

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1080/00207161003631885

http://hdl.handle.net/10251/46840

Taylor & Francis Ltd

Romaguera Bonilla, S.; Schellekens, M.; Valero Sierra, O. (2011). The complexity space of
partial functions: A connection between Complexity Analysis and Denotational Semantics.
International Journal of Computer Mathematics. 88(9):1819-1829.
doi:10.1080/00207161003631885.

The complexity space of partial functions: A
connection between Complexity Analysis and

Denotational Semantics

Salvador Romaguera1), M.P. Schellekens2), Oscar Valero3)∗

1)
Departamento de Matemática Aplicada, IMPA-UPV, Universidad Politécnica de

Valencia, 46071 Valencia, Spain. E-mail: sromague@mat.upv.es

2)
Center of Efficiency-Oriented Languages, Departament of Computer Science, National

University of Ireland, Western Road, Cork, Ireland. E-mail: m.schellekens@cs.ucc.ie
3)

Departamento de Ciencias Matemáticas e Informática, Universidad de las Islas

Baleares, 07122, Palma de Mallorca, Spain. E-mail: o.valero@uib.es

Abstract

The study of dual complexity spaces, introduced by S. Romaguera
and M. Schellekens [Topology Appl. 98 (1999), 311-322], constitutes a
part of the interdisciplinary research on Computer Science and Topol-
ogy. The relevance of the theory is given by the fact that it allows one
to apply fixed point techniques of Denotational Semantics to Com-
plexity Analysis. Motivated by this fact and with the intention of
obtaining a mixed framework valid for both disciplines, a new com-
plexity space has been introduced and studied, formed by partial func-
tions [Int. J. Comput. Math. 85 (2008), 631-640]. In this paper we
enter more deeply into the relationship between semantics and com-
plexity analysis of programs. We present an application of the com-
plexity space of partial functions via an alternative formal proof of the
asymptotic upper bound for the average case analysis of Quicksort. An
extension of the complexity space of partial functions is constructed
in order to give a mathematical model for the validation of recursive
definitions of programs. As an application of this new approach the
correctness of the denotational specification of the factorial function
is shown.

∗The first and the third authors thank the support of the Spanish Ministry of Education
and Science, and FEDER, grant MTM2006-14925-C02-01

1

Keywords: ordered cone, extended quasi-metric, fixed point, Com-
plexity Analysis, Quicksort, Denotational Semantics, recursive speci-
fication.

1 Introduction

The theory of complexity spaces was introduced in [26] as a topological foun-
dation for the complexity analysis of programs and algorithms. The basis
for this theory is the notion of “complexity distance”, which is a generalized
metric that intuitively measures relative progress made in lowering the com-
plexity when a program is replaced by another one. The main aim of the
developed topological theory is to obtain a unified structure that allows one
to apply the techniques of Denotational Semantics to the analysis of algorith-
mic complexity. In order to achieve this objective the notion of “complexity
domain” was introduced in [27]. This generalized concept consists of an or-
dered structure, which satisfies the same axioms of an ordered cone except
the existence of a neutral element, equipped with a quasi-metric.

Later on, a new complexity structure was introduced and studied, the so-
called dual complexity space ([22, 23]). This is a quasi-metric space actually
admitting the structure of an ordered cone in the sense of [8]. Furthermore,
dual complexity spaces still allow one to carry out the complexity analysis
of algorithms and programs. These last two facts motivate the use of dual
complexity spaces instead of the original ones.

In the last years the interest in dual complexity spaces has increased and
they have been studied in depth ([24], [9], [10], [11], [18], [17], [20], [16], [21]).

On the other hand, in Computer Science it is very usual to define proce-
dures or functions as subprograms that call themself. When a programmer
designs a procedure using recursion one must consider whether the mathe-
matical specification for the procedure provides a nonterminating program
i.e. the result of a computation fails to terminate or, alternatively, whether
the total program takes too much running time to solve the desired problem.
Furthermore, when the recursion is used by a programmer to define a func-
tion, such a recursive definition can be a semantically meaningless object if
its meaning is expressed in terms of the function to define.

The analysis of the amount of running time for this kind of programs
and the consistency of recursive definitions of functions is based on the the-
ory of recurrence equations. Thus both the running of computing taken by
a recursive algorithm to perform a fixed task, and the semantical meaning
of a recursive denotational definition can be seen as a solution of a recur-
rence equation. Consequently, fixed point theory turns out central to obtain

2

“consistent” specifications for procedures or functions. This is achieved us-
ing the principle of fixpoint induction ([5]), which provides the mathematical
specification (a total mapping defined recursively) as a fixed point that is,
at the same time, the limit of a sequence of partial mappings (also defined
recursively).

