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We prove the following theorem.

Theorem LetO O ,0 O be an arbitrary partially ordered structure. Then, there is a canonical embedding (1:1,
order-preserving map)

omo,0o -
such that
(). is a complete Boolean algebra
@i). (Op,q00O)(p and q arecompatible - O (p)T O (q)# 0)
(iii). {0 (p)O pO O } satisfies “ asmall property”  in the sense that;
(& If O isfinite, then B isfinite.
(b) If O isinfinite, then for any infinite branch | in BO {0},

(@pON(@q0O)O (@Up).
(c) for any minimal elementa in O, O (a) becomesaminimal elementinBO {0}. O

Especially, whend 0,00 Oisfinite, we give an algorithm called “ the Normal Separativization” which realize
the embedding O . As the byproduct, we obtain an interesting insight that the set of all finite partially ordered

structures can be classified to categories called” Boolean complexity of the type (n,m)” , where n and m are
natural numbers.
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8 1. INTRODUCTION

Consider some practical phase. Suppose we are given the task of making a model for a
system [0 and assume that we abstract a partially ordered structurél OO ,[0 O from the system
as an appropriate approximation. Now, let p, g be two elementsinl] . We are sometimes faced
to the case that it is interesting (or necessary) to consider the least upper bound plq or the
greatest lower bound plg of p, g. However, there does not always exist plig or pliy for
arbitrary elementsp, gin [0, because [J isnot alatticein general.

In this case, we usualy reform O ,[0 [0 to a new structurel] [0 *,00 "0 in order to obtain
pillgi or pilki for some particular pairs{(pi,qi)| 10i0n} in O, so that the resulting new
structuré] [ *,00 ' Obetter fits to the origina system [ . Here, there occurs one problem, if the
reform is not a minor change. That is, if [ isbig enough and the number of pairs (pi,gi) is
large, we can not employ the one-by-one repairing technique. In this case, we need some



“ systematic and genetic approach” to enrich OO ,00 00 so as to get a lattice structure
O0",0"0suchthatdd 07,0000 07,070, (Then, ignore useless elementsin [0 7-0".)
Once we employ this kind of general methodology, then there is a possibility that we can
obtain anew insight into the original system [0 viathe enrichment. (Discovery)

By the way, from a viewpoint of application, the most popular and the most useful lattice
structure is a Boolean algebra. In this sense, it is convenient to consider the algorithm such
that, given an arbitrary partially ordered structuré] 00 ,[0 O[] O ,00 Ois automatically enriched
to the corresponding “ canonical” Boolean algebraB. Here, the® canonicity” isgiven by a
“ gsmall property” of the resulting B compared with] [0 ,[0 [J . If B istoo big compared with
00,00, Bisnot useful as apractical application, because B may contain additional noisy
elements as a model of the origina system [0 . Moreover, theoretically speaking, any
00,0 0Ois aways embeddable to a large enough B trivially. So, we recognize that the
importance at this stage is the notion of the small property. In this context, we obtain the next
theorem.

Theorem 1-1. LetO O,0 O be an arbitrary partially ordered structure. Then, there is a
canonical embedding (1:1, order-preserving map)

omo,od -

such that
(). B isacomplete Boolean algebra.
@i). (Op,qdO)(p and g arecompatible — O (p)C (q)# 0)
(ii). {0 (p)d pO O } satisfies “ asmall property” in the sense that;
(@ If O isfinite, then B isfinite.
(b) If O isinfinite, then for any infinite branch | in BO {0},

(Opd (@ gl O)U (@Up).
(c) for any minimal elementa in 0, O (a) becomesaminimal elementin BO {0}. O

Thus, we notice that the resulting B is small enough, compared with [ . In the above theorem,
we use the usual definition of the “ compatibility” in the sense that;

Definition 1-2. LetO O ,0 O be an arbitrary partially ordered structure. Then,
1. p,q00O are* compatible’ iff (DrO0O0)( rOp and rdq )
2. p,q0d O are* incompatible” iff p,q arenot compatible. -|

The main purpose of this paper is prove this theorem by proposing an algorithm which
realizes the above stated embedding [0 . As the byproduct, we reach the theoretically
interesting recognition that al finite partially ordered structures are classified to categories
caled* Boolean complexity of the type (n,m)” , where n and m are natural numbers.

