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A b str a c t

This thesis studies the design and implementation of anti-windup compensators for systems 

with magnitude and rate-limited actuators; the thesis contains four main contributions. The 

first is the development of a new method for anti-windup compensator design, based 011 the 

solution of a single Riccati equation, for system s with magnitude saturated actuators. The 

second contribution shows how this new method can be adapted to systems with rate saturation. 

The third contribution describes the application of the anti-windup techniques developed to 

a complex experimental aircraft model in order to reduce the susceptibility to pilot-induced- 

osiealltions. The thesis culminates with a description and analysis of the implementation of 

these anti-windup compensators on a real aircraft and the subsequent flight tests. The flight 

test results clearly illustrate the advantages of employing anti-windup compensation in terms 

of improved handling qualities and reduced susceptibility pilot-induced-oscillations.
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C hapter 1

A nti-W indup: O verview

Most practical control design methodologies are concerned with the design of linear controllers 

for systems where the plant is normally assumed to be linear or approximately linear. Although 

the assumption of linearity is well-known to be a gross approximation, such controller design 

methodologies have found favour in both industry and academia due to their typical effective­

ness and their transparency. In addition, the subject of linear systems theory which enables 

the design of such controllers is mature and a great deal of commercial software is available 

to assist. Unfortunately, in reality, there are some nonlinearities which are difficult to ignore 

completely. One such nonlinearity is the so-called “saturation ” nonlinearity which models 

the fact that all actuators, which are often mechanical systems, have limits of some type. For 

example, in aircraft the control surface deflections are constrained to lie within a certain range; 

in motors, the supply current and voltage is limited; in industrial processes flow rate through 

valves cannot be less than zero. When these nonlinearities are introduced into control loops 

which are otherwise largely linear, the effects can be surprising, sometimes catastrophic and 

often unpredictable.

The main effect that input saturation (and input constraints in general) has 011 the closed- 

loop system is that the output of the controller differs from the input to the plant. In other 

words, the desired control signal differs from the actual signal delivered to the plant. When 

the control signal’s magnitude is large enough as to be outside saturation limits, the effective 

gain of the system  is lowered (in a nonlinear manner), reducing the influence of the controller

u
/ ~

Um
w

- A

Figure 1.1: Block representation of the saturation function
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Figure 1.2: Generic Anti-W indup scheme

on the system  and making the system appear “pseudo” open-loop. The undesirable effects of 

input saturation began to be studied in the context of proportional integral derivative (PID) 

control many years ago ([23, 58, 3, 5]) and, indeed, these studies led to the term “windup”. 

Roughly speaking, the term “windup” was traditionally associated with the excessive values 

to which the integrator state of the PID controller could “windup” to, if the plant input was 

saturated. Control signal saturation would lead to a larger error signal which the integrator 

would keep integrating, leading to larger control signals, perhaps keeping the system “locked” 

in saturation. These large integrator states manifested themselves as large overshoots and long 

settling times as the integrator dissipated its “energy” into the system. Although now the term 

“windup” is taken to mean a general degradation in performance due to input saturation, the 

term originates from early experiences of practitioners of PID control.

Not surprisingly, attem pts to alleviate these negative effects of saturation soon began ([3, 19, 

40]), normally as ad hoc modifications to the controller. Following on from their association 

with PID windup, these saturation alleviation methods were termed “anti-windup” compen­

sators. However, today, as with the term “windup”, anti-windup compensation typically means 

a way of modifying a controller to account for actuator saturation. Anti-windup (AW), also 

known as linear conditioning, is now taken to mean the augmentation of (normally linear) 

controllers with (normally linear) elements to assist their behaviour during and immediately 

after saturation has occurred. The standard design procedure has two steps: first, a linear 

controller for the nominal system  without saturation is designed. Then, AW compensation is 

implemented to help the system  during saturation periods. The AW compensator is designed in 

such a way that it is active only when the system undergoes saturation, modifying its behaviour 

and helping it return to normal linear dynamics as soon as possible.

Figure 1.2 shows a fairly general representation of an anti-windup scheme (and one which
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will be used throughout this thesis). Here G (s ) is the linear plant and K ( s ) is the nominal 

controller. The input to the plant um (t ) may differ from the control signal u(t) due to the 

saturation function, © (s) is the anti-windup compensator which becomes active during periods 

of saturation. In general terms, an AW compensator is a linear transfer function which is 

designed with the aim of improving the closed-loop performance (in some sense) during and 

immediately after saturation.

One of the main advantages of AW schemes is that nominal performance is not directly re­

stricted by the conditioning method, giving full freedom in the design of the initial linear 

controller. This is one of the most attractive features of AW compensation, enabling an engi­

neer to retain the properties of the baseline controller except during periods of saturation. It 

is important to note that AW conditioning is only intended as a precaution for systems that 

enter saturation occasionally and should not be implemented on systems that are outside the 

control constraints most of the time.

To illustrate the unpredictable effects of saturation consider the simple mass-spring-damper 

example used in [107, 26] amongst others. The nominal plant G(s)  is given by a two state  

single-input-single-output (SISO) system:

( i . i )
0 1 0 r _

A  =
- 1 0  - 1 0

;B  =
10

;C  = 1 0 ;D  = 0

A two-degree-of-freedom (2-D.o.F.) linear controller is designed with some performance speci­

fications in mind; good response time, negligible steady-state error and well damped dynamics 

of the closed-loop system. Such controller has the following structure.

K (s )  =  =

o

1

Bcr B c

r...
... Dcr Be

( 1 .2)

where,

- 8 0 0 2.5 0 - 1

A c = 1 0 0 Bcr — 0 B c = 0

0 0 - 2 .5 1 0

Cc = -9 4 5 0  3375 33.75 D qt — 0 Dcr — -1 3 5 (1.3)

In order to highlight the effects that actuator saturation has on the closed-loop system and 

the possible advantages of using AW conditioning schemes, the system  is assumed to have 

input saturation constrains of ± 1 . In the absence of saturation, that is when we consider the
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saturation block in Figure 1.2 as the identity operator, the nominal linear closed-loop system  

has good robustness properties and well-damped time responses. To demonstrate the effective­

ness of anti-windup compensation when saturation is present, full-order AW compensation, as 

proposed in [88, 107], is considered. The system  is simulated for both the conditioned and the 

unconditioned nonlinear scenario and compared against the linear response. Notice from the 

top-left hand side of Figure 1.3 that the linear closed-loop system, i.e. no saturation present, has 

excellent time and frequency responses with satisfactory tracking properties. Unfortunately, 

the system ’s control effort exceeds the saturation constraints during the transient behaviour, 

meaning that performance degradation and stability issues may  arise when these limits are 

imposed.

The plot for the saturated closed-loop system  without AW is shown in the middle of Figure

1.3 (dotted line). The detrimental effects of saturation have been revealed with a clear phase 

shift between reference and response; although not catastrophic in this case, phase shifts of 

this sort have been associated with many aircraft related accidents (see Chapter 6 for more 

detail). Also notice how the controller output (control signal before saturation) has an excess 

of magnitude which will tend to keep the system  locked in saturation for longer periods of 

time. The saturated closed-loop response with AW (bottom  of Figure 1.3, solid line) shows 

how performance is partially recovered when using AW compensation; although the system  

still cannot track the magnitude of the reference (the demand is actually infeasible), the phase 

shift has been eliminated and better tracking properties result. Probably the most noticeable 

consequence of using AW compensation is the reduction of system saturation. Notice how the 

controller output tries to follow linear dynamics , reducing the effects of saturation, but most 

importantly, reducing system deviation from these linear dynamics.

The above example shows that even a well-designed linear control system can behave in an 

unforeseen (sometimes disastrous) manner due to saturation. In the case considered above, 

saturation only caused a mild loss in performance, but for less benign examples, internal 

stability of the closed-loop system may be severely compromised. It has been shown that a 

well-designed AW compensator can help the system  retain stability and enhance performance 

despite the presence of saturation. Unfortunately, the design of AW compensators is not a 

trivial task and until the mid-1990’s very little attention had been devoted to the systematic 

design of such compensation schemes. In fact, many of the early schemes (including popular 

ones such as the Hanus conditioning technique [40] and the high-gain AW [34] technique) do 

not explicitly account for closed-loop stability and their design is guided by intuitive, but 

rather vague, reasoning. Furthermore, their application is often restricted to simple single-loop
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Figure 1.3: Mass-spring-damper Example: Closed-Loop System Response - reference (thick dashed)
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control problems and they are characterised by an “if it works, it works” design philosophy; 

there are few tuning rules which enable the engineer to adjust the compensator parameters 

if problems are encountered. The late 1990’s and first few years of the 21st century have 

seen a dramatic increase in the attention devoted to AW compensation. Many authors have 

now addressed the AW problem in ways which guarantee stability and sometimes performance 

([65, 37, 66, 73, 21, 52, 104, 105, 103]). AW compensation is now fairly mature although there 

are several fundamental problems which remain to be overcome:

•  The problem of adequately capturing performance. As the closed-loop system with sat­

uration and AW is nonlinear, tools to address performance issues are limited. £ 2  gain 

approaches have dominated the literature and while these have been successful to some 

extent, relatively few papers have proposed clear, intuitive choices for the selection of 

induced norms to be minimised. This problem will be revisited in this thesis.

•  The problem of reliable synthesis algorithms. Many existing modern AW solutions, pro­

pose algorithms which take the form of linear matrix inequalities (LMI’s). Although 

algorithms to solve these problems are now widely available, they become less reliable 

when they are used with plants of high-order which are possibly ill-conditioned. This 

thesis proposes new algorithms which are based on more traditional methods.

•  The problem of robustness. Until only a few years ago, very little work had been devoted 

to assessing the robustness of AW designs and very few algorithms were available for 

the synthesis of robust compensators. It was demonstrated recently ([107]) that even 

a well-designed AW compensator can be sensitive to model-error and can yield poor 

performance. This thesis will explicitly consider the robustness of AW compensators.

•  The problem of actuator rate-limits. In many applications, input saturation (i.e. limits 

on the magnitude of the control signal) is less problematic than rate-saturation i.e. limits 

on the rate of change of the control signal). This is particularly important for highly 

manoeuvrable modern aircraft where several crashes (e.g. JAS 39 Gripen, YF-22) have 

been attributed to this phenomenon. Although some attention has been devoted to 

the actuator rate-limit problem, there are few intuitive, systematic, numerically reliable 

algorithms available which tackle this problem. This thesis will also make a contribution 

here.

Thus, while considerable advances have been achieved in the AW literature, many important 

problems remain to be addressed. This thesis will attempt to tackle some of them, solving and
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describing different parts of the actuator constraint problem. Chapter 3 is a brief description of 

existing AW schemes, giving the reader more insight into the general problem formulation and 

its solution. The AW architecture used throughout and the closed-loop system are described, 

followed by a discussion on the M  conditioning scheme and its resulting decoupled structure. 

This is later compared with a generic AW architecture in order to try and unify different 

existing design techniques using the M  parametrisation.

Chapter 4 states some of the main theoretical results of this thesis and concentrates on position 

saturating actuators exclusively. It starts by describing in detail what may be termed the 

Performance A W  Problem and by using the decoupled structure mentioned earlier, the problem 

is posed formally and solved using “simple” linear algebra arguments and manipulations. The 

chapter proceeds by describing the problem of Robust A W  Compensation and the implications 

of having plant uncertainty. As before, the problem is posed and solved using similar arguments 

to  those of the performance AW problem. In order to demonstrate the results obtained an 

academic example, that of a missile auto-pilot, is used to show the benefits of AW compensation 

in general and the advantages of the design schemes proposed here.

In Chapter 5 the problem of actuator rate-limiting is tackled by using AW conditioning. The 

general problem setup and AW architecture are described, obtaining a decoupled structure of an 

augmented system  which consists of both the plant and the modeled rate-limit dynamics. This 

allows the use of AW techniques at the expense of having to solve a local stability problem. After 

a formal description of the Rate-limit A W  problem , the solution yields an LQR-type equation 

as one of the sufficient conditions. As the interplay between free parameters is somewhat 

complicated, two tuning algorithms are proposed where a clear trade-off between region of 

stability and performance is portrayed. This is followed by an example and some conclusions.

During the research phase of this thesis, the University of Leicester (UoL) was part of the 

GARTEUR AG -15 group - an alliance of European industrial and academic institutions col­

laborating to address some of the issues associated with pilot-induced-oscillations. Certain 

types of these pilot-induced-oscillation events are associated with position and rate-limited ac­

tuators and there was a natural interest in methods, such as anti-windup compensation, which 

could be used to help prevent the occurrence of such phenomena. The GARTEUR collabora­

tion provided an opportunity to test the techniques developed in Chapter 5 on a fly-by-wire 

aircraft. Chapter 6 thus consists of a description and a simulation analysis of the effects the 

pilot has on the closed-loop behaviour of the aircraft and the subsequent PIO ’s (pilot-induced- 

oscillations) that may develop when rate-limits are encountered. The chapter discusses the
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OLOP (open-loop onset point) criterion, a tool often used in the prediction of PIO ’s and the 

selection of the modelled pilot gains. The main contribution made here is the application of 

the results of Chapter 5 to a realistic, high-order nonlinear model of a fly-by-wire aircraft and 

the analysis of the corresponding simulation results.

Chapter 7 describes the flight tests which were conducted following the simulation work de­

scribed in Chapter 6. The chapter shows how the anti-windup compensators were adapted for 

in-flight testing and the flight test results are fully described - including AW design parame­

ters, trim points, flight plan, pilot comments and flight-test data analysis. The highlight of this 

chapter, and probably this thesis, is the assessment of the AW compensation scheme proposed 

herein via pilot ratings and real flight data.



Chapter 2

Prelim inaries

This chapter introduces several concepts which are needed and used throughout the remainder 

of the thesis. For the most part, the chapter serves as a short review of key definitions, notation 

and existing results in the control literature. It should be noted that the chapter is not intended 

to be a comprehensive account of signals and systems or feedback control theory; the references 

herein (particularly [88, 34]) should be consulted for more details.

2 .1  S ig n a ls  a n d  s y s t e m s

In this thesis, a signal is a function of time which maps the time variable 

More specifically, f { t )  is taken as a map from the real half-line to the 

space, Rn.

/ ( . ) : [ 0 , o o ) ~ R "

The distance between a vector y ( t ) and a compact set y  is denoted by

dist(y,y)  := inf \\y -  iu||
wey

where ||.|| denotes the standard Euclidean norm

\\x\\ — V  x'x

and x' denotes the transpose of x.

For any vector x , the element-wise operator x >z 0 means that all the components x\ are 

non-negative. For two vectors x, y  E Mn, x >z y  means that Xi — yi >  0, Vi € { l , . . . , n } .  

The set S(d, do) =  {d  : —do <  d ■< do} (it is a more compact way of defining a hypercuboid 

in the dimensions of d, see [32]) is defined as it will be useful in the local version of the AW 

compensation scheme.

“r to a vector space, 

n-dimensional vector

(2 . 1)

(2 .2 )
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The size of a signal is measured through an appropriate norm. The norms of interest in this

thesis are the so-called Cp norms which, for a Lebesque measurable signal x(t)  and integers

p  6  [1, oc), are defined as

IMIp =  { [  (2-4)
1-/0 )

The space of signals for which the norm ||x ||p is finite is known as the Cp space . Alternatively, 

the space Cp can be defined as

Cp =  {x  € Mn : ||a:||p <  oo} (2.5)

The signal space £ 2  is of direct relevance to the results in Chapters 4 and 5, and is prevalent 

throughout optimal and robust control literature. It is defined as

£2 =  : | |x ||2 <  00 } (2.6)

where the £ 2  norm is given by

IM I2  = { [  I k W I I 2^ }  (2-7)

Interestingly the £ 2  norm has a frequency domain interpretation. Let x ( ju )  be the Fourier 

transform of x(t)  and let x*(ju>) be its complex conjugate transpose, then the £ 2  norm, in the 

frequency domain, can be defined as

PII2 =  7T" (  [  x*(juj)x(juj)(L)\  (2.8)

Due to Parseval’s theorem (see for example [70, 8, 80]), it transpires that the £ 2  norm in the 

time and frequency domains are actually equal, viz

l l^ lb  =  IM I2

and thus we do not distinguish between the two. This fact is crucial for measuring the size of 

(linear) systems by an induced £ 2  norm.

A (possibly nonlinear) system , Q is a mapping from one signal space, D u to  another D y. It is 

denoted

Q{.) : D u ^ D y (2.9)

Thus, given the input u(t)  € D u, the output y ( t ) € D y is written y =  Q(u), where the time 

argument has been dropped for convenience.



Chapter 2. Preliminaries 17

A system  is said to be time-invariant if a time-shift in the input produces the same output as 

would be expected, but time shifted i.e.

v(t  -  r) =  Q(u(t -  r )) (2 .10)

2 .1 .1  L inear s y s te m s

Linear systems are systems which satisfy the superposition and homogeneity properties. A 

system  Q is linear if, for all u ,v  E D u and positive real scalar a,  it follows that

Q(u +  v) =  Qu +  Qv 

Q{au) =  aQ(u)

(2 . 11)

(2 . 12)

This thesis assumes systems are causal, and this being the case, the output y  E V y of a 

linear system can be written as y  =  Q(t) * u(t)  where the linear operation “*” represents the 

convolution operation

V(t) =  /  g { t - T ) u ( r ) ( h
Jo

(2.13)

where g(t  — r) is the time-shifted impulse response of Q. Taking the Laplace transform of 

(2.13), it is possible to obtain the so-called “transfer function matrix” of Q as

y ( s ) =  Q (s)u(s)

where Q(s) is the Laplace transform of the impulse response g{t). For single-input-single-output 

(SISO) systems, the transfer function is then defined as

y(s)G{s) =
u(s)

where u(s)  and y(s)  are Laplace transforms of u(t) and y ( t ) respectively and Q(s) is a rational

function in the Laplace variable s.

Linear time invariant (LTI) systems, described by linear differential equations, are often rep­

resented in state-space form as:
✓

x =  Ax  +  Bu  

y  =  C x  +  Du

As shorthand, the following notation is often adopted in the thesis.

(2.14)

9  =

A B

C D
(2.15)
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In general, the matrices A , B , C, D  can be time varying. If Q is assumed linear time-invariant 

(LTI), the matrices A, B , C, D  are constant and the transfer function of the system s is obtained 

by calculating

Q(s) =  D  +  C { I s -  A )~ l B

In this thesis, no distinction is made between the time-domain description of Q and its transfer 

function, and their arguments are often omitted for compactness; it should be clear from the 

context which is meant. One of the convenient aspects of LTI system s theory is that stability 

is completely determined by the eigenvalues of the matrix A, denoted by sp e c (A ), and makes 

it trivial for the designer to check for stability of the system (the design task is less trivial). It 

is worth stressing the importance of linear system s in control theory as most classical control 

literature is concerned with the problem of linear feedback systems. Consequently, a wide range 

of tools and theory is available, some key to the development of ideas proposed here.

2 .1 .2  N o n lin e a r  s y s te m s

In real control applications system s can rarely be represented as linear; “life” is generally highly 

nonlinear. A nonlinear system  is a system Q : D u t—> D y , which does not satisfy either the 

superposition or the homogeneity principles, that is

Q(otu-\-(3v) ^  otQ{u) +  (3Q{v) \/a,f3 scalar and x ,v  € D u (2.16)

Many physical nonlinear systems can be represented as a set of state-space differential equations 

which are a generalisation of the linear state-space description above

x =  f ( x , u , t )
JK ’ (2.17)

y =  h { x ,u , t )

The system  is said to be linear if f ( x , u , t )  =  A x(t)  +  B u(t)  and h (x ,u , t )  =  C x ( t ) +  Du{t). 

Otherwise the system  is said to be non-linear.

Stability analysis of such system s is rather more complicated as no transfer function can be 

defined. Instead, techniques such as the Small Gain Theorem, Lyapunov stability theory or 

absolute stability theory (Circle and Popov criteria) are often employed for stability analysis 

of such systems. Another consideration when dealing with non-linear systems is that global 

stability cannot always be guaranteed; in such cases local stability may be achieved within a 

given region of attraction.
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Nonlinear system s can generally be linearised around some equilibrium point x e (i.e. x e =  0) 

in the state space. This allows for the design and analysis of control systems using linear 

control techniques. While such technique only guarantees that the properties inferred from the 

linearised system  apply exclusively in the vicinity of a given equilibrium point of the nonlinear 

system, linearisation is a very common practice amongst control engineers and is often the only 

tractable way of designing suitable controllers.

2 .2  M e a s u r e  o f  s y s t e m  s iz e

The “size” of a system is rather difficult to define, particularly if that system is multivariable 

(i.e. either D u of D y has a higher dimension than unity). The consensus of opinion in control 

theory, and that used in this thesis, is to measure the size of systems using norms which are 

induced by signal norms. In particular, for a given p  € [1, oo), the Cp induced norm is defined 

as
Ill’ll _  G11„  II^M IIp (n  i o\
\\y\\i,P ~  SUP || ||

0  ̂ u€Cp ll l̂lp

An important special case is the induced £ 2  norm which can be defined as

ll/'MI __  C11T4 ll^(^) II2 /n 1Q\jjt/ |U,2 — sup .. .. (2.19)
o^ue£2 INI2

In the special case that Q is a linear system, the induced £ 2  norm can also be defined as

| |£ |k 2 =  IISIloo := sup a[Q(jto)\ (2.20)
u;€E[0,oo]

where d(.) represents the maximum singular value of a matrix and with some abuse of notation, 

G{ju)) represents the Fourier transform of Q. The notation | |£ / ||o o  represents the 7i°° norm of 

a linear system. The induced £ 2  norm of a system  Q is also termed the £ 2  gain of a system. 

It is commonly used in control theory because it can also be interpreted as the root-mean-

square energy gain of a system and its form makes it numerically tractable. In particular, if

the induced £ 2  norm is well-defined, the system is said to be finite £ 2  gain stable.

In later chapters it will be necessary to use a local version of the induced £ 2  norm. I11 particular, 

if the input u € VP C £ 2  (the input signal u is in £ 2  ) and the output y  €  V y , the local £ 2  gain 

is defined as
||/->|| .  „11T̂ Il^(w)ll2 /o OI 'i
| |b / |U ,2 ,W  •— S U p   ii —Tj  ( 2 . 2 1 )

0  ̂ ue£2,ue\V \\u \\2

Note that as VP C £ 2  it follows that

sup
0 # 6 £ 2 ,«GW  \\u \\2 0 ^ u e c 2 \u \\2

sup <  SUP (2-22)
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so in general ||^||^2,w <  ||^IU,2- We say the operator Q is small-signal finite-gain C2 stable if 

equation (2.21) holds (see [48]).