Motivated by the fact that partial functions have proven to be very useful
in Denotational Semantics in that they provide a basis for a mathematical
model for high-level programming languages, a new (dual) complexity space
was constructed in [25] using the notion of a partial function. This new
complexity structure is also an ordered cone and supplies a suitable tool for
the application of typical Denotational Semantics techniques in the context
of Symbolic Computation ([25]).

In this paper we show that the complexity space of partial functions is a
useful framework to apply the principle of fixed point induction to the com-
plexity analysis of algorithms and to program verification. The remainder
of this paper is organized as follows. Section 2 is devoted to introduce some
mathematical preliminaries. A detailed description of complexity spaces, in-
cluding the complexity space of partial functions, is introduced in Section 3.
An application to the complexity analysis of Quicksort, in terms of complex-
ity partial functions, is given in Section 4. In particular we give an alternative
proof of the well-known fact that the running time of computing (for the av-
erage case) of a Quicksort algorithm has an asymptotic upper bound in the
class O(n log2n). In Section 5 we present an extension of the complexity
space of partial functions. Furthermore, we show that this new approach,
contrary to the old one, is suitable for the semantic analysis of programs. In
fact it is useful to prove mathematically when a function defined recursively
is consistent. As an example we give an alternative proof of the well-known
fact that the factorial semantic specification is meaningful.

2 Preliminaries

Throughout this paper the letters R+, N and ω will denote the set of non-
negative real numbers, the set of natural numbers and the set of nonnegative
integer numbers, respectively.

Our main references for quasi-metric spaces are [7] and [15].
Following the modern terminology, a quasi-metric on a set X is a non-

negative real-valued function d on X × X such that for all x, y, z ∈ X :(i)
d(x, y) = d(y, x) = 0⇐⇒ x = y; (ii) d(x, z) ≤ d(x, y) + d(y, z).

We will also consider extended quasi-metrics. They satisfy the above
axioms, except that we allow d(x, y) = +∞.

3

An extended quasi-metric space is a pair (X, d) such thatX is a (nonempty)
set and d is an extended quasi-metric on X.

Each extended quasi-metric d on a set X induces a T0 topology T (d) onX
which has as a base the family of open d-balls {Bd(x, r) : x ∈ X, r > 0},
where Bd(x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

Given an extended quasi-metric d on X, then the function ds defined on
X ×X by ds(x, y) =max{d(x, y), d(y, x)} is an extended metric on X.

An extended quasi-metric d on a set X is said to be bicomplete if the
extended metric ds is complete on X.

According to [8] a cone on R+ (a semilinear space in [21]) is a triple
(X,+, ·) such that (X,+) is an Abelian monoid, and · is a function from
R+×X to X such that for all x, y ∈ X and r, s ∈ R+:(i) r · (s · x) = (rs) · x;
(ii) r · (x+ y) = (r ·x) + (r · y); (iii) (r+ s) ·x = (r ·x) + (s ·x); (iv) 1 ·x = x;
(v) 0 · x = 0.

A cone (X,+, ·) is called cancellative if for all x, y, z ∈ X, x + z = y + z
implies that x = y.

Similarly to [21], an extended quasi-metric d on a cone (X,+, ·) is said
to be subinvariant (respectively, invariant) if for each x, y, z ∈ X and r >
0, d(x + z, y + z) ≤ d(x, y) (respectively, d(x + z, y + z) = d(x, y)) and
d(r · x, r · y) = rd(x, y), where we assume that r · (+∞) = +∞ for all r > 0.

We briefly introduce a few notions of order theory (see [5] for a fuller
treatment).

An order on a nonempty set X is a reflexive, transitive and antisymmetric
binary relation ≤ on X. An ordered set is a pair (X,≤) such that ≤ is an
order on X.

In case of the least element of an ordered set exists, we will say that the
ordered set is pointed.

A well-known example of ordered set, which will play a central role in
this work is the set of partial functions on ω, which is formally defined by

[ω → R+] = {f : domf → R+ with domf 6= ∅ and domf ⊆ ω}.

Obviously this set becomes an ordered set when it is ordered by extension v
(for a detailed discussion we refer the reader to [5]), i.e.

f v g ⇐⇒ domf ⊆ domg and f(n) = g(n) for all n ∈ domf.

Let (X,≤) and (Y,�) be two ordered sets. A mapping ϕ : X → Y is said to
be monotone if ϕ(x) � ϕ(y) whenever x ≤ y.

Following [8], an ordered cone is a pair (X,≤) where X is a cone and ≤ is
an order on X which is compatible with the cone structure, i.e. x+y ≤ v+w
and r · x ≤ r · y whenever x, y, v, w ∈ X with x ≤ v, y ≤ w and r ∈

4

R+. Ordered cones have proved to be useful in semantics for programming
languages (see [29]).

