursion operator is an integro-differential operator which maps a generalized symmetry
of a nonlinear PDE to a new symmetry. Therefore, the existence of a recursion operator
guarantees that the PDE has infinitely many higher-order symmetries, which is a key feature of
complete integrability. Completely integrable nonlinear PDEs have a bi-Hamiltonian structure
and a Lax pair; they can also be solved with the inverse scattering transform and admit soliton
solutions of any order.

A straightforward method for the symbolic computation of polynomial recursion operators
of nonlinear PDEs in (1 + 1) dimensions is presented. Based on conserved densities and
generalized symmetries, a candidate recursion operator is built from a linear combination of
scaling invariant terms with undetermined coefficients. The candidate recursion operator is
substituted into its defining equation and the resulting linear system for the undetermined
coefficients is solved.

The method is algorithmic and is implemented in Mathematica. The resulting symbolic
package PDERecursionOperator.m can be used to test the complete integrability of polynomial
PDEs that can be written as nonlinear evolution equations. With PDERecursionOperator.m,
recursion operators were obtained for several well-known nonlinear PDEs from mathematical
physics and soliton theory.

Keywords: Recursion operator, generalized symmetries, complete integrability, nonlinear
PDEs, symbolic software.

AMS Subject Classification: Primary: 37K10, 35Q51, 68W30; Secondary: 37K05,
35Q53, 35Q58,

1. Introduction

Completely integrable nonlinear partial differential equations (PDEs) have a rich
mathematical structure and many hidden properties. For example, these PDEs have
infinitely many conservation laws and generalized symmetries of increasing order.
They have the Painlevé property [3], bi-Hamiltonian (sometimes tri-Hamiltonian)
structures [2], Lax pairs [1], Bäcklund and Darboux transformations [44, 54], etc.
Completely integrable PDEs can be solved with the Inverse Scattering Transform
(IST) [1, 2, 12]. Application of the IST or Hirota’s direct method [39, 40] allows
one to construct explicit soliton solutions of any order. While there are numerous
definitions of complete integrability, Fokas [17] defines an equation as completely
integrable if and only if it possesses infinitely many generalized symmetries. A
recursion operator (also called a formal symmetry or a master symmetry) is a linear
integro-differential operator which links such symmetries. The recursion operator

∗Corresponding author. Email: recursionOperators@douglasbaldwin.com

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 200x Taylor & Francis
DOI: 10.1080/0020716YYxxxxxxxx
http://www.informaworld.com

http://arxiv.org/abs/0905.2499v1

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

2

is thus a key tool for proving the existence of an infinite hierarchy of generalized
symmetries [54] and for computing them sequentially.
The recursion operator story [54, 59] starts with the Korteweg-de Vries (KdV)

equation,

ut + 6uux + u3x = 0, (1)

which is undeniably the most famous completely integrable PDE. The first few
generalized symmetries (of infinitely many) for the KdV equation are

G(1) = ux, G(2) = 6uux + u3x,

G(3) = 30u2ux + 20uxu2x + 10uu3x + u5x.
(2)

Note that generalized symmetries depend on the dependent variables of the system
as well as the x-derivatives of the dependent variables (in contrast to so-called
Lie-point or geometric symmetries which only depend on the independent and
dependent variables of the system).
The KdV equation is a member of a hierarchy of integrable PDEs, which are

higher-order symmetries of the KdV itself. For example, the Lax equation [46],
which is the fifth-order member in the hierarchy, is ut +G(3) = 0.
Based on the recursion formula [55] due to Lenard, in 1977 Olver [53] derived an

explicit recursion operator for the KdV equation, namely

R = D2
x + 4uI + 2uxD

−1
x . (3)

In (3), Dx denotes the total derivative with respect to x, D−1
x is its left inverse,

and I is the identity operator. Total derivatives act on differential functions [54],
i.e. differentiable functions of independent variables, dependent variables, and their
derivatives up to an arbitrary but fixed order.
The recursion operator (3) allows one to generate an infinite sequence of local

generalized symmetries of the KdV equation. Indeed, starting from “seed” or “root”
G(1), repeated application of the recursion operator (3),

G(j+1) = RG(j), j = 1, 2, . . . , (4)

produces the symmetries in (2) and infinitely many more.
Analysis of the form of recursion operators like (3) reveals that they can be split

into a (local) differential part, R0, and a (non-local) integral part R1. The differ-
ential operator R0 involves Dx,D

2
x, etc., acting on monomials in the dependent

variables. Barring strange cases [42], the integral operator R1 only involves D−1
x

and can be written as the outer product of generalized symmetries and cosymme-
tries (or conserved covariants) [11, 59]. Furthermore, if R is a recursion operator,
then the Lie derivative [54, 59, 60] of R with respect to the evolution equation is
zero. The latter provides an explicit defining equation for the recursion operator.
For more information on the history of completely integrable systems and recur-

sion operators, see [1, 11, 13, 14, 17, 21, 22, 23, 43, 45, 50, 52, 54, 56, 57, 58, 59].
Based on studies of formal symmetries and recursion operators, researchers have
compiled lists of integrable PDEs [50, 51, 59, 60].
While the computation of the Lie derivative of R is fairly straightforward, it is

computationally intensive and prone to error when done by hand. For example,
the computation of the recursion operators of the Kaup-Kupershmidt equation
or the Hirota-Satsuma system (see Section 4) may take weeks to complete by

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

3

hand and might fill dozens of pages. Using a computer algebra system to carry
out the lengthy computations is recommended, yet, it is not without challenge
either; systems like Mathematica and Maple are designed to primarily work with
commutative algebraic structures and the computation and application of recursion
operators requires non-commutative operations.
There is a variety of methods [48] to construct recursion operators (or master

symmetries). As shown in [17, 18, 20, 54], one first finds a bi-Hamiltonian struc-
ture (with Hamiltonians Θ1 and Θ2) for the given evolution equation and then
constructs the recursion operator as R = Θ1Θ

−1
2 , provided Θ2 is invertible; for

the KdV equation, Θ1 = D3
x + 4uDx + 2uxI and Θ2 = Dx form a Hamiltonian

pair [47] and R = Θ1Θ
−1
2 yields (3). The Hamiltonians are cosymplectic operators,

their inverses are symplectic operators [59]. A complicated example of a recursion
operator (obtained by composing cosymplectic a symplectic operators of a vector
derivative Schrödinger equation) can be found in [61].
A recent approach [49] uses the symbolic method of Gelfand and Dickey [24], and

applies to non-local and non-evolutionary equations such as the Benjamin-Ono and
Camassa-Holm equations.
At the cost of generality, we advocate a direct approach which applies to poly-

nomial evolution equations. In the spirit of work by Bilge [11], we use the scaling
invariance of the given PDE to build a polynomial candidate recursion operator as
a linear combination of scaling homogeneous terms with constant undetermined co-
efficients. The defining equation for the recursion operator is then used to compute
the undetermined coefficients.
The goals of our paper are threefold. We present (i) an algorithmic method in a

language that appeals to specialists and non-specialists alike, (ii) a symbolic pack-
age in Mathematica to carry out the tedious computations, (iii) a set of carefully
selected examples to illustrate the algorithm and the code.
The theory on which our algorithm is based has been covered extensively in the

literature [11, 54, 57, 58, 59, 60]. Our paper focuses on how things work rather than
on why they work.
The package PDERecursionOperator.m [9] is part of our symbolic software col-

lection for the integrability testing of nonlinear PDEs, including algorithms and
Mathematica codes for the Painlevé test [6, 7, 8] and the computation of conser-
vation laws [4, 5, 15, 16, 29, 32, 33, 34, 36], generalized symmetries [26, 30] and
recursion operators [10, 26]. As a matter of fact, our package PDERecursionOp-

erator.m builds on the code InvariantsSymmetries.m [27] for the computation
of conserved densities and generalized symmetries for nonlinear PDEs. The code
PDERecursionOperator.m automatically computes polynomial recursion operators
for polynomial systems of nonlinear PDEs in (1 + 1) dimensions, i.e. PDEs in one
space variable x and time t. At present, the coefficients in the PDEs cannot ex-
plicitly depend on x and t. Our code can find recursion operators with coefficients
that explicitly depend on powers of x and t as long as the maximal degree of these
variables is specified. For example, if the maximal degree is set to 1, then the coef-
ficients will be at most linear in both x and t. An example of a recursion operator
that explicitly depends on x and t is given in Section 7.2. For extra versatility, the
code can be used to test polynomial and rational recursion operators found in the
literature, computed by hand, or with other software packages.
Drawing on the analogies with the PDE case, we also developed methods, algo-

rithms, and software to compute conservation laws [31, 33, 36, 38] and generalized
symmetries [30] of nonlinear differential-difference equations (DDEs). Although
the algorithm is well-established [37], a Mathematica package that automatically
computes recursion operators of nonlinear DDEs is still under development.

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

4

The paper is organized as follows. In Section 2 we briefly discuss our method
for computing scaling invariance, conserved densities, and generalized symmetries
(which are essential pieces for the computation of recursion operators). Our method
for computing and testing recursion operators is discussed in Section 3. In Section 4,
we illustrate the subtleties of the method using the KdV equation, the Kaup-
Kupershmidt equation, and the Hirota-Satsuma system of coupled KdV (cKdV)
equations. The details of computing and testing recursion operators are discussed
in Section 5. Section 6 compares our software package to other software packages
for computing recursion operators. In Section 7 we give additional examples to
demonstrate the capabilities of our software. A discussion of the results and future
generalizations are given in Section 8. The use of the software package PDERecur-

sionOperator.m [9] is shown in Appendix A.