In the following, we use the terminology* p.o.s.” for the abbreviation of* partially ordered
structure” , for the sake of convenience.



8 2. REGULAR OPEN COMPLETE BOOLEAN ALGEBRA

In this section, we present a preliminary lemma which is necessary to prove Theorem 1-1.
To state the result, we need a few definitions.

Definition 2-1. LetD O ,0 O be an arbitrary p.o.s.. Then,
1. Foranyp,qin O,q isan* immediate predecessor’ of p (pisan* immediate successor’
of q) iff
p <g andthereisno element betweenp andq.
200 ,0018" separative”  iff
(Op,g0O)(= (pdq) - (@rOp)( r and g areincompatible))
3. 000 is* dense” in O iff (OpdO)(dqOd)(Op). -|

Here, in 1, we use" the reverse definition with respect to 0" compared with the usual
definition of the immediate predecessorness(successorness)” . Note that thisis only a matter
of convention. We can use the usual terminology concerning the predecessorness and/or the
successorness. In the following, however, we use the above definition, because it well fits to
the figures drawn in this paper.

Now, in order to catch the notion of the separative intuitively, we exhibit afew examples.

Example 2-2.
1. A tree which has at least two immediate successor nodes at each node (except the final

nodes (leaves)) is separative.

2. A simple separative p.o.s. which isnot atreeis, for example, illustrated by the figure 1.

Y
9 >
s ¢ 1T\ . u

Figurel
(In the following, an upper point islarger than alower point in the sense of 1 .)

3. A p.o.s. illustrated by the figure 2 is not separative.

p
Ko
s ¢ T\

Figure2 ‘|



Concerning the notion of the* dense” , we can introduce atopology on an arbitrary p.o.s. in
the following manner.

Definition 2-3. Lefl O ,0 Obe an arbitrary p.o.s.. We can introduce atopology T on O by
using the notion of a “ cut”

[pl={q@ O Oq0p } foreachpld O
as abasic open set. Based on thistopology T, we can obtain the set
ro(0)={00 TOO isaregular openset } ]

Here, it is easy to check that, for any p.o.s.0 0,0 OO0, (r.o.(C0 ), ) becomes a complete
Boolean algebra. In addition, whend [0 ,00 [ is separative, it is not so difficult to see that, for
each p0 O, [p]C r.o.(O0).

Example2-4. LetD 0,0 O beap.o.s. illustrated by the figure 3.
Y
q4 DL
s ¢ t\ .u
Figure3

Then, r.0.( ) becomes a complete Boolean algebraillustrated by the figure 4.

p]

[sl -[u]
0
Figure4 -|
So, we can define “  the canonical embedding (1:1, order-preserving map)”
Omo,0o - (ro(0),d)
for each separative p.o.s. Using this embedding, we obtain the desired result.

Lemma2-5. LetO O ,0 O be aseparative p.o.s. Then, the canonical embedding

0mo,00 - (ro(0),0)



satisfies the following properties.

(2). r.o.(00) isunique up to isomorphism.

(2). p,g0 O arecompatible - O (p)UO (q)# 0

(3). {0 (p)Upd O} isdensein r.o.(0)0 {0},

where 0 istheleast element in r.o.(0).

Proof: See, for example, [1]. O
However, if 00 O ,0 O is not separative, the above defined

0mo,o00 - (ro(0)0)

does not become 1:1, though r.0.(O ) is unique up to isomorphism. The reason is that, for any
non-separativel] O ,0 O, (O pO O)([p] O ro.(d) ). Inother words,

O00,00isseparative iff [p]dro.(0) foranypdO.
Example2-6. Let0 O ,0 0 beap.o.s. illustrated by the figure 5.