In the sequel if A is a nonempty set, we will denote by |A| its cardinality.

3 The complexity space of partial functions

In 1995, M. Schellekens introduced the theory of complexity (quasi-metric)
spaces as a part of the development of a topological foundation for the com-
plexity analysis of programs and algorithms ([26]). The applicability of this
theory to the complexity analysis of Divide & Conquer algorithms was il-
lustrated by Schellekens in the same reference. In particular, he gave a new
proof, based on fixed point arguments, of the fact that the mergesort algo-
rithm has optimal asymptotic average running time.

Let us recall that the complexity space is the pair (C, dC), where

C = {f : ω → (0,+∞] :
+∞∑
n=0

2−n
1

f(n)
< +∞},

and dC is the quasi-metric on C defined by

dC(f, g) =
+∞∑
n=0

2−n[(
1

g(n)
− 1

f(n)
) ∨ 0].

According to [26], given two functions f, g ∈ C the numerical value
dC(f, g) (the complexity distance from f to g) can be interpreted as the
relative progress made in lowering the complexity by replacing any program
P with complexity function f by any program Q with complexity function g.
Therefore, if f 6= g, the condition dC(f, g) = 0 can be assumed as f is “more
efficient” than g on all inputs.

Later on, S. Romaguera and M. Schellekens ([22, 23]) introduced the
so-called dual complexity space and they obtained several quasi-metric prop-
erties of the complexity space, which are interesting from a computational
point of view, via the analysis of this new complexity (quasi-metric) space.
Furthermore, and contrarily to the original space, the dual complexity space
can be endowed with a cancellative cone structure equipped with pointwise
addition and pointwise scalar multiplication. This fact gives one more moti-
vation for the use of this new approach instead of the original one, because of
cones provide a suitable framework for an efficiency analysis of a wide class
of algorithms (see [24], [11], [10], [9]).

5

The dual complexity space is the pair (C∗, dC∗), where

C∗ = {f : ω → R+ :
+∞∑
n=0

2−nf(n) < +∞},

and dC∗ is the quasi-metric on C∗ defined by

dC∗(f, g) =
+∞∑
n=0

2−n[(g(n)− f(n)) ∨ 0].

It is clear that the computational intuition behind the complexity dis-
tances between two functions in C can be recuperated in the following way:
the numerical value dC∗(f, g), for any f, g ∈ C∗, can be interpreted as a rela-
tive measure of the progress made in lowering the complexity by replacing any
program Q with complexity function g by any program P with complexity
function f, whenever the complexity measure is assumed as the running time
of computing. Hence dC∗(f, g) = 0 provides that g is more “efficient” than f
on all inputs. However, as it happens for the distance dC, when dC∗(f, g) 6= 0
we can not establish which complexity function of the two, f or g, is more
efficient. In order to avoid this disadvantage, a slight modification in the
definition of the complexity distance dC∗ was introduced, and thus, a new
complexity (extended quasi-metric) distance eC∗ was constructed and stud-
ied in [21]. Now, the distance eC∗ is a useful tool for the quantitative com-
plexity analysis of algorithms for the specific complexity measure of running
time of computing. An application of this new approach to the complexity
analysis of Divide and Conquer algorithms, in the spirit of Schellekens, was
also given in [21]. Furthermore, this new complexity structure was also ap-
plied to modeling certain processes that arise, in a natural way, in Symbolic
Computation.

In particular, this new (dual) complexity space consists of the pair (C∗, eC∗)
where eC∗ is given by

eC∗(f, g) =

{ ∑+∞
n=0 2−n(g(n)− f(n)) if f(n) ≤ g(n) for all n ∈ ω,

+∞ otherwise.

The extended quasi-metric eC∗ has nice properties as, for instance and
among others, invariancy, Hausdorffness and bicompleteness. (for a deeper
study see [21]).

Recently, and motivated by the usefulness of partial functions in Denota-
tional Semantics and the relationship between Denotational Semantics and
Complexity Analysis (see [26, 27]), Romaguera and Valero have extended

6

the dual complexity space (C∗, eC∗) to a more general one, the so-called com-
plexity space of partial functions (C∗→, eC∗→) which is introduced in [25] as
follows. Let [(ω ⇁ R+)] be the set of partial functions f ∈ [ω → R+] such
that domf = {0, 1, ..., n} for some n ∈ ω, or domf = ω, and let ≤→ be the
order on [(ω ⇁ R+)] given by

f ≤→ g ⇔ domg ⊆ domf and f(n) ≤ g(n) for all n ∈ domg.

Then we define

C∗→ := {f ∈ [(ω ⇁ R+)] :
∑

n∈domf

2−nf(n) < +∞}

and

eC∗→(f, g) =

{ ∑
n∈domg 2−n(g(n)− f(n)) if f ≤→ g

+∞ otherwise.
.