2. Scaling Invariance, Conservation Laws, and Generalized Symmetries

Consider a polynomial system of evolution equations in (1 + 1) dimensions,

ut(x, t) = F(u(x, t),ux(x, t),u2x(x, t), . . . ,umx(x, t)), (5)

where F has M components F1, . . . , FM , u(x, t) has M components u1(x, t), . . . ,
uM (x, t) and uix = ∂iu/∂xi. Henceforth we write F(u) although F (typically)
depends on u and its x-derivatives up to some fixed order m. In the examples, we
denote the components of u(x, t) as u, v, . . . , w. If present, any parameters in the
PDEs are assumed to be nonzero and are denoted by Greek letters.
Our algorithms are based on scaling (or dilation) invariance, a feature common

to many nonlinear PDEs. If (5) is scaling invariant, then quantities like conserved
densities, fluxes, generalized symmetries, and recursion operators are also scaling
invariant [54]. Indeed, since their defining equation must be satisfied on solutions
of the PDE, these quantities “inherit” the scaling symmetry of the original PDE.
Thus, scaling invariance provides an elegant way to construct the form of candidate
densities, generalized symmetries, and recursion operators. It suffices to make linear
combinations (with constant undetermined coefficients) of scaling-homogeneous
terms. Inserting the candidates into their defining equations then leads to a linear
system for the undetermined coefficients.

2.1 Scaling Invariance and the Computation of Dilation Symmetries

Many completely integrable nonlinear PDEs are scaling invariant. PDEs that are
not scaling invariant can be made so by extending the set of dependent variables
with parameters that scale appropriately, see [28, 30] for details.
For example, the KdV equation (1) is invariant under the scaling symmetry

(t, x, u) → (λ−3t, λ−1x, λ2u), (6)

where λ is an arbitrary parameter. Indeed, upon scaling, a common factor λ5 can
be pulled out. Assigning weights (denoted by W) to the variables based on the
exponents in λ and setting W (Dx) = 1 (or equivalently, W (x) = W (D−1

x) = −1)
gives W (u) = 2 and W (t) = −3 (or W (Dt) = 3).
The rank of a monomial is its total weight; in the KdV equation, all three terms

are rank 5. We say that an equation is uniform in rank if every term in the equation

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

5

has the same rank. Conversely, requiring uniformity in rank in (1) yields

W (u) +W (Dt) = 2W (u) +W (Dx) =W (u) + 3W (Dx). (7)

Hence, after setting W (Dx) = 1, one obtains W (u) = 2W (Dx) = 2 and W (Dt) =
3W (Dx) = 3. So, scaling symmetries can be computed with linear algebra.

2.2 Computation of Conservation Laws

The first two conservation laws for the KdV equation are

Dt(u) +Dx(3u
2 + u2x) = 0, (8)

Dt

(

u2
)

+Dx

(

4u3 − u2x + 2uuxx
)

= 0, (9)

were classically known and correspond to the conservation of mass and momentum
(for water waves). Whitham found the third conservation law,

Dt

(

u3 − 1
2u

2
x

)

+Dx

(

9
2u

4 − 6uu2x + 3u2u2x +
1
2u

2
2x − uxu3x

)

= 0, (10)

which corresponds to Boussinesq’s moment of instability. For (5), each conservation
law has the form

Dtρ(u(x, t),ux(x, t), . . .) +DxJ(u(x, t),ux(x, t), . . .) = 0, (11)

where ρ is the conserved density and J is the associated flux.
Algorithms for computing conserved densities and generalized symmetries are

described in [26, 27, 28, 30, 33, 34, 35]. Our code, PDERecursionOperator.m [9],
uses these algorithms to compute the densities and generalized symmetries needed
to construct the non-local part of the operator. For the benefit of the reader, we
present an abbreviated version of these algorithms.
The KdV equation (1) has conserved densities for any even rank. To find the

conserved density ρ of rank R = 6, we consider all the terms of the form

DR−W (u)i
x ui(x, t), 1 ≤ i ≤ R/W (u), (12)

where Dx is the total derivative with respect to x. Hence, since W (u) = 2, we have

D4
xu = u4x, D2

xu
2 = 2u2x + 2uu2x, D0

xu
3 = u3. (13)

We then remove divergences and divergence equivalent terms [34], and take a linear
combination (with undetermined coefficients) of the remaining terms as the candi-
date ρ. Terms are divergence equivalent if and only if they differ by a divergence, for
instance uu2x and −u2x are divergence equivalent because uu2x−(−u2x) = Dx(uux).
Divergences are divergence equivalent to zero, such as u4x = Dx(u3x). Thus, the
candidate ρ of rank R = 6 is

ρ = c1u
3 + c2u

2
x. (14)

To determine the coefficients ci, we require that (11) holds on the solutions of (5).
In other words, we first compute Dtρ and use (5) to remove ut,utx, etc.

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

6

For the KdV equation,

Dtρ = −(18c1u
3ux + 3c1u

2u3x + 12c2u
3
x + 12c2uuxu2x + 2c2uxu4x), (15)

after ut, utx, etc. have been replaced using (1). Then, we require that Dtρ is a total
derivative with respect to x. To do so, for each component uj of u, we apply the
Euler operator (variational derivative) to Dtρ and set the result identically equal
to zero [28]. The Euler operator for u is defined as

Lu =
m
∑

k=0

(−1)kDk
x

∂

∂ukx

, (16)

where m is the highest order needed. In our scalar example there is only one
component (u = u). Using (15), which is of order m = 4,

Lu(Dtρ) = −18(c1 + 2c2)uxu2x ≡ 0. (17)

To find the undetermined coefficients, we consider all monomials in u and its deriva-
tives as independent, giving a linear system for ci. For the example, c1 + 2c2 = 0,
and taking c1 = 1 and c2 = −1

2 gives

ρ = u3 − 1
2u

2
x, (18)

which is the conserved density in conservation law (10).

2.3 Computation of Generalized Symmetries

A generalized symmetry, G(u), leaves the PDE invariant under the replacement
u → u+ ǫG within order ǫ [54]. Hence, G must satisfy the linearized equation

DtG = F′(u)[G], (19)

where F′(u)[G] is the Fréchet derivative of F in the direction of G,

F′(u)[G] =
∂

∂ǫ
F(u+ ǫG)|ǫ=0 =

m
∑

i=0

(Di
xG)

∂F

∂uix
, (20)

wherem is the order of F. The KdV equation (1) has generalized symmetries for any
odd rank. To find the generalized symmetry of rank R = 7, we again consider the
terms in (12). This time we do not remove the divergences or divergence equivalent
terms. The candidate generalized symmetry is then the linear combination of the
monomials generated by (12). For the example, where W (u) = 2,

D5
xu = u5x, D3

xu
2 = 6uxu2x + 2uu3x, Dxu

3 = 3u2ux, (21)

so the candidate generalized symmetry of rank R = 7 is

G = c1u
2ux + c2uxu2x + c3uu3x + c4u5x. (22)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

7

The undetermined coefficients are then found by computing (19) and using (5) to
remove ut, utx, utxx, etc. Thus, continuing with the example we have

2(2c1 − 3c2)u
2
xu2x + 2(c1 − 3c3)uu

2
2x + 2(c1 − 3c3)uuxu3x + (c2 − 20c4)u

2
3x

+ (c2 + c3 − 30c4)u2xu4x + (c3 − 10c4)uxu5x ≡ 0. (23)

Again, considering all monomials in u and its derivatives as independent gives a
linear system for ci. From (23),

c1 = 30c4, c2 = 20c4, c3 = 10c4. (24)

Setting c4 = 1, we find

G = 30u2ux + 20uxu2x + 10uu3x + u5x, (25)

which is the fifth-order symmetry G(3) in (2).

3. Algorithm for Computing Recursion Operators

A recursion operator, R, is a linear integro-differential operator which links gener-
alized symmetries [54],

G(j+g) = RG(j), j = 1, 2, 3, . . . , (26)

where g is the gap and G(j) is the j-th generalized symmetry. In many cases, g = 1
because the generalized symmetries differ by a common rank and, starting from
G(1), all higher-order symmetries can indeed be consecutively generated with the
recursion operator. However, there are exceptions [6] where g = 2 or 3. Examples
of the latter are given in Sections 4.2, 4.3, 7.3, and Appendix A. Inspection of the
ranks of generalized symmetries usually provides a hint on how to select the gap.
If R is a recursion operator for (5), then the Lie derivative [35, 54, 59] of R is

zero, which leads to the following defining equation:

∂R

∂t
+R′[F(u)] +R ◦F′(u)− F′(u) ◦ R = 0, (27)

where ◦ denotes a composition of operators, R′[F(u)] is the Fréchet derivative of
R in the direction of F,

R′[F(u)] =

m
∑

i=0

(

Di
xF(u)

) ∂R

∂uix
, (28)

and F′(u) is the Fréchet derivative operator, i.e. a M ×M matrix with entries

F′

ij(u) =
m
∑

k=0

(

∂Fi

∂(uj)kx

)

Dk
x, (29)

where m is the highest order occurring in the right hand side of (5).

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

8

In the scalar case, F = F and u = u, (29) simplifies into

F ′(u) =
m
∑

k=0

(

∂F

∂ukx

)

Dk
x. (30)

Rather than solving (27), we will construct a candidate recursion operator and use
(27) to determine the unknown coefficients, as shown in the following two steps.

Step 1 Generate the candidate recursion operator.

