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Abstract

In this work, Liénard equations are considered. The limit cycles of these systems are
studied by applying the homotopy analysis method. The amplitude and frequency
obtained with this methodology are in good agreement with those calculated by
computational methods. This puts in evidence that the homotopy analysis method
is an useful tool to solve nonlinear differential equations.
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1 Introduction

A generalization of the van der Pol oscillator is the classical Liénard differential
equation,

ẍ(t) + ǫf(x)ẋ(t) + x(t) = 0, t ≥ 0, (1.1)

with ǫ a real parameter and f(x) any real function. The dot denotes the derivative
with respect to time t. The periodic solutions of this system are called limit cycles

[1]. For instance, when f(x) = x2 − 1 (van der Pol oscillator), Eq. 1.1 displays
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a limit cycle whose uniqueness and non-algebraicity has been shown for the whole
range of the parameter ǫ [2]. Its behavior runs from near-harmonic oscillations when
ǫ → 0 to relaxation oscillations when ǫ → ∞, making it a good model for many
practical situations [3]. Other partial results on the number and form of limit cycles
in Liénard systems are scattered in the literature [4]. When f(x) is a polynomial
of degree N = 2n + 1 or 2n, with n a natural number, Lins, Melo and Pugh have
conjectured (LMP-conjecture) that the maximum number of limit cycles allowed is
just n [5]. It is true if N = 2, or N = 3 or if f(x) is even and N = 4 [5,6]. Also,
there are strong arguments for claiming its truth in the strongly nonlinear regime
(ǫ→ ∞) when f(x) is an even polynomial [7] and recently in the weakly nonlinear
regime (ǫ→ 0) for even f(x) [8]. However, this conjecture has been recently shown
[9] to have counterexamples for n ≥ 3 when f(x) is not even. In particular, it
has been found a polynomial f(x) of degree 6 such that the associated Liénard
equation has at least 4 limit cycles [9]. Thus, there are no general results about the
limit cycles when f(x) is a polynomial of degree greater than 5 neither, in general,
when f(x) is an arbitrary real function [10].

Apart from the classical perturbative techniques that can be applied in the weakly
nonlinear regime [11,12,13], different non-perturbative approaches allowing to ob-
tain information on the number of limit cycles and their location in phase space
have been proposed in the last years. A method that gives a sequence of algebraic
approximations to the equation of each limit cycle can be found in [10], and a vari-
ational method showing that limit cycles correspond to relative extrema of certain
functionals is explained in [14]. Here, we are interested in the application of another
non-perturbative technique, the homotopy analysis method (HAM), to this problem.
Liao [15,16] has developed this purely analytic technique to solve nonlinear prob-
lems in science and engineering. The HAM has been applied successfully to many
nonlinear problems such as free oscillations of self-excited systems [17], the gener-
alized Hirota–Satsuma coupled KdV equation [18], heat radiation [19], finding the
root of nonlinear equations [20], finding solitary-wave solutions for the fifth-order
KdV equation [21], finding solitary wave solutions for the Kuramoto–Sivashinsky
equation [22], finding the solitary solutions for the Fitzhugh-Nagumo equation [23],
boundary-layer flows over an impermeable stretched plate [24], unsteady boundary-
layer flows over a stretching flat plate [25], exponentially decaying boundary layers
[26], a nonlinear model of combined convective and radiative cooling of a spherical
body [27], and many other problems (see [28,29,30,31,32,33,34,35,36], for example).

In this paper, we are interested in applying the HAM to Liénard equation (1.1)
in order to obtain good approximations to the amplitude and shape of its limit
cycles. These calculations are explained in Section 2. The validity of the method
(for arbitrary ǫ) is shown for the different particular cases analyzed in Section 3.
Last section includes our conclusions.
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2 HAM applied to Liénard equations

In general, the limit cycles of (1.1) contain two important physical parameters, i.e.
the frequency ω and the amplitude a. So, without loss of any generality, consider
such initial conditions:

x(0) = a, ẋ(0) = 0, (2.1)

where a > 0 is the amplitude of the limit-cycle.