Note that if f ∈ C∗ then the unordered sum
∑

n∈domf 2−nf(n) exists and
its sum is equals to

∑∞
n=0 2−nf(n) (see, for instance, Problem G (g) in [14]).

Therefore C∗ (C∗→.
On the other hand, the set C∗→ becomes a noncancellative ordered cone

(Proposition 2, [25]) endowed with the operations ⊕ and � defined for all
f, g ∈ C∗→ as follows:

(f ⊕ g)(n) = f(n) + g(n) for all n ∈ dom(f ⊕ g)

(r � f)(n) = rf(n) for all n ∈ dom(r � f),

where dom(f ⊕ g) = domf ∩ domg and dom(r � f) = domf.
Of course, if f, g ∈ C∗ and r ∈ R+ then the operations f ⊕ g and r � f

coincide with the pointwise addition and scalar multiplication, respectively.
It was proved in Proposition 3 of [25] that eC∗→ is a bicomplete subinvariant

extended quasi-metric on C∗→.
The complexity space (C∗→, eC∗→) constitutes, as in case of (C∗, eC∗), a

suitable framework to measure distances between symbolic representations
of real numbers and its approximations, as it was showed in [25].

On the other hand, decreasing sequences of complexity functions play a
central role in applications of complexity spaces to Computer Science. In
fact, such sequences have allowed to discuss the complexity (running time
of computing) of sorting program mergesort ([26]) and certain wide class
of Probabilistic Divide and Conquer algorithms ([19]). Moreover, several
advantages, in measuring real numbers, have been exhibited when sequences

7

of computer numerical representations of real numbers have been identified
with decreasing sequences ([21, 20, 25]).

Following [25], we will say that a sequence (fk)k∈N in C∗→ is decreasing if
fk+1 ≤→ fk for all k ∈ N. In this case we will denote by u↓fk the element of
[(ω ⇁ R+)] such that domu↓fk =

⋃
k∈N domfk and

(u↓fk)(n) = inf
n∈domfk

fk(n).

The following result will be useful later on.

Proposition 1. Let (fk)k∈N be a decreasing sequence in C∗→ such that
u↓fk ∈ C∗ and |domfk| is finite for all k ∈ N. If limk→∞eC∗→(u↓fk, fk) = 0,
then u↓fk is the unique eC∗→-limit point of (fk)k∈N.

Proof. Suppose that there is g ∈ C∗→ such that limk→∞eC∗→(g, fk) = 0.
Then, by construction of eC∗→ and our hypothesis that |domfk| is finite for all
k ∈ N and u↓fk ∈ C∗, we deduce that g ∈ C∗ and for each k ∈ N, g(n) ≤ fk(n)
whenever n ∈ domfk. Hence g(n) ≤ u↓fk(n) for all n ∈ N. Assume that
there is n0 ∈ N such that u↓fk(n0) > g(n0). Put u↓fk(n0) = g(n0) + δ.
Since eC∗→(g, fk) → 0, there is k ∈ N such that fk(n0) < g(n0) + δ, so
fk(n0) < u↓fk(n0), a contradiction. Therefore g = u↓fk, and thus u↓fk
is the unique eC∗→-limit point of (fk)k∈N.

The following easy example shows that condition limk→∞eC∗→(u↓fk, fk) =
0, can not be deleted in the above result.

Example 1. Let (fk)k∈N be such that domfk = {n ∈ ω : n ≤ k} for all
k ∈ N, and fk(n) = 0 whenever n < k and fk(k) = 2k. It is clear that (fk)k∈N
is a decreasing sequence in C∗→ for which u↓fk ∈ C∗ (in fact (u↓fk)(n) = 0
for all n ∈ ω). However eC∗→(u↓fk, fk) = 1 for all k ∈ N.

The fixed point theory provides an efficient tool in Computer Science.
In particular, many applications of such a theory to denotational models
of programming languages are obtained by means of order-theoretic notions
(see, for instance, [5, 12, 28]). However, several applications of the Banach
fixed point theorem to complexity analysis of programs and algorithms and
to metric semantics for programming languages have been given in [26, 1,
2, 3, 13]. In this last case such applications are founded only on metric
requirements. We end the section by presenting an easy fixed point theorem in
the realm of extended quasi-metric spaces which involves also order notions.
Its utility will be shown in the next section.

8

According to [25] (compare [26]), a monotone mapping φ : C∗→ → C∗→ is
called an improver with respect to f ∈ C∗→ if φ(f) ≤→ f.