The rank of the recursion operator is determined by the difference in ranks of the
generalized symmetries the recursion operator actually connects,

rank Rij = rank G
(k+g)
i − rank G

(k)
j , i, j = 1, . . . ,M, (31)

where R is an M ×M matrix and G has M components. As before, g is the gap
and typically g = 1. Yet, there are cases where g = 2 or 3.
The recursion operator naturally splits into two pieces [10],

R = R0 +R1, (32)

where R0 is a (local) differential operator and R1 is a (non-local) integral operator.
The differential operator R0 is a linear combination of terms

Dk0

x u
k1

1 u
k2

2 · · · ukM

M I, k0, k1, . . . ∈ N, (33)

where the ki are non-negative integers taken so the monomial has the correct rank
and the operator Dx has been propagated to the right. For example,

D2
xuI = Dx(DxuI) = Dx(uxI + uDx) = u2xI + 2uxDx + uD2

x, (34)

which, after multiplying the terms by undetermined coefficients, leads to

R0 = c1u2xI + c2uxDx + c3uD
2
x. (35)

We will assume that the integral operator R1 is a linear combination of terms

G(i)D−1
x ⊗ Lu(ρ

(j)), i, j ∈ N, (36)

of the correct rank [11, 59]. In (36), ⊗ is the matrix outer product, and Lu(ρ
(j))

is the cosymmetry (Euler operator applied to ρ(j)). To standardize R1, propagate
Dx to the left. For example, by integration by parts, D−1

x uxDx = uxI −D−1
x u2xI.

As shown in [11], the integral operator R1 can also be computed as a linear
combination of the terms

G(i)D−1
x ⊗ ψ(j), i, j ∈ N, (37)

of the correct rank, where ψ(j) is the covariant (Fréchet derivative of ρ(j)). While
G(i)D−1

x ⊗ Lu(ρ
(j)) is strictly non-local, G(i)D−1

x ⊗ ψ(j) contains both differential
and integral terms. Therefore, it is computationally more efficient to build the
candidate recursion operator using Lu(ρ

(j)) instead of ψ(j). Finally, the local and
non-local operators are added to obtain a candidate recursion operator (32).

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

9

Step 2 Determine the unknown coefficients.

To determine the unknown coefficients in the recursion operator, we substitute
the candidate into the defining equation (27). After normalizing the form of the
terms (propagating the Dx through the expression toward the right), we group the
terms in like powers of u,ux,uxx, . . . , I,Dx,D

2
x, . . . , and D

−1
x . Requiring that these

terms vanish identically gives a linear system for the ci. Solving this linear system
and substituting the coefficients into the candidate operator gives the recursion
operator for (5). If ci = 0 for all i, then either the gap g is incorrect or (5) does
not have a recursion operator.
While the gap (g) is usually 1, 2 or 3, it is not obvious which value to take for g. In

Sections 4.2 and 4.3 we give a couple of examples where g = 2. Starting from G(1),
the recursion operator then generates the higher-order symmetries G(3),G(5),
Analogously, starting from G(2) the recursion operator produces G(4),G(6), and
so on. In Section 7.3 we show an example where g = 3. Further details on how to
select the gap are given in Section 5.

4. Examples

4.1 The Korteweg-de Vries Equation

To illustrate the method, we use the KdV equation (1). Reversing the sign of t,

ut = F (u) = 6uux + u3x (38)

for scalar u(x, t). From (2), the difference in ranks of the generalized symmetries is

rank G(3) − rank G(2) = rank G(2) − rank G(1) = 2. (39)

Therefore, we will assume g = 1, and build a recursion operator with rank R = 2.
Thus, the local operator has the terms D2

x and D0
xuI = uI of rank 2. So, the

candidate differential operator is

R0 = c1D
2
x + c2uI. (40)

Using ρ(1) = u and G(1) = ux, the non-local operator is

R1 = c3G
(1)D−1

x Lu(ρ
(1)) = c3uxD

−1
x Lu(u) = c3uxD

−1
x , (41)

where we used Lu given in (16). Thus, the candidate recursion operator is

R = R0 +R1 = c1D
2
x + c2uI + c3uxD

−1
x . (42)

Note that each term in (42) indeed has rank 2.
Now, we separately compute the pieces needed to evaluate (27). Using (30), we

readily compute

F ′(u) = D3
x + 6uDx + 6uxI. (43)

Since the candidate recursion operator (42) is t-independent, we have ∂R/∂t = 0.
Next, using (28) and (42) we compute

R′[F (u)] = (6c2uux + c2u3x)I + (6c3u
2
x + 6c3uu2x + c3u4x)D

−1
x . (44)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

10

Using (42) and (43), we compute

R ◦ F ′(u) = c1D
5
x + (6c1 + c2)uD

3
x + (18c1 + c3)uxD

2
x (45)

+ 6(c2u
2 + 3c1u2x)Dx + 6(c2uux + c3uux + c1u3x)I,

and

F ′(u) ◦ R = c1D
5
x + (6c1 + c2)uD

3
x + (6c1 + 3c2 + c3)uxD

2
x (46)

+ 3(2c2u
2 + c2u2x + c3u2x)Dx + (12c2uux + 6c3uux

+ c2u3x + 3c3u3x)I + (6c3u
2
x + 6c3uu2x + c3u4x)D

−1
x .

Substituting (44), (45) and (46) into (27) and grouping like terms, we find

(4c1 − c2)uxD
2
x + (6c1 − c2 − c3)u2xDx + (2c1 − c3)u3xI ≡ 0. (47)

So, 2c1 = c3 and c2 = 2c3. Taking c3 = 2, gives

R = D2
x + 4uI + 2uxD

−1
x , (48)

which is indeed the recursion operator (3) of the KdV equation [53].

4.2 The Kaup-Kupershmidt Equation

Consider the Kaup-Kupershmidt (KK) equation [28, 59],

ut = F (u) = 20u2ux + 25uxu2x + 10uu3x + u5x. (49)

To find the dilation symmetry for (49), we require that all the terms in (49) have
the same rank:

W (u) +W (Dt) = 3W (u) +W (Dx) = 2W (u) + 3W (Dx)

= 2W (u) + 3W (Dx) =W (u) + 5W (Dx). (50)

If we set W (Dx) = 1, then W (u) = 2,W (Dt) = 5 and the rank of (49) is 7.
Using InvariantsSymmetries.m [27], we compute the conserved densities

ρ(1)=u, ρ(2)=−8u3 + 3u2x, (51)

and the generalized symmetries

G(1)=ux, G(2)=F (u)=20u2ux + 25uxu2x + 10uu3x + u5x (52)

of (49). We do not show G(3) through G(6) explicitly due to length. From the
weights above, the ranks of the first six generalized symmetries are

rank G(1) = 3, rank G(2) = 7, rank G(3) = 9,

rank G(4) = 13, rank G(5) = 15, rank G(6) = 19.
(53)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

11

We assume that rank R = 6 and g = 2, since rank G(2) − rank G(1) 6= rank G(3) −
rank G(2) but rank G(3) − rank G(1) = rank G(4) − rank G(2) = 6. Thus, taking all
terms of the form Di

xu
j (i, j ∈ N) such that rank (Di

xu
j) = 6 gives

R0 = c1D
6
x + c2uD

4
x + c3uxD

3
x + (c4u

2 + c5u2x)D
2
x

+ (c6uux + c7u3x)Dx + (c8u
3 + c9u

2
x + c10uu2x + c11u4x)I. (54)

Using the densities and generalized symmetries above, we compute

G(1)D−1
x Lu(ρ

(2)) = uxD
−1
x Lu(−8u3 + 3u2x) = −6uxD

−1
x (4u2 + u2x) (55)

and

G(2)D−1
x Lu(ρ

(1)) = F (u)D−1
x Lu(u) = F (u)D−1

x . (56)

Thus, the candidate non-local operator is

R1 = c12uxD
−1
x (4u2 + u2x)I + c13

(

20u2ux + 25uxu2x + 10uu3x + u5x
)

D−1
x . (57)

Substituting R=R0+R1 into (27) gives 49 linear equations for ci. Solving yields

c1 = −
1

2
c12, c2 = −6c12, c3 = c5 = −18c12, c4 = −16c12,

c6 = −
69

2
c12, c7 = −

49

2
c12, c8 = −

35

2
c12, c9 = −

13

2
c12,

c10 = −60c12, c11 = −41c12, c13 = −c12,

(58)

where c12 is arbitrary. Setting c12 = −2, we obtain

R = D6
x + 12uD4

x + 36uxD
3
x +

(

36u2 + 49u2x
)

D2
x

+ 5 (24uux + 7u3x)Dx +
(

32u3 + 69u2x + 82uu2x + 13u4x
)

I

+ 2uxD
−1
x

(

4u2 + u2x
)

I + 2F (u)D−1
x , (59)

which was computed in [59] as the composition of the cosymplectic and symplectic
operators of (49).
Since g = 2 the symmetries are not generated sequentially via (4). Actually,

G(1) and G(2) in (52) are the “seeds” (or roots) and one must use (26). Indeed,
from G(1) one obtains G(3) = RG(1), G(5) = RG(3), and so on. From G(2), upon
repeated application of R, one obtains G(4), G(6), etc. Thus, using the recursion
operator one can generate an infinity of generalized symmetries, confirming that
(49) is completely integrable.