Un

Lo,
Ug /\_DD

Figure5

Then, this tree is not separative and r.0.(CJ ) becomes a Boolean algebra illustrated by the

figure 6.
1
b / - b
2

Figure6

Here, [0 ]10{05,00,00,00} [O00]0{04}, [O05]0{053} become regular open.
However, [0 5]0 {0 5,0 5,0 5} isnot regular open. So, the correspondence is illustrated
by the figure 7.



DD >[DIZI]

ADD//'[D”]@'[DD]
Op = . Up [0

Figure7 ‘|

With these facts in mind, in order to prove our main theorem, we employ the following
methodol ogy.

Fundamental Methodology
O Given an arbitrary p.o.s.0 00,000 .

O . Firstly, weenrichO O ,00 [ to asuitable “ separative” p.o.s.J0’,0'0 sothat
O:0o,00-00,0'0

iIsal:1l, order preserving map.

O . Secondly, we use the above results
omo’,o0'0 - (ro.(0°),0)

to obtain a complete Boolean algebrar.o.(C1 ).

0. The enrichment at the stage [1 must satisfy the conditions stated in Theorem 1-1 viathe
stage 0,s0that0 0 0 M 0,00 - ro(0’) becomestherequired result. [ ]

In the following, we propose several algorithms which realize the stage [1 and [0 at the
sametime.

8 3. NATURAL SEPARATIVIZATION

In genera, given an arbitrary p.o.s. OO ,0 O, there are many techniques which enrich
00,0 Oto aseparative p.o.s. 0 O, 0 'O. Among them, there are some grand tactics which
make the resulting 0 0’ ,0 0 be not so large compared with the originald O ,0 O . We
employ afew of them, which are based on the same strategy. To state the strategy simply, we
need a terminol ogy.

Definition 3-1. LetD O ,0 0 beap.os.



(1) Let Opp,po,...»Po,...00 be a subset of 0. By taking completely new symbols
Oag, ag,...,ag,...0dwhicharenot in O, we can enrichd O ,00 0 to anew p.o.S.
00,0000 @g,po).@o,p0),----(@0,P0),...0.

We say that“ [0 0,00 O grow beards’”  through the process.

(2) LetOO ,00beap.os andletd 0,00 growbeardstol O',0°'0.1f O00O,0°0
becomes separative, then we say thatD [0 ,0°'0 is “ anatura separativization”  of
00,00 . q

Now, we are ready to state our basic strategy.

Basic Strategy:
0 We employ anatural separativizationtorealizeld and O .0 -|

In the following, based on this strategy, we propose several algorithms which embody our
fundamental methodology.

0O Tactics 10 Trivial Separativization on a Tree

The first case is to consider an arbitrary tree structure instead of a genera p.o.s.. From a
viewpoint of applications, this case is of worth being considered independently, because a
variety kinds of knowledge are represented by tree structures.

Letdd O ,0 O be an arbitrary tree structure.

A\lgorithm 1

U

Step 1.Trytofindanodesnin On whoseimmediate successor node consists of only one
element, where 0o =0 .

St ep 2. If thereis no node whose immediate successor node consists of one element,
Then, stop.
Else, grow abeard at the node sn to obtain anew tree [ n+1 and go to Step 1.

It is easy to check that, by this algorithm, every tree becomes separative. In the following,
for the sake of convenience, let’s call the technique of growing one beard at each node whose
immediate successor node consists of just one element “ the trivial separativization” in a
general p.o.s.. Thus, the above result can be restated as

“ every tree becomes separative by the trivial separativization.”



Now, for an arbitrary p.o.s.00 O ,0 O, the trivial separativization does not always make
0 O ,0 O be separative in general.

Example 3-2. Letd O ,0 O be ap.o.s. illustrated by the figure 8.

p1
P2
P3 P4
Ps Pe
Figure8

Then, the trivial separativization makesd O ,0 O be ap.o.s. illustrated by the figure 9.