2 .3  S t a b i l i t y

This section will start by giving a general definition of stability. Consider the time-invariant 

system

x =  f ( x ), f ( . ) : R n ^ R n

where f (x )  can be non-linear and x  G R n. An equilibrium point for such a system  is defined as 

the point where all the time derivatives are exactly equal to  zero, i.e. f ( x e) =  0. Equilibrium  

points can be stable, unstable or saddle points. Linear system s only have one equilibrium point, 

while nonlinear systems may have several. Stable equilibrium are desirable states and without 

any loss of generality, can be assumed to be the origin, i.e. x e =  0.

D e fin it io n  2 .1  [48J An equilibrium state x e is said to be stable if and only i f  for all a  >  0, 

there exists a 5(a) such that

||xo — x e \\ <  (5(a) ||.t(£) — x e\\ <  a ,  Vt >  to

where xo is said to be the initial condition at time to. □

The basic idea behind this definition is graphically simple to interpret: a system is stable if 

there exist a ball B (xe,8) := {x  G R n : ||x — x e \\ <  (5) centred at x e with radius 5 such that for 

any initial state, x(0) G B (xe,5 ), the states of the system  will remain within a ball centred at 

x e wit h radius a  forever, i.e.

x(0) G B (xe,5)  => x(t)  G B(xe,a ) ,  V£ >  0

The above is a standard but fairly weak definition of stability which effectively calls a system  

locally stable if its state is locally bounded. In this thesis we shall require some more specific 

definitions of stability as given below.

D e fin it io n  2 .2  (Asymptotic Stability) Consider the system

x =  f ( x)  (2.23)

where x  G and x =  0 is an equilibrium point. The system is said to be locally asymptotically 

stable (LAS) with basin of attraction X  if

l im t^oox(t) =  0 V;c(0) G « f c f  (2.24)
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Furthermore, if X  =  Rn, the system is said to be globally asymptotically stable (GAS). □  

D e fin it io n  2 .3  The autonomous system

x =  f ( x , u )

is said to be Locally Asymptotically Stabilisable with basin of attraction X  if  there exists 

a control strategy u {x ) and a set X  such that the resulting system is LA S within this set. 

Furthermore, if there exists a control strategy u(x)  such that X  can be chosen to be an arbitrarily 

large, but bounded, set, the system is said to be Semi-globally Asym ptotically Stabilisable.

Finally, if  there exists a control strategy u{x) such that X  =  Rn, the system is said to be globally 

asymptotically stablisable. □

Note that for linear system s, local stabilisability implies that the system is globally stabilisable 

and thus linear system s are often just described as “stabilisable” (which can be characterised 

by well-known conditions on the pair (A , B )) [34, 88]; for nonlinear systems, in general, local 

stabilisability does not imply global stabilisability.

2 .4  N o n lin e a r  s t a b i l i t y  t o o ls

Establishing the stability of nonlinear systems is much more difficult than doing so for linear 

system s, and, as mentioned above, stability generally can only be obtained with respect to 

certain regions of attraction for each equilibrium point. This section will give a brief account 

of nonlinear stability tools used in later chapters. It should be understood that this section 

does not try to give an exhaustive treatment of nonlinear stability in general; rather the main 

features of the stability criteria used hereafter are elucidated.

2 .4 .1  L y ap u n ov  s ta b il ity  th e o ry

Lyapunov stability theory, or more accurately, Lyapunov’s Second Method, is perhaps the most 

common nonlinear stability tool used in the control literature. Its appeal stem s from its intuitive 

interpretation and that for systems with a strong linear component to them, it is often easy to 

choose a dissipative function which guarantees stability. In essence, Lyapunov stability theory 

involves picking a positive definite candidate function,

V{x)  > 0  \/x ±  0
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and ensuring that its time-derivative decreases along the trajectories of the system, which for 

autonomous systems can be written as

d V
v (x) =  ^  0

If this is the case, i.e. V ( x ) >  0 and V ( x ) <  0, then we say that V( x)  is a Lyapunov function. 

The Lyapunov function V (x) can be thought of as an “energy” function and requiring that its 

derivative decreases with time, can be thought of as ensuring that the energy of the system  

decreases over time, and thus settling down to an equilibrium. This can be stated formally as 

follows

T h e o r e m  2 .1  [48] Let x =  0 be an equilibrium point for the system (2.23) and let X  C Kn be 

a domain containing x =  0. Let V( x)  be a continuously differentiable function V(. )  : X  i—> R 

such that

V(0)  =  0 and V(x)  > 0  \/x £ X  — {0} (2.25)

Then if

,) V( x )  <  0 \/x 6  X ,  then the trajectories of x remain within X .  

ii) V( x)  <  0 Vx G X  — {0}, then x =  0 is locally asymptotically stable.

Furthermore if  X  =  Mn in either of the above statements and V( x)  is radially unbounded 

f||x|| —» oo =>• V(x)  —> oo), then these properties are said to hold globally. □

Thus, when establishing stability via this method, it is normally the case that a candidate 

Lyapunov function is picked and one tries to establish that its derivative decreases over time. 

Note that it is generally a trial and error method as a Lyapunov function, or at least its 

structure, must be chosen a priori. However for given types of system, various structures of 

Lyapunov functions are now well known and it is often not too difficult to choose one for these 

systems.

Although Lyapunov stability theory is applicable to general nonlinear systems, it is particularly 

convenient for linear system s and has a strong relationship to many well-known results. For 

instance if we consider the linear system

G
A B

C D
(2 .26)
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it transpires that a necessary and sufficient condition for this system to be asymptotically stable 

is that there exist a positive definite matrix, P  >  0, which satisfies the following equation

A 'P  +  P A  = - Q  <  0

If this is the case, it can easily be verified that V(x)  =  x 'P x  is a Lyapunov function for the 

system. The above equation is often called a Lyapunov equation due to this. This implies that 

for linear systems, quadratic Lyapunov functions are both necessary and sufficient to predict 

stability. For nonlinear systems the task of proving stability is not as straightforward, but 

often, if a nonlinear system has a significant linear portion to it, quadratic Lyapunov functions 

V( x)  =  x 'P x  >  0 are usually chosen due to their simplicity and tractability. In this case, 

however, failure to establish stability using a given Lyapunov function does not mean the 

system  is unstable, it simply means that stability cannot be established with that particular 

choice of Lyapunov function candidate.

Quadratic Lyapunov functions have played an important role in linear systems theory, particu­

lar in the development of the linear optimal control theory. In particular it is well known that 

the system  (2.26) can be stabilised by applying a state-feedback control law of the form

u =  - R ~ l B 'P x

where P  >  0 is computed from the Riccati equation

A 'P  +  P A - P B R ~ l B ' P  +  Q =  0 (2.27)

where R  >  0 and Q >  0 (for simplicity). In this case the closed-loop “A” matrix which governs 

the system has the form Ad =  A — B R ~ 1B 'P .  To guarantee asymptotically stable, note it 

suffices to choose V( x)  =  x 'P x  >  0, where the Riccati equation in (2.27) can be re-written as

( A - B R - l B' P) ' P  +  P ( A - B R ~ l B' P)  +  P B R - l B 'P  +  Q  =  0 (2.28)

(A -  B R - l B 'P ) 'P  +  P { A  -  B R ~ l B 'P )  = - Q  -  P B R ~ l B 'P  <  0 (2.29)

We conclude that the closed-loop system  is stable and that sp e c (A c/) 6  C~ , where the notation 

sp e c (M ) indicates the set of eigenvalues, or spectrum of matrix M .

Similarly, the system  in equation (2.26) (assuming D  =  0 for simplicity) is said to be bounded

real if ||(j||oo < 7  for some 7  >  0. It transpires that this is the case if there exists a matrix

P  >  0 such that the following Riccati equation is satisfied

A 'P  -t- P A  +  7 - 2P B B ' P  +  C 'C  =  0
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O

14] o
Figure 2.1: General block structure of feedback systems

Again it can be verified that choosing a Lyapunov function V{x)  — x 'P x  allows one to conclude 

that such a system  is asymptotically stable.

Although this section has only given a brief, superficial overview of the interplay between results 

from linear system s theory and Lyapunov stability, it is important to emphasise that there is 

often a strong relationship between the two. In fact, the relationship between bounded-realness 

of a linear system and Lyapunov stability will be exploited in subsequent chapters of the thesis.

2 .4 .2  S m all G a in  T h eo rem

Lyapunov stability analysis is built upon the state-space representation of systems; we must 

have a set of differential equations describing of the system. Another approach which is arguably 

more convenient, particularly for large systems, is that of input-output stability: when does 

a system produce a bounded output given a bounded input? There are several approaches to 

answering this question, including the popular passivity approach, but the one we advocate 

here is the Small Gain Theorem (SGT).

Consider the system  shown in Figure 2.1 which depicts a feedback interconnection of two 

(nonlinear in principle) systems, H\ and H<i- This feedback system is considered to be stable 

if the map from the inputs y  =  [y[ y f2}' to the outputs u =  [u[ u^]' (or equivalently e =  [e[ e^]') 

is finite-gain Cp stable. In other words, conditions which ensure that ||it||p <  t |M |p are sought. 

Note that most, if not all, control problems consider input-output stability and so the above 

problem is a central aspect of control theory. It has become particularly important in robust 

control, most notably 7i°° theory as only the “gains” of systems are required, not detailed 

descriptions.

The SGT relies only on an input-output description of each of the subsystems. In particular
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we assume that Hi  and H 2 are finite-gain Cp stable operators 1, i. e.

u2 =  Hi ( e i )  ui  =  H 2{e2) (2.30)

1 1 — 71 ||-^ 2 ||i,p =  72 (2.31)

The small gain theorem can be formally stated as

T h eo r e m  2 .2  ('Small Gain Theorem^ [4 8 ]  Consider the feedback system portrayed in Figure

2.1 and assume y E Cp and that the interconnecting systems are finite gain Cp stable. Then if 

7 i7 2  <  the feedback system is finite gain Cp stable i.e. there exists a 7  >  0 such that

IMIp <  7lMIP

□

One of the main attractions of the SGT, as alluded to above, is that detailed descriptions of the 

two feedback components are not necessary - only bounds on the system s’ norms are required. 

This explains its prevalence in the robust control literature where it is used to analyse systems 

with plant uncertainty in which one part of the system (the nominal part) is known well and 

the other part of the system (the uncertain part) is not very well known, but a bound on its

norm is given. Most uncertain control systems can be massaged into the block structure of

Figure 2.1, where H 2 represents the uncertainty block A and H\  is given by the remaining 

system  dynamics; this representation generally being called the “M  — A ” structure (see [34] 

for more detail). TC00 control theory is devoted to the computation of controllers which ensure 

that the TC00 norm (which is identical to the induced C2 norm) of the closed-loop system is 

small, hence making the closed-loop system robust to as much uncertainty as possible, in a 

small gain sense.

Thus, the SGT provides a convenient environment for the analysis of many feedback systems 

of practical interest, particularly those containing uncertain or nonlinear elements whose exact 

mathematical description is unknown. The main deficiency of the SGT is its conservatism; in 

general it only provides sufficient conditions for stability, not necessary.

2 .4 .3  T h e  C irc le  C r iter io n

The Small Gain Theorem is particularly useful in robust control theory because it allows one

to conduct stability analysis of systems where only the induced Cp norm of the uncertain

1For simplicity and compactness the bias term (3 existing in the general induced norm formulation (see [48]) 

is omitted as it is assumed that H u  — 0 if u = 0
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G(s)

N(y) N(.)

Figure 2.2: Block structure of some type of feedback systems

component is known. However in many systems, more information about the “uncertain” or 

nonlinear element is known, not just its induced norm. In fact, many systems can be represented 

as a feedback combination of a linear system  and a static nonlinear element. Examples of these 

would be systems containing saturation or dead-zone elements, which are the type of system  

under consideration. Such systems can be represented, after appropriate manipulations, as in 

Figure 2.2, where G (s ) represents the linear part of the system and Af{.) : Km ► Km represents 

the static (but possibly time-varying) nonlinear element. It is assumed that the system is well- 

posed; that is the solution to the feedback equations always exists and is unique. For this class 

of systems it is often possible to prove stability of the nonlinear closed-loop, based largely, on 

information about the linear system G(s)  and some approximate information about Af(.).

The classical topic of “absolute stability” theory is devoted to this class of systems [48]. The 

standard assumption is to assume that the nonlinear element Af{.) belongs to a certain sector 

(introduced shortly). The system is said to be “absolutely” stable if it has a globally asymp­

totically stable equilibrium point at the origin for all nonlinearities within a given sector; it 

is said to be absolutely stable with a finite domain if it is locally asymptotically stable for all 

nonlinearities within a given sector. Absolute stability theory has occupied the minds of con­

trol theorists for many years and it has a rich history (including several fallacious conjectures 

- the Aizermann and Kalman conjectures being perhaps the most notorious) and is still being 

developed today within the context of integral-quadratic-constraints (IQC’s).

For this thesis we are content to study only the Circle Criterion which is perhaps the most 

well-known method in absolute stability theory. Although it is one of the more conservative 

methods, its key advantage is that it leads to tractable synthesis schemes. Other absolute 

stability theory, such as the Popov Criterion, may be useful for analysis but typically tend to 

result in complex, intractable synthesis routines. The main requirement of the Circle Criterion
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is that the nonlinearity Af(.) is sector bounded; the definition below is adapted from [48]

D e fin it io n  2 .4  A memoryless nonlinearity Af {.) : Rm ^  Rm is said to belong to Sector[/Ci,/C2 ] 

where

K \ =  d iag(/C ij,/C ii2 , • • • , /Ci,m) > 0 ,  /C2 =  diag(/C2 , i , £ 2 ,1 , . . . , /C2 ,m) >  0? (2.32)

if  K 2 - K 1 >  0 and the following inequality holds for  all y(t )

[AC(y) -  /Ciy]'[Af(y) -  /C2</] <  0 (2.33)

□

W ithout loss of generality, the feedback system in Figure 2.2 can be manipulated into a form in 

which the nonlinearity Af inhabits a slightly different sector, the Sector[0,/C], where /C is again 

some positive definite diagonal matrix. Such a transformation makes the sector-based results 

less tedious to state. Another concept which is useful for the statement of the Circle Criterion 

is the concept of strict positive realness(SPR).

D e fin it io n  2 .5  [48] Let Z ( s ) be a real rational proper transfer function matrix and suppose 

that det[Z (s) +  Z' {—s)\ is not identically zero. Then Z( s )  is strictly positive real (SPR) if  and 

only if

1. Z( s )  is Hurwitz

2. Z(jic’) +  Z^(—jtv) >  0 Vuj € R

3. and either

a) Z ( 0 0 ) -f Z'(oo) >  0;

b) Z (0 0 ) -|- Z'(oo) =  0 and hmu;_ 00[Z(ju;) +  Z '{—juj)\ >  0;

c) Z (0 0 ) +  Z'(oo) >  0 and there exist positive constants <to and u>o such that

^  @min [Z(jcv) +  z ' ( - juj ) \  >  (Jo, V jo ; |  >  UJQ

□

The Circle Criterion can now be stated as

T h eo r e m  2 .3  (C irc le  C r iter io n ) Consider the feedback interconnected system in Figure 2.2 

where G(s)  has minimal state-space realisation as given in equation (2.26) and has states

denoted by x and output denoted by y. Af{.) € Sector[0,/C] and assume all dimensions are

compatible. Then the following are statements are equivalent
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i) The interconnection in Figure 2.2 is absolutely stable for all Af(.)  € Sector[0, /C].

ii) I  +  lCG(s) is strictly positive real.

Hi) There exists a positive definite function V(x)  >  0 and a diagonal positive definite matrix 

W  >  0 such that

V( x)  +  N \ y ) W [ y  -  N{ y ) ]  +  { y -  f i f(y)]fWfi f (y)  < 0  Vx ±  0 

i.e. V(x)  is a Lyapunov function.

□

The second item is the traditional way of stating the Circle Criterion and, for single-input- 

single-output systems has an attractive graphical interpretation in the frequency domain. This 

graphical interpretation of the Circle Criterion will be used later when looking at the PIO 

problem, but it should be noted that it is not particularly useful for multi-input-multi- output 

(MIMO) systems. The third item is the most central to this thesis and it effectively provides a 

Lyapunov argument for the Circle Criterion. This formulation is appealing because it allows one 

to pose tractable synthesis routines for systems with saturation nonlinearities . The relationship 

between statements i) and iii) is easy to see via a Lyapunov argument. The relationship between 

statements ii) and iii) is nontrivial and requires the evocation of the Kalman-Yakubovich-Popov 

(KYP) Lemma which essentially provides a connection between positive realness and passivity. 

The Circle Criterion will be used extensively throughout the remainder of the thesis.



Chapter 3

R epresentation o f A nti-w indup schem es

Anti-windup techniques probably have their roots in industry, where early compensation at­

tem pts were developed before the academic research community began to study them. They 

were used traditionally to solve problems of integrator windup in electric motor and boiler 

control systems [31]; essentially they were practical solutions to simple practical problems. 

When the academic community began to study them in the 1980’s, it became apparent that, 

due to the diversity of the techniques, there was little common framework uniting the different 

approaches. Hence authors such as [3], [52], [21] and [118] began to develop ways of unify­

ing the various schemes available. This gave insight into the different design structures and 

philosophies, allowing different techniques to be compared closely within a common framework.

In this thesis we largely follow the architecture proposed in [118] as we think it gives a transpar­

ent and easy-to-analyse scheme. The aim of this chapter is to discuss the different frameworks 

in which AW could be interpreted and also to interpret some of the existing AW schemes 

within these various architectures. This chapter will form a theoretical framework on which 

subsequent chapters are constructed.

3 .1  G e n e r a l  A W  S e t u p

Consider the block diagram of Figure 3.1 which represents a general AW setup. G (s ) represents 

the plant driven by the saturated control signal um G K (s )  is the nominal controller driven 

by a reference signal within Knr and by the plant output y  6  Mnp. These two elements are 

interconnected through the static nonlinear saturation function sat(.) : Mm *-» Km which is
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Um

Udyiin

K(s) G(s)

0(s)

Figure 3.1: Generic Anti-Windup scheme

defined as follows.

sat(w) :=

sati (u \ ) 

Sat2('U2)
(3.1)

_ sat m (7/772) 

where

sati{ui) := sign(uj) x m a x { | u j | , U i }  (3.2)

Observe that the saturation nonlinearity limits the magnitude of the effective control signal 

um , to a hyper-cuboid

U  : =  [ ~ U \ , U \ ]  X [ - U 2 , U 2] X . . . X [ - u m, U m ] (3-3)

Thus, for large inputs it is clear that the effective control signal u m € U  C Rm may differ

from the unconstrained control signal, u € Mm. It is this difference which is responsible

for the unpredictable effects in an otherwise linear control loop. To overcome the effects of 

actuator saturation, the anti-windup compensator 0 ( s )  =  [0 j(s )  © 2 (s )]/ is introduced. This 

AW compensator is either a static gain or a transfer function matrix which is responsible for 

taking corrective action of the control signal during saturation, that is when um =  sa t(u) ^  u. 

Informally the objective of the AW compensator 0 ( s )  is to ([52]):

i) ensure that stability is maintained during and after a saturation event; and

ii) to limit the performance degradation over this period

Much of the remainder of the thesis will attempt to discuss these objectives (and how to 

achieve them formally) and to give algorithms which can be used to synthesize appropriate 

1 Formal statements will be given later
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Figure 3.2: Block representation of the deadzone function

AW compensators; for the moment it should simply be understood that these are the goals of 

the designer.

R em a rk  3.1: Notice that when sa t(u ) ^  u the saturated plant output y  =  G um is conditioned 

before being used for feedback purposes (see Figure 3.1). This is in contrast to some schemes 

(see for example [105]) where the states of the controller axe conditioned directly; this type of 

AW scheme has been branded ” full authority compensaion”. As it may not always be possible 

to access the controller states directly, conditioning may be done on the controller input instead. 

□

The anti-windup compensator, 0 ( s ) ,  is driven by the difference between the real saturated and 

unsaturated control signals

u := u — sat(u) =: D z(u) (3.4)

This is the well-known nonlinear dead-zone operator (see Figure 3.2). Notice that Dz(w) =  0 

Vw £ U, thereby implying that the anti-windup compensator does not become active until sat­

uration occurs, that is u ^ U .  This feature is distinctive among AW compensators and implies 

that nominal (small signal) controller behaviour is preserved unless saturation is encountered. 

This distinguishes AW compensators from other “saturation controllers” such as model pre­

dictive controllers (MPC) ([62, 10]) and saturated linear controllers (proposed by, for example 

[55, 97]). Note that if the real saturated control signal is not available, a synthetic saturation 

can be placed in the control software to artificially generate this signal. During saturation, and 

immediately after, the AW compensator produces two signals, © i(t) and 0 2  (£), which influ­

ence the behaviour of the closed-loop. Roughly speaking © 2  (t) helps to stabilise the controller 

during saturation and ©i (t) enables the AW controller to have a quick impact on the current 

control signal, as the signal does not have to pass through the dynamics of the controller K (s) .

From the above it is clear that AW must operate under the fundamental assumption that 

the nominal linear system  (closed-loop system with no saturation present) is stable and well- 

behaved. This implies that the controller K (s), has been designed to ensure closed-loop stability 

and that nominal performance specifications are met when sat(n) =  u (i.e. u £ U). If the latter 

statement were not true, it would be pointless to use anti-windup compensation; good small-
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signal linear behaviour is a requirement of AW design in general. In fact, throughout this 

thesis, a stronger assumption is often stipulated; linear behaviour represents, in some way, 

“ideal behaviour” and the goal of anti-windup design is to return to linear dynamics. Such an 

objective will be made more concrete later in the thesis. Conversely, no initial assumption is 

made on the controller’s behaviour during saturation, sat (it) u (u <£U), and it is usually the 

case that the controller K ( s ) has been designed in ignorance of the saturation limits.