4.3 The Hirota-Satsuma System

Consider the system of coupled KdV equations due to Hirota and Satsuma [1],

ut = F1(u) = 3uux − 2vvx +
1

2
u3x,

vt = F2(u) = −3uvx − v3x,

(60)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

12

which model shallow water waves. Solving the equations for the weights,

{

W (u) +W (Dt) = 2W (u) + 1 =W (u) + 3 = 2W (v) + 1,

W (v) +W (Dt) =W (u) +W (v) + 1 =W (v) + 3,
(61)

yields W (u) =W (v) = 2 and W (Dt) = 3.
The first few conserved densities and generalized symmetries computed with

InvariantsSymmetries.m [27] are

ρ(1) = u, ρ(2) = 3u2 − 2v2,

G(1) =

(

ux
vx

)

, G(2) =

(

F1(u)
F2(u)

)

=

(

3uux − 2vvx +
1
2u3x

−3uvx − v3x

)

.
(62)

G(3) and G(4) are not shown explicitly due to length. Based on the above weights,

rank ρ(1) = 2, rank ρ(2) = 4, (63)

and

rank G(1) =

(

3
3

)

, rank G(2) =

(

5
5

)

,

rank G(3) =

(

7
7

)

, rank G(4) =

(

9
9

)

.

(64)

We first set g = 1, so that rank Rij = 2, i, j = 1, 2. If indeed the generalized
symmetries were linked consecutively, then

R0 =

(

c1D
2
x + c2uI + c3vI c4D

2
x + c5uI + c6vI

c7D
2
x + c8uI + c9vI c10D

2
x + c11uI + c12vI

)

. (65)

Using (62), we have

R1 = c13G
(1)D−1

x ⊗ Lu(ρ
(1)) = c13

(

ux
vx

)

D−1
x ⊗

(

Lu(ρ
(1)) Lv(ρ

(1))
)

(66)

= c13

(

ux
vx

)

D−1
x ⊗

(

I 0
)

= c13

(

uxD
−1
x 0

vxD
−1
x 0

)

. (67)

Substituting R = R0 +R1 into (27), we find c1 = · · · = c13 = 0. Thus, the choice
g=1 appears to be incorrect. Noting that the ranks of the symmetries in (64) differ
by 2, we repeat the process with g=2, so that rank Rij = 4, i, j = 1, 2. Thus,

R =

(

(R0)11 (R0)12
(R0)21 (R0)22

)

+ c41G
(1)D−1

x ⊗ Lu(ρ
(2)) + c42G

(2)D−1
x ⊗ Lu(ρ

(1)), (68)

where (R0)ij , i, j = 1, 2, are linear combinations (with different undetermined co-
efficients) of {D4

x, uD
2
x, vD

2
x, uxDx, vxDx, u

2, uv, v2, u2x, v2x}. For instance,

(R0)12 = c11D
4
x + (c12u+ c13v)D

2
x + (c14ux + c15vx)Dx

+ (c16u
2 + c17uv + c18v

2 + c19u2x + c20v2x)I. (69)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

13

Using (62), the first term of R1 in (68) is

R
(1)
1 = c41G

(1)D−1
x ⊗ Lu(ρ

(2)) = c41

(

ux
vx

)

D−1
x ⊗

(

6uI −4vI
)

= c41

(

3uxD
−1
x uI −2uxD

−1
x vI

3vxD
−1
x uI −2vxD

−1
x vI

)

.

The second term of R1 in (68) is

R
(2)
1 = c42G

(2)D−1
x ⊗ Lu(ρ

(1)) = c42

(

F1(u)
F2(u)

)

D−1
x ⊗

(

I 0
)

= c42

(

F1(u)D
−1
x 0

F2(u)D
−1
x 0

)

.

Substituting the form of R = R0 + R1 = R0 + R
(1)
1 + R

(2)
1 into (27), the linear

system for ci has a non-trivial solution. Solving the linear system, we finally obtain

R =

(

(R)11 (R)12
(R)21 (R)22

)

, (70)

with

(R)11 = D4
x + 8uD2

x + 12uxDx + 8

(

2u2 + u2x −
2

3
v2
)

I

+ 4uxD
−1
x uI + 2 (6uux + u3x − 4vvx)D

−1
x ,

(R)12 = −
20

3
vD2

x −
16

3
vxDx −

4

3
(4uv + v2x) I −

8

3
uxD

−1
x vI,

(R)21 = −10vxDx − 12v2xI + 4vxD
−1
x uI − 4 (3uvx + v3x)D

−1
x ,

(R)22 = −4D4
x − 16uD2

x − 8uxDx −
16

3
v2I −

8

3
vxD

−1
x vI.

The above recursion operator was computed in [59] as the composition of the
cosymplectic and symplectic operators of (60).
In agreement with g = 2, there are two seeds. Using (26) and starting from G(1)

in (62), the recursion operator (70) generates the infinite sequence of generalized
symmetries with odd labels. Starting from G(2), the recursion operator (70) gener-
ates the infinite sequence of generalized symmetries with even labels. The existence
of a recursion operator confirms that (60) is completely integrable.

5. Key Algorithms

In this section, we present details of the algorithm. To illustrate the key algorithms
in Sections 5.2 and 5.3, we will use the dispersiveless long wave system [1],

ut = F1(u) = uvx + uxv,

vt = F2(u) = ux + vvx,
(71)

which is used in applications involving shallow water waves.

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

14

5.1 Integro-Differential Operators

Recursion operators are non-commutative by nature and certain rules must be used
to simplify expressions involving integro-differential operators. While the multipli-
cation of differential and integral operators is completely described by

Di
xD

j
x = Di+j

x , i, j ∈ Z, (72)

the propagation of a differential operator through an expression is trickier. To
propagate the differential operator to the right, we use Leibniz’ rule

Dn
xQ =

n
∑

k=0

(

n

k

)

Q(k)Dn−k
x , n ∈ N, (73)

where Q is an expression and Q(k) is the k-th derivative with respect to x of
Q. Unlike the finite series for a differential operator, Leibniz’ rule for an inverse
differential operator is

D−1
x Q = QD−1

x −Q′D−2
x +Q′′D−3

x − · · · =
∞
∑

k=0

(−1)kQ(k)D−k−1
x . (74)

Therefore, rather than dealing with an infinite series, we only use Leibniz’ rule for
the inverse differential operator when there is a differential operator to the right
of the inverse operator. In such cases we use

D−1
x QDn

x = QDn−1
x −D−1

x Q′Dn−1
x . (75)

Repeated application of (75) yields

D−1
x QDn

x =
n−1
∑

k=0

(−1)kQ(k)Dn−k−1
x + (−1)nD−1

x Q(n)I. (76)

By using these identities, all the terms are either of the form P̃Dn
x or P̃D−1

x Q̃I,
where P̃ and Q̃ are polynomials in u and its x derivatives.

5.2 Algorithm for Building the Candidate Recursion Operator

Step 1 Find the dilation symmetry.

The dilation symmetry is found by requiring that each equation in (5) is uniform in
rank, i.e. every monomial in that equation has the same rank. If (5) is not uniform
in rank we use a trick. In that case, we multiply those terms that are not uniform
in rank by auxiliary parameters (α, β, . . .) with weights. Once the computations
are finished we set the auxiliary parameters equal to one.
Since the linear system for the weights is always underdetermined, we set

W (Dx) = 1 and this (typically) fixes the values for the remaining weights.
For the example under consideration, (71), we have the linear system

W (u) +W (Dt) =W (u) +W (v) + 1 =W (u) +W (v) + 1,

W (v) +W (Dt) =W (u) + 1 = 2W (v) + 1.
(77)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

15

Thus, W (v) = 1
2W (u),W (Dt) = 1

2W (u) + 1, provided W (Dx) = 1. If we select
W (u) = 2, then the scaling symmetry for (71) becomes

(t, x, u, v) → (λ−2t, λ−1x, λ2u, λv). (78)

In the code PDERecursionOperator.m, the user can set the values of weights with
WeightRules -> {weight[u] -> 2}.

Step 2 Determine the rank of the recursion operator.

Since the gap g cannot be determined a priori, we assume g = 1. Should this choice
not lead to a result, one could set g = 2 or 3. In the code, the user can set the Gap
to any positive integer value (see Appendix A).
To determine the rank of the recursion operator, we compute the first g + 1

generalized symmetries and then use

rank Rij = rank G
(k+g)
i − rank G

(k)
j , i, j = 1, 2, (79)

to determine the rank of R. Hence, the rank of the recursion operator R can be
represented (in matrix form) as follows

rank R =

(

rank R11 rank R12

rank R21 rank R22

)

. (80)

In exceptional cases, the rank of the recursion operator might be lower (or higher)
than computed by (79). In the code, the user has some additional control over
the rank of the recursion operator. For example, in an attempt to find a simpler
recursion operator, the rank of the recursion operator can be shifted down by one by
setting RankShift -> -1. Similarly, to increase the rank of the recursion operator
one can set RankShift -> 1 (see Appendix A).
For (71), the first two generalized symmetries and their ranks are

G(1) =

(

ux
vx

)

, rank G(1) =

(

3
2

)

, (81)

G(2) =

(

uvx + vux
ux + vvx

)

, rank G(2) =

(

4
3

)

. (82)

Then, using (79) and (80),

rank R =

(

1 2
0 1

)

. (83)

Step 3 Generate the (local) differential operator R0.

Given the rank of the recursion operator, we take a linear combination of

Dk0

x u
k1

1 u
k2

2 · · · ukM

M αkM+1βkM+2 · · · , k0, k1, . . . ∈ N, (84)

where the ki are taken so the monomial has the correct rank, the operator Dx

has been propagated to the right, and α, β, . . . are the weighted parameters from
Step 1 (if present).