Theorem 1. Let φ be a continuous monotone mapping from the complexity
space (C∗→, eC∗→) into itself. If φ is an improver with respect to any f0 ∈ C∗→
such that u↓φkf0 ∈ C∗ and

limk→∞eC∗→(u↓φkf0, φ
kf0) = 0,

then u↓φkf0 is a fixed point of φ.

Proof. Since φ is an improver with respect to f0 and φ is monotone we
have that the sequence (φkf0)k∈ω is decreasing in C∗→. From continuity of φ
we deduce

limn→∞eC∗→(φ(u↓φkf0), φkf0) = 0.

Consequently φ(u↓φkf0) = u↓φkf0 because, by Proposition 1, u↓φkf0 is the
unique eC∗→-limit point of (φkf0)k∈ω. The proof is complete.

4 An application of the space (C∗→, eC∗→) to the

complexity analysis of Quicksort

In this section we apply our approach to show that the recurrence induced
by the particular class of comparison based sorting algorithms whose imple-
mentation follows a Quicksort schema has a unique solution, with asymptotic
upper bound in the class O(nlog2n).

When discussing the complexity analysis (running time of computing)
of Quicksort used by the Unix system, the following iterative recurrence is
obtained for the average case (see Section 4 of [6]):

T (n) =
n+ 1

n
T (n− 1) +

2(n− 1)

n
for all n ≥ 2, (*)

where T (1) = 0.
Let T be a recurrence equation of type (*).We associate to T the mapping

ΦT : C∗→ → C∗→ given by

(ΦTf)(n) =

{
0 n = 0, 1
n+1
n
f(n− 1) + 2(n−1)

n
for all n ∈ domf\{0, 1} .

Note that |domΦTf | = |domf |+ 1, so for f ∈ C∗ we have domΦTf = w.

9

On the other hand, ΦT is easily seen to be monotone, i.e. ΦTf ≤→ ΦTg
whenever f ≤→ g.

Next we show that the functional ΦT is continuous. Consider a sequence
(fk)k∈N in C∗→ and f ∈ C∗→ such that limk→∞eC∗→(f, fk) = 0. Then f ≤→ fk
eventually. Hence, by monotonicity of ΦT , we have that ΦTf ≤→ ΦTfk
eventually. So

eC∗→(ΦTf,ΦTfk) =
∑

n∈domΦT fk

2−n(ΦTfk(n)− ΦTf(n))

=
∑

n∈|domfk|+1

2−n(ΦTfk(n)− ΦTf(n))

=

|domfk|+1∑
n=2

2−n−1n+ 1

2n
(fk(n− 1)− f(n− 1))

≤ 1

2

∑
n∈domfk

2−n(fk(n)− f(n))

=
1

2
eC∗→(f, fk)

eventually. Thus
limk→∞eC∗→(ΦTf,ΦTfk) = 0.

Consequently ΦT is continuous.
Now let us denote by 01 the element of C∗→ such that dom01 = {0, 1} and

01(0) = 01(1) = 0. It is clear that ΦT01 ≤→ 01, and so ΦT is an improver
with respect to 01. It is obvious that |domΦk

T01| = k+ 1 and that Φk
T01(n) =

Φn−1
T 01(n) = T (n) for all n ∈domΦk

T01, with n ≥ 1. Furthermore, it is not
hard to check that the serie

∑∞
n=0 2−nT (n) converges. Consequently

+∞∑
n=0

2−n u↓ Φk
T01(n) < +∞

and thus u↓Φk
T01 ∈ C∗.

On the other hand, it is clear that eC∗→(u↓Φk
T01,Φ

k
T01) = 0 for all k ∈ N.

Now, applying Theorem 1 we deduce that ΦT has as a fixed point u↓Φk
T01,

i.e. ΦT u↓ φk
T01 = u↓Φk

T01. Consequently the recurrence (*) has solution.
In order to show the uniqueness we note that a solution of the recurrence
(*) must be defined for all n ∈ N. The desired conclusion, i.e. u↓Φk

T01

is the unique fixed point of ΦT in C∗, follows easily by induction, because
u↓Φk

T01(1) = 0 and g(1) = 0 whenever g is a fixed point of ΦT with g ∈ C∗.
We have shown, in the spirit of the principle of fixpoint induction, that

10

the solution of the recurrence (*) can be seen as the limit of a sequence of
approximations (Φk

T01)k∈ω.
Finally we prove that u↓Φk

T01 ∈ O(nlog2n). It is easy to see that the
mapping ΦT is an improver with respect to the complexity function U ∈ C∗
given by U(0) = 0 and U(n) = 1

2
nlog2n for n ≥ 1. Then, by Theorem 1, we

deduce that u↓Φk
TU is a fixed point of ΦT in C∗. Since u↓Φk

T01 is the unique
fixed point of ΦT in C∗, u↓Φk

T01 = u↓Φk
TU ≤→ U. Whence we conclude that

the running time of computing (for the average case) of a Quicksort algorithm
is in O(nlog2n), as claimed.