. p1
a 17 \p2

P3 Pa
Ps Pe
Figure9

However, the above p.o.s. is not separative. -|

So, we need an additional technique to maked O , [0 [be separative. To state the technique,
we need a terminol ogy.

Definition 3-3. Lel O ,0 Obeap.o.s.. IfJ O ,0 Ois not separative, then thereis at least
onepair (p,q) of elementsin O such that

- (pO0q) and OO rOp)(O FOO)F()Tr and f(r)O q)O .0
Thiskind of pair (p,q) iscaleda“ witness” of the non-separativity of 00 0,0 [. Here, let
O(@) ={(p,9) (p,q) isawitness of the non-separativity of 1 0 ,0 O }. -|

Using this terminology, we can propose a general separativization technique for an arbitrary
p.0.S..

0 Tactics 200 Canoni cal Separativization on a p.o.s.

Letdd O ,0 O be an arbitrary p.o.s..



A\lgorithm 2
U
Step 1.If0 0,0 O has any node having only one immediate successor,
Then, do thetrivial separativization onJ [0 ,0 O to obtainO O’ ,0°0O .
Else taked O ,00=00",0'0.
Step 2. Trytofind awitness (pn,qn)of non-separativity of [ n, where 0o =01".
St ep 3. If thereisno witness (pn,qn)of non-separativity of [ n,
Then, stop.
Else, grow abeard at the node pn to obtain anew tree [ n+1 and go to Step 2.

If thereisan algorithm to represent] O , 0 [, then this algorithm becomes concrete and it is
obvious that the resulting p.o.s. becomes separative. Though this algorithm can be applied to
an arbitrary p.o.s., the resulting p.o.s. grows heavy beards in general. If there is a little
restriction on the condition of a p.o.s., we can give alighter separativization algorithm.

8 4. REGULAR SEPARATIVIZATION AND
NORMAL SEPARATIVIZATION

Definition 4-1. LetO O ,0 O bean arbitrary p.o.s. Then,
O0d,00is* (downward-)hierarchical” iff (O pO O0){qO OO pd g} isfinite ). -|

Supposel] [0 ,0) ishierarchical. Then, for any p < g in O, the number of pathsfromp to
g arefinite and, for any path | from p to g, the number of nodes on | between p and q are finite,
too. As the result, for any p O, p is not a limit point in O, though O itself may be an
infinite set. In addition, 0“ begins’ from* maximal” (or* topmost” or “ root” ) elements
intheordering O ofd O ,0), in the sense that

rd00 isamaxima elementin O iff = (0 sO0O)(r<s).

RemarKk: If we define the notion of the* hierarchical” by

“(@pO0O0)H{qOOOqgdp } isfinite)” (upward-hierarchical),

then O begins by minimal” elements. Throughout this paper, we employ the downward
definition. The following argument becomes essentially the same by suitably inverting the

ordering, if we employ the upward definition.
To tell the truth, we can employ a more general notion of thé bi-hierarchicalness’ defined



by
O0,00is“ bi-hierarchicalness’ iff (O pd OqOd O)r0 O O pd rdq} isfinite ),

instead of the" hierarchicalness’” , and we can continue the following arguments with a dight
modification. However, many partially ordered structures used in the field of computer
science belong to the above category of hierarchicalness, so the hierarchicalness is general
enough, we think. In the following, we use the terminology of* h.p.o.s.” for the abbreviation
of “ hierarchical p.o.s” . 1

Perhaps, afamous h.p.o.s. isa (downward) O w -tree. (A treel] isa* 0 w-tree” iff the
height h(O ) of O isa most w, where h(C) = max{length(l)] | isabranch of [1}.) Here,
the notion of h.p.o.s. is strictly more general than the notion of [0 w -tree, because it has a
(downward) merging point.

Now, as far as h.p.o.s. concerns, we can give a lighter separativization algorithm by using
the following concept.

Definition 4-2. LeeO O ,0 0 be a hp.os and let O (O) be a witness of the
non-separativity of 0 00,0 O .