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

16

For (71), the (local) differential operator is

R0 =

(

c1Dx + c2vI c3D
2
x + c4uI + c5vDx + c6v

2I + c7vxI
c8I c9Dx + c10vI

)

. (85)

Step 4 Generate the (non-local) integral operator R1.

Since the integral operator involves the outer product of generalized symmetries
and cosymmetries, we compute the conserved densities up to

max
i,j

{rank Rij − rank (G(1))i +W (uj) +W (Dx)}, i, j = 1, . . . ,M. (86)

We add W (uj) in (86) because the Euler operator Luj
decreases the weight of the

conserved density by the weight of uj . In most cases, we take a linear combination
of the terms

G(i)D−1
x ⊗ Lu(ρ

(j)), i, j ∈ N, (87)

of the correct rank as the candidate non-local operator. However, there are cases
in which we must take a linear combination of the monomials in each term of type
(87) with different coefficients.
For (71), we only need the cosymmetry of density ρ(1) = v,

Lu(ρ
(1)) =

(

0 I
)

. (88)

Hence,

G(1)D−1
x ⊗ Lu(ρ

(1)) =

(

0 uxD
−1
x

0 vxD
−1
x

)

. (89)

Thus, the (non-local) integral operator is

R1 =

(

0 c11uxD
−1
x

0 c12vxD
−1
x

)

. (90)

Step 5 Add the local and the non-local operators to form R.

The candidate recursion operator is

R = R0 +R1. (91)

So, the candidate recursion operator for (71) is

R =

(

c1Dx + c2vI c3D
2
x + c4uI + c5vDx + c6v

2I + c7vxI + c11uxD
−1
x

c8I c9Dx + c10vI + c12vxD
−1
x

)

. (92)

5.3 Algorithm for Determining the Unknown Coefficients

Step 1 Compute the terms in the defining equation (27).

Step 1.1 Compute Rt =
∂R
∂t

.

The computation of Rt is easy. Since the candidate recursion operator is t-
independent one has Rt = 0.

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

17

Step 1.2 Compute R′[F(u)].

The Fréchet derivative of R in the direction of F(u) is given in (28). Unlike the
Fréchet derivative (20) of F(u) in the direction of G (used in the computation of
generalized symmetries), R and F(u) in (28) are operators.
Applied to the example (71) with 2 components,

R′[F(u)] =

(

(R′[F(u)])11 (R′[F(u)])12
(R′[F(u)])21 (R′[F(u)])22

)

, (93)

where

(R′[F(u)])ij =

m
∑

k=0

(

Dk
xF(u)

) ∂(R)ij
∂ukx

, i, j = 1, 2. (94)

Explicitly,

(R′[F(u)])11 = c2 (ux + vvx) I, (95)

(R′[F(u)])21 = 0, (96)

(R′[F(u)])12 = +c5 (ux + vvx)Dx +
(

c4uvx + (2c6 + c4)vux + 2c6v
2vx

+ c7vv2x + c7v
2
x + c7u2x

)

I + c11(2uxvx + uv2x + vu2x)D
−1
x , (97)

(R′[F(u)])22 = c10 (ux + vvx) I + c12
(

u2x + vv2x + v2x
)

D−1
x . (98)

Step 1.3 Compute F′(u).

Use formula (29) to compute F′(u). Continuing with example (71),

F′(u) =

(

vDx + vxI uDx + uxI
Dx vDx + vxI

)

. (99)

Step 1.4 Compose R and F′(u).

The composition of the M ×M matrices R and F′(u) is an order preserving inner
product of the two matrices. For example (71),

R ◦F′(u) =

(

(R ◦ F′(u))11 (R ◦ F′(u))12
(R ◦ F′(u))21 (R ◦ F′(u))22

)

, (100)

with

(R ◦F′(u))11 = c3D
3
x + (c1 + c5)vD

2
x +

(

2c1vx + c2v
2 + c4u+ c6v

2 + c7vx
)

Dx

+ (c1v2x + c2vvx + c11ux) I, (101)

(R ◦F′(u))12 = c3vD
3
x +

(

c1u+ 3c3vx + c5v
2
)

D2
x +

(

2c1ux + c2uv + 3c3v2x

+ c4uv + 2c5vvx + c6v
3 + c7vvx

)

Dx +
(

c1u2x + c2vux + c3v3x

+ c4uvx + c5vv2x + c6v
2vx + c7v

2
x + c11vux

)

I, (102)

(R ◦F′(u))21 = c9D
2
x + (c8 + c10) vDx + (c8 + c12) vxI, (103)

(R ◦F′(u))22 = c9vD
2
x +

(

c8u+ 2c9vx + c10v
2
)

Dx +
(

c8ux + c9v2x

+ c10vvx + c12vvx
)

I. (104)

Similarly,

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

18

F′(u) ◦ R =

(

(F′(u) ◦ R)11 (F′(u) ◦ R)12
(F′(u) ◦ R)21 (F′(u) ◦ R)22

)

, (105)

with

(F′(u) ◦ R)11 = c1vD
2
x +

(

c1vx + c2v
2 + c8u)Dx + (2c2vvx + c8ux

)

I, (106)

(F′(u) ◦ R)12 = c3vD
3
x +

(

c3vx + c5v
2 + c9u

)

D2
x +

(

c4uv + 2c5vvx + c6v
3

+ c7vvx + c9ux + c10uv
)

Dx +
(

c4uvx + c4vux + 3c6v
2vx

+ c7v
2
x + c7vv2x + c10uvx + c10vux + c11vux + c12uvx

)

I

+ (c11uxvx + c11vu2x + c12uv2x + c12uxvx)D
−1
x , (107)

(F′(u) ◦ R)21 = c1D
2
x + (c2 + c8) vDx + (c2 + c8) vxI, (108)

(F′(u) ◦ R)22 = c3D
3
x + (c5 + c9) vD

2
x +

(

c4u+ c5vx + c6v
2 + c7vx

+ c9vx + c10v
2
)

Dx +
(

c4ux + 2c6vvx + c7v2x + 2c10vvx

+ c11ux + c12vvx
)

I +
(

c11u2x + c12vv2x + c12v
2
x

)

D−1
x . (109)

Step 1.5 Sum the terms in the defining equation.

For (71), summing the terms in the defining equation (27), we find

c3D
3
x + c5vD

2
x + (c1 + c7)vxDx + (c4 − c8) uDx + c6v

2Dx

+ (c2 − c8 + c11) uxI + c1v2xI ≡ 0, (110)

(c1 − c9)uD
2
x + 2c3vxD

2
x + (c2 − c10) uvDx + (c5 − c9 + 2c1)uxDx

+ c5vvxDx + 3c3v2xDx − (c1 − c7) u2xI + (c4 − c10 − c12)uvxI

+ (c2 + 2c6 − c10) vuxI + c5vv2xI + c7v
2
xI + c3v3xI

+ (c11 − c12) uv2xD
−1
x + (c11 − c12)uxvxD

−1
x ≡ 0, (111)

(c1 − c9)D
2
x + (c2 − c10) vDx + (c2 − c12) vxI ≡ 0, (112)

c3D
3
x + c5vD

2
x + (c4 − c8)uDx + (c5 + c7 − c9) vxDx

+ c6v
2Dx + (c4 − c8 − c10 + c11)uxI + 2c6vvxI

+ (c7 − c9) v2xI + (c11 − c12) u2xD
−1
x ≡ 0. (113)

Step 2 Extract the linear system for the undetermined coefficients.

Group the terms in like powers of u,ux,uxx, . . . , I,Dx,D
2
x, . . . and D−1

x . Then,
grouping like terms and setting their coefficients equal to zero yields a linear system

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

19

for the undetermined coefficients. For (71), we obtain

c1 = 0, c3 = 0, c5 = 0, c6 = 0, c7 = 0, c4 − c8 = 0,

c1 − c9 = 0, 2c1 + c5 − c9 = 0, c5 + c7 − c9 = 0, c2 − c10 = 0,

c2 + 2c6 − c10 = 0, c2 − c10 = 0, c4 − c8 − c10 + c11 = 0, c2 − c8 + c11 = 0,

c4 − c10 − c12 = 0, c11 − c12 = 0, c2 − c12 = 0, c11 − c12 = 0.
(114)

Step 3 Solve the linear system and build the recursion operator.

Solve the linear system and substitute the constants into the candidate recursion
operator. For (71), we find

c1 = c3 = c5 = c6 = c7 = c9 = 0, 2c2 = c4 = 2c10 = 2c11 = 2c12 = c8, (115)

so taking c8 = 1 gives

R =

(

1
2vI uI + 1

2uxD
−1
x

I 1
2vI +

1
2vxD

−1
x

)

. (116)

In [59] this recursion operator was obtained as the composition of the cosymplectic
and symplectic operators of (71).
Starting from G(1), repeated application of (116) generates an infinite number of

generalized symmetries of (71), establishing its completely integrable.

6. Other Software Packages

There has been little work on using computer algebra methods to find and test
recursion operators. In 1987, Fuchssteiner et al. [23] wrote PASCAL, Maple, and
Macsyma codes for testing recursion operators. While these packages could verify
if a recursion operator is correct, they were unable to either generate the form of
the operator or test a candidate recursion operator with undetermined coefficients.
Bilge [11] did substantial work on finding recursion operators interactively with
REDUCE.
Sanders and Wang [56, 59] wrote Maple and Form codes to aid in the compu-

tation of recursion operators. Their software was used to compute the symplectic,
cosymplectic, as well as recursion operators of the 39 PDEs listed in [59] and [60].
Recently, Meshkov [48] implemented a package in Maple for investigating com-

plete integrability from the geometric perspective. If the zero curvature representa-
tion of the system is known, then his software package can compute the recursion
operator. To our knowledge, our package PDERecursionOperator.m [9] is the only
fully automated software package for computing and testing polynomial recursion
operators of polynomial evolution equations.