Let τ = ωt denotes a new time scale, with ω > 0. Under the transformation

τ = ωt, x(t) = au(τ), (2.2)

the original Eq. (1.1) and its initial conditions (2.1) become

ω2u′′(τ) + ǫωf(au)u′(τ) + u(τ) = 0, (2.3)

and
u(0) = 1, u′(0) = 0, (2.4)

respectively, where the prime denotes the derivative with respect to τ .

The limit-cycles of (2.3) are periodic motions with period T = 2π/ω and thus u(τ)
can be expressed by

u(τ) =
+∞
∑

m=0

[

αm sin(mτ) + βm cos(mτ)
]

, (2.5)

where αm and βm are coefficients to be determined. According to the rule of solution
expression denoted by (2.5) and the boundary conditions (2.4), it is natural to
choose

u0(τ) = cos(τ), (2.6)

as the initial approximation to u(τ). Let ω0 and a0 denote the initial approximations
of the frequency ω and the amplitude a, respectively.

We define an auxiliary linear operator L by

L[φ(τ ; p)] = ω2
0

(

∂2

∂τ 2
+ 1

)

φ(τ ; p), (2.7)

with the property
L[C1 sin(τ) + C2 cos(τ)] = 0, (2.8)

where C1 and C2 are constants, and p is a parameter explained below.

From (2.3) we define a nonlinear operator

N [φ(τ ; p), A(p),Ω(p)] = Ω2(p)
∂2φ(τ ; p)

∂τ 2
+ ǫΩ(p)f(A(p)φ(τ ; p))

∂φ(τ ; p)

∂τ
+ φ(τ ; p),

(2.9)
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and then construct the homotopy

H[φ(τ ; p), A(p),Ω(p)] = (1−p)L[φ(τ ; p)−u0(τ)]−hpN [φ(τ ; p), A(p),Ω(p)], (2.10)

where h is a nonzero auxiliary parameter. Setting H[φ(τ ; p), A(p),Ω(p)] = 0, we
have the zero-order deformation equation

(1− p)L[φ(τ ; p)− u0(τ)] = hpN [φ(τ ; p), A(p),Ω(p)], (2.11)

subject to the boundary conditions

φ(0; p) = 1,
∂φ(τ ; p)

∂τ

∣

∣

∣

∣

τ=0
= 0, (2.12)

where p ∈ [0, 1] is an embedding parameter. When the parameter p increases from
0 to 1, the solution φ(τ ; p) varies from u0(τ) to u(τ), A(p) varies from a0 to a,
and Ω(p) varies from ω0 to ω. Assume that φ(τ ; p), A(p) and Ω(p) are analytic in
p ∈ [0, 1] and can be expanded in the Maclaurin series of p as follows:

φ(τ ; p) =
+∞
∑

m=0

um(τ)p
m, A(p) =

+∞
∑

m=0

amp
m, Ω(p) =

+∞
∑

m=0

ωmp
m, (2.13)

where

um(τ) =
1

m!

∂mφ(τ ; p)

∂pm

∣

∣

∣

∣

p=0
, am =

1

m!

∂mA(p)

∂pm

∣

∣

∣

∣

p=0
, ωm =

1

m!

∂mΩ(p)

∂pm

∣

∣

∣

∣

p=0
.

Notice that series (2.13) contain the auxiliary parameter h, which has influence on
their convergence regions. Assume that h is properly chosen such that all of these
Maclaurin series are convergent at p = 1. Hence at p = 1 we have

u(τ) = u0(τ) +
+∞
∑

m=1

um(τ), a = a0 +
+∞
∑

m=1

am, ω = ω0 +
+∞
∑

m=1

ωm.

At theMth-order approximation, we have the analytic solution of Eq. (2.3), namely

u(τ) ≈ UM(τ) =
M
∑

m=0

um(τ), a ≈ AM =
M
∑

m=0

am, ω ≈ ΩM =
M
∑

m=0

ωm. (2.14)

The auxiliary parameter h can be employed to adjust the convergence region of
the series (2.14) in the homotopy analysis solution. By means of the so-called h-
curve, it is straightforward to choose an appropriate range for h which ensures the
convergence of the solution series. As pointed out by Liao [16], the appropriate
region for h is indicated when a and ω are horizontal segments when plotted versus
h.