5 Recursion in Denotational Semantics for

programming languages: An extension of

(C∗→, eC∗→)
Motivated, in part, by the work of E. A. Emerson and C. S. Jutla ([4]) about
tree automata and modal logic, a general class of complexity spaces have
been introduced and studied in [10, 11] to obtain an appropriate framework
for efficient complexity analysis of algorithms with exponential running time
of computing. By an exponential time algorithm we mean an algorithm
whose running time is in the class O(2P (n)), where P (n) is a polynomial such
that P (n) > 0 for all n ∈ ω. It is obvious that if P (n) ≥ n for all n ∈ ω,
and we associate the complexity of an algorithm of this type with a function
fP given by fP (n) = 2P (n) for all n ∈ ω, then fP /∈ C∗. For this reason,
fixed a polynomial P (n) as before, the complexity structure presented in [11]
consists of a pair (C∗P (n), dC∗P (n)

) such that

C∗P (n) = {f : ω → R+ :
+∞∑
n=0

2−P (n)f(n) < +∞}

and

dC∗
P (n)

(f, g) =
+∞∑
n=0

2−P (n)[(g(n)− f(n)) ∨ 0].

Now it is clear that fP ∈ C∗P (n). With the aim to go more deeply into the
combination of the techniques of Denotational Semantics and Complexity
Analysis, we construct, in this direction, a new complexity space which ex-
tends the old one (C∗→, eC∗→). In order to motivate this new construction let us
to show that the complexity space (C∗→, eC∗→) can not be used, in general, as
a mathematical model for the validation of recursive definitions of programs.

11

Indeed, consider the easy but representative example of a function which is
given by a recursive specification, the factorial fact.

To implement an algorithm that computes the factorial of a nonnegative
integer number it is needed the following recursive denotational specification
(see, for instance, [12]):

fact(k) =

{
1 if k = 0
kfact(k − 1) if k ≥ 1

.

The preceding denotational specification has the drawback that the meaning
of the symbol fact, which is given by the right hand side, is expressed again
in terms of fact. So the symbol fact can not be replaced by its meaning
because the meaning also contains the symbol. Furthermore, it is obvious
that the entire factorial function is not computable in a finite numbers of
steps although, given k ∈ ω, it is clear that the value k! can be computed in
a finite number of steps.

The usual method used to avoid this handicap is to consider a nonrecur-
sive functional φ defined on the set of partial mappings as follows:

φf(k) =

{
1 if k = 0
kf(k − 1) if k ≥ 1 and k − 1 ∈ domf

,

and then to show that fact is a fixed point of φ. Our purpose here is to prove
that such a denotational specification is meaningful using as the support
space of φ our complexity structure, and applying the fixed point induction.
However it is evident that the function fact (the solution of the recursive
equation) is not in C∗→, because

∑+∞
n=0 2−nn! = +∞. To obtain our aim we

propose, similarly to [11], the following generalization of the complexity space
(C∗→, eC∗→).

Fixed a polynomial P (n), with P (n) > 0 for all n ∈ ω, set

C∗→,P (n) = {f ∈ [(ω ⇁ R+)] :
∑

n∈domf

2−P (n)f(n) < +∞}.

Note that the partial order ≤→ remains valid on C∗→,P (n).
Define the nonnegative real valued function eC∗→,P (n)

on C∗→,P (n) × C∗→,P (n)

given by

eC∗→,P (n)
(f, g) =

{ ∑
n∈domg 2−P (n)(g(n)− f(n)) if f ≤→ g

+∞ otherwise.
.

Obviously C∗→ (C∗→,P (n), C∗P (n) (C∗→,P (n) and eC∗→,P (n)
|C∗→

= eC∗→ .

Denote by 0C∗→,P (n)
(n) = 0 for all n ∈ ω.

12

Under these conditions, it is a simple matter to prove the next results.

Proposition 2. The pair (C∗→,P (n),≤→) is a pointed ordered (noncancella-

tive) cone with bottom element 0C∗→,P (n)
.

Proposition 3. The function eC∗→,P (n)
is a bicomplete subinvariant extended

quasi-metric on C∗→,P (n).

Next we show that the mapping

Φ : C∗→,P (n) → C∗→
given by

Φf(n) = 2n−P (n)f(n)

for all f ∈ C∗→,P (n) and n ∈ ω, is an isometry from (C∗→,P (n), eC∗→,P (n)
) onto

(C∗→, eC∗→).
Indeed, it is clear that Φ is a bijection. Moreover, f ≤→ g if and only if

Φf ≤→ Φg. Finally, if f ≤→ g, we have

eC∗→(Φf,Φg) =
∑

n∈domΦg

2−n(Φg(n)− Φf(n))

=
∑

n∈domg

2−P (n)(g(n)− f(n)) = eC∗→,P (n)
(f, g).