7. Additional Examples

7.1 The Nonlinear Schrödinger Equation

For convenience, we write the standard nonlinear Schrödinger equation (NLS),

iut + uxx + 2|u|2u = 0, (117)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

20

as the system of two real equations,

ut = −(uxx + 2u2v),

vt = vxx + 2uv2,
(118)

where v = ū and i has been absorbed in t.
To determine the weights, we assume W (u) = W (v) so that (118) has dilation

symmetry (t, x, u, v) → (λ−2t, λ−1x, λu, λv). Hence, W (u)=W (v)=1,W (Dt)=2,
and W (Dx)=1, as usual. The first densities and symmetries are

ρ(1) = uv, ρ(2) = uxv, (119)

G(1) =

(

u
−v

)

, G(2) =

(

ux
vx

)

. (120)

Thus, rank Rij = 1, i, j = 1, 2, and the candidate local operator is

R0 =

(

c1Dx + (c2u+ c3v)I c4Dx + (c5u+ c6v)I
c7Dx + (c8u+ c9v)I c10Dx + (c11u+ c12v)I

)

. (121)

The candidate non-local operator is

R1 = G(1)D−1
x ⊗ Lu(ρ

(1)) =

(

−c13uD
−1
x vI −c14uD

−1
x uI

c15vD
−1
x vI c16vD

−1
x uI

)

. (122)

Substituting R = R0+R1 into (27), solving for the undetermined coefficients, and
setting c16 = −2, we find

R =

(

Dx + 2uD−1
x vI 2uD−1

x uI
−2vD−1

x vI −Dx − 2vD−1
x uI

)

. (123)

Starting from “seed” G(1), the generalized symmetries can be constructed sequen-
tially using (4). This establishes the complete integrability of (118).
In [59], Wang split (117) into an alternate system of two real equations by setting

u = v + iw. Using the cosymplectic and symplectic operators of that system, she
obtained a recursion operator which is equivalent to (123).

7.2 The Burgers’ Equation

Consider the Burgers’ equation [54],

ut = uux + uxx, (124)

which has the dilation symmetry (t, x, u) → (λ−2t, λ−1x, λu), or W (Dt) = 2,
W (u) = 1, with W (Dx) = 1. For (124),

ρ(1) = u, G(1) = ux, G(2) = uux + uxx. (125)

Assuming that g = 1, the candidate recursion operator of rank R = 1 is

R = c1Dx + c2uI + c3G
(1)D−1

x Lu(ρ
(1)) = c1Dx + c2uI + c3uxD

−1
x . (126)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

21

Using the defining equation (27), we determine that c1 = 2c3 and c2 = c3. Taking
c3 =

1
2 , gives the recursion operator reported in [53],

R = Dx +
1

2

(

uI + uxD
−1
x

)

= Dx +
1

2
Dx

(

uD−1
x

)

. (127)

As expected, starting from G(1), one computes G(2) = RG(1), G(3) = RG(2) =
R2G(1), etc., confirming that (124) is completely integrable.
The Burgers’ equation also has the recursion operator [54],

R̃ = tR+
1

2

(

xI +D−1
x

)

= tDx +
1

2
(tu+ x) I +

1

2
(tux + 1)D−1

x , (128)

which explicitly depends on x and t. Using W (t) = −2,W (x) = W (D−1
x) = −1

and W (u) = 2, one can readily verify that each term in (128) has rank −1.
To find recursion operators like (128), which depend explicitly on x and t, we can

again use scaling symmetries to build R̃. However, one must select the maximum
degree for x and t. For instance, for degree 1 the coefficients in the recursion
operator will at most depend on x and t (but not on xt, x2, or t2 which are
quadratic). To control the highest exponent in x and t, in the code the user can
set MaxExplicitDependency to any non-negative integer value (see Appendix A).
With MaxExplicitDependency -> 1, the candidate local operator then is

R̃0 = c1tDx + (c2x+ c3tu) I. (129)

The first symmetries that explicitly depend on x and t (of degree 1) are

G̃(1) = 1 + tux, G̃(2) =
1

2
(u+ xux) + tuux + tuxx. (130)

Thus, the candidate non-local operator is

R̃1 = c4G̃
(1)D−1

x Lu(ρ
(1)) = c4 (tux + 1)D−1

x . (131)

Requiring that R̃ = R̃0 + R̃1 satisfies the defining equation (27), next solving
for the constants c1 through c4, and finally setting c4 = 1

2 , yields the recursion
operator (128). Using (128), one can construct an additional infinite sequence of
generalized symmetries. Furthermore, G̃(2) = R̃G(1), G̃(3) = R̃G(2) = R̃RG(1), etc.
Connections between R and R̃ and their symmetries are discussed in [54] and [59].

7.3 The Drinfel’d-Sokolov-Wilson Equation

Consider the Drinfel’d-Sokolov-Wilson system [1, 41],

ut = 3vvx,

vt = 2uvx + uxv + 2v3x,
(132)

which has static soliton solutions that interact with moving solitons without de-
formation. The scaling symmetry for (132) is (t, x, u, v) → (λ−3t, λ−1x, λ2u, λ2v).
Expressed in weights, W (Dt) = 3,W (Dx) = 1, and W (u) = W (v) = 2. The first
few conserved densities and generalized symmetries are

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

22

ρ(1) = u, ρ(2) = v2, ρ(3) =
4

27
u3 −

2

3
uv2 −

1

9
u2x + v2x, (133)

G(1) =

(

ux
vx

)

, G(2) =

(

3vvx
uxv + 2uvx + 2v3x

)

, (134)

and

G(3)=

(

−10u2ux+15v2ux+30uvvx −25uxu2x+45vxv2x −10uu3x+30vv3x −2u5x
10u2vx+15v2vx+10uvux+45uxv2x+35vxu2x+30uv3x+10vu3x+18v5x

)

.

(135)
Despite the fact that

rank G(1) =

(

3
3

)

, rank G(2) =

(

5
5

)

, (136)

we can not take g=1 or 2. Surprisingly, for (132) we must set g=3 and rank Rij=
6, i, j = 1, 2. So, the candidate local operator has elements involving D6

x. For
example,

(R0)11 = c1D
6
x + (c2u+ c5v)D

4
x + (c8ux + c10vx)D

3
x +

(

c3u
2 + c6v

2 + c12u2x

+c13v2x + c18uv)D
2
x + (c14u3x + c15v3x + c20uux + c21uvx + c25vux + c26vvx)Dx

+
(

c4u
3 + c7v

3 + c27vu2x + c28vv2x + c29uxvx + c9u
2
x + c11v

2
x + c16u4x

+c17v4x + c19uv
2 + c22uu2x + c23uv2x + c24u

2v
)

I. (137)

The candidate non-local operator is

R1 =

4
∑

i=1

G(i)D−1
x ⊗ Lu(ρ

(5−i)) =

(

(R1)11 (R1)12
(R1)21 (R1)22

)

, (138)

where

(R1)11 = −

(

1

9
c117u5x +

25

18
c118uxu2x +

5

9
c119uu3x +

5

9
c120u

2ux

−
5

6
c121v

2ux −
5

3
c122vv3x −

5

2
c123vxv2x

)

D−1
x −

2

3
c124uxD

−1
x v2

+
2

9
c125uxD

−1
x u2x +

4

9
c126uxD

−1
x u2 +

5

3
c127uvvxD

−1
x , (139)

(R1)12 = −2c128uxD
−1
x v2x −

4

3
c129uxD

−1
x uv + 3c130vvxD

−1
x v, (140)

(R1)21 =

(

c131v5x +
5

9
c132u

2vx +
5

9
c133vu3x +

5

6
c134v

2vx

+
5

3
c135uv3x +

35

18
c136vxu2x +

5

2
c137uxv2x

)

D−1
x −

2

3
c138vxD

−1
x v2

+
2

9
c139vxD

−1
x u2x +

4

9
c140vxD

−1
x u2 +

5

9
c141uvuxD

−1
x , (141)

(R1)22 = −2c142vxD
−1
x v2x + 2c143v3xD

−1
x v + 2c144uvxD

−1
x v

−
4

3
c145vxD

−1
x uv + c146vuxD

−1
x v. (142)

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

23

The terms in (27) fill 160 pages and grouping like terms results in a system of 508
linear equations for ci. Solving these linear equations and setting c146 = −9 gives
the recursion operator

R =

(

(R)11 (R)12
(R)21 (R)22

)

(143)

with

(R)11 = D6
x + 6uD4

x + 18uxD
3
x +

(

9u2 − 21v2 +
49

2
u2x

)

D2
x +

(

30uux − 75vvx

+
35

2
u3x

)

Dx +
(

4u3 − 12uv2 +
41

2
uu2x +

13

2
u4x +

69

4
u2x −

111

2
vv2x

−
141

4
v2x

)

I +
(

5u2ux + 5uu3x − 15uvvx − 15vv3x −
15

2
v2ux +

25

2
uxu2x

−
45

2
vxv2x + u5x

)

D−1
x +

1

2
uxD

−1
x u2xI −

3

2
uxD

−1
x v2I + uxD

−1
x u2I, (144)

(R)12 = −42vD4
x − 51vxD

3
x −

(

48uv+
63

2
v2x

)

D2
x −

(

33uvx +60vux +
21

2
v3x

)