Differentiating Eqs. (2.11) and (2.12) m times with respect to p, then setting p = 0,
and finally dividing by m! , we obtain the mth-order deformation equation

L[um(τ)− χmum−1(τ)] = hRm(τ), (m = 1, 2, 3, . . .), (2.15)
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subject to the boundary conditions

um(0) = 0, u′m(0) = 0, (2.16)

where Rm(τ) is defined by

Rm(τ) =
1

(m− 1)!

∂m−1N [φ(x; p), A(p),Ω(p)]

∂pm−1

∣

∣

∣

∣

p=0
, (2.17)

and

χm =











0, m ≤ 1,

1, m > 1.

Notice that, both am and ωm remain unknown and due to the form of the solution
(2.5) and definition (2.7), solutions of (2.15) and (2.16) should not contain the
secular terms τ sin(τ) and τ cos(τ). It is easy to check that L[t sin t] = 2 cos t and
L[t cos t] = −2 sin t, then the right-hand side term Rm(τ) of (2.17) should not
contain the terms sin(τ) and cos(τ) in order to avoid the secular terms in the
solution. Hence, the coefficients of sin(τ) and cos(τ) must be zero. If we rewrite

Rm(τ) =
ψ(m)
∑

i=1

[

cm,i cos(iτ) + dm,i sin(iτ)
]

,

then

cm,i =
2

π

∫ π

0
Rm(τ) cos(iτ)dτ, dm,i =

2

π

∫ π

0
Rm(τ) sin(iτ)dτ,

become zero when i > ψ(m). Hence, we have two algebraic equations

cm,1 = 0, dm,1 = 0, (2.18)

which determine am−1 and ωm−1 for m = 1, 2, 3, . . .. The above two algebraic equa-
tions are often non-linear for a0 and ω0 when m = 1, but always linear in other
case, as proved by Liao [15]. So, after solving am−1 and ωm−1, it is easy to gain the
solution of (2.15) and (2.16) as

um(τ) = χmum−1(τ)+
ψ(m)
∑

i=2

cm,i cos(iτ) + dm,i sin(iτ)

ω2
0(1− i2)

+C1 cos(τ)+C2 sin(τ), (2.19)

where the coefficients C1 and C2 are determined by (2.16). In this way, one can gain
am−1, ωm−1 and um(τ) for m = 1, 2, 3, . . ., successively.

3 Some examples

In this section, the validity of the proposed method is illustrated by two examples.
The limit cycles of different families of Liénard systems were studied in the weakly
nonlinear regime [8,37].
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Example 1. The van der Pol oscillator is defined for f(x) = x2 − 1. This system
has a unique limit cycle, which is stable for ǫ > 0.

The corresponding perturbation approximation of the amplitude gives by a recursive
algorithm the following formula

a(ǫ) = 2 +
1

96
ǫ2 − 1033

552960
ǫ4 +

1019689

55738368000
ǫ6 +O(ǫ8), (3.1)

reported in [8,13]. This analytical result agrees for small ǫ with the computational
calculation of the ‘exact’ amplitudes calculated by a fourth-order Runge-Kutta
method. Also, the expansion in ǫ of the frequency was obtained in [12] up to order
O(ǫ24). For simplicity we give the expansion up to order O(ǫ8):

ω(ǫ) = 1− ǫ2

16
+

17 ǫ4

3072
+

35 ǫ6

884736
+O(ǫ8). (3.2)

Under transformation (2.2), Eq. (1.1) becomes

ω2u′′(τ) + ǫω
[

a2u2(τ)− 1
]

u′(τ) + u(τ) = 0. (3.3)

From (2.17), the term Rm(τ) in (2.15) becomes

Rm(τ) =
m−1
∑

n=0

u′′m−1−n(τ)
( n
∑

j=0

ωjωn−j

)

+ um−1(τ)− ǫ
m−1
∑

n=0

ωnu
′
m−n−1(τ) (3.4)

+ǫ
m−1
∑

n=0

[(m−1−n
∑

i=0

ωiu
′
m−n−i−1(τ)

) n
∑

j=0

( j
∑

r=0

araj−r

)( n−j
∑

s=0

us(τ)un−j−s(τ)
)]

.