Thus the subject matter of the thesis is the design of the anti-windup compensator, 0 ( s ) ,  

not the design of the linear controller K (s ) .  It is important to point out that although S (s )  

in no way restricts the local linear behaviour of the controller K ( s )  (as it is only active for 

large enough it), the choice of controller K (s )  may restrict the type of AW compensator which 

can be applied. Put another way, for arbitrary G(s)  and K (s ) ,  there may not exist an AW 

compensator of a given type which yields closed-loop stability. This will become clear in the 

next sections.

3 .2  A  d e c o u p le d  fo r m u la t io n

Although the architecture portrayed in Figure 3.1 is fairly generic as it can be used to repre­

sent almost any linear anti-windup compensator, because the overall system is nonlinear and 

because no structure is imposed upon the AW compensator 0 ( s ) ,  this setup is not particularly 

convenient for analysis or design of AW schemes. This section will introduce the M  pammetri- 

sation of AW compensators which was first proposed in [116] (see also [118]); the advantage of 

such parametrisation is that it enables the nonlinear stability and performance AW problems 

to be more clearly elucidated.

3 .2 .1  E q u iva len t r e p r ese n ta tio n s

Consider Figure 3.3 below, in which a structure has been given to our AW compensator [116, 

118], viz

0 i M - I

0 2 G M

The AW compensator is now described in terms of a copy of the nominal plant model, G{s), 

and a free parameter M (s)  €  VSHoo• This parametrisation is significant as it enables Figure 

3.3 to be re-drawn as Figure 3.4 where the closed-loop AW compensated system is decoupled 

into three distinct parts: nominal linear loop, nonlinear loop and disturbance filter. The three 

parts play an important role in AW compensation. Firstly note that now the “disturbance” on
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Um

> Q *Udyiin

K(s) G(s)

M(s)-I
G(s)M(s)

Figure 3.3: Conditioning with M ( s )
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Linear Loop

G(s)
+

- ± * 6 - U .

Figure 3.4: Decoupled structure

the system output due to input saturation is represented additively as yd; thus the total output 

can be represented as the sum of signal ynn, which is generated by a purely linear system, 

and a signal yd which only results if input saturation occurs. Note that under the assumption 

that the linear closed-loop is asymptotically stable (a reasonable practical assumption) and 

that the open-loop linear plant is bounded real, the stability problem is reduced to ensuring 

that the nonlinear loop is asymptotically stable. Furthermore, note that the disturbance filter 

provides information about how the system recovers from saturation, i.e. the decay rate of 

the disturbance filter’s states is important in determining the system ’s time to recover from 

saturation.

Note that the decoupled structure in Figure 3.4 cannot be implemented because the disturbance 

filter has a copy of the plant. Instead, it can be used for analysis and design purposes. As 

mentioned above, the decoupled structure consists of three systems which define three distinct 

stages of operation [116, 118]:
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Stage I The first stage is nominal linear operation, for which the control signal is sufficiently 

small, i.e u € U , such that the saturation nonlinearity behaves linearly (Figure 3.3) and 

the output of the dead-zone nonlinearity, u (Figure 3.4) is zero.

Stage II Once uun is large enough as to cause u £ U ,  the saturation operator will behave nonlin­

ear ly (Figure 3.3) and the dead-zone will emit a signal u ^  0 (Figure 3.4) causing the 

nonlinear loop to become active. The nonlinear behaviour will sustain operation until 

the control signal u re-enters the set U , at which point, as the dead-zone is a static map, 

u will return to zero.

Stage III Recovery of linear behaviour. Once u 6 U  again, and assuming that G, M  6 'R'Hoo> 

the system will return asymptotically to linear behaviour in a manner governed by the 

dynamics of G M  (i.e. the disturbance filter). Even though the disturbance filter is no 

longer being forced by uun, full return to linear operation is only achieved once any 

transient dynamics decay completely.

Another notable aspect of this parametrisation is that most existing (linear) anti-windup com­

pensators can be interpreted as particular choices of M (s), thus making the decoupled scheme 

a useful tool for comparing stability and performance properties of different AW techniques. 

Note that the stability problem is now much simpler and, as will be seen later, the map 

Tp : uiin i—► yd provides information on how the saturated behaviour of the system will differ 

from nominal linear dynamics. As the time spent in Stage III varies according to the choice of 

M , the length of this transient operation mode may be a good way of comparing different com­

pensation schemes. In [118] it was suggested that a good choice of M ( s ) is given by the coprime 

factorisation of the plant (i.e. G =  N M ~ l ), providing a dual parametrisation of anti-windup 

compensators to that given by [52] (also used by [65] and [16]). This choice of M ( s ) reduces 

the disturbance filter to N (s)  (one of the coprime factors), where both transfer functions may 

share the same state space; a Full Order AW compensation scheme is generated as a result. 

The anti-windup problem is then reduced to that of finding the optimal state feedback matrix 

gain F  such that (A  +  B F )  is Hurwitz, the nonlinear loop is stable and the map Tp is small 

in some sense. Much of the remainder of the thesis will be concerned with formulating and 

solving this problem rigorously.
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Um
K >

Ud

K(s) G(s)

R(s)

Figure 3.5: Generic AW scheme for a 2 D.o.F. controller 

3 .3  R e la t io n s h ip  w i t h  t h e  g e n e r ic  a n t i- w in d u p  s c h e m e

As mentioned at the start of this chapter, due to the various ways of designing and implementing 

AW compensators, many attem pts have been made to unify these architectures. This enables 

insights to be drawn and comparisons to be made. A particularly useful architecture, which will 

be referred to as the © approach, was discussed earlier. Another approach, as suggested in [21] 

- the so-called “generic AW” scheme (GAW) - may also be useful for such purposes. Although 

this is a popular setup, it can be shown that it is actually not as generic a representation 

as the © scheme (Figure 3.1). The GAW scheme is shown in Figure 3.5, where the signals 

have the same meaning and dimensions as before; this time R ( s ) represents the anti-windup 

compensator, and again, K (s )  and G (s ) axe the controller and nominal linear plant respectively.

In fact, many of the early AW schemes were formulated using, or can easily be translated to, 

the .R-structure presented in Figure 3.5, where only the output of the controller is conditioned. 

In general this compensation structure is more compact in the sense that it is represented by a 

single transfer function -R(s), although if the controller is unstable, this structure is not suitable 

for implementation and may yield compensators of higher order than necessary.

In the “more generic” © structure presented in Figure 3.1, the AW compensator is given by a 

set of two transfer functions, ©i and © 2 . This is arguably “more generic” because it enables 

controllers with marginally stable (such as those with integrators) or unstable modes to be 

treated easily and is also suitable for implementation. Note that the so-called generic A W  

scheme in Figure 3.5 can be interpreted in terms of the scheme described in Figure 3.1 using 

different values of © 1  and ©2 . In fact, any scheme developed using R ( s ) can be represented by a 

family of compensators parametrised by the given transfer function R(s)  and a free parameter 

e(s ) .



Chapter 3. Representation o f A nti-w indup schemes 36

In order for the two compensation structures to be equivalent, the conditioned control signals 

must be the same. In the so-called GAW scheme (Figure 3.5), which uses R(s)  as the AW 

parameter, the compensated signal u , for a 2-D.o.F controller, is

u =  K i r  +  K<iy +  Ru  (3.6)

For the block diagram in Figure 3.1, where 0 ( s )  is the AW parameter, the compensated control 

signal u is given by

u =  K \ r  +  K<i(y +  © 2 ^) — S i u  (3.7)

By comparing equation (3.6) and (3.7) the following relationship is obtained

0 !  =  K 2 & 2 ~  R  (3.8)

Therefore, any compensation scheme given in terms of R  has an equivalent representation in 

terms of ©, where © 1(5 ) and © 2 (5 ) are related by equation(3.8). Although this representation 

is simple, there are many solutions to equation (3.8), providing no clear analytical advantages 

over the original representation. As discussed earlier, by using a single transfer function M  

to parametrise the compensator (i.e. © 1  =  M  — I  and © 2  =  G M ), it is possible to expose 

stability and performance properties which are central to the AW compensation problem. From 

equation (3.8) and the parametrisation of © given in equation (3.5)

M  =  (I  -  K 2G )~ l (I +  R)  (3.9)

This means that most AW schemes can be interpreted as an appropriate choice of M  and 

therefore achieve the decoupled structure proposed by [118]. In this way, it is possible to analyse 

and compare in a methodical manner the stability and performance properties of existing AW 

schemes

3 .4  E x is t in g  A W  S c h e m e s

There is a large number of existing AW schemes available for today’s practitioner. The most 

popular and appealing schemes will be briefly reviewed here. Broadly speaking, AW schemes 

can be separated into two groups, those which we call “traditional” and those which we call 

“modern” , although the distinction is not always clear. This section will discuss a selection of 

important existing AW schemes and compare them both through the generic structure given 

in Figures 3.3 and 3.5.
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3 .4 .1  “T ra d itio n a l” A W  sch em es

Traditional AW schemes have their roots within industry and were initially thought to be a 

“practical solution to a practical implementation problem” . This being the case, many of them  

suffer from being ad hoc schemes where stability and performance guarantees are not ensured. 

At the same time they tend to have poor tuning rules which makes their design a trial and error 

process. A common feature of traditional anti-windup schemes is their general heuristic nature. 

A further item of commonality is that they axe typically based around the controller and do 

not account for the characteristics of the plant in their design. Several of these schemes are 

used widely by practitioners due to their simplicity and transparency of implementation. The 

main negative aspect is that they are rarely accompanied by closed-loop stability guarantees 

and performance objectives are vague at best.

Most of these schemes are transfer-function based although some have a convenient state-space 

interpretation. Noting this, it is convenient to introduce the following state-space realisations 

of the linear controller. Both one-degree-of-freedom (1-D.o.F) and two-degrees-of-freedom (2- 

D.o.F) controllers will be considered. The 1-D.o.F controller is assigned the following realisation

K (s )
Ac Bc

i Dc
(3.10)

where uun(s) =  K (s )e (s ) ,  and e(s) € Rn? is the Laplace transform of the error signal e(t) =  

r(t)  — y(t). The 2-D.o.F controller K ( s ) =  [Ab(s) ^ ( s ) ]  is assigned the following state-space 

representation

K ( s )  =  [K jW  K 2 (s)}
Cr

Brr Bf

Dr
(3.11)

Dcr

The 2-D.o.F controller is driven by the reference signal r ( t ) and the output y{t)  indepen­

dently, viz unn(s) =  A '(s)[r(s)/ y(s)']'. It is easy to observe that by setting B c =  —Bcr and

D c =  —Dcr, the one-degree-of-freedom controller is recovered as a special case of the 2-D.o.F 

structure.

It is instructive to evaluate classical AW schemes in the context of the generic set-up introduced 

earlier in Figure 3.3; that is interpreting traditional and modern AW schemes, including the 

special case of no compensation, as certain choices of ©, and more specifically, a choice of M (s) .

N o  A W  C o m p e n sa tio n

Although it is probably not correct to class the case of using no compensation as an “AW 

scheme”, it is important to examine this configuration to reveal how a system  with no AW may
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behave during nonlinear operation. Obviously, in this case both © i(s)  and ©2 (5 ) are identically 

zero. However, in terms of Figure 3.4, it is possible to find an M (s)  that represents the system  

with no compensation; for a system  with a 2-D.o.F. controller, the no compensation scheme is 

parametrised by

M  =  ( /  -  K 2G )~ l (3.12)

where the disturbance filter is given by

G M  =  G (I  -  K 2G )~ l (3.13)

Notice that assuming internal stability of the nominal linear system, the disturbance filter is 

stable and is given by the linear transfer function from K \ r  to yun. The disturbance filter,

and therefore AW performance, are closely related to the nominal closed-loop, more specifically

its disturbance rejection properties, and provided the nonlinear loop is stable, the closed-loop 

compensated system is stable.

An obvious necessary condition for global asymptotic stability of the nonlinear loop is that 

M (s)  — I  =  (I — A^G^ ) - 1  K 2G 2 € IZHoc (the co-sensitivity function); a necessary condition 

for global asymptotic stability of the disturbance filter is, again, that the plant be stable and 

that the sensitivity function (I  — E fZH0 0 • A sufficient condition for stability of the

nonlinear loop is that the closed loop system is SPR (strictly positive real). Thus without 

AW compensation necessary conditions are obtained from the two fundamental linear transfer 

functions: the sensitivity and co-sensitivity functions. Sufficient conditions must be obtained 

through nonlinear stability tests, and in some cases this may not be easy to establish.

C lassica l A W

Probably the most intuitive and simple approach is Classical Anti- Windup, in which the com­

pensator can be obtained by choosing © as

e, (s)  = - I  (3.14)
s

©2 (5 ) =  0 (3.15)

or R  of Figure 3.5 as R  =  thus this being the simplest form of interaction between the

architectures of Figure 3.1 and Figure 3.5. It follows that the compensated control signal is

given by
S Oi

u —  K e  -\---------- Um
s +  a  s +  a

where e =  r — y; it is clear from the context that a 1 .D.o.F. controller has been implemented.
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Notice how any integrators present in K  are canceled and replaced by first order lags with 

time constants However, notice that if the controller K  has any unstable poles, the transfer 

function from e to u remains unstable. This limits the application of such a scheme to controllers 

which are stable except for the presence of integrators. Additional problems may arise when 

no integrators are present in the controller. If this is the case, observe that a derivative term 

remains present, generating high overshoots if the reference signal has a step in it. This 

phenomenon is called derivative kick and is undesirable and generally detrimental for the 

system ’s initial time response and overall performance.

Classical AW compensation can also be obtained by choosing

M (s)  =  (I  +  K G (3.16)
s

where the disturbance filter is then given by

G M  =  G (I  +  K G ) ~ 1^ - ^  (3.17)
s

As in the case of no compensation, the disturbance filter is strongly linked to nominal robustness 

properties of the linear closed-loop, and if the transfer function G (I  +  K G ) _1 has a benign 

frequency response, then the system will recover gracefully after a saturation event has ceased. 

Observe that the extra term can also be used to attenuate unwanted frequencies and 

enhance the system ’s recovery from saturation. However, stability is not addressed directly 

within the design scheme making it necessary to check stability of the system retrospectively. 

Also note that the only way to enforce nonlinear stability is through the choice of the parameter 

a  >  0 which may be restrictive.

Notice that if the controller K  has any unstable poles, the transfer function M  is not bi-stable 

and the overall system will not be stable. Again, this limits the application of Classical A W  

compensation to controllers which are stable except for the presence of integrators. Even for 

stable controllers, it may not always be possible to find an a  such that the nonlinear loop is 

stable.

H igh  G a in  A W

High Gain Anti-windup or “Conventional AW” is a technique popular within industry. Good 

overviews of this technique can be found in [21] and [34] (and references therein). Its popularity 

may be attributed to the simplicity of its architecture and also to its effectiveness in alleviating 

windup problems in simple closed-loop systems. In terms of Figure 3.3, this is equivalent to
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choosing

0 j ( s )  =  - a l  (3.18)

0 2(«) =  0 (3.19)

where a  is some large scalar - hence the name “high gain” technique. Here the technique 

is introduced for the general multi-variable scenario, although the high gain technique was 

originally conceived for single-loop systems. It is perhaps most instructive to examine the 

high-gain technique in the context of 1-D.o.F control systems (although similar reasoning holds 

for the more general 2-D.o.F case).

Some simple, although not rigorous reasoning - as described for example in Limebeer [34] - 

shows that the high gain technique essentially tries to ensure that the control “error” ft is as 

close to zero as possible, i.e. sat (it) =  u. This means that during periods of no saturation, no 

action is taken by the AW compensator; but when control saturation occurs, the compensator 

tries to ensure that u «  sign (it) it. Note that the reasoning used here is very approximate as 

no considerations of system dynamics or stability are being made. However, this gives some 

insight to early ideas and concepts behind AW compensation.

The main problems with the high gain AW technique are that (i) nonlinear stability is not 

explicitly sought; (ii) no satisfactory allowance for performance is made. Furthermore, if we 

consider the signal um as a “disturbance” on the augmented controller formed by the nominal 

linear controller and the AW compensator, it is evident that the compensated control signal is 

therefore given by

u =  (I  +  a K ) ~ 1K ( e  +  cm) (3.20)

From this it is obvious that unless the controller has no zeros (including those at infinity) in 

the open right half plane, i.e. the controller is minimum phase, linear stability problems will 

occur; that is, the A-matrix of the augmented controller may not be stable for any value of 

a. Furthermore, typically large values of a  are necessary to ensure good performance in some 

sense, complicating even more the solution of such AW problem. In terms of the decoupled 

scheme of Figure 3.4, the relevant generalised parametrisation is easily derived as

M  =  (I  +  K G ) ~ l ( K X  +  I)  (3.21)

where the matrix X  =  a l  for some large positive scalar a. The disturbance filter is therefore 

given by

G M  =  G (I  +  K G ) ~ l ( a K  + 1) =  a G cl +  G (I  +  K G ) ~ l (3.22)
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G(s)

-l

K(s)

Figure 3.6: Hanus compensation scheme

The disturbance filter is thus represented by the sum of two transfer functions: one rep­

resenting a scaled version of the nominal linear closed-loop co-sensitivity transfer function 

OiGci \=  o tG K {\  +  GK)~~l , and the other related to the disturbance rejection capabilities of the 

nominal linear closed-loop. In order for this AW scheme to achieve asymptotic stability, the 

nonlinear loop must be stable. From equation (3.21), it follows that this requires the transfer 

function

M  -  I  =  (I  +  K G ) ~ l K ( X  -  G) e  m to o

From a purely linear perspective, a necessary condition for stability of the nonlinear loop is 

that when this transfer function is enclosed within a unity gain feedback loop, the resulting 

system must also be stable. In this case, choosing X  =  a l  allows the linear stability problem 

to be posed as a multivariable root-locus problem, which has been suggested in the past [21]. 

It is important to emphasize again that this would only provide a necessary condition for 

stability and does not guarantee nonlinear stability. In fact, in some cases there will never exist 

a parameter a  which stabilises the system even in a linear sense. This can be overcome by 

using a variation of the technique based on coprime factorisation [19] but again no guarantees 

of stability are given.

H an u s A n ti-w in d u p

The technique developed by Hanus ([40]) is again a popular choice for practitioners for many 

of the same reasons as the High-Gain approach. A block diagram of the Hanus Anti-windup 

scheme for a 2-D.o.F controller is shown in Figure 3.6

The idea of the Hanus AW scheme is to calculate (in a static sense) the value of a fictitious 

reference signal, which Hanus calls the “realisable reference”, such that if this reference was 

applied, no controller saturation would occur. This leads Hanus to suggest partial inversion of
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the controller in order to modify the reference such that the saturation limit is not exceeded. 

Again, giving the state-space realisation of the augmented controller (nominal linear controller 

plus AW), and assuming that D~rl exists, we have

x  — (Ac B c r D ^ C ^ x  +  BcrD^u-ui +  (B c B ^ D ^  D c)y 

u =  Ccx  +  Dcj-r +  D cy
(3.23)

The Hanus compensation scheme is equivalently represented by choosing

M  =  (I — K 2G ) - l K l D ~ l (3.24)

The disturbance filter is therefore given by

G M  =  G (I  -  K 2G )~ 1K i D ^r1 =  ( /  -  G K 2 )~xG K i D ^  =  G clD ~ l (3.25)

The poles of the disturbance filter are the same as those of the nominal linear closed-loop, 

and provided they have been designed in an optimal way, the compensator will have good 

performance. However, note that there are no free parameters and stability of the nonlinear 

loop is not always ensured. If the system happens to be stable, then Hanus AW compensation 

schemes will most likely have good performance.

Note that two key necessary conditions need to be satisfied in order for the Hanus conditioning 

technique to work: the controller needs to be bi-proper (stable and invertible at infinity); the 

augmented controller needs to be stable and minimum phase. Note that Hanus compensation 

scheme is akin to an explicit form of high gain AW, with D taking the role of a. The 

explicitness of the formulae may be seen as an advantage but also as a disadvantage, with 

perhaps more flexibility in the high-gain approach. Although controllers such as PI and PID  

satisfy the bi-properness requirement of Hanus conditioning, many controllers do not, making 

this stipulation very restrictive. A convenient way to overcome this is to perform a coprime 

factorisation of the controller to get

K ( s )  =  V ( s )~ l U (s ) (3.26)

and, as V (s)-1 is by definition invertible and stable (i.e. bi-proper), it is possible to apply Hanus 

conditioning simply to the U (s )_1 term of the controller. Unfortunately, it is not always clear 

how to choose the coprime factorisation and of course, there is no guarantee of stability (see 

[117, 19] for reference).



Chapter 3. Representation o f Anti-w indup schemes 43

3 .4 .2  M o d ern  A W  S ch em es

In order to circumvent the many shortcomings of “traditional” AW (lack of stability guarantees, 

lack of systematic design and such like) several researchers at around the early 1990’s began 

to bring to light more systematic methods for the construction of anti-windup compensators. 

Although many different techniques have been proposed, ([31, 67, 37]), some of the more 

important and popular ones are discussed below.

O b serv er-b a sed  A n ti-w in d u p

Arguably, the first “modern” state-space based AW compensation method was proposed by [3] 

who originally called the scheme the Generalised Anti-windup Compensator (GAWC). Given 

a controller K ( s ), Astrom proposed that it be modified to include an observer gain (hence the 

name) which was driven by the difference between the actual control signal, u and the plant 

input (the saturated control signal) um. The main idea behind Astrom ’s proposal was to give 

the controller information about the saturation level in the system, allowing the controller to 

adjust its output based on feasible control signal levels. The introduction of the observer gain 

term also tends to prevent the controller state from “winding up” to excessive values. For 

a two-degree-of-freedom controller, the observer-based AW compensator is described by the 

following state-space equations, which represent both the controller and the AW compensator

x c =  A cx c -\- B ^ r  -f- B cy -\- H (u m u ) (3.27)

u =  C cxc +  Dcr-r +  D cy (3.28)

which can also be written as

Xc — (Ac — H C c)xc +  (Be- ~  H D cr)r -I- (B c -|- H D c)y  +  H u m (3.29)

u =  Ccx c +  Dorr +  D cy  (3.30)

Note that the a necessary condition for the stability of this AW compensator is that the 

matrix A c — H C c must be Hurwitz, although again note that stability of this matrix alone 

does not guarantee closed-loop stability of the overall nonlinear closed-loop system. In fact the 

observer-based AW compensator could be considered as something of a generalisation of the 

Hanus technique (and some other techniques as well).