1. Let(p,q) O (O). Then, the non-empty set

O (p,q)={f(p)T f(p) isamerging point satisfying the condition O }

iscaled “ theset of targets’ selected by (p,q).

2. Letf(p)O O (p,q)beatarget selected by (p,q) . Then, the non-empty set

OF(p))={00000 isanimmediate predecessor of f(p) on a path between p and
f(p)}-

iscaled “ thebearding points’ of f(p). 1

Using these notions, we can define a general separativization technique. This technique is
applicable to an arbitrary h.p.o.s..

0 Tactics 3 Standard Separativization on a H. P.QO S.
Letd O ,0 O be an arbitrary h.p.o.s..

10



U
Step 1.If0 0,0 O has any node having only one immediate successor,
Then, do thetrivial separativization onJ [0 ,0 O to obtainOd O’ ,0°0O .
Else taked O ,00=00",0'0.
St ep 2. Check the separativity of 0 0,00 .
IfO0 0,0 0 issepardtive,
Then, stop.
Else, choose awitness (p,q)0 O (O ).
For this (p,q), choose atarget f(p)Od O (p,q).-
For this f(p), choose abearding point 00 O O (f(p)).
Step 3.Growabeardat O toobtand O”,07"0.
(Astheresult, (p,q) isno more the witness of the non-separativity of 0 007,070 .)
and go to Step 2.
U

Thus, if there is a representing algorithm of a h.p.o.s.0 0 ,0 O, the above standard
separativization becomes concrete. Here, depending on the selecting criterion of ((p,q),f(p),
), there are many techniques which redlize the standard separativization. One typical
criterion use the following concept.

Definition 4-3. Let 0 O ,0 Obeah.p.o.s. and let p0d O be an arbitrary element. Then, we
can define arank for p so that

rank(p)= max{length(l)] | isapath from amaximal elementtop },
where length(l) = the number of nodeson|” -1. -|

Thus, any topmost element in O hasrank 0 and any element in I corresponds to a natural
number asarank. (If O isbi-hierarchical, then any element in [0 corresponds to an integer
by suitably taking starting points of rank 0 in [ .) By utilizing the notion of the rank, we may
efficiently embody the standard separativization in the following form.

A\lgorithm 4. Regul ar Separ ati vi zati on
U
At the processof [0 (O°),
Choose a (p,q) such that
1) rank(qg) is minimum
and, concerning p, our ideais that we would like to make rank(p) as large as possible.

11



So, practically, we decide that
2) rank(p) isaslargeas” apossible computation” in the representing algorithm of
ot,0n

At the processof O (p,q)
Choose a f(p) such that
3) rank(f(p)) is minimum

At the process of [ (F(p))
Choosea O such that
4) rank(J) is minimum

The effectiveness of the regular separativization compared with the standard
separativization in general can be checked easily. The lower point (the higher rank) a beard
grows, the more witnesses of non-separativity it kills (at the same time).

This criterion can be applied to any h.p.o.s.. However, if a h.p.o.s. is finite, we can employ
an ultimately effective tactic. Here, remember the fact that every finite p.o.s. is aways
hierarchical. For this reason, the next algorithm is of worth being considered independently.

A\lgorithm 5. Nor mal Separativization on a Finite P.Q S.
O
At the processof O (),
Choose a (p,q) such that
1) rank(qg) is minimum
and
2) rank(p) is maximum

At the processof O (p,q),
Choose a f(p) such that
3) rank(f(p)) isminimum
( So, f(p) becomes the immediate successor of p, because rank(p) is maximum. )

At the process of O (F(p)),

Choosea O such that
4) [O=p.(Thisisadirect consequenceof 3).)

12



As the consequence of this algorithm, the set [ (f(p)) of bearding points of f(p) isuniquely
determined as a singleton {p}. So, this algorithm becomes not only a special case of the
Standard Separativization but also a special case of the Canonical Separativization.