It is found that the frequency ω and the amplitude a at the Mth-order of approxi-
mation can be expressed by

ω ≈ ΩM = ω0 +
M
∑

i=1

ǫ2i
M
∑

j=i

αi,jMh
j , a ≈ AM = a0 +

M−1
∑

i=1

ǫ2i
M
∑

j=i+1

βi,jM h
j , (3.5)

respectively. So, a0 and ω0 are obtained by solving (2.18) for m = 1, i.e.

c1,1 = (1− ω2
0) = 0, d1,1 = ǫω0(1−

1

4
a20) = 0.

Hence, we have unique limit cycle by ω0 = 1 and a0 = 2.

Note that results (3.5) contain the auxiliary parameter h. It is found that con-
vergence regions of the approximation series are dependent upon h. The obtained
results for amplitude are as follows

6



A1=2,

A2=2 +
h2

96
ǫ2,

A3=2 +
h2 ǫ2

32
+
h3 ǫ2

48
+
h3 ǫ4

768
,

A4=2 +
h2 ǫ2

16
+
h3 ǫ2

12
+
h4 ǫ2

32
+
h3 ǫ4

192
+

1847 h4 ǫ4

552960
+
h4 ǫ6

6144
,

and for frequency are

Ω1 =1 +
h

16
ǫ2,

Ω2 =1 +
h ǫ2

8
+
h2 ǫ2

16
+

3 h2 ǫ4

512
,

Ω3 =1 +
3 h ǫ2

16
+

3 h2 ǫ2

16
+
h3 ǫ2

16
+

9 h2 ǫ4

512
+

37 h3 ǫ4

3072
+

5 h3 ǫ6

8192
,

Ω4 =1 +
h ǫ2

4
+

3 h2 ǫ2

8
+
h3 ǫ2

4
+
h4 ǫ2

16
+

9 h2 ǫ4

256
+

37 h3 ǫ4

768
+

19 h4 ǫ4

1024

+
5 h3 ǫ6

2048
+

95 h4 ǫ6

49152
+

35 h4 ǫ8

524288
.

For example, for h = −1, the 10th-order approximation gives

A10 =2 +
ǫ2

96
− 1033 ǫ4

552960
+

1019689 ǫ6

55738368000
+

9835512276689 ǫ8

157315969843200000
−

58533181813182818069 ǫ10

7326141789209886720000000
+O(ǫ12),

Ω10 =1− ǫ2

16
+

17 ǫ4

3072
+

35 ǫ6

884736
− 678899 ǫ8

5096079360
+

28160413 ǫ10

2293235712000
+O(ǫ12).

The general solution of Eq. (2.15) is

um(τ) = ûm(τ) + C1 sin(τ) + C2 cos(τ), (3.6)

where C1 and C2 are constants and ûm(τ) is a particular solution of Eq. (2.15).
Using (2.16), we can obtain the unknowns C1 and C2.

Our solution series contain the auxiliary parameter h. We can choose appropriate
value of h to ensure that the three solution series (2.14) converge. We can investigate
the influence of h on the convergence of a and ω by plotting the curve of a and ω
versus h, as shown in Figs. 1 and 2. One can see on these plots that, for ǫ = 1, we
have −1.4 ≤ h ≤ −0.4 and for ǫ = 0.5, we have −1.4 ≤ h ≤ −0.2. The comparison
of the amplitude a and the frequency ω at the 10th-order of approximation with
the numerical results is as shown in Figs. 3 and 4, where h = −1, −2

3
and −1

3
.

However, as h is negative and close to zero, the convergence region becomes larger
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and larger. Note that, one has a great freedom to choose the auxiliary parameter
h. Certainly, this can be chosen as a function of ǫ. Due to (3.5), the frequency
and the amplitude are even functions of ǫ. Hence, h should be an even function
of ǫ. For example, we can take h = − 1√

1+γǫ2
, where γ is a positive constant. As

γ increases, the convergence regions of the amplitude and the frequency become
larger and larger, as shown in Figs. 5 and 6.

We can integrate Eq. (1.1) by Runge-Kutta method in order to obtain the limit
cycle and its properties. Table 1 shows the value of the amplitude aRK obtained by
using Runge-Kutta method and the value obtained by homotopy-Padé technique
(see [16]), where for briefly a few cases reported. Clearly, the amplitude converges
to the exact value for various ǫ.
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Fig. 1: The curves of the wave amplitude a and frequency ω versus h for the
10th-order approximation for ǫ = 1. Solid curve: the wave frequency; dotted line:

the wave amplitude.
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Fig. 2: The curves of the wave amplitude a and frequency ω versus h for the
10th-order approximation for ǫ = 0.5. Solid curve: the wave frequency; dotted line:

the wave amplitude.