Although the observer-based technique offers more flexibility than some of the traditional 

schemes, it is still not sufficiently developed as to provide nonlinear closed-loop stability in 

all circumstances and the placement of the saturated controller poles may not be sufficient to
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ensure graceful degradation of performance during saturation. The familiar structure it ex­

hibits may be comforting but no systematic way of choosing the matrix gain H  was given in 

early formulations, although it was clear that different choices of H  produce different compen­

sation schemes. Recent work ([12, 33]) has further developed the observer approach to provide 

systematic ways of synthesising the observer gain such that stability is guaranteed for certain 

regions of the state-space. However, note that this effectively is still simply static anti-windup 

synthesis.

When viewed through the decoupled M-structure of [118], the transfer function matrix

K h (s )
A c H

Cc 0
(3.31)

represents the part of the “observer-conditioned” controller driven by the dead-zone function 

it, i.e. K h (s ) is the AW compensator R (s ) of Figure 3.5. M (s)  can now be represented as

M  =  ( l  +  K G ) - l K H 

where M (s)  has the following state-space representation

M  =  ( I - K G ) ' 1

(3.32)

A c H

Cc I
(3.33)

Something similar, although not exactly the same, to the Hanus technique for the 1-D.o.F 

controller case may be recovered by choosing the observer gain as H  =  B CD This yields a 

matrix M  of the form M  =  (I  — K G ) ~ 1K D ~ 1, where we assume that D c is nonsingular.

In tern a l M o d e l C on tro l

Internal model control (IMC) has a rich history in linear systems theory and has often been 

advocated as a useful control technique. The classical internal model control scheme was 

appealing because, at least for stable linear plants, the level of feedback used was effectively 

dependent on the uncertainty present in the system. In [124] it was noted that an IMC structure 

was also useful for anti-windup compensation and in [107] it was identified as providing an 

optimally robust anti-windup solution. This property will be re-visited later in the thesis. 

Figure 3.7 shows the Internal Model Control Anti-windup (IMC AW) scheme

Essentially, the AW compensator is a copy of the nominal plant, activated during saturation 

and driven by the signal u. It behaves in such a manner as to ensure that the input which 

the controller sees during saturation is exactly that of the model of the plant during linear
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K(s)

G(s)

Figure 3.7: IMC Anti-windup scheme

behaviour. Effectively, this means that - for stable plants at least - the IMC AW compensator 

can preserve closed-loop stability in a global sense. In our discussion of AW compensators so 

far, this is a property that the aforementioned schemes do not have. One of the main criticisms 

of IMC control, however, is that its performance is heavily dependent on properties of the 

open-loop plant. Thus if the open-loop plant were to contain lightly damped modes, IMC AW 

can lead to very poor behaviour during saturation. It should also be mentioned that IMC AW 

is the only dynamic  AW scheme considered so far.

It is interesting to give IMC an interpretation in terms of © and M . Simply by choosing 

© i(s) =  0, it yields @2 (5 ) =  G(s)  (see Figure 3.7) which represents the IMC scheme in the 0  

framework. Similarly, letting M  =  / ,  the IMC scheme in the framework of [118] is obtained. 

This latter interpretation provides a particularly lucid view of IMC AW as the nonlinear loop 

disappears (M  — I  — I  — I  =  0) which implies that nonlinear stability is unconditionally 

guaranteed. However, the disturbance filter G M  reduces to simply G, implying that recovery 

from saturation is governed purely by the open-loop plant dynamics. Thus if the open-loop 

plant has poorly damped poles and such like, poor AW performance is likely to result, explaining 

the many criticisms leveled at IMC AW.

K o th a r e ’s u n ified  co p r im e  fa cto r-b a sed  sch em e

One of the first truly modern AW schemes was proposed in [52]. In this approach the controller 

is conditioned using two signals which alter the controller’s output signal u and the states x c. 

These signals are obtained by multiplying the control error (i.e. um — u ) by two free design 

parameters Ai and A2 . It was shown in [52] that most static AW schemes can be interpreted 

as a coprime factorisation of the controller, K  =  V ~ 1U. Using this structure, [52] proved that 

the proposed static compensator can be expressed as shown in Figure 3.8 where, for a 1-D.o.F.
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control structure, the conditioned control signal is given by

u =  U(s)e  +  (I — V (s))u m (3.34)

where V  and U share the same state space given by

[t/M v(s)]
Ac -  H\Cc - t f i  B r -  H \D

H2 H 2D c
(3.35)

H2Cc

Notice that A c — H \C  must be stable in order to preserve internal stability of the closed-loop

compensated system. The coprime factorisation and the static gains Ai and A 2 are related

through the following equalities

* '  -  A '< ' +  a- r ' (3.36)
Hz = O + Aj)-1

It is possible to interpret Kothare’s scheme as in [118] by finding a transfer function M  which 

captures the role of V. Combing equations (3.34) and (3.4) we obtain,

u =  K (s )e  +  (I  — V (s )~ l )u

Equating this with equation (3.7), some simple algebra reveals that

M  =  (I  +  K G ) ~ l V ~ l (3.37)

Thus Kothare’s scheme ([52]) and W eston’s scheme ([118]) are similar, except one is interpreted 

as a coprime factorisation of the controller; the other is interpreted as the choice of a free 

parameter, M ,which may have an interpretation as a coprime factorisation of the plant.

In [52], a design approach for a static anti-windup compensator was suggested; the matrices 

H i and H 2l and thus the AW compensator, were found through an appropriate optimisation 

problem. Again, it is interesting to notice that particular choices of H \  and H 2 correspond to  

some of the popular traditional AW compensators: the Hanus conditioning scheme is obtained 

when H\ =  B D ~ l ,H 2 =  /;  the GAWC method makes the choice H 2 =  I. In fact, Kothare’s 

scheme is the most general static compensation scheme. They also proposed a design procedure 

in which dynamic AW compensation is possible using a direct one-step synthesis and then back 

calculating the AW compensator. This procedure is different from standard linear conditioning 

as the controller and the AW compensator are synthesised simultaneously. More recently a 

more rigorous LMI-based method was proposed in [67] - this guaranteed nonlinear stability of 

the closed-loop system  but, as the AW compensators were restricted to being of the static type, 

for arbitrary plant-controller combinations such compensators may not always exist.
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Um
U(s) G(s)

Figure 3.8: Kothare’s compensation using coprime factors of the controller 

M iy a m o to  an d  V in n e c o m b e ’s c o p r im e  fa cto r-b a sed  sch em e

The compensators discussed up until this point have not been entirely satisfactory from the 

perspective of stability and performance: in some methods these concerns have been ignored 

entirely; in others such as Kothare’s ([52, 67]) method, they have only partially been dealt 

with.

However, [65] extended Kothare’s method by allowing the coprime factorisation of the controller 

to be non-minimal\ given an initial coprime factorisation, i.e. K  =  V q 1Uq, the controller can 

be factored using U =  QUq and V  =  QVo, where Q  is such that Q, Q ~ l E7i°° and is found by 

solving an H°° optimisation problem. The closed-loop is guaranteed stable through the small 

gain theorem and nonlinear performance (see also [16]) is addressed by minimising certain 

transfer functions that indicate the effects of the saturation on the plant input and output. 

The system in Figure 3.8 can be seen as the system with a perturbation shown in Figure 3.9 

where IjAHoo <  1. The optimisation problem proposed in [65] is

inf
Q , Q ~ l € H 0

Wi GUmd 

W2G yd 

G ud

<  1

where G ud, GUmd, and G yd are the transfer functions from the fictitious disturbance signal d 

to the control action signals u, um , and the system output y  respectively. One of the main 

contributions of [65] is that stability is guaranteed if ||Gud||oo <  1 (SGT), and a clear perfor­

mance index is introduced as an essential part of AW design. This is achieved by minimising 

the weighted induced norms from the disturbance d to y  and um. Using the Bezout identity i.e. 

Vf)M  +  UoN =  / ,  where M  and N  are a coprime factorisation of the plant (i.e. G  =  A M -1 ), 

it is easy to observe that
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Figure 3.9: Miyimoto &; Vinnicombe coprime factor approach

G ud =  —I  +  M Q  1 

Gyd =  N Q - 1

GUmd = MQ-1

The formulation shows a very strong link between AW compensation performance and stability, 

and the coprime factors of the plant.

From equation (3.37) it follows that

M  =  ( /  +  K G ) ~ 1V^~lQ ~ 1 (3.38)

It is easily shown that M  will always be bi-stable, a necessary condition for stability of the 

nonlinear loop. If Q =  / ,  no extra states are added (i.e. static AW compensation) and Kothare’s 

conditioning framework is obtained. This does not always render a stabilising controller and 

Q ^  I  may be required. This will allow for non-minimal coprime factors, introducing extra 

states to the closed-loop compensated system and generating dynamic (low or full order) AW 

compensators.

D ir e c t  M o d e l S ch em es

Until now, most of the compensation schemes (with the exception of the IMC AW) were 

concerned with acting on the controller irrespective of the nominal plant. The design schemes 

mentioned tried to reduce the effect of the saturation over some input/output control signal, 

but took no interest in the plant’s behaviour. For example, the Hanus conditioning scheme 

compensates the original reference signal entering the controller. Alternatively, compensation 

may be performed on the plant output y  before it is used by the controller. [77] develops such a 

technique and it is termed model based conditioning. The scheme is presented in block diagram 

form in Figure 3.10, where G m is a user defined transfer function which is usually referred to
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Figure 3.10: IMC like compensation scheme

as the direct model. G m is generally chosen to be an exact copy of the nominal plant model, 

in which case, and in the absence of plant uncertainty, the input to K 2 is always given by 

Gu  irrespective of the plant input um. Notice that in order for the compensation signal to 

disappear it is necessary for G m to be stable. It follows that

M  =  ( I -  K 2G ) - \ I  -  K 2G m) (3.39)

where M  is bi-stable only if the nominal closed loop G d , G m and (7 — K 2G m)~l K 2 are all 

stable. In addition, and in order to preserve internal stability, (7 — K 2G m)~l K \  must also be 

stable.

It is clear that if G m =  G , the IMC AW scheme is recovered as a special case where M  =  7, 

making the nonlinear loop completely disappear and providing unconditional nonlinear stabil­

ity. However, as aforementioned if the open loop nominal plant has any lightly damped poles, 

the system ’s performance will normally be unsatisfactory. In this case it is desirable to choose 

a different transfer function matrix for G m such that some improvement over the choice of G  

is made. Although not much work has been done in this respect, the optimisation approach 

presented by [21] will be described as it gives a novel design procedure for choosing the direct 

model Gru­

in  [21] an 7i°° optimisation framework was suggested for the purpose of choosing G m(s). The 

underlying goal is to choose G m such that the H°° norm of various transfer functions, thought 

to capture “good” anti-windup performance, is minimised. The 7700 optimisation framework 

also enabled the controller-AW loop to be guaranteed stable, although no explicit nonlinear 

stability guarantees were sought. Figure 3.11 shows the subsystem of Figure 3.10 which forms 

the basis of the H°° optimisation problem proposed. The £ 2  gain of the transfer functions 

relating the signals um and e to u =  u — um and ud were minimised in order to ensure that 

good performance during saturation occurs and internal stability of Figure 3.11 results. From
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uj Um

Figure 3.11: Subsystem of an IMC like compensation scheme 

Figure 3.11 it follows that

Uiyi it — Suyyi (S' IC e

where S  =  (I  — K G m)~l is the sensitivity function. Notice that the error u — um can be made 

“small” by making G m “large”; however, this will make the signal leaving G m “large” . These 

requirements can be captured in a sensible 7Y°° problem formulation where both the error 

u — um and the feedback compensation signal produced by G m are minimised. The associated 

Generalised Regulator Problem (see [34]) can be expressed as

W i S —W \S K
min

stab. Giu W 2GmS - W 2G ^ S K

where W\ and W 2 are appropriate frequency domain weighting functions used to emphasise 

the importance of each objective over different frequency ranges. It is worth mentioning that 

this procedure does not guarantee stability of the nonlinear loop but provides a systematic 

approach for choosing an appropriate direct model. In other words, if stability is guaranteed a 

posteriori, then the system will have good nonlinear performance.

3 .5  C o n c lu d in g  R e m a r k s

This chapter has reviewed many of the existing popular AW methods and has given inter­

pretations of these in terms of the de-coupled representation proposed in [116, 118]. This 

interpretation is attractive because the properties of the nonlinear saturated system appear as 

a “disturbance” to the nominal linear system  and the stability problem is reduced the the stabil­

ity of the so-called nonlinear loop. Thus the anti-windup stability and performance properties 

are easier to interpret and analyse in this framework.
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It may be noticed that due to the rather organic emergence of various AW strategies, one can 

often interpret certain schemes as special cases of others. This may be illuminating in some 

cases and comforting for the practical engineer, but it should be emphasised that typically 

these various interpretations do not allow for stability and performance to be captured as 

conveniently as with the approach of [116, 118].

The schemes reviewed in this chapter are typically those which have some historic importance 

attached to them; either they are widely used in practice (e.g. [40]) or they are landmarks in 

the history of AW compensators (e.g. [52]). Since the work on this thesis began, a number of 

AW compensation schemes which guarantee stability with more rigour have recently emerged. 

The work of Teel and coworkers should particularly be mentioned and the interested author is 

referred to [105, 122, 35] for this work. However some of Teel’s work can be interpreted in the 

framework of Weston ([116, 118]), so we do not devote much attention to this.

Other important work can be found in the area of anti-windup for exponentially unstable 

systems, where stability can only be guaranteed for certain regions of the state-space (or 

equivalently certain sizes of reference/disturbance). Pioneers in this area are Tarbouriech 

and co-authors, Gomes da Silva and co-authors, Lin and co-authors. The construction of 

AW compensators for systems with exponentially unstable modes is considerably harder than 

the construction for asymptotically stable systems as it is difficult to find a good estimate of 

the region of attraction which accompanies the compensator. Although this topic is of some 

importance, most of the work in this thesis is geared towards AW for asymptotically stable 

linear systems. The interested reader is encouraged to consult the references [15, 104, 100] for 

information about AW for exponentially unstable systems.

It is hoped that this chapter has given a broad overview of the most important AW schemes 

available today and has highlighted much of the informality which currently accompanies their 

design. In the coming chapter it will be shown how more rigour can be incorporated into the 

design of AW compensators and how a computationally convenient tool, the Riccati equation, 

can be used in their synthesis.



Chapter 4

Anti-w indup com pensation for stable system s w ith input 

saturation

Chapter 3 gave an overview of existing compensation schemes which have played important 

roles in the evolution of modern AW strategies. As mentioned at the end of Chapter 3, recent 

years have seen a large increase in the number of AW schemes proposed and now many of these 

recent strategies are able to ensure nonlinear closed-loop stability, although few of these have 

been implemented ([16, 37, 26, 90, 35, 31, 84]) in practical control applications.

Most of the above schemes concentrate on guaranteeing stability for stable plants, i.e. G(s)  E 

TZHqo, as h  is well known that such plants admit globally stabilising control strategies despite 

the presence of input saturation ([37], [105]). Indeed, it is also the case that there always 

exists an anti-windup compensator which can globally stabilise such systems; this is only 

guaranteed in general if the AW compensator is of the same order as the plant, i.e. the 

compensator is full-order [35]. This existence property greatly simplifies the analysis of such 

systems as there is no need to establish regions in which stability is achieved; it is always 

possible obtain global stability. Conversely, stability analysis for marginally or exponentially 

unstable systems becomes more problematic and one may be forced to conduct local or semi- 

global stability analysis (see [32] for example). This is particularly pertinent for exponentially 

unstable plants as such systems do not admit a globally stabilising bounded control strategy. 

Therefore, the anti-wind up strategy only achieves asymptotic stability within a subset of the 

state-space. Despite such intricacies, the general success in terms of stability guarantees of AW 

compensation schemes has galvanised the research community into seeking guarantees beyond 

those of stability, and has brought to the fore the problem of anti-windup performance.

Research on anti-windup has then, over recent years, attempted to secure performance guaran­

tees [67, 110] in addition to the already established stability guarantees. As a system  containing
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saturation is inherently nonlinear, it is more difficult to quantify precisely what “performance” 

means in the context of AW compensation, and few of the usual linear tools shed any light 

on how the problem may be solved. One of the first attem pts to establish this notion in a 

concrete manner was made in [67], where the C 2 induced norm of a certain system was chosen 

as an appropriate measure of the AW compensator’s performance. It was later shown by [37] 

that there always exists an AW compensator of order equal or greater to that of the plant such 

that finite £ 2  gain constraints are ensured. This complemented known results (see for example 

[105], [118], and [65] amongst others) where, as mentioned earlier, global stability for stable 

nominal plants is shown to always be possible via full-order AW compensation.

In formulations such as [37], [67], and more recently [122], the performance index (or £ 2  gain 

condition) is not directly related with the system ’s return to linear behaviour, this being the 

implicit goal of most anti-windup strategies ([52]). In fact, it is difficult to directly capture 

this notion of performance using the schemes advocated in these papers. Instead these papers 

seek to minimise an appropriate closed-loop induced norm which is thought to be closely 

related to the performance of the overall closed-loop system. The general setup of this problem 

is shown in Figure 4.1 where T(s)  is the “generalised plant” formed by the combination of 

the nominal linear controller K (s ) ,  the linear plant G(s)  without input saturation, and the 

linear anti-windup compensator ©(s). Here 2  € M.Uz is a vector of performance objectives 

which should be minimised, and w  € R nw is a vector of exogenous inputs. The feedback loop 

contains the dead-zone function which represents the effect of saturation on the system (Recall: 

sat(w) =  u — Dz(it)). The crucial point here is that [67, 35] did not give guidelines for the choice 

of the performance objectives and although choosing the control error z  =  r — y  may be useful, 

it is not precisely the objective of AW, which is to minimise the deviation from linear (ideal) 

performance.

In contrast, the M-parametrisation discussed in the previous chapter (introduced in [118]) 

proposed a decoupled structure which allowed the problem of anti-windup performance to be 

captured in a clear and intuitive way, exposing the manner in which a system ’s saturated 

dynamics would deviated from the nominal linear dynamics. Works such as [110], [90], [61], 

have exploited this structure and have posed minimisation problems that ensure both stability 

and performance for the synthesis of static, low-order and full-order AW compensators. In 

such a set-up, the obvious choice for minimisation would be the size of the map from uun to 

yd , as depicted in Figure 4.3. This is in agreement with the implicit goal of deviating as little 

as possible from linear behaviour and is also an obvious choice from the architecture.
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Figure 4.1: Generic AW problem considered in [67]

Another issue that needs to be accounted for when designing AW compensation is robustness 

to plant uncertainty. Although robustness to uncertainty has been studied in the control 

literature for many years, it is conspicuously absent from most anti-windup literature. The 

implicit assumption appears to be that the saturated closed-loop system with anti-windup will 

inherit similar robustness properties to those of the nominal linear system. As shown in [107], 

this is not always the case.

This chapter will deal with both the standard (uncertainty free) and robust AW problems 

and will establish conditions which ensure that the natural anti-windup problem is solved - 

that is, deviation from linear performance is minimal (in the £ 2  sense). The problem set-up 

is essentially the same as in [110, 107] but the synthesis method is novel as the anti-windup 

compensator is obtained via the solution of a single bounded-real type Riccati equation, offering 

a numerically superior way of obtaining AW compensators than the “usual” LMI techniques. 

It is further shown that the synthesis method developed in this thesis gives a family  of anti­

windup compensators which are obtained by adjusting a single diagonal matrix and require no 

re-solving of the Ricatti equation. This parametrisation is noteworthy as the free matrix W  

influences the location of the AW compensator poles and also its robustness properties. Much 

of the work from this chapter has been published in [91] and also in [90].

4 .1  P r o b le m  D e s c r ip t io n  (n o  u n c e r ta in ty )

This section defines in detail the standard anti-windup problem considered in the remainder 

of the thesis. To begin with, the robustness aspects of the problem are ignored; these will be 

introduced in subsequent sections.
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The open-loop plant G(s)  considered is the same as that described in Chapter 3.1. The plant 

is assumed FDLTI (finite dimensional linear time invariant) with state-space realisation

G(s)  ~  <
x  =  A x  +  B u m 

y =  C x  +  D u m
(4.1)

where x  € Mnp is the plant state, um € Mm is the plant input (saturated control signal) and 

y  6  M.q is the plant output, which is fed back to the controller. For simplicity disturbances are 

not considered although they can easily be accounted for (see [118],[110]). The nominal plant 

transfer function is denoted as:

G(s)
A B

C D
(4.2)

As mentioned earlier, in order for global stability results to be obtained, it is necessary for the 

plant to be stable; formally the following assumption is made

A ssu m p tio n  1 The poles of the nominal plant G(s) are all in the open left-half of the complex 

plane; equivalently G(s)  € VTHoo D

It is assumed that a nominal 2-D.o.F. linear controller K( s )  (for the 1-D.o.F. case choose 

K 2 =  — A'i), defined by

r
u = [ K \ ( s )  K 2 (s)]

y v ........—^
K(s) y

(4.3)

has been designed to meet standard linear performance and robustness specifications. In par­

ticular, it is important that the nominal closed-loop system  is (internally) stable in the absence 

of saturation and also that the system is well-posed. Formally this can be stated as requiring 

that

A ssu m p tio n  2

/  ~ K 2( s )

'G(s)  I
6 7?WC

and

lim K 2 (s ) G ( s ) 7  ̂ I

(4.4)

(4.5) 

□
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4 .1 .2  Saturation  D escrip tion

The saturation function, as defined in Section 3.1, is a nonlinear function which has a simple 

graph but can be complex to handle mathematically due to its non-smooth and non-bijective 

nature. The interesting feature, which will be repeated here for convenience, is that it satisfies 

the identity

sat(if.) +  Dz (u) =  u (4.6)

All the following analysis will take place by using the above identity to replace the saturation 

nonlinearity. In order to accommodate these nonlinearities, the following analysis relies heavily 

on sector bounds, as described in Chapter 2. Both the saturation and deadzone function belong 

to Sector[0 ,/], viz

sat(.) £ Sector[0,7], Dz(.) £ Sector[0,1]

Formally a decentralised nonlinear element is said to belong to the Sector [0,7] if it satisfies the 

following definition

D efin ition  4.1 The decentralised nonlinearity M  =  diag(7/i, . . . ,  r]m) is said to belong to Sector[0,1] 

i f  the following inequality holds:

Vi(u i ) 2 <  Vi(u i ) u i <  U1 V i £ { 1 , . . . ,  m }  (4.7)

□

This definition is a special case of the more general formulation given in Chapter 2 (see also 

[48]) and initially, a Sector[0,7], is sufficient for our purposes. This will allow us to formulate 

an 77°° -type optimisation problem using the Circle Criterion; one of the resulting feasibility

conditions being a Riccati equation of the Bounded Real type.