Dx

−
(

18v3 + 15uxvx + 6u2v +
15

2
uv2x +

39

2
vu2x +

3

2
v4x

)

I

− 27vvxD
−1
x vI − 3uxD

−1
x uvI −

9

2
uxD

−1
x v2xI, (145)

(R)21 = −14vD4
x − 67vxD

3
x −

(

16uv +
243

2
v2x

)

D2
x −

(

18vux + 53uvx

+
219

2
v3x

)

Dx −
(

46uxvx + 2u2v + 6v3 +
99

2
uv2x +

99

2
v4x +

27

2
vu2x

)

I

−
(

15uv3x + 5u2vx + 5uvux + 5vu3x + 9v5x +
15

2
v2vx +

35

2
vxu2x

+
45

2
uxv2x

)

D−1
x +

1

2
vxD

−1
x u2xI −

3

2
vxD

−1
x v2I + vxD

−1
x u2I, (146)

and

(R)22 = −27D6
x − 54uD4

x − 108uxD
3
x −

(

27u2 + 33v2 +
243

2
u2x

)

D2
x

−
(

54uux + 105vvx +
135

2
u3x

)

Dx −
(

24uv2 +
27

2
uu2x +

27

4
u2x

+
147

2
vv2x +

27

2
u4x +

201

4
v2x

)

I − 9
(

2uvx + 2v3x + vux

)

D−1
x vI

− 3vxD
−1
x uvI −

9

2
vxD

−1
x v2xI (147)

This recursion operator can also be computed [59] by composing the cosymplectic
and symplectic operators of (132). Since g = 3 the symmetries are not generated
via (4). Instead, there are three seeds, G(1), G(2), and G(3) given in (134) and (135).
Using (26), from G(1) one obtains G(4) = RG(1), G(7) = RG(4) = R2G(1), and so

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

24

on. From G(2), upon repeated application of R, one gets G(5), G(8), etc., whereas
G(3) generates G(6), G(9), etc. Thus, the recursion operator generates a threefold
infinity of generalized symmetries, confirming that (132) is completely integrable.
This example illustrates the importance of computer algebra software in the

study of integrability, in particular, for the computation of recursion operators.
The length of the computations makes it impossible to compute the recursion
operators for all but the simplest systems by hand.

8. Conclusions and Future Work

To our knowledge, no one has ever attempted to fully automate an algorithm for
finding or testing recursion operators. The commutative nature of computer algebra
systems makes it a non-trivial task to efficiently implement the non-commutative
rules needed for working with integro-differential operators.
Based on our recursion operator algorithm and it implementation in PDERe-

cursionOperator.m, a large class of nonlinear PDEs can be tested for complete
integrability in a straightforward manner. Currently our code computes polynomial
recursion operators for polynomial PDEs (with constant coefficients) which can be
written in evolution form, ut = F(u,ux, . . . ,umx).
With the tools developed for finding and testing recursion operators, it would

be possible to extend the algorithm to find master symmetries as well as cosym-
plectic, symplectic and conjugate recursion operators. A symplectic operator maps
(generalized) symmetries into cosymmetries, while a cosymplectic operator maps
cosymmetries into generalized symmetries. Hence, the recursion operator for a sys-
tem is the composition of the cosymplectic operator and the symplectic operator of
the system. A conjugate recursion operator maps conserved densities of lower order
to conserved densities of higher order. The master symmetry can be used to gen-
erate an infinite hierarchy of time-dependent generalized symmetries. It would be
worthwhile to add to our Mathematica code an automated test of the “hereditary”
condition [23] for recursion operators.

Acknowledgements

This material is based upon work supported by the National Science Foundation
(NSF) under Grant Nos. CCF-0830783 and CCR-9901929. This work was also
partially supported by a NDSEG Fellowship awarded to DB. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.
WH thanks Jan Sanders (Free University Amsterdam, The Netherlands) and Jing

Ping Wang (University of Kent, Canterbury, UK) for many valuable discussions.

Appendix A. Using the Software Package PDERecursionOperator.m

The package PDERecursionOperator.m has been tested with Mathematica 4.0
through 7.0 using more than 30 PDEs. The Backus-Naur form of the main function
(RecursionOperator) is

〈MainFunction〉 → RecursionOperator[〈Equations〉, 〈Functions〉,
〈V ariables〉, 〈Parameters〉, 〈Options〉]

〈Options〉 → Verbose → 〈Bool〉 | WeightsVerbose→ 〈Bool〉 |
Gap → 〈Positive Integer〉 |
MaxExplicitDependency→ 〈Nonnegative Integer〉 |
RankShift→ 〈Integer〉 |

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

25

WeightRules→ 〈List of Rules〉 |
WeightedParameters→ 〈List of Weighted Parameters〉 |
UnknownCoefficients→ 〈Symbol〉

〈Bool〉 → True | False
〈List of Rules〉 → {weight[u] →〈Integer〉,weight[v] →〈Integer〉, ...}

When using a PC, place the packages PDERecursionOperator.m and Invari-

antsSymmetries.m in a directory, for example, myDirectory on drive C. Start
a Mathematica notebook session and execute the commands:

In[1] := SetDirectory["C:\\myDirectory"]; (* Specify directory *)

In[2] := Get["PDERecursionOperator.m"] (* Read in the package *)

In[3] := RecursionOperator[(* Burgers’ equation *)

D[u[x,t],t]==u[x,t]*D[u[x,t],x]+D[u[x,t],{x,2}],

u[x,t], {x,t}]

Out[3] =

{{{2C3Dx + C3uI + C3uxD
−1
x }}}

We can find a recursion operator for Burgers’ equation which explicitly depends
on x and t (linearly) by using the option MaxExplicitDependency:

In[4] := RecursionOperator[(* Burgers’ equation *)

D[u[x,t],t]==u[x,t]*D[u[x,t],x]+D[u[x,t],{x,2}],

u[x,t], {x,t}, MaxExplicitDependency -> 1]

Out[4] =

{{{2C5tDx + C5(x+ tu)I + C5(1 + tux)D
−1
x }}}

In[5] := RecursionOperator[(* Potential mKdV equation *)

D[u[x,t],t]==1/3*D[u[x,t],x]^3+D[u[x,t],{x,3}],

u[x,t], {x,t},

WeightRules -> {weight[u] -> 1}, Gap -> 2]

{{{3C19D
2
x + (C1 + 2C19u

2
x)I − 2C19uxD

−1
x u2xI}}}

In this example, we must use the WeightRules option to fix the weights and the
Gap option to set g = 2.

In[6] := RecursionOperator[(* Diffusion system *)

{ D[u[x,t],t]==D[u[x,t],{x,2}]+v[x,t]^2,

D[v[x,t],t]==D[v[x,t],{x, 2}] },

{ u[x,t],v[x,t] }, {x,t},

WeightRules -> {weight[u] -> weight[v]},

RankShift -> -1]

{{{C5Dx, C2Dx + C5vD
−1
x }, {0, C5Dx}}}

In this system of equations, we again use the option WeightRules to fix the weights.
We also use the option RankShift to force RecursionOperator to search for re-

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

26 REFERENCES

cursion operator of a lower than expected rank.
The option Verbose prints out a trace of the calculations, while the option

WeightsVerbose prints out a trace of the calculation of the scaling symmetry.
If one or more parameters have a weight, these weights can be specified using
WeightedParameters. The undetermined constants can be set to any variable us-
ing the option UnknownCoefficients (the default is Ci).

References

[1] M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering,
London Math. Soc. Lect. Note Series vol. 149, Cambridge University Press, Cambridge (1991).

[2] M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied
Mathematics, SIAM, Philadelphia, PA (1981).

[3] M.J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and
ordinary differential equations of P -type. I, J. Math. Phys. 21 (1980), pp. 715–721.

[4] P.J. Adams, Symbolic computation of conserved densities and fluxes for systems of partial differential
equations with transcendental nonlinearities, M.S. thesis, Colorado School of Mines, Golden, Colorado
(2003).

[5] P.J. Adams and W. Hereman, TransPDEDensityFlux.m: A Mathematica package for the symbolic
computation of conserved densities and fluxes for systems of partial differential equations with tran-
scendental nonlinearities (2002).

[6] D. Baldwin, Symbolic algorithms and software for the Painlevé test and recursion operators for
nonlinear partial differential equations, M.S. thesis, Colorado School of Mines, Golden, Colorado
(2004).

[7] D. Baldwin and W. Hereman, PainleveTest.m: AMathematica package for the Painlevé test of systems
of ODEs and PDEs (2003).

[8] ———, Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations,
J. Nonl. Math. Phys. 13 (2006) 90-110.

[9] ———, PDERecursionOperator.m: A Mathematica package for the symbolic computation of re-
cursion operators for nonlinear partial differential equations, 2003-2009; software available at
http://inside.mines.edu/∼whereman/software/PDERecursionOperator.

[10] D. Baldwin, W. Hereman, and J. Sayers, Symbolic algorithms for the Painlevé test, special solutions,
and recursion operators for nonlinear PDEs, in Group Theory and Numerical Analysis, P. Winternitz,
D. Gomez-Ullate, A. Iserles, D. Levi, P.J. Olver, R. Quispel, and P. Tempesta, eds., CRM Proc. &
Lect. Ser. vol. 39, AMS, Providence, RI, 2005, pp. 17–32.

[11] A.H. Bilge, On the equivalence of linearization and formal symmetries as integrability tests for evo-
lution equations, J. Phys. A: Math. Gen. 26 (1993), pp. 7511–7519.