0 2 4 6 8

0.5

1

1.5

2

PSfrag replacements

a

ǫ

Fig. 3: Comparison of the amplitude of the 10th-order homotopy analysis
approximation. Solid curve: h = −1

3
, dotted curve: h = −2

3
, dashed curve: h = −1.
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Fig. 4: Comparison of the frequency of the 10th-order homotopy analysis
approximation. Solid curve: h = −1

3
, dotted curve: h = −2

3
, dashed curve: h = −1.
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Fig. 5: Comparison of the amplitude of the 10th-order homotopy analysis
approximation. Solid curve: γ = 3, dotted curve: γ = 2, dashed curve: γ = 1.
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Fig. 6: Comparison of the frequency of the 10th-order homotopy analysis
approximation. Solid curve: γ = 3, dotted curve: γ = 2, dashed curve: γ = 1.

Table 1: Results for [m,m] Homotopy-Padé approach for Example 1

ǫ 0.1 0.3 0.5 0.7 0.9 1.5 2.0

aRK 2.00010 2.00092 2.00248 2.00466 2.00724 2.01523 2.01989

[2, 2] 2.00010 2.00092 2.00249 2.00469 2.00737 2.01670 2.02426

[3, 3] 2.00010 2.00092 2.00249 2.00469 2.00737 2.01670 2.02427

[4, 4] 2.00010 2.00092 2.00249 2.00466 2.00724 2.01515 2.01943

[5, 5] 2.00010 2.00092 2.00249 2.00466 2.00724 2.01514 2.01936

[6, 6] 2.00010 2.00092 2.00249 2.00466 2.00724 2.01523 2.02001

[7, 7] 2.00010 2.00092 2.00249 2.00466 2.00724 2.01523 2.02001

[8, 8] 2.00010 2.00092 2.00249 2.00466 2.00724 2.01523 2.01989

Example 2. Here, we consider f(x) = 5x4 − 9x2 + 1. This system has two limit
cycles, one stable and the other one unstable [37].

The corresponding approximation of their amplitudes,

a(ǫ) = 1.755170 + 0.017880ǫ2 +O(ǫ4),

ā(ǫ) = 0.720677 + 0.00390888 ǫ2 +O(ǫ4),

by a recursive algorithm was reported in [8,13]. Under transformation (2.2), Eq.
(1.1) becomes

ω2u′′(τ) + ǫω
[

5a4u4(τ)− 9a2u2(τ) + 1
]

u′(τ) + u(τ) = 0. (3.7)

From (2.17), the term Rm(τ) in (2.15) becomes
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Rm(τ) =
m−1
∑

n=0

u′′m−1−n(τ)
( n
∑

j=0

ωjωn−j

)

+ um−1(τ) + ǫ
m−1
∑

n=0

ωnu
′
m−n−1(τ) (3.8)

+5ǫ
m−1
∑

n=0

[(m−1−n
∑

i=0

ωiu
′
m−n−i−1(τ)

) n
∑

j=0

( j
∑

r=0

ârâj−r

)( n−j
∑

s=0

ûs(τ)ûn−j−s(τ)
)]

−9ǫ
m−1
∑

n=0

[(m−1−n
∑

i=0

ωiu
′
m−n−i−1(τ)

) n
∑

j=0

( j
∑

r=0

araj−r

)( n−j
∑

s=0

us(τ)un−j−s(τ)
)]

.

where

ân =
n
∑

i=0

aian−i, ûn(τ) =
n
∑

i=0

ui(τ)un−i(τ).

It is found that the frequency ω and the amplitude a at the Mth-order of approx-
imation can be expressed in the form (3.5). So, a0 and ω0 are obtained by solving
(2.18) for m = 1, i.e.

c1,1 = (1− ω2
0) = 0, d1,1 = ǫω0(8− 18a20 + 5a40) = 0.