It must be pointed out that there are more accurate ways of bounding the saturation and 

dead-zone functions (see [45] for example), although this improved accuracy must be balanced 

against the extra difficulty in accommodating this within the stability and performance problem 

to be considered. For instance, in [45], the saturation function is expressed in terms of an C\ 

norm bound, i.e. sa t(u ) =  H u  where ||T7||i <  1. Similar approximations can be found in [102].

4 .1 .3  A nti-w indup  com pensator descrip tion

As mentioned in Chapter 3, the plant input um £ Rm is given by the nonlinear saturation 

function as defined in equation (3.2). If there is no saturation present, sa t(u ) =  u and nominal
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linear closed-loop dynamics govern the system. One of the central themes in anti-windup 

conditioning is that the compensator is not active unless saturation occurs, and for this reason 

the anti-windup compensator is driven by the difference between the unsaturated and saturated 

control signal, that is

u := u — sat(u) =  D z (u) (4.8)

Effectively this means that assuming saturation never occurred - providing the anti-windup 

compensator had zero initial conditions - then no corrective action would take place.

In keeping with the architecture described in the previous chapter (and [118]), our anti-windup 

compensator is parametrised as follows:

0 i M - I

. 02 G M

where M( s )  is a stable transfer function matrix. Although this may not be the most general 

description of an AW compensator, as argued in Chapter 3, this is an attractive architecture 

due to its decoupling properties. One of the problems with this characterisation is that any 

compensator designed using this method would potentially be of rather large order, np +  u m 

for example, where u m  is the order of the transfer function matrix M{ s )  E TZTioo- In order 

for the compensator to have a reduced number of states, some pole-zero cancellations between 

G(s)  and M( s )  would be necessary. In fact, in this chapter we accomplish this and insist that 

M( s )  is part of a coprime factorisation of the plant, G(s)  =  i V( s )M(s) - 1 , as suggested by [118]. 

Using the same architecture and choosing M( s )  as some combination of the nominal controller 

and plant, not as part of this coprime factorisation, [110] and [107] developed methods for 

static and low order AW compensation based on LMI optimisation. One of the main problems 

with static and low order conditioning is that there is no guarantee that one of these schemes 

will globally stabilise the system in question. In contrast, there always exists a full-order AW 

compensator, providing the plant is open-loop stable (see [35]), which globally stabilises a linear 

control system with saturation, regardless of K( s ) .  Furthermore, as the coprime factor based 

anti-windup compensator is a type of full order compensator, we can expect that one will always 

exist providing that Assumption 1 is satisfied. Hence it is this type of compensator which the 

remainder of the chapter will focus on. Another appealing aspect of making this choice of 

M ( s ) is that all coprime factorisations of order equal to the plant can, up to multiplication by
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Figure 4.2: Conditioning with M( s )  

a nonsingular constant matrix, be described by the state-space equations

M  — I  

N

x =  {A +  B F ) x  +  Bu

ud =  F x  (4-10)

Vd =  (C +  D F ) x  +  Du

where F  is a free parameter and A  +  B F  must be Hurwitz. Thus, the problem of designing 

a full-order anti-windup compensator becomes that of choosing an appropriate right coprime 

factorisation, which in turn reduces to that of choosing an appropriate state-feedback gain 

matrix F.  Therefore, the results of this chapter will offer an alternative synthesis procedure 

and a simpler insight into full-order anti-windup compensation than the rather involved and 

unwieldy results in [35].

4.2 Performance AW Problem definition

Characterising the main objective of AW compensation is subjective but the general underlying 

idea is simple:

We require a fa s t  and smooth return, to linear behavior after  saturation  ([52], [105])

We term this objective the true goal of anti-windup compensation and this section attempts 

to define this mathematically. Although many different formulations have arisen (see some of 

the references given earlier) few have been able to address successfully the true goal of AW in 

a general, systematic and intuitive way.

It is again instructive to consider Figure 4.2, which can be equivalently represented as Figure 

4.3. From the latter figure, conditions which ensure the recovery of linear behaviour may be 

inferred. More specifically, providing that (z) the nonlinear loop is asymptotically stable and 

(zz) the transfer function G ( s ) M( s ) =  N( s )  6 'JZTioo, then linear behaviour will eventually
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Figure 4.3: Decoupled structure

resume providing the linear control signal unn falls below the magnitude limits in steady state, 

that is after some finite time, T  E (0, oo), unn E U V t  >  T. Thus, from a certain perspective, 

the anti-windup problem could be viewed simply as a nonlinear stability problem. However, 

from Figure 4.3, observe that our intuitive objectives for good anti-windup performance can 

be accomplished if the map from uun to yd is made “small” in some sense. If this was the case, 

then the deviation from linear behaviour would be, in some sense, “small” . This elevates the 

anti-windup problem from a pure stability problem into one which also considers performance. 

Therefore the aim of this chapter will be to give synthesis algorithms for AW compensators 

which (in)  make the C2 gain of Tp : uun 1—> yd as small as possible. The clear association 

between the size of the map Tp : uun yd and loss of linear performance will allow us to 

pose a mathematically rigorous and suitable definition of the problem to be addressed. This is 

formally encapsulated in the following formulation

P rob lem  1 The A W  compensator (4-10), is said to solve the anti-windup problem if the closed 

loop system in Figure 4-3 is stable and well-posed and the following hold:

1. If  dist(uun,U)  =  0, V t  >  0, then yd =  0, V t  > 0 (assuming zero initial conditions for

m m ;.

2. If  d\st (ulin,U) E C2 , then yd E C2.

The A W  compensator is said to solve strongly the anti-windup problem if, in addition, the 

following condition is satisfied:

3. The operator Tp : uun 1—>• yd is well-defined and finite gain C2 stable.
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□

The various parts of this problem have the following interpretations:

i) As U  represents the set within which no saturation occurs, or the set in which D z(u) =  0, 

if d ist(unn,U) =  0 , >  0  then it is implied that unn has never strayed outside the set

U  and hence, the control signal has not saturated. In this case no deviation from linear 

behaviour is present as D z(u) =  0, which in turn yields yd =  0, \ f t >  0.

ii) If uiin does stray outside the set U , and therefore saturation does occur at some point 

but then in steady state returns to within the saturation bounds, then dist{uun,U)  € 

C‘2 , assuming dist(unn,U)  is continuous, which is guaranteed provided uun is piecewise 

continuous. In this case, it is desirable to eventually recover linear performance and hence 

the signal yd{t) to asymptotically to decay to zero. This is ensured if yd € £ 2 , which is 

guaranteed providing the nonlinear loop was asymptotically stable and N(s)  € TZTioo-

iii) The amount of deviation from linear performance generated by a given input unn depends 

on the size of the resulting signal yd- Hence minimising the Cp gain of Tp is a natural 

objective to ensure certain level of performance. As the £ 2  version of this problem is 

known to be numerically tractable, this case is considered.

Note the map Tp is nonlinear and it involves the dynamics of the nonlinear loop. It is possible 

to pose an appropriate optimisation problem consisting of three main parts: a Lyapunov equa­

tion guaranteeing stability of the compensators, an £ 2  gain minimisation problem and some 

formulation of the Circle Criterion which guarantees stability of the nonlinear loop. The next 

section of the chapter solves the problem of ensuring

which ensures asymptotic stability of the nonlinear loop, i.e. <  7 -

4.2.1 Solu tion  o f  th e  P erform ance AW  Problem

The problem of stability and performance is addressed by minimizing the £ 2  gain of Tp : uun t—> 

yd, or alternatively finding the minimum 7  >  0  such that ||7^||i52 <  7 ? while simultaneously 

ensuring that the nonlinear loop is stable. The following procedure not only allows the synthesis 

of an optimal compensator, but also guarantees global asymptotic stability and gives a measure

(4.11)
V  (x ) £ 2  gain Sector boundSector bound
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of global performance provided that the plant G (s ) is assumed asymptotically stable. The main 

result of the section is the following theorem.

T heorem  4.1 There exists a full order anti-windup compensator  0  =  [0[ 6'q\' E

as described by equations (4-9) and (4-10), which solves Problem 1 i f there exist matrices 

P  =  P'  >  0, W  =  diag(u;i,. . .  ,u)m) >  0 and a positive real scalar 7  such that the following 

Riccati equation is satisfied

A 'P  +  P A  +  P B R ~ l B ' P  +  Q =  0 (4.12)

where

A =  A  +  B R ~ l D 'C  (4.13)

Q =  C'( I  +  D R ~ l D ' ) C  (4.14)

R  =  (7 2/  -  D'D)  >  0 (4.15)

and the following inequality holds

Z  =  (2W  -  D 'D  -  7 ~2W 2) >  0 (4.16)

Furthermore, i f equation (4-12) and inequality (4-16) are satisfied, a suitable © achieving 

ll^plli.2 < 7  is obtained by calculating the matrix gain F  in (4-10) as follows:

F  =  - 1 2{ W ~ l - y - 2)R ~ l (B 'P  +  D'C)  (4.17)

□

P roof: To aid our proof we will need the following identity:

L em m a 4.1 (Completing the square) Given vectors x  6  Mn,y  E W71, matrices X  E Wnxp, Y  E 

Mpxm and scalar a

( a X x  -  a - l Yy)'{otXx -  a ~ l Y y )  =  a 2x ' X ' X x  +  o T 2y 'Y 'Y y  -  x ' X ' Y y  -  y 'Y 'X x

□

In order to solve strongly the AW compensation problem, it is necessary to meet the conditions 

stated in Problem 1. It is easy to observe that the first two conditions are trivially met if 

internal stability of the closed-loop compensated system is guaranteed. As will be shown later,
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by choosing F  as described in Theorem 1, it is possible to guarantee ||/7^||it2 <  7  f°r anY

7  >  ||G||oo, therefore solving strongly the AW compensation problem.

For algebraic simplicity, we consider the case where D  =  0 (the proof when D  /  0 involves

much more algebra and hence is solved in appendix A).

Note that as Dz(.) 6  Sector[0,1], it follows that for some matrix W  =  d iag(uq,. . .  ,ujm) >  0

u ' W ( u - u ) >  0 (4.18)

Next assume there exists V (x ) =  x 'P x  >  0, then if

L{x, uun, u, F, W )  := ^ x ' P x + \ \ y d\\2 - l 2 \\uHn\\2 +  2 u ' W { u - u )  (4.19)

is negative definite, it follows that V{x) <  0 is a Lyapunov inequality and the closed-loop 

system is stable. Also notice that if L(x, uun, u, F , W ) <  0 and assuming zero initial conditions, 

integrating L{.) in the time interval from 0 to T  and taking the limit T  —> oc, yields \\ydW2 <  

7 II 112 and hence ||3p||^2 <  7 - Thus, if equation (4.19) is negative definite, the strong anti­

windup problem is solved in the £ 2  sense.

Expanding (4.19) and substituting u =  uun — ud gives

L =  x'C'Cx  — 7 2u'linunn +  x 'Px  -1- x'Px  — 2u'Wud — 2u'Wu  +  2u'Wunn (4.20)

This inequality contains several cross-terms in x ,u ,u u n. We now eliminate the cross-product 

terms in three steps using Lemma 4.1.

(I) The cross-product terms involving uun and u can be grouped as follows:

“  bf2ulinUHn ~  2u'Wuiin\ =  - | | 7 W/in -  ~(~l Wll\\2 +  7 ~2u 'W 2U

Combining the above with (4.20), a cost function containing no cross-product terms between 

unn and u is obtained. Using equation (4.1) to expand x  and noticing from equation (4.10) 

that Ud =  Fx:

L =  x \ A ! P + P A + 2 P B F + C ' C ) x  +  2 u ' ( B ' P - W F ) x - u ' ( 2 W - ' f - 2W 2) i - \ \ 1 u,in- ' 1- l W i \\2

(II) The cross-product terms involving u and x can be grouped, including the extra term 

7 ~2u ' W 2u from (I), as follows:

-  [u'(2W -  tr 2W 2)u -  2u '(B 'P -  W F)x]  =  

- | | Z \ u  -  Z ~ \ { B ' P  -  W F ) x )||2 +  x' (B 'P  -  W F ) ' Z ~ 1( B 'P  -  W F ) x
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Note that Z  =  (2W  — 7  2W 2) must be positive definite in order to have a well-posed problem, 

and hence the condition in equation (4.16) is imposed. This condition arises from the necessity 

to define the real square root term Z  2 which exist in

| | Z h  -  Z ~ 5 ( B ' P  -  W F ) x | | 2 (4.21)

positive definite for any pair (fi, x). It can easily be shown that if Z  <  0, this is not always 

guaranteed. By replacing this new group of terms, the cost function can be written with no 

cross-product terms between u and x:

L =  x '(A 'P  +  P A  +  C'C  +  2F 'B ’P  +  P B Z ~ l B ' P  -  2 P B Z ~ l W F  +  F ' W Z ~ l W F ) x  

- | | z i u  -  Z ~ i ( B ' P  -  W F ) x | | 2 -  ||7 «(i„ -  <  0

(III )  The terms involving F  and F'F  can be grouped as follows:

F ’W Z ~ l W F  -  2F ' { { W Z ~ l B ' P  B'P) =

||Z ~ \ W F  -  Z ^ W - ^ W Z - 1 -  I ) B ' P \\2 -  P B ( W Z ~ l -  I ) ' W ~ l Z W ~ l ( W Z ~ l -  I ) B ' P

This last step will yield an expression for the matrix gain F.  Finally, by using the results given 

in ( i n )  we obtain an expression for our cost function (4.19) as

L(x,ui in,u ,F,  W )  =  L a +  Lb +  Lc (4.22)

where

La =  x'(C'C +  A'P +  PA +  P B Z ~ 1B'P -  PB (Z ~ l -  W ~ 1)'Z{Z~l -  W - l )B'P)x (4.23)

Lb = \\{Z~^WF -  Z ^ W ~ \ W Z ~ l -  I)B'P)x\\2 (4.24)

Lc =  -IIz h .  -  Z~^{B'P -  W F ) x II2 -  ||7uKn -  y - ' W u f  (4.25)

Equation (4.22) comprises three terms. A sufficient - and therefore potentially conservative 

- condition for the cost function L{.) to be negative definite is that the first two terms be 

equal to zero; the last term, Lc, is a negative definite quadratic term and therefore only makes 

“favorable” contributions to L(.).  Setting the second term, L b, to zero yields a condition for 

the gain matrix F

( Z ~ i w F  -  z i \ V ~ 1( W Z ~ 1 -  I )B 'P )  =  0  F  =  (y~2I  -  W ~ l )B ’P  (4.26) 

where P  =  P'  >  0 comes from solving the Ricatti equation which makes the first term L a =  0 

A'P + PA + C'C +  P B Z ~ l B'P -  P B (Z ~ l -  W ” 1)'Z{Z~l -  W ~ l )B'P =  0 (4.27)
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which, after some algebraic manipulation, reduces to:

A 'P  +  P A  +  nC 2P B B ' P  +  C'C  =  0 (4.28)

These are exactly the conditions given in Theorem 1 with D  =  0. Internal stability guarantees 

that condition (1) of the performance anti-windup problem (Problem 1) is satisfied; the finite 

£ 2  gain of Tp ensures condition (3) is satisfied, and hence condition (2) is met. Well-posedness 

of the loop is guaranteed by the lack of direct feedthrough terms, i.e. M  — I  is strictly proper. 

□□

R em ark 4.1: Notice that the Riccati equation given is of the bounded-real type and only has 

a solution if G(s)  is stable and 7  >  0 is such that H^Hoo =  7 Qpt <  7 - That is, the performance 

level of the AW compensator is restricted by the 7i,°° norm of the open-loop plant. This suggests 

that optimal anti-windup performance is obtained when 7  =  7 opt, leaving the designer the task 

of choosing W  >  0. This freedom in choosing W  is absent in [107] and [67] and hence we have 

recovered freedom in choosing the so-called stability multiplier. □

R em ark 4.2: The poles of AW compensator (4.10) are the poles of M (s), which are the 

eigenvalues of the matrix A  +  B F  where F  is given by equation (4.17). Note that equation 

(4.17) contains the “free” parameter W  >  0, which exerts influence over the location of the 

AW compensator poles. Thus it can be observed that, providing (A, B)  is controllable (it 

is always stabilisable by virtue of A  being Hurwitz), decreasing the size of W  will tend to 

increase the magnitude of the AW compensator’s poles. This extra freedom in shaping the AW 

compensator’s poles is useful for discrete-time implementation when careful attention should 

be paid to their size relative to the sampling rate. In the LMI formulation of [107], W  did not 

appear as a free parameter and hence, there was no such direct control over pole magnitude. 

Note also that the freedom in choosing W  allows one to “transfer” anti-windup action between 

the compensation signals Ud and yd- □

R em ark 4.3: Apart from being diagonal and positive definite, the only restriction on W  is 

imposed by equation (4.16). When D  =  0 this reduces to Z  =  (21 — 7  ~2W )  >  0  which always 

holds for small enough W .  When D  ^  0, the condition on R  ensures that D 'D  <  y 2/  which in 

turn means that inequality (4.16) becomes

Z  >  2 W  -  y 2/  -  7 “ 2 W 2 >  0 (4.29)
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Figure 4.4: Anti-windup scheme with uncertainty

Using the Schur complement this holds if

2  W W  I

W 7 2 0 >  0 (4.30)

I 0  y - 2

from which W  can be determined. In the work carried out so far, it has been straightforward 

to choose W  such that the condition on Z  is satisfied. □

4.3 Robust AW Problem

Control engineers rarely have the luxury of dealing with perfect plant models and typically the 

model G(s)  is not a true representation of the real system. A better way of describing the true 

linear plant  is

G =  G +  A g (4.31)

where our plant model G(s)  is now accompanied by additive uncertainty A ^  € TZHoo; as we 

are seeking global results it is necessary to assume stability of the uncertain term A c -  It is 

well known from the robust control literature (see e.g. [8 8 ]) that disregard for uncertainty 

may have serious consequences for the true closed-loop system, and control loops which behave 

acceptably for the nominal plant may suffer dramatic stability and performance losses when 

applied to the true uncertain plant. Recent results in the AW literature [99, 26, 107] seem to 

suggest that obtaining robust performance in the face of saturation may be quite demanding 

and requires special attention.

Although there are several ways of representing uncertainty, the additive type given in equation 

(4.31) is appealing as it captures both output-multiplicative and input-multiplicative uncer-
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Figure 4.5: Anti-windup scheme with uncertainty

tainties: Ac? =  AoG  or A c  =  GAi  where Ao and A* are output and input multiplicative 

uncertainties respectively. The converse is only true if G ~ l exists.

A key feature of the standard AW problem formulation is that it allows the decoupling of 

nominal linear dynamics from saturated behavior, allowing Figure 4.2 to be re-drawn as Figure 

4.3. The presence of uncertainty destroys this property and, instead, uncertainty-dependent 

coupling is introduced. Figure 4.4 shows the architecture of an uncertain system G =  G -1- A c  

with anti-windup parametrised by M(s) .  This Figure can be re-drawn as Figure 4.5, but note 

now that there is coupling between the “linear system” and the nonlinear loop through the 

transfer function matrix A g M ( s ). Although it is obvious that sufficiently small A q will not 

be problematic, for larger uncertainties potential stability issues may arise. Also note that if 

the map from uun to u is sufficiently small, similar robustness properties as the linear system  

can be expected.

Following [107], robustness is tackled via a small gain approach. The following formal assump­

tion is made:

A ssum ption  3 The closed-loop linear system is robustly stable; that is ||K ( I  — G K ) ~ l Hoc =  (3 

and A q  € A  where

A  =  | A  6  RWoo : l|A||oo <  1 }  (4.32)

□

This assumption guarantees that, in the absence of saturation, the linear system satisfies the 

small gain condition for stability. From Figure 4.5, note that

Ulin =  Gunn +  A G^lin AIJ'{unn)\ =  Gunn +  A^^Zm) (4.33)
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M - I

Figure 4.6: Robust stability minimisation problem

where T{unn) denotes the nonlinear operator from uun to u and A q is the “modified” uncer­

tainty representing the effect of saturation on the uncertainty. From the small gain theorem 

we know that robust stability is obtained if

IIAclta =  ||A g [J -  A / / ( . ) ] I h  <  i  (4.34)

Furthermore the level of robust stability will be equal to or better than that of the linear system  

if

||Tr | | i>2 =  | | / - M ^ ( . ) | k 2 < l  (4.35)

It was shown in [107] (see also [108]) that as the nonlinear operator T {u u n) =  0 for sufficiently 

small unn, the £ 2 gain of Tr can never be less than unity. Thus nominal robustness is obtained 

when ||7^||i)2 =  1 and hence ||A |k 2 =  l|A||oo- Denoting the output of the M u  — uun (see Figures 

4.5 and 4.6) block as z& it then follows that for robust stability of our anti-windup system, 

we should attem pt to minimise the £ 2 norm of %  : uun 1—> (as shown in Figure 4.6). This 

motivates the following problem formulation.

P roblem  2 The anti-windup compensator ( 4-9)-(4-10)  is said to solve the robust anti-windup 

compensator problem with robustness margin 1 /  p  if the closed-loop in Figure 4-5 is well-posed 

and the following hold:

1. If  sat (it) =  u, then the system is robustly stable for all A  c  6  A .

2. If A c  =  0, then M ( s ) solves strongly the standard anti-windup problem (Problem 1) for  

some performance level 7 .

3. The operator Tr : unn 1—> z& has finite £ 2 gain, i.e. ||7^.|k2 <  p.

□
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Remark 4.4: Obviously, if p  =  1, we have retained the robustness of the linear system. 

However, this is not always possible if the performance level, 7 , is to be minimised simultane­

ously, and thus it might be appropriate to relax our robustness requirements in order to obtain 

performance improvement. □

4.3.1 Solution to the Robustness AW problem

Similar to the performance anti-windup problem above, the robust anti-windup problem, even­

tually reduces to choosing an appropriate coprime factorisation of G(s)  and hence, to the choice 

of a stabilising matrix F  (with (A  -f B F )  being Hurwitz). From the discussion in Section 4.3 

we know that in order to achieve good robustness we need to minimise ||*,2 » which is the 

map from unn to z&. Before the problem is solved formally, it is useful to examine it from a 

less rigorous perspective, anticipating solutions that might be expected.