Therefore, and by adapting, in the obvious way, the notion of an improver to
(C∗→,P (n),≤→), Proposition 1 and Theorem 1 above, are generalized as follows.

Proposition 4. Let (fk)k∈N be a decreasing sequence in C∗→,P (n) such that

u↓fk ∈ C∗P (n) and |domfk| is finite for all k ∈ N. If limk→∞eC∗→,P (n)
(u↓fk, fk) =

0, then u↓fk is the unique eC∗→,P (n)-limit point of (fk)k∈N.

Theorem 2. Let φ be a continuous monotone mapping from the complexity
space (C∗→,P (n), eC∗→,P (n)

) into itself. If φ is an improver with respect to any

f0 ∈ C∗→,P (n) such that u↓φkf0 ∈ C∗P (n) and

limk→∞eC∗→,P (n)
(u↓φkf0, φ

kf0) = 0,

then u↓φkf0 is a fixed point of φ.

In the rest of the section we show that this approach is suitable to prove
mathematically when a function defined recursively is consistent as we an-
nounced before. In particular we give an alternative proof of the fact that

13

the factorial semantic specification is meaningful, and we do this by means
of the principle of fixed point induction showing that the factorial function
(the total complexity mapping) can be considered as the limit of a sequence
of approximations (complexity partial mappings) which can be computed in
a finite number of steps.

From now on we consider the polynomial P (n) given by P (n) = n2 for
all n ∈ ω.

Denote by 1C∗
→,n2

the element of C∗→,n2 such that dom1C∗
→,n2

= {0} and

1C∗
→,n2

(0) = 1. Consider the functional φ : C∗→,n2 → C∗→,n2 defined by

φf(k) =

{
1 if k = 0
kf(k − 1) if k ≥ 1 and k − 1 ∈ domf

.

It is clear that φ is monotone and it is an improver with respect to 1C∗
→,n2

.

Next we prove that φ is continuous. Indeed, let (fk)k∈N be a sequence in
C∗→,n2 and let f ∈ C∗→,n2 be such that limk→∞eC∗

→,n2
(f, fk) = 0. Then f ≤→ fk

eventually. By monotonicity of φ we obtain φf ≤→ φfk eventually. Moreover,

eC∗
→,n2

(φf, φfk) ≤ |domfk|eC∗
→,n2

(f, fk)

eventually. So limk→∞eC∗
→,n2

(φf, φfk) = 0 and, thus, φ is continuous.

Note that φk1C∗
→,n2

(n) = n! for all n ∈domφk1C∗
→,n2

.

On the other hand, we have that domu↓φk1C∗
→,n2

= ω and u↓φk1C∗
→,n2

(n) =

n! for all n ∈ ω, since limn→∞|domφk1C∗
→,n2
| =limn→∞k = +∞ and u↓φk1C∗

→,n2
(n) =

φn1C∗
→,n2

(n) = n! for all n ∈ ω. Moreover,

+∞∑
n=0

2−n
2 u↓ φk1C∗

→,n2
(n) =

+∞∑
n=1

2−n
2

n! < +∞.

So u↓φk1C∗
→,n2
∈ C∗n2 . Since

eC∗
→,n2

(u↓φk1C∗
→,n2

, φk1C∗
→,n2

) = 0

for all k ∈ ω, we have, by Theorem 2, that u↓φk1C∗
→,n2

is a fixed point of φ.

So we have obtained the factorial (the meaning of the recursive denotational
definition) as the fixed point u↓φk1C∗

→,n2
, which is the limit of the partial

mappings (φk1C∗
→,n2

)k∈ω that allow us to obtain each computation of the

factorial in a finite number of steps.

14

References

[1] J. W. de Bakker and E. P. de Vink, Control Flow Semantics, The MIT
Press, Cambridge, Massachusetts, 1996.

[2] J. W. de Bakker and E. P. de Vink, A metric approach to control flow
semantics, in: Proc. Eleventh Summer Conference on General Topology
and Applications, Ann. New York Acad. Sci. 806 (1996), 11-27.

[3] J. W. de Bakker and E. P. de Vink, Denotational models for program-
ming languages: applications of Banach’s fixed point theorem, Topology
Appl. 85 (1998), 35–52.

[4] A. C. Emerson, C. S. Jutla, The complexity of tree automata and logic
of programs, Siam J. Comput. 29 (1999), 132-158.

[5] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cam-
bridge University Press, 1990.