[12] F. Calogero and A. Degasperis, Spectral Transform and Solitons I, North Holland, Amsterdam (1982).
[13] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, and M.C. Morris, Solitons and Nonlinear Wave Equations,

Academic Press, London (1982).
[14] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester,

UK (1993).
[15] H. Eklund, Symbolic computation of conserved densities and fluxes for nonlinear systems of

differential-difference equations, M.S. thesis, Colorado School of Mines, Golden, Colorado (2003).
[16] H. Eklund and W. Hereman, DDEDensityFlux.m: A Mathematica package for the symbolic com-

putation of conserved densities and fluxes for nonlinear systems of differential-difference equations
(2003).

[17] A.S. Fokas, Symmetries and integrability, Stud. Appl. Math. 77 (1987), pp. 253–299.
[18] A.S. Fokas and B. Fuchssteiner, On the structure of symplectic operators and hereditary symmetries,

Il Nuovo Cim. 28 (1980), pp. 229–303.
[19] B. Fuchssteiner, Application of hereditary symmetries to nonlinear evolution equations, Nonl. Anal.,

Theory, Methods & Appls. 3 (1979), pp. 849–862.
[20] B. Fuchssteiner and A.S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary

symmetries, Physica D 4 (1981), pp. 47–66.
[21] B. Fuchssteiner, S. Ivanov, and W. Wiwianka, Algorithmic determination of infinite-dimensional

symmetry groups for integrable systems in 1+1 dimensions, Math. Comp. Model. 25 (1997), pp.
91–100.

[22] B. Fuchssteiner and W. Oevel, The bi-Hamiltonian structure of some nonlinear fifth- and seventh-
order differential equations and recursion formulas for their symmetries and conserved covariants,
J. Math. Phys. 23 (1982), pp. 358–363.

[23] B. Fuchssteiner, W. Oevel, and W. Wiwianka, Computer-algebra methods for investigation of hered-
itary operators of higher order soliton equations, Comp. Phys. Comm. 44 (1987), pp. 47–55.

[24] I.M. Gelfand and L.A. Dickey, Asymptotic properties of the resolvent of Sturm-Liouville equations,
and the algebra of Korteweg-de Vries equations, Russ. Math. Surv. 30 (1975), pp. 77–113.

[25] Ü. Göktaş, Symbolic computation of conserved densities for systems of evolution equations, M.S.
thesis, Colorado School of Mines, Golden, Colorado (1996).

[26] ———, Algorithmic computation of symmetries, invariants and recursion operators for systems
of nonlinear evolution and differential-difference equations, Ph.D. diss., Colorado School of Mines,
Golden, Colorado (1998).

[27] Ü. Göktaş and W. Hereman, Mathematica package InvariantSymmetries.m: Symbolic computa-
tion of conserved densities and generalized symmetries of nonlinear PDEs and differential-difference

http://inside.mines.edu/~whereman/software/PDERecursionOperator

October 31, 2018 12:11 International Journal of Computer Mathematics BaldwinHeremanI-
JCM2009ArXiv

REFERENCES 27

equations, 1997; software available at http://library.wolfram.com/infocenter/MathSource/570 and
http://inside.mines.edu/∼whereman/software/invarsym .

[28] ———, Symbolic computation of conserved densities for systems of nonlinear evolution equations, J.
Symb. Comp. 24 (1997), pp. 591–621.

[29] ———, Computation of conservation laws for nonlinear lattices, Physica D 132 (1998), pp. 425-436.
[30] ———,Algorithmic computation of higher-order symmetries for nonlinear evolution and lattice equa-

tions, Adv. Comp. Math. 11 (1999), pp. 55–80.

[31] Ü. Göktaş, W. Hereman, and G. Erdmann, Computation of conserved densities for systems of non-
linear differential-difference equations, Phys. Lett. A 236 (1997), pp. 30-38.

[32] W. Hereman, Symbolic computation of conservation laws of nonlinear partial differential equations
in multi-dimensions, Int. J. Quant. Chem. 106 (2006), pp. 278-299.

[33] W. Hereman, P.A. Adams, H.L. Eklund, M.S. Hickman, and B.M. Herbst, Direct methods and sym-
bolic software for conservation laws of nonlinear equations, in Advances in Nonlinear Waves and
Symbolic Computation, Z. Yan, ed., Nova Science Publishers, New York (2009), pp. 19–79.

[34] W. Hereman, M. Colagrosso, R. Sayers, A. Ringler, B. Deconinck, M. Nivala, and M. Hickman,
Continuous and discrete homotopy operators and the computation of conservation laws, inDifferential
Equations with Symbolic Computation, D. Wang and Z. Zheng, eds., Birkhäuser Verlag, 2005, pp.
249–285.

[35] W. Hereman and Ü. Göktaş, Integrability tests for nonlinear evolution equations, in Computer Algebra
Systems: A Practical Guide, M. Wester, ed., Wiley, New York, 1999, pp. 211–232.

[36] W. Hereman, Ü. Göktaş, M. Colagrosso, and A. Miller, Algorithmic integrability tests for nonlinear
differential and lattice equations, Comp. Phys. Comm. 115 (1998), pp. 428-446.

[37] W. Hereman, J.A. Sanders, J. Sayers, and J.P. Wang, Symbolic computation of polynomial conserved
densities, generalized symmetries, and recursion operators for nonlinear differential-difference equa-
tions, in Group Theory and Numerical Analysis, P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi,
P.J. Olver, R. Quispel, and P. Tempesta, eds., CRM Proc. & Lect. Ser. vol. 39, AMS, Providence,
RI, 2005, pp. 267–282.

[38] M. Hickman and W. Hereman, Computation of densities and fluxes of nonlinear differential-difference
equations, Proc. Roy. Soc. Lond. A 459 (2003), pp. 2705–2729.

[39] R. Hirota, Direct methods in soliton theory, in Solitons, R. Bullough and P. Caudrey, eds., Topics in
Current Physics vol. 17, Springer-Verlag, New York, 1980, Ch. 5, pp. 157–176.

[40] R. Hirota, The Direct Method in Soliton Theory [English translation], A. Nagai, J. Nimmo, and C.
Gilson. transl. & eds., Cambridge University Press, Cambridge, UK (2004).

[41] R. Hirota, B. Grammaticos, and A. Ramani, Soliton structure of the Drinfel’d-Sokolov-Wilson equa-
tion, J. Math. Phys. 27 (1986), pp. 1499–1505.

[42] A. Karasu (Kalkanli), A. Karasu, and S.Yu. Sakovich, A strange recursion operator for a new inte-
grable system of coupled Korteweg-de Vries equations, Acta Appl. Math. 83 (2004), pp. 85–94.

[43] B.G. Konopelchenko, Nonlinear Integrable Equations, Lect. Notes in Phys. vol. 270, Springer Verlag,
New York, PA (1981).

[44] M. Lakshmanan and P. Kaliappan, Lie transformations, nonlinear evolution equations, and Painlevé
forms, J. Math. Phys. 24 (1983), pp. 795–806.

[45] G.L. Lamb, Elements of soliton Theory, Wiley, New York (1980).
[46] P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math.

21 (1968), pp. 467–490.
[47] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), pp.

1156–1162.
[48] A.G. Meshkov, Computer package for investigation of the complete integrability, in Proc. of Institute

of Maths. of NAS of Ukraine vol. 30, 2000, pp. 35–46.
[49] A.V. Mikhailov and V.S. Novikov, Perturbative symmetry approach, J. Phys. A 35 (2002), pp. 4775–

4790.
[50] A.V. Mikhailov, A.B. Shabat, and V.V. Sokolov, The symmetry approach to classification of integrable

equations, in What Is Integrability?, V.E. Zakharov, ed., Springer Verlag, Berlin Heidelberg, 1991,
pp. 115–184.

[51] A.V. Mikhailov, A.B. Shabat, and R.I. Yamilov, The symmetry approach to the classification of
non-linear equations. Complete lists of integrable systems, Usp. Mat. Nauk. 42 (1987), pp. 3–53.

[52] A.C. Newell, Solitons in Mathematics and Physics, CBMS-NSF Regional Conference Series in Ap-
plied Mathematics vol. 48, SIAM, Philadelphia, PA (1985).

[53] P.J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), pp.
1212–1215.

[54] ———, Applications of Lie groups to Differential Equations, Graduate Texts in Mathematics vol.
107, 2nd ed., Springer-Verlag, New York (1993).

[55] J. Praught and R.G. Smirnov, Andrew Lenard: A mystery unraveled, Symmetry Integrability & Ge-
ometry: Meth. Appl. (SIGMA) 1 (2005), Paper 006, pp. 1–7.

[56] J. Sanders and J.P. Wang, Combining Maple and Form to decide on integrability questions, Comp.
Phys. Comm. 115 (1998), pp. 447–459.

[57] ———, Integrable systems and their recursion operators, Nonl. Anal. 47 (2001), pp. 5213–5240.
[58] ———, On recursion operators, Physica D 149 (2001), pp. 1–10.
[59] J.P. Wang, Symmetries and conservation laws of evolution equations, Ph.D. diss., Thomas Stieltjes

Institute for Mathematics, Amsterdam (1998).
[60] ———, A list of (1 + 1) dimensional integrable equations and their properties, J. Nonl. Math. Phys.

9 (2002), pp. 213–233.
[61] R. Willox, W. Hereman, and F. Verheest, Complete integrability of a modified vector derivative

nonlinear Schrördinger equation, Physica Scripta 52 (1995), pp. 21–26.

http://inside.mines.edu/~whereman/software/invarsym