Following similar arguments to those in Section 4.2.1, to guarantee that | | ^ . | | ^ 2  <  Ab we consider 

L ( x ,u lin, u , F , W )  := ^ x ' P x + \ \ z & \ \ 2 -  p 2\\uiin\\2 +  2u’W { u - u )  (4.36)

If L(.) <  0 it follows that the anti-windup system is internally stable and that ||7 .̂||i?2 <  Â holds. 

For the sake of illustration, let W  =  I. Although this restricts the design freedom, it enables a

simple illustration of a class of robust AW compensators (the case when W  ^  I  will be discussed

next). Expanding equation (4.36) and substituting u =  uun — Fx  and z& =  (unn — F x — u) 

gives

L =  x'{A'P + PA +  2P B F  + F'F)x +  2xPBu -  u'u -  (p2 -  1 )u'linulin -  2xF'u'lin (4.37)

Eliminating cross-product terms in three steps (as in the proof of Theorem 4.1), it is possible 

to obtain conditions

A 'P  +  P A  +  p~2P B B ' P  =  0 (4.38)

and

Z  =  ( 1 -  pl~ 2) I  >  0 /i >  1 (4-39)

which ensure global stability and some level of robustness. Furthermore, if equations (4.38) and

(4.39) are satisfied, a suitable AW compensator achieving | |^ | | i ,2 <  P is obtained by calculating 

the matrix gain F  as follows:

F  =  - ( l - pl~2) B ' P  (4.40)
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Notice that the immediate solution for the Riccati equation in (4.38) is P  =  0, which yields 

F  =  0 and hence our AW compensator takes the form of an internal-model-control (IMC) 

compensator. Thus for optimal robustness, the Riccati approach agrees with [107] in advocating 

the IMC scheme as an optimally robust solution as p  is not restricted by equation (4.38) (note 

that p  =  1 for P  =  0). However, there is more freedom in equation (4.38) because by redefining 

P  =: P ~ l >  0 we equivalently obtain, from equation (4.38), the Lyapunov equation

PA' +  A P  +  p ~ 2B B '  =  0  (4.41)

which has a positive definite solution, and therefore produces a compensator different to the 

IMC scheme.

In order to solve the robust AW compensation problem, it is necessary to meet the conditions in 

Problem 2 (and hence Problem 1). It is easy to observe again that the conditions of the standard 

AW problem are met if internal stability of the closed-loop compensated system is guaranteed 

(assume zero initial conditions for the AW compensator). By choosing F  as described in (4.40), 

it is possible to guarantee that ||'7^||i,2 <  P for some p  >  0, therefore solving the robust AW 

compensation problem. It can be argued that the the strong AW problem, i.e. HTpl  ̂ <  7 , is 

better solved when the IMC-like scheme is avoided (see Theorem 2 and proof).

Remark 4.5: More generally (for W   ̂I),  the expression in (4.36) is given as

L =  x \ A ' P  +  P A  +  2 P B F  +  F'F)x  +  2 x ' P B u - u { 2 W - I ) d - { p 2 - l ) u ' linu'lin

- 2 x'F'uiin +  2ulin(W  -  I)u -  2x 'F ' {W  -  I )u  <  0 (4.42)

Completing the square for terms involving unn , a condition on Z  is derived as

Z  =  2 W  -  p ~ 2W 2 -  I  >  0 (4.43)

As W  is diagonal, Z >  0 /i2 >  2 ^ 1  Vi e  { 1 . .  . m }. Notice that p  >  0 => wi >  0.5 and that

the minu.l {//(a;i) =  1} and occurs at Wi =  1 (or W  =  I).  This can be verified by equating the 

derivative of p{wi)  to zero and solving for wp

dp(wj)  _  2 Wj(wj -  1 ) _  
d w i  (2 — l ) 2 1

We assume that the solution is a minimum, that is, the second derivative of p { w i ) with respect 

to Wi is positive. Thus W  =  I  is in fact, the optimal choice which maximises robustness

margins. This can be seen in Figure 4.7. □ .
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Figure 4.7: p 2 and W{ such that Z  >  0

The purpose of AW compensation is to improve performance during periods of saturation. 

Section 4.3 mentioned that the optimal solution (the smallest //) to the robust AW problem 

is likely to be IMC-like, which as noted earlier, generally has performance issues. In fact, just 

considering robustness leads to conditions (4.38) and (4.40) which do not give any explicit 

performance guarantees, ensuring only robust stability. The real value of conditions (4.38) and

(4.40) is when used in conjunction with performance optimization.

Conversely, the AW solutions given in [110] performed well under nominal conditions, but 

tended to produce AW compensators with large poles and ones which produced large compen­

sation signals. No guarantees about robustness were given until later work [107] which involved 

computationally expensive LMI optimisation. Furthermore these formulations arguably lacked 

intuition and some of the features of the full-order AW compensators were clouded by the 

design method; in particular the “stability multiplier” , and its effects on the system, is lost in 

the optimisation routine.

This section will attempt to show that the Riccati-based work described in the last section (and 

also in [90, 91]) naturally produces a family of anti-windup compensators where the “stability 

multiplier” (i.e. W )  is a measure of the robustness properties of the system. It will also give a 

method for the synthesis of robust AW compensators with performance guarantees.

The AW problem of robust stability and performance guarantees involves minimizing a mixed 

C‘z gain. By combining both objectives, it is possible to pose a sensible £ 2  gain optimization
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problem which addresses robustness and performance simultaneously. The following theorem  

gives the solution of such m ixed robustness/perform ance problem.

T h eorem  4 .2  Let Assum ption 1 be satisfied: then there exists a full-order Robust A nti­

windup Com pensator 0  =  [0[ 0'2\' € M(’m+r/)xm, as described by equations ( f .9 ) -( f . l0 ) ,  which

solves Problem 2 with robustness margin 1 / / /  if there exist a positive definite matrix P  =  P' >  0 

and, positive real scalars ujp and 7  such that the following Riccati equation is satisfied

where

A 'P  +  P A  +  P B R  B ' P  +  Q =  0 (4.44)

A =  A  +  B R ~ l D'C  (4.45)

Q =  C'(I  +  D R - l D')C  (4.46)

R  =  (7 21 -  D'D)  >  0 (4.47)

and

Z  =  {up -  y - 2) ^ 11 -  D'D)  >  0 (4.48)

Furthermore. if equation (4-44) ls satisfied, a suitable 0  is obtained, by calculating the matrix

gain F  as:

F  =  - y 2{ujp - ^ 2) R ~ l (B 'P  +  D'C)  (4.49)

and the robustness margin is given as 1 / / /  =  1 /{'iy/afp) D

Before giving any formal proof o f the theorem, it is instructive to consider the relationship be­

tween the standard AW solution and existing robustness properties. For simplicity, assume G{s)  

is strictly proper (i.e. D  =  0); then it follows that for sim ultaneous robustness/perform ance 

optim isation we would like to ensure

w j y dp

A
< hW'aiinh (4.50)

2

where Wp >  0 is a generally diagonal matrix, which weights the performance variable and

allows a trade-off between the different objectives. From the results given earlier in this section,

a sufficient condition for this to  hold can be easily derived and is given by

A 'P  +  P A  +  pT2P B B ' P  +  C'WPC  =  0 (4.51)

F  =  - ( I T ” 1 -  pT 2)B'P  (4.52)
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I
which ensures that ||Wp2 '</dll2 <  H I I I 2 and where W  is the extra parameter introduced by 

the Circle Criterion formulation and the sector bound definition. Next, assume that Wp is a 

diagonal scalar m atrix, i.e. Wp =  I ujp >  0, and define Pw : =  P uj~ 1 >  0. This allows us to  

rewrite equation (4.51) as

ljp (A'Pw +  PWA  +  p ~2lupPwB B 'P w +  C'C)  =  0 (4.53)

N ext, defining 7  :=  / / / yi elds (as u)p >  0)

A'PW +  PWA  +  y ~ 2PwB B 'P w +  C'C  =  0 (4.54)

Similarly we obtain F  as

F  =  - ( W ” 1 -  ti~2)B'Pwu p =  - ( W ~ lu v -  7 ~2)B'PW (4.55)

Notice that equations (4.54) and (4.55) are of exactly  the sam e form as (4.12) and (4.17) w ith

P w playing the role of P , and W ~ luJp that of W ~ l . The robust stability margin can then be

measured using

< y \ \ V w ~ ^ W \ \  (4.56)

It is possible to conclude that for small u>p, or equivalently large W , greater robustness is 

obtained (small p, corresponds to greater robustness margins, ^). Thus in the standard AW  

problem, the choice of W  is directly linked to  the robustness o f the system  and must be chosen 

large.

P r o o f :To satisfy the robustness and performance AW problem we need to  ensure that both  

the standard AW problem, i.e. | |^ | | i ,2 <  7  for some 7  >  0, and the robust AW problem, 

i.e. \\Tr \\ i,2 <  P for some p  >  0 , are satisfied while also requiring internal stability and well- 

posedness. In order to achieve this we would like to ensure that

yĴ pDd
^  H|w/jn ||2 (4-57)

If this inequality is satisfied, the maps <  h and Il^plk2 <  7  — ~r=i  i-e - they are finite’ v^p
C2 gain stable. To guarantee inequality (4.57) holds and to ensure internal stability, as before, 

it suffices that a certain cost function be negative definite. This cost function is defined as
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The remainder of the proof is given for the general case when h ^ O .  A lthough it is possible to  

give a simpler proof when D  =  0, the sim plicity obscures the cross term s which require more 

care in removing.

First note that we can “absorb” cup into the p lant’s C  and D  matrices:

l lv ^ w l l 2 =  +  D F ) x  +  Dn\\\2 =  ||(C„ +  D wF)x  +  D wu | | 2

where Cw =  y/oJ^C and D w =

Expanding (4.58) and substituting u =  v//m — uy and yy =  (Cw +  D wF)x  -f- D wu gives:

L =  x P x  +  x'Px  +  r ' (C w +  D WF)'{CW +  D wF )x  +  x'F’Fx  

- ( / i 2 -  1 )'u'iinuHn -  u ( 2 W  - I  -  D'wD w)u 

- 2 x'F'ulm +  2u'(W -  I )u lin -  2x'F'{W -  I)u  +  2x'(Cw +  D wF )’D wu (4.59)

As before, the cross-product terms are elim inated in three steps. (I) The cross-product terms 

involving unn, u and x are grouped as follows:

-  [{y2 -  1 )uHnuun +  2x'F'uun -  2u {W -  I)uun] =  - \ \ (p2 -  1 )^uUn -  (p2 -  1)“ 5 ((JT -  I)u -  F x ) | |2

+ (u'(W - I ) -  x'F){p2 -  1 ) _1 ((IT -  I)u -  Fx) (4.60)

Combining the above w ith equation (4.59), a cost function containing no cross-product terms 

between uun, u and x is obtained:

L =  x' (A'P +  P A  +  2 P B F  +  (Cw +  D WF)'(CW +  D WF)  +  p F ,F)x  -  i i p Z u

+  2x'{Cw +  D wF)'D wu +  2x 'P B u  -  2x 'F 'p (W  -  I)u

-  | | ( ,< 2 -  1 )^ultn +  ( , , 2 -  l ) - 2  ( (W  -  -  F x ) f  (4.61)

where necessary conditions are obtained *as Z  =  2TT — W 2p ~ 2 — I  — p ~ l D'WD W >  0 and

=  i  -  ( p 2 - 1 ) _1 =  yy
(II) The cross-product terms involving u and x are grouped as follows:

-  [u'pZu -  2x'(PB  +  (Cw +  DUF ) ' D W -  F'p(W -  I))u] =

- l l / l i z T  -  ,1 - ) Z--2(B’P  +  D'w(Cm +  D WF) -  f i (W  -  / ) F ) 3; | | 2 

+ x ' ( P B  +  (Cw +  D WF)'DW -  F'jj.(W -  I ) ) ( , r l Z~'  (B 'P  +  D ’„,(CW +  D WF) -  -  I )F )x

lrrhis reduces to the Z  given in Theorem 2 when W  = I  - see later in the proof.
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By replacing this group of terms, the cost function can be written w ith  no cross-product terms 

between u and x\ viz:

L =  x'[A'P + PA +  C'U.{I +  Dwjj~1Z ~ iD[v) C w +  2C'wDuF~l Z ~ l B’P  +  P B p - ' Z ^ B ’P  

+ F ’(fl  +  ji(W -  1 )Z - ' (W  -  7) +  77;,,(7 +  D ’W)DU. -  2D'u,DwZ~l (W -  I))F

+  2PB(I + f , - 'Z - 'D 'U,DU, -  Z - \ W  -  F))F + 2C'„,DU.(I + Dw(i~'Z~lD'u, -  Z ~ ‘(W -  I))F}x

-  | |( //2 -  +  ( //2 -  l ) “ i ((» ' -  I)u -  Fa-)||2

-  \ \ Z i v - Z - i { B ' P  + D'l, i C 1, + D wF ) - f i ( W ~ I ) F ) x \ \ 2 (4.62)

(I I I )  The terms involving F  and F'F  are grouped. Before going any further, it is possible to  

write a more com pact formulation by using the following identities

ftH  =  1 +  f r XZ ~ XD'wD w -  Z - ' ( W  -  I)

j iH  =  Z ~ l ( W —W 2ix-2)£i+D'n,Du.+ f i (W —I ) Z ~ ] ( W —I ) —2D'wD wZ ~ 1( W —I)+D'wD wj } - l Z ~ l D lmD w 

where

H  =  W 2p~2 +  (W  -  W 2p - 2) Z ~ l ( W  -  W 2p ~ 2)

The problem of grouping terms involving F  can be written as:

F'fiHF  +  2F ' (W  -  W 2p~2) Z ~ l (B 'P  +  D ’WCW) =

|| f C H ^ F  +  -  W 2p - ‘2) (B 'P  +  D'WC W) ||2

- ( P B  +  C ’wD w) Z - l {W -  W 2p - 2) f r l H ~ l ( W  -  W 2p - 2) Z - l (B 'P  +  D'WCW)

Using the matrix inversion lemma:

H ~ l =  W ~ 2p 2 -  W ~ 2p 2(W -  W 2p - 2) f i R - {{W  -  W 2p - 2) W - 2p 2

where R  =  /i2/  — D'WD W. Now define the m atrix Q such that

Q =  Z “ 1 ( W -  W 2p~2)fi~lH ~ ] (IT-  W 2/J~2)Z~ 1 =  R~1(W — W 2 2)W~2p?{W — W 2n~2)Z~x (4.63)

The m atrix Q is such that the following equality holds:

p ~ l Z ~ l -  Q =  R - 1 (4.64)

Finally, by using the results given earlier in (III), an expression for the cost function (4.58) is 

given by

L(x, uUn, F, W ) =  La +  L„ +  LC (4.65)



Chapter 4. Anti-w indup compensation for stable system s with input saturation 75

where

L„ =  x'[A'P + P A  +  P B ( f r ' Z ~ l -  Q ) B ' P  +  C ' J I  +  £>„,(//-'Z " 1 -  Q ) D ' J C W

+  2C'n.Dw{P~l Z - 1 - Q ) B ' P \ x  (4.66)

L b =  x'Wft iH^F +  f r ^ H - ^ W  - W 2i r ' 2) Z - l (B 'P  +  D'wC w)\\2x (4.67)

C  =  - | | ( / / 2 - l ) 3 H l t „  +  ( / / 2 - l ) - 3 ( ( « > - - f ) « - ^ O I I 2

-I Iz i u  -  Z - i ( B ’P  +  D ' J C w +  D WF) -  f,.(W -  / )F ) :r ||2 (4.68)

As before the negative quadratic terms, L c, can be ignored and the second term, L&, set to

zero. This condition allows the designer to obtain a stabilizing m atrix gain F  as follows

+  - W 2h - ‘2) Z - ' ( B ' P  +  D'u.Cw) =  0 (4.69)

F  =  -  W 2y 2) (B 'P  +  D'WC W) (4.70)

which after some sim plifications yields:

F =  - v 2(W~' -  y 2) R ~ ' ( B ' P  +  D'wCu:) (4.71)

The positive definite m atrix P  =  P'  >  0 is obtained bv solving the R ieatti equation which 

makes the first term L 0 =  0, viz:

A'P +  P A  +  C'u,DwR - lB ' P + P B R - ' D ' wCw +  P B I i - lB ' P  +  C'w(I +  D wFt~lD ’J C w =  0 (4.72)

Substituting for Cw and D w transforms equation (4.71) into

F  =  y 2up) y 2u : - ' l  -  D ' D ) - ' ( B ' P ~ '  +  D'C)  (4.73)

=  1 2( l l ' - ' ^  -  7 - 2/ ) ( 7 2/  -  f l 'D ) (B 'P r  +  D 'C ) (4.74)

where 7  =  7  \ / 7 ;j . Re-defining Ft. =  ( 7 21 — D'D)  and setting 117 =  I  (as it is a free parameter) 

yields the expressions for F  and Z  given in Theorem 2. We can apply a similar strategy to  

equation (4.72) to obtain

A!PW +  PWA  +  C ' D R - l B'Pw +  PWB R ~ [D'C  +  PwB R ~ l B'Pw +  C'{I  +  D R - l D')C  (4.75)

where Pw =  P uj~ [ . N ote that equation (4.75) has the exact same structure as equation (4.44), 

but w ith P  re-defined as Pw.

The proof is com pleted by noting that internal stability - which is guaranteed if the Riccati 

equation in (4.72) has a solution and F  is chosen as stipulated in (4.49) - it ensures conditions
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(1) and (3) (and hence condition (2)) of the standard anti-windup problem. This guarantees 

condition (1) of the robust anti-windup problem, while condition (3) is satisfied through the 

conditions of Theorem  2. W ell-posedness of the system  is trivially guaranteed by the absence 

of direct feed-through terms in the nonlinear loop.

R em ark 4.6: As p . =  it follows that by choosing ujp small, we have a better robustness

margin. Unfortunately, for sufficiently small u;p, the feedback m atrix F  also becom es small, 

leading our AW com pensator to  approach the IMC solution, which is known to have poor 

performance. In contrast , a large ujp creates large com pensator poles which may be problematic 

for practical im plem entation and are generally linked w ith small robustness margins. Observe 

the existing trade-off between robustness and performance and how it is encapsulated in the 

parameter ujp: sm all u p yields better robustness margins at the expense of reduced performance. 

It is interesting to compare the conditions in Theorem s 1 and 2. N ote that W ~ l in Theorem 1 

is essentially equivalent to cop in Theorem 2. Thus the choice of the “stability multiplier” , IT, 

plays a central role in the robustness of the anti-windup com pensator. Alternatively, in the 

standard AW solution, W  can be seen as the “robustness weighting m atrix” : choosing W  large 

(equivalent to u)p small) increases the robustness of the design. This gives some theoretical 

justification for the robustness of the schemes tested in [41]. □

R em ark 4.7: It is not necessary to choose Wp =  ujpI  in robust anti-windup synthesis. We 

have made this choice in Theorem  2 to enable clear expressions for robustness to be derived, 

although this is not a requirement in general. W ith Wp chosen as a more general positive  

definite (normally diagonal) m atrix, it is possible to increase the flexibility in the design and 

draw the same general conclusions, although the robustness margin will not be as explicit as 

that given in Theorem  2. □

R em ark 4.8: The main difference between the solutions given to the standard and robust AW  

problems are the conditions im posed by Z  in inequalities (4.16) and (4.48). These inequalities 

im pose different conditions on the free parameter, W  (alternatively uop) giving rise to different 

extrem e solutions. This is perhaps most easily seen for D  — 0. If this is the case, inequalities 

(4.16) and (4.48) becom e

Zstnd := 2W  -  7 ~2W 2 => 27 2/  >  W  (4.76)

Zrob :=  {uP ~ l ~ 2)^p 1 => 72 >  1 (4.77)

So when W  is as large as possible, that is W  ~  2 7 2/ ,  it follows from equation (4.17) that F  is

nonzero and hence, the com pensation scheme is not IMC-like. Conversely, when uop is as small
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as possible, i.e. u> ~ 1 ~  y 2, it follows from equation (4.49) that F & 0 and hence, the IMC 

solution is recovered as an extreme solution, i.e. the most robust scheme possible. Thus, as 

expected from the results of [107], one choice for an optimally robust AW scheme (i.e. when cop 

is as small as possible), is simply the IMC scheme. It is also interesting to note that inequality 

(4.48) ensures that inequality (4.16) holds; the converse is only true if ||Z)|| is “small”. □

4 .4  E x a m p le

In this section, the effectiveness of the results are shown through an example taken from the 

literature. This example, that of a missile auto-pilot introduced by [78], was also used in 

[110] and [79]. The plant is a simplified model of the dynamics of the roll-yaw channels of a 

bank-to-turn missile:

-0 .818 -0 .9 9 9 0.349

A p = 80.29 -0 .5 7 9 0.009 >

-2734  0.05621 - 2 . 1 0

0.147 0 . 0 1 2 0  0

Dp = -194 .4 37.61 ’ Dpd 0  0

-2716 -1093 0  0

1 0  0

ioo

c p = , Dp — Dpd —
0  1 0 0  0

A nominal linear LQG/LTR controller yields excellent nominal closed-loop time and frequency 

responses and is given by

(4.78)

where

A c\ —

A c B c Bcr

Cc D c D cr

A d B c.i 0 0

0 0 - / I

Ccl 0 0 0

-0 .2 9 -1 0 7 .8 6.67 -2 .5 8 - 0 .4

107.68 -97 .81 63.95 -4 .5 2 -5 .3 5

-6 .7 2 64.82 -54 .19 -40 .79 5.11

3.21 2 . 1 29.56 -631.15 429.89

0.36 -3 .3 9 3.09 -460.03 -0 .7 4
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B.cl

2.28 0.48

-40 .75 2.13

18.47 - 0 . 2 2

-2 .0 7 -44 .68

-0 .9 8 -1 .1 8

, C cl =
0.86 8.54

2.17 39.91

-1.71 43.91 1.12

18.39 -8 .51  1.03

The actuators have saturation limits of ± 8  in both channels. Figure 4.8 shows the nominal 

linear response of the missile for a pulse reference r =  [ 6  — 6  ] applied for 16 seconds. Notice

the excellent response and decoupling. However, observe that the control signal strays outside 

the set U =  { (8 , 8 ), (—8 , 8 ), (—8 , —8 ), (8 , —8 )} for a considerable period of time. This suggests 

that the system with saturated actuators might have poor performance and could even become 

unstable. Figure 4.9 shows the system with saturation (but no AW); clearly the saturation has 

caused a loss in axis decoupling and gives rise to large overshoots. To limit the degradation 

caused by saturation, an AW compensator designed using Theorem 1 is introduced. As the 

anti-windup compensator is designed using the bounded real Riccati equation associated with 

the open-loop system, the optimal value of 7  is 11G*(s ) 11oo =  7  «  379, leaving the designer the 

task of choosing W .  Choosing W  as W  =  101-2x2 yielded the following value of F:

F =
4.8324 31.0935 0.9470

-0 .1224 -0 .6860  -0 .0004
(4.79)

Figure 4.10 shows the missile response with the full order AW compensation proposed in 

Theorem 1. Notice the improvement over the uncompensated response: the saturated system  

follows the linear response closely and the return to nominal linear dynamics is swift. Also, 

observe how the control signal of the compensated system returns to linear behavior faster 

than the uncompensated system. The system displays additional dynamics introduced by the 

AW compensator once linear behaviour is resumed. This suggests that the poles of the AW 

compensator must be fast and well damped in order to reduce the settling times of post­

saturation transients.