Hence, we have two limit cycles with ω0 = 1: one of them with amplitude a0 =
√

9+
√
41

5
(stable limit cycle for ǫ > 0), and the other one with amplitude ā0 =

√

9−
√
41

5

(unstable limit cycle for ǫ > 0). The obtained results for the amplitude with a0 as
initial guess are as follows:

A1=1.75517,

A2=1.75517 + 0.0178803 h2 ǫ2,

A3=1.75517 + 0.0536409 h2 ǫ2 + 0.0357606 h3 ǫ2 + 0.0151888 h3 ǫ4,

A4=1.75517 + 0.107282 h2 ǫ2 + 0.143042 h3 ǫ2 + 0.0536409 h4 ǫ2 + 0.0607553 h3 ǫ4

−0.179337 h4 ǫ4 + 0.0129025 h4 ǫ6.

For the frequency are

Ω1 =1 + 0.424737 h ǫ2,

Ω2 =1 + 0.849473 h ǫ2 + 0.424737 h2 ǫ2 + 0.270602 h2 ǫ4,

Ω3 =1 + 1.27421 h ǫ2 + 1.27421 h2 ǫ2 + 0.424737 h3 ǫ2 + 0.811805 h2 ǫ4

+0.451679 h3 ǫ4 + 0.191558 h3 ǫ6,

Ω4 =1 + 1.69895 h ǫ2 + 2.54842 h2 ǫ2 + 1.69895 h3 ǫ2 + 0.424737 h4 ǫ2 + 1.62361 h2 ǫ4

+1.80672 h3 ǫ4 + 0.543231 h4 ǫ4 + 0.76623 h3 ǫ6 + 0.38455 h4 ǫ6 + 0.142383 h4 ǫ8.

In particular, for h = −1, in 10th-order approximation we obtain

A10 =1.75517 + 0.0178803 ǫ2 − 0.240092 ǫ4 + 0.859582 ǫ6 − 0.227156 ǫ8 − 13.7118 ǫ10

+10.9555 ǫ12 + 4.73704 ǫ14 − 0.626997 ǫ16 + 0.00484811 ǫ18 +O(ǫ20).

And for h = −1, in 10th-order approximation with ā0 as initial guess, we have

12



Ā10 =0.720677 + 0.00390888 ǫ2 − 0.000410295 ǫ4 − 0.0000165055 ǫ6

+9.11444 10−6 ǫ8 − 1.45045 10−7 ǫ10 − 2.42445 10−7 ǫ12 − 1.45593 10−7 ǫ14

+9.91724 10−10 ǫ16 + 5.37168 10−11 ǫ18 +O(ǫ20).

We can investigate the influence of h on the convergence of a and ω by plotting the
curve of a and ω versus h, as shown in Fig. 7. One can see that, for ǫ = 0.5, we
have −0.9 ≤ h ≤ −0.2. The comparison of the amplitude a and the frequency ω at
the 10th-order of approximation with the numerical results is as shown in Figs. 8
and 9, where h = −1, −2

3
and −1

3
. However, as h is negative and close to zero, the

convergence region becomes larger and larger, as in Example 1.
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Fig. 7: The curves of the wave amplitude a and frequency ω versus h for the
10th-order approximation for ǫ = 0.5. Solid curve: the wave frequency; dotted line:

the wave amplitude.
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Fig. 8: Comparison of the amplitude of the 10th-order homotopy analysis
approximation. Solid curve: h = −1

3
, dotted curve: h = −2

3
, dashed curve: h = −1.
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Fig. 9: Comparison of the frequency of the 10th-order homotopy analysis
approximation. Solid curve: h = −1

3
, dotted curve: h = −2

3
, dashed curve: h = −1.

4 Conclusions

We have applied the homotopy analysis method (HAM) to the classical Liénard
differential equation (1.1) to obtain analytic approximations of the amplitude and
frequency of its limit cycles. Two examples have been explicitly worked out. The
results obtained with the HAM are in excellent agreement with the known solu-
tions. Moreover, the HAM provides us with a convenient way (the parameter h) to
control the convergence of approximation series; this is a fundamental qualitative
difference between the HAM and other methods for finding approximate solutions.
In particular, the case h = −1 corresponds with the exact perturbative expansion
in ǫ.

Let us conclude by saying that the examples shown in this paper are illustrative of
the power of the HAM to solve complicated nonlinear problems.
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