8 5. BOOLEAN COMPLEXITY OF THE TYPE (n,m)

In the following, let’s stick our attention only to the case that a p.o.s. 0 is finite. From
Lemma 2-5, it is easy to check that, for any separative p.o.s. O,

0 mapstheset of al atomsin O 1:1, ontotheset of all atomsinr.o.(0), ...0O
where
omo,oo - (ro(O),0)

Is the canonical embedding defined in Lemma 2-5. More generally, the next result holds.

Proposition 5-1. Letd 0O ,00 O beafinite separative p.o.s.andlet OO0 —r.0.(0)O {0} be
the canonical embedding defined in Lemma 2-5. Then, for p0 O ,

O@UOOO00d(@Ogdp andg isanatomin OO .
where [ isthe Boolean operation.
Proof: Easy. (See, for example, [2], pp95-97.) O

By combining this result and our result, we reach a new mathematical insight that

O any finite p.o.s.0 0,00 O can be measured by the “ Boolean complexity” B based on the
normal separativization,[] ...010

because the target B is uniquely determined by the algorithm.
Here, as a direct consequence of Proposition 5-1, we notice that

Corollary 5-2. Lefl 00,0 O beafinite p.o.s. whose topmost nodes consist of more than one
elements {p1,p2,...} and let B be the Boolean complexity of [I. By putting a * dummy”
maximum element [0 to [0, weobtainanew p.o.s.00 O O {t}, 0 O such that

piUt, plUt, ....

Then,] O O {t}, 0 [has the same Boolean complexity B &l [1 , [0 [1 Moreover, t corresponds

13



to the maximum element 1 in B by the canonical embedding [ .

Proof: Check the process of the Normal Separativization. Then, we notice that t does not
influence the Normal Separativization algorithm. So, by Proposition 5-1, we get the required
result. O

Now, from aviewpoint of Boolean complexity, a more interesting fact is;

Corollary 5-3. Lefl [0 ,00 [0 beafinitep.o.s.and let 000 — B bethe canonical embedding
viathe normal separativization. Then, anatoma in B corresponds either an atomin 0 ora
beard grown by the normal separativization.

Proof: Easy. O

So, we can refine the above resultl] 10 by distinguishing the atoms generated by growing
beards from the atoms corresponding to the original p.o.s.0 0 , 0 O in the following form.

O Any finite p.o.s[] [0 ,00 [0 has a unique Boolean complexity of the type (n,m), where nisthe

number of atoms corresponding to the original [1 and m is the number of beards generated

by the algorithm, where n+m is the number of atomsin the target Boolean algebra B.[J
..020

Example 5-4.

(1) afinite p.o.s. illustrated on the left side of the figure 10 becomes a p.o.s. illustrated on the
right side of the figure 10 viathe normal separativization.

p1 . p1
p2 a1 ). p2
p3 [ a 2./ . p3
pal \ ps pal/. \ . ps

Figure 10
So, the Boolean complexity is (2,2).

(2) afinite p.o.s. illustrated on the left side of the figure 11 becomes a p.o.s. illustrated on the
right side of the figure 11 viathe normal separativization.

p1 . pt

p2 m p3 p2/ \.p3

ps Ll ps Ha1<"pal. |ps>~.a2
Figure 11

So, the Boolean complexity is (2,2). ]

14



Above examples typicaly show that two different finite p.o.s. may have the same Boolean
complexity (n,m). Thus, we have the conclusion that:

Theorem 5-5. The set of al finite p.o.s.s can be classified to the class of Boolean type (n,m)
for each natural numbers n and m, viathe normal separativization.

Proof: Easy. O

8§ 6. CONCLUSION

By proposing several natural separativization algorithms ing 3 and§ 4, we finish to prove
Theorem 1-1 via Lemma 2-5. Among severa agorithms, the most interesting is the Normal
Separativization algorithm, which can be applied to any finite p.o.s. By using this algorithm,
we can classify the set of al finite p.o.s.s to mathematically new concepts called “ Boolean
Complexity of the type (n,m)” where n and m are natural numbers.
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