Note that the Riccati based synthesis described in Theorem 1 gives, for a given value of 7  (and 

therefore P  >  0), a family of gains F , and therefore anti-windup compensators, parameterised 

by the diagonal matrix W  >  0. Observe from equation (4.10) that the poles of the anti-windup 

compensator and the sizes of the compensation signals yd and Ud are functions of W .  Increasing 

the size of F  (and thus decreasing the size of W )  leads to larger poles (faster dynamics) and a 

large compensation signal Ud-

The flexibility in W  is useful for implementation as it allows the designer to limit the magnitude
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Figure 4.8: Nominal linear response
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Figure 4.9: Saturated system with no AW compensation
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Figure 4.10: Saturated system with full-order AW compensation using Theorem 1

of the compensator poles to ensure that they are compatible with the sampling frequency. The 

possibility of closely relating the size of the stability multiplier with the systems poles is not 

present in the various LMI formulations [110, 35] of the AW problem. Figure 4.11 shows time
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w F Size of poles spec(A +  BF)

1 0 F  =
4.832 31.093 0.947 

- 0 . 1 2 2  - 0 . 6 8 6  - 0 . 0 0 0
spec(A  +  B F )  =  1 0 3 x [-8 .618 -  0.013 ±  0.0297]

50 F  =
0.966 6.217 0.189 

-0 .024  -0 .1 3 7  -0 .000
spec(A  +  B F )  =  1 0 3 x [-1 .723 -  0.004 ±  0.032/]

2 0 0 F  =
0.241 1.553 0.047 

-0 .0 0 6  -0 .0 3 4  0.000
sp ec (.4 +  BF )  =  1 0 2 x [-4 .308 -  0 . 0 2 1  ±  0.3207]

Table 4.1: Variable stability multiplier W  for a fixed sam pling Rate A T  =  10 3

sim ulations for different values of W  w ith a fixed sampling rate of 10~s sec (see Table 4.1). Note 

that, as expected for small W  which results in large anti-windup com pensator poles, numerical 

problems occur and the AW com pensator does not function well.

Now consider the real nom inal open-loop plant G(s)  =  G (,s)A ac/(s) consisting of the nomi­

nal plant G(s)  plus unm odeled dynam ics A aCf(,s) - d iag(5ac/(s), 5act (s)) . A act( s ) represents 

unm odeled actuator dynam ics of the form:

<*act(s) =  2 +  2s +  2C,ujns +  u>n

where u)n is the undam ped natural frequency and (  is the damping coefficient. Assuming  

a “worst case” scenario (from looking at the frequency response of the closed-loop transfer 

function) and setting these constants to 80rad/sec  and 0.049 respectively, the actuators have 

a resonant peak and very large phase shifts near the crossover frequency of the nominal plant. 

This input-m ultiplicative uncertainty can be modeled as an additive uncertainty Ao-(.s) =  

G (.s)[Aar/(«s) — I]. It can be verified using the small gain theorem that under this uncertainty 

the system  is robustly stable as \ \K(I  — G K ) ~ l Ac;||oo <  1- The nominal (un-saturated) closed- 

loop response, including uncertainties, is shown in Figure 4.12 and it is clear that stability has 

been m aintained and that linear performance in the face of this uncertainty is remarkably good; 

the system  has good robust stability margins and robust performance properties. However, 

introducing both saturation and uncertainty leads to the system  entering a very high amplitude 

limit cycle as shown in Figure 4.13.

In order to show the advantages of the Riccati based design m ethod proposed in this paper, 

it will be compared against the static, low-order and robust full-order LMI m ethods proposed  

in [107, 110, 107]. Consider the uncertain, saturated, AW com pensated closed-loop system . 

Firstly, static and low-order com pensators are designed using the LMI m ethod described in
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Figure 4.11: Full order compensation using Theorem 1 for different values of W,  7  =  378 and 

sampling rate of 10-3 sec

[1 1 0 ], to give:
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Figure 4.12: Uncertain Unsaturated system
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Figure 4.13: Uncertain Saturated system

©static —
0 i

© 2

-0.9992

0.0173

- 0.0112

- 0.2022

-0.0039

-0.6921

-0.5573

-0.3408

-1.6973 5.1136 -7.2807 -356.3648
0  toward =  F\Q\  +  F2 © 2  =  F\ +  f 2

3.5044 81.5261 -113.6640 53.0146

where the transfer functions F\(s)  and F2 (s) are chosen to be F\ =  d ia g (^ 2 , 1) and F2 =  h

From Figures 4.14 and 4.15 it is evident that both the static and low-order compensators just 

manage to maintain stability in the presence of uncertainty, but both responses are marked 

by large amplitude oscillatory responses with long settling times; the tracking and decoupling 

properties of the system are lost. This reinforces the need for robust AW compensation schemes 

which can deal with a wide range of uncertainties in a systematic way. Using the approach
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Figure 4.14: Uncertain Saturated system +  Static AW compensator
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Figure 4.15: Uncertain Saturated system +  Low-order AW compensator
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Figure 4.16: Uncertain Saturated system +  Full-order LMI based robust AW compensator

of [107], a full-order “robust” LMI-based AW compensator was obtained by choosing weights
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Figure 4.17: Uncertain Saturated system +  Full-order Riccati based robust AW compensator 

Wp =  I  (performance) and Wr =  0.0017 (robustness) to give the matrix gain:

F =
0.1181 0.8070 0.0240

-0.0035 -0.0172 -0.0002
(4.80)

It can be observed that in order to enhance dynamics during nonlinear operation (saturated 

system) of the overall closed-loop, it is necessary to give more relative importance, via the 

weight Wp, to performance optimisation. It transpires that with too large a robustness weight, 

Wr, nominal tracking suffers greatly during saturation.

The robust full-order compensator synthesis of [107] will be compared against the synthesis 

method proposed in this chapter. Figure 4.16 shows the response of the full-order LMI-based 

AW compensator proposed in [107]. Surprisingly, its performance is worse than that of the static 

or low-order compensators. This may be due to the fact that in such a scheme, robustness is 

achieved by reducing the magnitude of the poles of the compensator. This, in turn, reduces the 

system’s performance. Although this is the ever present trade-off in robust control, the lack 

of real freedom in the LMI synthesis method has a tendency to compromise more performance 

than necessary.

Figure 4.17 shows the response of the full-order Riccati based AW compensator proposed in 

Theorem 2. Although the response is far from ideal, it is definitely stable and yields transients 

around two orders of magnitude lower than the LMI-based compensators. Although the robust 

Riccati-based compensator has faster dynamics, it is clearly preferable to the LMI based design. 

This is actually achieved by using Theorem 1, which can be seen as a weighted version of 

Theorem 2 , and setting W  =  diag[20,0.1] and 7  =  500. Notice that the freedom in choosing 

7  and W  is especially useful when dealing with robustness issues and is almost absent in the 

LMI formulations. In other words, the so called stability multiplier (W)  and the performance
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index 7  efficiently capture the trade-offs that exist between robustness and performance when 

designing AW compensators in the presence of uncertainties.

It should be emphasized that the missile example considered here is fairly artificial and the 

uncertainty is contrived to produce particularly poor responses during saturation. However, 

it does demonstrate that the problem of uncertainty in anti-windup design is non-trivial and 

careful attention should be paid to the design of robust anti-windup compensators.

4 .5  C o n c lu s io n s

This chapter has presented an alternative solution to the full-order AW problem with perfor­

mance and robustness guarantees. The solution given is novel in the sense that the majority 

of full-order AW design techniques which ensure stability and performance involve LMI’s (see 

[35] for a general treatment): here we simply require the solution to a bounded real type of 

Riccati equation, reducing the computational burden associated with LMI-based AW synthesis, 

particularly when dealing with high order systems. The solution proposed, while potentially 

conservative, is also believed to be more flexible than the LMI solutions as there is a clear link 

between the free parameter W  and the size of the poles of the anti-windup compensator.

The chapter has also suggested a way of accounting for general linear additive uncertainty in a 

similar way to [107]. The results obtained have uncovered the close relationship between robust 

stability and the free parameter W , or the “stability multiplier” . One of the important features 

of this perspective 011 the robustness of an AW compensator is that it enables the designer to 

trade-off performance and robustness in a more intuitive way than with the LMI based results 

of [107, 100] and also allows the relative importance of each channel to be captured in the 

compensator design through the matrix W .

Another important feature is the direct freedom the designer has to choose 7 . Although 

optimal performance is always desired (i.e. 7  =  ||G'||00) sometimes it is necessary to compromise 

performance in order to achieve robust stability. In the LMI formulation given in [107] some 

intuition is lost and not associated as closely with any of the already existing free parameters; 

instead, extra weights Wp and W, are introduced to capture this trade-off.

It is interesting to observe how the design of full-order AW compensators, if no uncertainty is 

present, may be completely independent from the controller K (s ) .  However, when uncertainties 

are introduced, this is no longer the case and a small adjustment of the linear loop may enhance 

robustness of the saturated close-loop plant. Recently the weakened AW problem has been 

proposed in [26] and it attempts to improve robustness at the expense of adjusting the linear
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loop, which has the potential to achieve greater robust stability (see also [61]); as a consequence, 

the AW compensator modifies the controller not only during saturation periods, but also during 

uncertain behaviour.



Chapter 5

Rate-Limit AW com pensation

5.1 In tr o d u ctio n

Much of the constrained input literature addresses the problem of input saturation whereby, 

as discussed earlier in the thesis, the magnitude of the control vector is subjected to element­

wise limiting. Not surprisingly, researchers have devoted much attention to this problem due 

to its prevalence in most engineering applications. As discussed in Chapters 3 and 4, the 

magnitude saturation problem led practitioners and researchers to develop anti-windup schemes 

and indeed, many synthesis techniques have been proposed (some of the notable examples are 

[52], [110], [65], but see Chapter 3 and the references therein for more details). It is evident 

that at present, at least in principle, the control engineer who faces magnitude saturation 

problems has tools to enable him/her to address the problem, with some of the more modern 

AW schemes guaranteeing stability and performance.

However, magnitude limits on the control vector are not the only class of input nonlinearity 

which may be present in an otherwise linear system. Another significant class of nonlinearity 

which is well known to cause problems is input rate saturation. Although there are various 

ways of modeling this phenomena, in essence, rate saturation (or rate-limiting as it is often 

called) limits, normally in an element-wise fashion, the rate of change of the control vector. 

This type of nonlinearity is not as wide-spread as the saturation nonlinearity, as, for example, 

electrical systems typically are less prone to suffer from this problem. Nevertheless, rate-limited 

actuators can be a significant problem in many systems, particularly those with mechanical 

actuators, and in some applications rate-limiting can have devastating consequences. Some of 

the more notorious examples of the catastrophic effects of rate-limiting are the crashes of the 

SAAB Grippen [2] and Boeing V22 Osprey aircraft [6 ], and the meltdown of the Chernobyl 

nuclear power plant [94].



Chapter 5. R ate-L im it A W  compensation 88

Due to this, efforts have been made to accommodate rate-limits in control systems and several 

successful methods have been proposed. However, it is important to mention that most of 

these results have either been effectively “theory only” ([55, 57, 69, 4, 32]) with little insight 

for the practicing engineer, or, they have been “practice only” ([82, 98]) results with effectively 

no stability/performance guarantees. Moreover, compared to the literature on amplitude con­

strained systems, the literature on rate constrained systems is minimal and thinly spread. 

Some of the methods which are applied in industry have been developed to make aircraft less 

prone to rate-saturation, phenomenon which can subsequently lead to the onset of so-called 

pilot-induced-oscillations (PIO’s). These methods - often termed “phase compensators” (see 

for example [82]) - have effectively attempted to tackle the phase-shift which typically occurs 

during rate-limiting and indeed the name “phase compensators” often refers to an anti-windup 

type strategy that addresses this shift. None of these phase compensation schemes are accom­

panied by anything more than ad hoc design procedures and engineering insight.

The academic community has also attempted to address the rate-saturation problem. Most 

notable are the one-step schemes that seek to design single controllers which account for rate- 

saturation a priori  and consist of “one-shot” design techniques. Good examples are [55] and [32] 

which have had some success, from a purely theoretical perspective, in tackling this problem. 

Further examples can be found in [99] and the references therein. Popular model predictive 

control (MPC) techniques also enable simple rate-saturation constraints to be incorporated in 

the controller design optimisation routine in a relatively straightforward manner, but suffer 

from problems similar to those associated with MPC in magnitude saturation problems (see 

[10,62]).

Recently, some attempts at applying anti-windup (AW) schemes to the rate saturation problem 

have been made ([4, 45, 1 0 0 ]). Although the development of these schemes can be regarded as 

a step towards bridging the gap between the need to provide rigorous guarantees of the closed- 

loop system ’s behaviour during rate-saturation, and the need to develop techniques which are 

useful in practice, these schemes have tended to be lacking in intuition and have not been 

developed enough for the practicing engineer. As mentioned earlier one of main advantages 

of using AW conditioning schemes is that the linear performance (i.e. the performance when 

rate-saturation does not occur) is not directly restricted by the conditioning method, giving 

full freedom in the design of the linear controller. Moreover, the AW compensation schemes 

advocated in [118] which we follow here are designed independently of the linear controller 

and thus the same AW compensator can be used with multiple controllers. This will have 

implications for results reported in later chapters of this thesis.
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This chapter will give an intuitive but, rigorous solution to the rate-limit problem using anti­

windup techniques. The focus is on developing an anti-windup technique which is easy to 

compute and satisfies the demands of the practicing engineer, while also guaranteeing stability 

and performance levels for the overall closed-loop system. For this work, as is common in 

the literature, rate-limits will be treated as dynamic systems with a magnitude-limit embedded 

within an internal feedback loop. As will be clear later, this representation essentially allows us 

to convert our rate-limit problem into a magnitude-limit problem at the expense of augmenting 

our system with critically stable poles. This is a crucial technical difference between the results 

presented in this chapter and those in the previous one. The presence of these critically 

stable poles means that, in general, it is difficult to guarantee global stability of the closed-loop 

system, even with an appropriate anti-windup scheme in place. However, this problem is partly 

overcome by using a semi-global approach instead (this approach has often been used in the 

literature - see [55, 57] for example). The resulting anti-windup design technique is similar to 

the one proposed in Chapter 4 but this time the Riccati equation has three free parameters. 

These parameters influence the performance and stability properties of the system and, hence, 

the chapter also provides insight into how these parameters can be tuned to capture the trade­

offs, which may be required in practice, in a clear and intuitive manner.

5 .2  L inear s y s te m s  w ith  r a te - lim its

Consider the same stabilisable, detectable and finite dimensional linear-time-invariant (FDLTI) 

plant G(s)  as considered in previous chapters (see Section 3.1 and equation (4.1)). Thus the 

dynamics of the plant remain the same, but instead of input magnitude-saturation, we assume 

that the plant is subject to input rate-saturation, viz

{ x — A x  +  B u r
(5.1)

y =  C x  +  D u r

with x E Rnp, ur E Rm and y  E M9. Again, we have not explicitly accounted for distur­

bances in this formulation, although as with the magnitude limit problem, disturbances can be 

incorporated with little extra effort.

Instead of assuming magnitude-saturation, here we assume the plant is driven by ur =  <&(u) 

which is the output of the rate-limit function

$ (.)  : Rm h-> Rm (5.2)

which is a nonlinear dynamic system. The task of designing AW compensators is more complex 

for this type of dynamic nonlinearity as some of the common assumptions made in the AW
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u / Ur
w

/ 1

Figure 5.1: Representation of a rate-limit function: 4>(.) : Mm i—>

literature cannot be made; in particular, the AW community has often used sector bounds 

to model the saturation nonlinearity (as in Chapter 4, [48]). This has allowed a transparent 

application of nonlinear stability theory, especially the well known Circle Criteria (see Chapter 

2, [48]). Unfortunately, while such an approach is feasible for many static nonlinearities, it 

is not appropriate for a dynamic nonlinearity such as rate saturation. In order to address 

this issue, the rate-limit has been modelled in different ways ([81, 45]), with the objective of 

allowing the conversion of a rate-limit problem into a problem which can be addressed using 

standard nonlinear absolute stability tools.

The rate-limit nonlinear function depicted in Figure 5.1 essentially produces an output ur {t) - 

the actual plant input - which is a rate-restricted version of the desired control input u(t) E Mm. 

In other words, constraint of the input is now on the velocity of the actuator, not its magnitude. 

Throughout this work we assume, as in the magnitude saturation case, that the nonlinearity 

$ (.)  is decentralised, that is

$ ( 7/) =  [$ i (u i ) ,  • • (5.3)

Each component 4>*(.) : R 1—> R has the following properties for some diagonal constant matrix 

H  >  0:

i) if \ui\ <  Ui and |(ui -  $ i(u ;))| =  0, then $i(ui)  =  m

ii) if \iii\ <  hi and \H(ui — 4h(i^))l <  Ui, then will try to follow ui with a rate ur  ̂ =  ui

iii) if \di\ <  hi and |H(ui  — 4>j(i^))| > Ui, then $i(ui)  will try to follow Ui with a rate 

hr,i — i l i f

iv) if \iii\ >  u,i, then urj  =  ±ib; in other words, the output urj  tries to follow the input Ui 

with a limited rate

Remark 5.1: The constant matrix H  is introduced in order to cover the rate-limit model that 

will be introduced next. For the case of an ideal RL, this constant matrix takes a value of 

infinity and the diffrence between properties (ii) and (iii) can not be distinguished. □

The constant rate-limit constraint values are u,i >  0 V i  E { 1 , . . .  ,m }. If there is no rate-limit 

present then 4>(u) =  u and nominal linear closed-loop dynamics govern the system ’s behaviour.
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Figure 5.2: Input/Output Characteristics of rate-limits

Figure 5.3: Dynamic model of the rate-limit

Thus for inputs u(t) with sufficiently slow rate u(t), the rate-limit ideally behaves as the identity 

operator. For inputs with high enough frequency contents and/or magnitudes, the rate-limit 

will behave like a dynamical nonlinear operator. For the case where the input is a sine wave 

with high enough amplitude and frequency, the I/O  relationship is shown in figure 5.2.

This ideal representation of the rate-limit is not convenient to handle and, furthermore, may 

not even be an accurate representation of real actuator dynamics. An alternative way of 

representing the rate-limit (see [81]) is as shown in Figure 5.3, where

: 1 1-> I  i e { l , . . . , r a }  (5.4)

is an operator mapping the desired control vector u(t) to its rate-limited version ur (t). This 

model of the rate-limit features a (decentralised) magnitude saturation in a feedback loop with 

a set of integrators and a (decentralised) set of gains H  =  diag(/? i , . . . ,  hm). Notice that the 

output ur tries to track the input u but with its rate limited to To distinguish this problem 

from the magnitude problem discussed in earlier chapters, the rate-constraint values, which are 

now interpreted as magnitude saturation constraints in Figure 5.3, are redefined as d =  u. The
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system ’s dynamic equations are as follows

sat (—H x rm +  Hu)
(5.5)

where the saturation function is the same as defined in Section 3.1, but with the signal d 

(the vector of rate-limits) replacing u. Essentially, this model allows the rate-limit problem to 

be transformed into a magnitude limit problem at the expense of augmenting the plant with 

neutrally stable poles.

R em ark 5.2: As illustrated in Figure 5.3, the rate-limit consists of a simple closed-loop system  

with a saturation function and an integrator. The idea behind this model is that the actuator 

can be considered to be performing a tracking task - in trying to get the output ur to follow 

the input u - subject to a limit on its output rate. Thus ur =  xrm represents the actuator’s 

actual rate and x r represents the rate it is trying to achieve. □

R em ark 5.3: The representation of the rate-limit in Figure 5.3 and equation (5.5) is not 

identical to that described in equation (5.3). Note that for signals slow enough such that 

u(t) does not exceed its rate-limits, the representation in equation (5.3) yields ur (t) =  u(t). 

However, in equation (5.5), the signal ur (t) is obtained by filtering u(t) through a first order 

linear system, which in the scalar case, 3>r(.) : M M, is given by

Thus in general, by using the representation given in Figure 5.3, ur ^  u during transient 

periods. However, it is important to point out that for a large enough choice of H : the two 

representations, (5.3) and (5.5), are effectively the same. The main difference is that equation 

(5.5) models, in what is believed to be a more accurate way, the behaviour of a real actuator;

As mentioned above, to approximate an “ideal” rate-limiter, the gain H  must be chosen as

present a degraded control action and the system ’s overall performance may be reduced, even 

when in linear mode (i.e. no rate-limiting is present). In other words, H  =  diag(fii, h2 , • • •, hm)

u r (s ) =  — — T7 U(S)  s +  n

equation (5.3) does not permit the actuator to have any “linear” dynamics. Thus for the above

reasons it is preferable to work with Figure 5.3 (and hence equation (5.5)). □

a large positive scalar. In practice, this gain reflects other dynamic properties present in the 

actuator and can be chosen as some value close to its bandwidth. It is important to realise 

that if H  is chosen to be less than the actuators’ actual bandwidth, the control signal will

determines the cut-off frequencies of the equivalent linear actuator and the saturation block
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Rate-limit dynamic model

Ur
G(s)K(s)

Figure 5.4: Block Diagram of a system with modelled rate-limits

models the velocity limiting. In the limit as hi —> oo i 6 { 1 , 2 , . . . , m},  the “ideal” rate-limit 

is recovered.