[6] P. Flajolet, Analytic analysis of algorithms, in: 19th Internat. Colloq.
ICALP’92, Vienna, July 1992; Automata, Languages and Programming,
Lecture Notes in Computer Science 623, W. Kuich editor (1992), pp.
186–210.

[7] P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New
York, 1982.

[8] B. Fuchssteiner, W. Lusky, Convex Cones, North Holland, 1981.

[9] L.M. Garćıa-Raffi, S. Romaguera, E.A. Sánchez-Pérez, Sequence spaces
and asymmetric norms in the theory of computational complexity, Math.
Comput. Model. 36 (2002), 1-11.

[10] L.M. Garćıa-Raffi, S. Romaguera, E.A. Sánchez-Pérez, The supremum
asymmetric norm on sequence algebras: A general framework to measure
complexity distances, Electronic Notes Theoret. Comput. Sci. 74 (2003),
URL:http//www.elsevier.nl/locate/entcs/volume74.html 12 pages.

[11] L.M. Garćıa-Raffi, S. Romaguera, E.A. Sánchez-Pérez, O. Valero,
Normed semialgebras: a mathematical model for the complexity anal-
ysis of programs and algorithms, Proceedings of the 7th World Multi-
conference on Systemics, Cybernetics and Informatics Vol. II, 2003, pp.
55-58.

15

[12] C.A. Gunter, D.S. Scott, Semantic domains, in: Handbook of Theoreti-
cal Computer Science, Jan van Leeuwen (ed.), Elsevier Science Publish-
ers, vol. B: Formal Models and Semantics, 633-674, 1990.

[13] J.I. Hartog, J.W. de Bakker, E.P. De Vink, Metric semantics and full
abstractness for action refinement and probabilistic choice, Electronic
Notes Theoret. Comput. Sci. 40 (2001), 28 pages.

[14] J.L. Kelley, General Topology, Springer-Verlag, 1955.

[15] H.P.A. Künzi, Nonsymmetric distances and their associated topologies:
About the origins of basic ideas in the area of asymmetric topology, in:
Handbook of the History of General Topology, C.E. Aull and R. Lowen
(eds.), Kluwer Acad. Publ. vol. 3, 853-968, 2001.

[16] M.O. O’Keeffe, S. Romaguera, M. Schellekens, Norm-
weightable Riesz spaces and the dual complexity space,
Electronic Notes Theoret. Comput. Sci. 74 (2003),
URL:http//www.elsevier.nl/locate/entcs/volume74.html 17 pages.

[17] J. Rodŕıguez-López, A new approach to epiconvergence and some appli-
cations, Southeast Asian Bulletin of Mathematics 28 (2004), 685-701.

[18] J. Rodŕıguez-López, S. Romaguera, O. Valero, Asymptotic complexity of
algorithms via the nonsymmetric Hausdorff distance, Computing Letters
2 (2006), 155-161.

[19] J. Rodŕıguez-López, S. Romaguera, O. Valero, Denotational semantics
for programming languages, balanced quai-metrics and fixed points, Int.
J. Comput. Math 85 (2008), 623-630.

[20] S. Romaguera, E.A. Sánchez-Pérez, O. Valero, The complexity space of
a valued linearly ordered set, Electronic Notes Theoret. Comput. Sci.
74 (2003), URL:http//www.elsevier.nl/locate/entcs/volume74.html 14
pages.

[21] S. Romaguera, E.A. Sánchez-Pérez, O. Valero, Computing complexity
distances between algorithms, Kybernetika 39 (2003), 569-582.

[22] S. Romaguera, M. Schellekens, Quasi-metric properties of complexity
spaces, Topology Appl. 98 (1999), 311-322.

[23] S. Romaguera, M. Schellekens, The quasi-metric of complexity conver-
gence, Quaestiones Math. 23 (2000), 359-374.

16

[24] S. Romaguera, M. Schellekens, Duality and quasi-normability for com-
plexity spaces, Appl. Gen. Topology 3 (2002), 91-112.

[25] S. Romaguera, O. Valero, On the structure of the space of complexity
partial functions, Int. J. Comput. Math. 85 (2008), 631-640.

[26] M. Schellekens, The Smyth completion: a common foundation for de-
nonational semantics and complexity analysis, In: Proc. MFPS 11, Elec-
tronic Notes Theoret. Comput. Sci. 1 (1995), 535-556.

[27] M. Schellekens, Complexity domains, a relative view of complexity,
manuscript.

[28] R.D. Tennent, The denotational semantics of programming languages,
Comm. ACM 19 (1976), 437-453.

[29] R. Tix, K. Keimel, G. Plotkin, Semantic domains for combining prob-
ability and non-determinism, Electronic Notes Theoret. Comput. Sci.
129 (2005), 1-104.

17