R em ark  5.4: The time constant jj must typically be greater than the dominant frequency 

components of u in order to prevent the linear dynamics of the actuator from interfering too 

much with the nominal control system design. This is often a valid practical assumption and 

if not, some account of these linear dynamics must be taken during nominal linear controller 

design. □

5 .3  A n ti-w in d u p  c o m p e n sa tio n  for sy s te m s  w ith  r a te - lim its

Figure 5.4 shows a block diagram of the closed-loop system with the rate-limit configuration 

proposed. G(s)  is the plant described earlier and K ( s )  is the 2-degree-of-freedom (2-D.o.F) 

controller, i.e. u =  [K i, y']'. As is typical in the AW literature we assume that K ( s )  has

been designed to stabilise the nominal (not rate-limited) plant G(s)  and to achieve nominal 

performance specifications. The rate-limit model, 4>r(.) appears sandwiched between controller 

and plant. Note that the only nonlinear element in Figure 5.4 is now the saturation nonlinearity 

which is embedded within the rate-limit model. Thus, defining the “augmented” controller as

K  =  H [K \  K 2 -  Ir (5.6)

and the “augmented” plant as

G(S) =
I 1-

A B 0

0 0 I A B

C D 0 C 0

0 I 0

(5.7)
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Figure 5.5: Equivalent System with G ( s )

yim

K(s) G(s)

®(s)= M(s)-I
G(s)M(s)

Figure 5.6: Equivalent AW Saturation Problem: replace G ( s ) with G(s)

the system in Figure 5.4 can be represented equivalently as shown in Figure 5.6. The augmented 

controller, K (s) ,  is now driven by the signals

r G R r, y =
y

LLr

G R q+m

and produces the input to the saturation nonlinearity, d G Km . The augmented plant, G(s),  

is driven by the output of the saturation nonlinearity, dm =  sat(d) G R m and produces the 

output, y. The augmented plant now includes dynamics absorbed from the rate-limit model 

and thus has a larger state-vector (V, x'rm\'  G Mnp+ m ; its poles are now those of the plant G {s ) 

plus m poles at the origin.

Note that Figure 5.5 is in the same form as a control system subject to magnitude saturation 

but with K ( s )  replacing K ( s )  and G(s)  replacing G(s).  Therefore, AW can be introduced in 

a similar manner to before and is shown in Figure 5.6. The anti-windup compensator 0 (s )  

is, again, driven by the difference between the saturated and unsaturated “control” vector 

d =  d — dm but now it contains a copy of the augmented plant dynamics, G(s)  and a free 

parameter M { s ) G TZHoq. This structure will be described in more detail shortly but for now, 

simply notice that by using the “augmented” plant and controller, a configuration identical to 

the magnitude problem has emerged.
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5.3.1 Sem i-G lobal A pproach

At first glance, the above block diagram manipulation may appear to allow a trivial translation 

of the rate-limit problem into an equivalent magnitude-limit problem, as depicted in Figure 5.6. 

It may be incorrectly inferred that a solution of the rate-limit AW problem could be obtained by 

simple application of the techniques already described in Chapter 4. However, notice that the 

new plant has poles given by spec(A ), consisting of the poles located at spec(A) and m  poles 

located at zero. Thus even if G  G IZHoo, it is easy to observe that G IZHoq, where the new 

augmented plant is obviously not bounded real. Therefore straightforward application of any of 

the ideas in Chapter 3 would result in unsuitable problem formulations which are not solvable 

and therefore the methods for magnitude saturation described in Chapter 4 would fail for 

rate saturation if we simply substituted the state-space matrices (A, B , C ,  D)  for (A , B , C , D ); 

the resulting Riccati equation would not be of the bounded-real type. However, notice that 

if G  G TZHoo, and therefore spec(A) G C~, then G  would be stable provided that its zero 

eigenvalues were perturbed an arbitrarily small amount into the left half complex plane. So 

although G is not stable, it is almost  bounded real.

The main technical issue with G is that the imaginary axis poles prevent true bounded realness, 

meaning global stability and finite £ 2  gain typically cannot be obtained and often are difficult 

to address. Therefore, instead of insisting on global asymptotic stability and global finite C 2 gain 

- as stipulated for the magnitude-limit problem in Chapter 4 - the aims are relaxed to those of 

achieving local or semi-global results instead. Local and semi-global asymptotic stability are 

defined in Section 2.3 and roughly speaking, the local AW problem aims at finding the lowest 

possible induced £ 2  gain of a certain map (within a certain domain) while maintaining stability 

of the non-linear loop for the largest domain of attraction possible.

The dead-zone function, defined in equation (3.4), plays a central role in the results derived 

in this chapter and is key to defining a suitable local AW problem. Note that in terms of the 

rate-limit problem here proposed, we are interested in the signal d(t)  which is generated via

d(t) := D z(d(t)) (5.8)

Thus, as in the definition given in section (4.1.2), we can see that D z(d) =  0 V(i e  D , where 

the hypercuboid T> is defined as

T) =  [ d \ , cfi] x [ g?2 , 0 2̂ ] x . . .  x  [ dmi dm] (5-9)

and d{ >  0, with i G { 1 , . . . ,  m }, again represents the rate-limits (which now have the equivalent

interpretation as the beginning and end of the i th dead-zone). As before, for any d G Mm, it
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 ̂Dz(d)

slo p e  =  1

(do- d) h s lo p e  = €

d

d do
L

Figure 5.7: Sector bound representation for Dz(.)

follows that the dead-zone inhabits, globally, the Sector[0,1]

Dz(d)  G Sector[0,1] Vd G (5.10)

However, as we will be seeking local (semi-global) results, we shall not consider the case where 

d inhabits the whole signal space, i.e. d G Rm; rather we shall consider a subset of Rm. 

In fact if d is bounded in magnitude, that is if d{ <  do,i Vi G { l , . . . , m } ,  it is possible to 

consider a reduced sector, as shown in Figure 5.7 for a scalar dead-zone function, which the 

nonlinearity inhabits locally. This reduced sector notion has been applied several times before 

in the magnitude saturation context [120, 89, 43] and appears to be a useful way of capturing 

local stability problems. In summary, the dead-zone function belongs (globally) to Sector[0,/]; 

however, if the input signal to the nonlinearity (i.e. d) is assumed to be below a certain level 

(i.e. do), then the dead-zone function can be said to satisfy a less conservative sector bound 

Sector[0, el], where e G (0,1). It should be noted that assuming a bound on d makes sense for 

most engineering applications.

R em ark  5.5: It is important to notice that if the input signal d exceeds the proposed level of 

boundedness, do, the less conservative sector bound will not hold. In such a case, it is always 

possible to choose an e closer to unity such that our input signal is always guaranteed to lie 

within the imposed bound, and therefore, within the proposed Sector[0, el]-, this comes at the 

expense of reduced allowable performance. □

In order to use our “reduced sector” discovery, we need to define it mathematically. Using the 

element-wise operator introduced in Chapter 2, an alternative and more compact way of 

defining the set T> is

V  =  { d e  Rm : - d <  d ±  d} (5.11)
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Using the same notation, it is convenient to define the set

S ( d 0) := { d e R m : - d 0 ^ d ^  d0} (5.12)

as proposed in [32]. Here, \do,i\ >  di , Vi € { 1 , . . . ,  m } and hence T> C S{do). It is now possible 

to state that if d E S(do), then Dz(d)  is contained within a narrower and less conservative sector 

bound. The narrower sector bound is formally defined below

D efin itio n  5.1 The decentralised static nonlinearity M  =  diag(?7i , . . . ,  7]m) is said to belong to 

Sector[0, K t\ if the following inequality holds:

r j(d)'W(Ked -  7](d)) >  0 (5.13)

where W  E Mmxm and K e =  d iag (e \ , . . .  , e m ) E R m xm  are positive definite diagonal matrices 

□

From Figure 5.7 notice that globally Dz(.) E Sector[0,/] as the graph of the deadzone never 

exceeds the unity gradient line; locally it is possible to use tighter approximations and provided 

di < doj  it follows that Dzj(.) E Sector[0,ej] where

do,i := (5.14)
1 - e ( « )

Thus taking K t =  e l , where e =  m axfjei}, it follows that

D z {d) E Sector[0,e/], V|d| ■< do (5.15)

Therefore by restricting our attention to d E S(do) where do <  oo , which in turn implies 

e E (0 ,1), the deadzone is guaranteed to inhabit a narrower sector than Sector[0,1] i.e.

d E S(do) => D z(d) E Sector[0,e7] (5.16)

This reduced sector is crucial for the semi-global results developed in this chapter. Note that 

for any arbitrary large o?o, then there always exists an e E (0,1) such that D z(d) E Sector[0, el] 

(and in fact global results are recovered if do,i =  o o  Vi E { l , . . . , m } ,  and hence Dz(d) E 

Sector[0 ,/]). It will be shown shortly that the use of this reduced sector allows us to pose an 

AW problem similar to the magnitude saturation case; the critically stable poles are allowed 

but at the expense of guaranteeing local asymptotic and small signal £ 2  gain properties.
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5 .3 .2  R eg io n  o f  a ttr a c tio n

In AW compensation for systems with magnitude saturation, provided G(s)  E TZHoc, then a 

compensator which yielded global stability properties was guaranteed to exist. When G(s)  

TZTloo, global stability is not always possible, or convenient, to obtain. Thus many authors 

([55, 57]) have relaxed the requirements of stability to being local or semi-global. From a 

state-space perspective, local stability implies that the system is only asymptotically stable 

for states within a neighbourhood of the equilibrium point under consideration. The set of 

all states which converge asymptotically to the equilibrium point is known as the region of  

attraction (ROA). This is defined formally below

D efin itio n  5 .2  Consider a state-space system x  =  f (x ) ,  and let x(t)  E be the solution 

to this differential equation. Assume that the origin x =  0 is an equilibrium point. Then the 

region of attraction (of the origin) is the set of all points, A  C Mn such that if x ( 0) E A  then 

this implies that lim ^oo x(t) =  0. □

Thus, the region of attraction may be interpreted as the set of all states from which the 

zero-input solution of a system converges to the equilibrium point. Note that the region of 

attraction is a positively invariant set (i.e. x(0) E A  => x(t)  E A  Vt >  0) and contains the 

equilibrium point (x =  0) in its interior. Hence, if local asymptotic stability is sought, then an 

accompanying set of initial conditions, A  is also sought. In general, computation of the region 

of attraction for nonlinear systems is a nontrivial task. Surprisingly, this is also the case with 

a saturated system, despite the seeming simplicity of the saturation/dead-zone nonlinearity. 

Over the years many authors ([104, 12, 4, 33, 32, 75, 102]) have proposed methods which can be 

used to estimate the region of attraction for a saturated system, with these estimates ranging 

from accurate but difficult to compute [45], to crude but easy to compute, [39, 33].

In our work, as the focus is on semi-global stability, we are content to consider a region of 

attraction with a crude geometry, but one which, by appropriate choice of AW compensator, 

can be made arbitrarily large. In the saturated systems literature (as in [56], [33] for example), 

an ellipsoidal approximation is typically used,

S =  { x  E R n P+ m  : x'Px  <  c}  . (5.17)

The largest such ellipsoid can be calculated (see for example [96], [109]) using a simple formula 

which will be given later. The salient feature of this type of representation is that it will 

allow a transparent relationship between AW design parameters and a subset of the region of
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Figure 5.9: Decoupled structure

attraction, E C X  C A  to be observed. It must be clarified that the states x  are the states of 

our AW compensator as stability of our linear loop is guaranteed to be global.

5 .4  A n ti-w in d u p  S y n th e s is

5.4.1 P roblem  defin ition

The architecture of our anti-windup compensator is shown in Figure 5.8 where the nominal 

controller, K (s ) ,  plant G(s)  as well as the rate-limit dynamics are shown. © is the anti-windup 

compensator, parametrised by M (s)  £ VSHoo and G(s)  as described earlier, which only becomes 

active once rate saturation has occurred. The compensator has two sets of outputs, dd £  Rm 

and yd =  G which enter the control signal (the output of the “augmented,,

controller K ) and output of the “augmented” plant G respectively.

For magnitude limits, as discussed in Chapter 3 (see also [118]), parametrising 0  by using a
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transfer function M  and a copy of the plant, which in this case is the augmented plant G , 

yields an appealing decoupling of the closed loop system. Thus choosing

e(«) = (5.18)
M (s)  -  I  

G (s )M (s )

similarly to the results described in Chapter 3, it can be verified that Figure 5.8 can be re-drawn 

as Figure 5.9 where the closed-loop compensated system with modelled rate-limits is decoupled 

into nominal linear system , non-linear loop and disturbance filter. Note that in this case the 

nominal linear system consists of the linear controller, the nominal linear plant, and the linear 

rate-limit dynamics. It is normal for the linear loop to function well without saturation and 

thus we make the assumption

A ssu m p tio n  4

and

I  ~ K 2(s) 

-G(s) I

- l

6 UHc

lim K2(s )G(s ) I

(5.19)

(5.20) 

□

The above assumption ensures that the linear loop (including the linear rate-limit dynamics) 

is internally stable and well-posed. This assumption differs slightly from the magnitude limit 

case because linear rate-limit dynamics are part of the linear closed-loop. For well-designed 

linear control loops, this is a valid practical assumption.

Therefore, assuming that the nominal linear system is asymptotically stable, the AW problem 

can be reduced to that of finding a transfer function M (s)  6  'R/H00 such that the nonlinear 

loop is zero-input locally asymptotically stable (semi-global asymptotically stable if G  € 'R'H00) 

and the operator Tp : dun i—* y j  is well-defined and is small-signal finite gain £ 2  stable, i.e. 

\\Tp \\ 2̂ <  7  for some 7  >  0 and some “sufficiently small” input dun. If such a compensator 

exists, then we say that it solves strongly the local anti-windup problem. The following definition 

will formally describe the AW problem to be considered (based on ideas first appearing in [105]).

D efin itio n  5 .3  The anti-windup, compensator (5.18), is said to solve the rate-limit anti­

windup (RLAW) problem within a finite domain, assuming G 6 IZTCoo, i f the closed-loop system 

in Figure 5.8 (equivalently Figure 5.9) is well-posed and the following hold:

1. The closed-loop A W  compensated system is
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a) zero input LAS; and

b) semi-globally asymptotically stabilisable.

2. If dist(dnn, T>) =  0, \/t >  0, then yd — 0, Vf >  0 (assuming zero initial conditions for

M ) .

3. If <A\st{dun, T>) € £ 2  H W , where

the following condition is satisfied:

4- The operator Tp : dnn 1—> yd is well-defined and small-signal finite gain £ 2  stable, or 

equivalently, ||T||^2 ,w <  7 , for some 7  >  0 .

Observing the decoupled system in Figure 5.9, and as proposed in Definition 5.3, it is clear 

that the mapping Tp : dun 1—» yd determines the deviation of the non-linear system ’s behaviour 

from nominal. An important feature, inherited from the AW philosophy and the decoupled 

structure, is that the performance index is purely defined on the saturated system and no 

constraints are set directly on the controller K  (or equivalently on K ) .

R em ark  5.6: As with the magnitude saturation problem, only full-order AW compensators 

are studied, since for an appropriate choice of M (s)  it is possible to design 0 ( s )  independently 

of K { s )  and more importantly, because a stabilising compensator is always guaranteed to exist 

either locally or semi-globally. □

In order to achieve full-order compensation, M  (E IZTt00 is chosen as part of a right coprime 

factorisation of the augmented plant; G =  N M ~ l . The disturbance filter will then be reduced 

to N  and the AW compensator is parametrised by the matrix gain F,  where A  +  B F  must 

be Hurwitz. It follows that, in a similar way as for the saturation AW problem, a state-space 

realisation of such an AW compensator is given by

W  =  {d lin e  Km : d e  S ( d Q) Vt >  0 } (5.21)

then, assuming zero initial conditions, yd G £ 2 -

The compensator 0 ( s )  is said to solve strongly the local anti-windup problem if, in addition,

□

A  -I- B F  B
M is )  -  I

0  = F  0 (5.22)
N ( s )

C  +  D F  D
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However, as D  =  0 for any plant G,  then

A +  b f B
M (s )  -  I

© = F 0
N (s)

C 0

(5.23)

where x G W np+m  is defined as the AW state vector.

In this case a state-space realisation for our nonlinear operator Tp is

x =  (A +  B F ) x  +  B d  

dd =  Fx  

Vd =  Cx  

d =  T*z(uiin -  dd)

(5.24)

Thus for “good” anti-windup performance we must choose F  (and hence M , N ) to guarantee 

asymptotic stability (within some domain X  C M.np+m) of the nonlinear loop and to minimise 

the C2 gain of the map Tp in a local sense. As mentioned earlier if G G VSHoo h is possible to 

choose the ROA X  C A  arbitrarily large, making it possible to ensure semi-global asymptotic 

stability. The following lemma, which is fairly obvious from Figure 5.9, enables us to state the 

RLAW in a slightly more compact form to that given in Definition 5.3.

L em m a 5.1 The A W  compensator (5.23) solves strongly the R L AW  problem if Assumption 

4 is satisfied and the nonlinear operator Tp defined in equation (5.24) zero input LAS and 

semi-globally stabilisable, and locally finite £ 2  gain stable.

Proof: Consider Figure 5.9 and note that if Assumption 4 is satisfied, then zero input LAS 

(and semi-global stabilisability of the closed-loop) is ensured if the operator Tp is itself zero 

input LAS (and semi-global stabilisable). This implies Condition 1 of the RLAW problem is 

satisfied. To see that Condition 2 is satisfied, note from Figure 5.9 or equation (5.24) that 

if dist(d, V) =  0 V t >  0, then assuming zero initial conditions, x (0) =  0, it follows that 

x =  0 \/t > 0  and hence by equation (5.24) that yd =  0 Vt > 0 .  Furthermore note that if 

Il7p||i,2,w <  7 f°r some 7 >  then this implies Condition 4 of the RLAW problem is satisfied 

and hence Condition 3 is also satisfied. Well-posedness of the system in Figure 5.9 follows from 

Assumption 4 and the fact that the operator Tp (5.24) contains no direct feed-through terms, 

meaning all equations are explicit. □ □

Thus, as with the magnitude limit AW problem, the RLAW reduces to the study of the non­

linear operator Tp. This will be addressed in the next subsection.
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5.4.2 P rob lem  solution

103

Under the logical conditions of Assumption 4, Lemma 5.1 implies that the nonlinear stability 

problem contained with the RLAW problem has been transformed into that of guaranteeing 

local stability of the nonlinear loop - see Figure 5.9. Therefore, as with the magnitude case, 

the problem of ensuring local asymptotic stability of the closed-loop system is equivalent to

ensuring zero-input LAS for x G X  of the nonlinear loop. Moreover, the performance problem

is now determined by the mapping Tp : dnn yd where ||i,2 ,w <  7  must be guaranteed.

The following theorem (published in [89]) is the main result of the chapter

T h eorem  5 .1  There exists a full order anti-windup compensator © =  [©'x ©2 ]' G

as stated in (5.23), which solves strongly the R L A W  problem if there exist matrices W  =  

diag(wi , . . . ,  w  ) >  0 , p  =  p t  >  0, and positive real scalars 7  and e such that the following 

Riccati equation is satisfied

A 'P  +  P A  +  P B { j - 2I  -  2 (1~e)et v ~1 ) B 'P  +  C'C  =  0 (5.25)

where the matrix Z  must satisfy the following inequality:

Z  =  (2W  -  7 ~2{eW)2) >  2eW  >  0 (5.26)

Furthermore, if equation (5.25) is satisfied, a suitable © is obtained by calculating the matrix 

F as

F  =  - (  2̂-~ €\ W  -  7 ~ 2 1 )  B ' P  (5.27)

An ellipsoidal estimate of A ,  the region of attraction (ROA), is given by

S =  { x e  Rnp+m : x'Px  <  Cjjiax} (5.28)

where

(Pw2
Cmax = min - j- —r (5.29)

• (1 -  e)2( ^  -  7 - 2Wi)2B'PBi

and Wi is the i th diagonal component of W  and B{ is the i th column vector component of B,  

for some i G [1, . . .  ,m\ .  □ □

Proof: A slightly different proof to that in [89] will be given for Theorem 5.1 and will be 

constructed in several stages as detailed below.
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i) The main inequality Consider the function

L := j t x ' P x ^ \ \ C ^ l - 1 2\\dhn\\l +  2d,W { e d - d )  < t )  (5.30)

The final term 2d'W(ed  — d) arises from using the reduced sector defined in Definition

5.1 and if d G «S(d, do) Vf > 0 it follows that 2d'W{ed — d) >  0. Now consider two cases

1. Assume that 5(0) =  0 and dun G W. This implies that d G «S(do) Vf >  0 and thus if

inequality (5.30) holds then this implies

^ ' P x  +  ||<75||! -  l 2\\dun \\2 <  0 (5.31)

Integration with respect to time from t =  0 to t =  oo gives

x{oo)’Px{oo)  -  x(0)'Px(0)  +  \\yd\\l -  7 2 N /m | |2 <  0 (5-32)

which in turn implies that \\ydW2 — TIM/znII2 <  0  and hence that ||T ||i,2 ,w <  7 - 

Therefore if inequality (5.30) holds, Condition 4, and hence Condition 3, of the 

RLAW problem are satisfied.

2. Next assume that dun =  0 V t >  0 and that 5(0) G E where

£  =  { x  G Rnp+m : x ’P x  <  c}  (5.33)

for some c >  0. Furthermore let c be sufficiently small to ensure that d G S(do). 

Then it follows that 2d/W(ed  — d) >  0 and inequality (5.30) implies that

-7 -5'P x  +  11(7511! <  0 (5.34)
dt

This implies that

^ 5 'P 5  =  V(x)  <  0  (5.35)

and thus V(x)  is a Lyapunov function for the nonlinear loop in Figure 5.9), which 

ensures local asymptotic stability for all 5(0) G £; c must be sufficiently small to 

ensure d G S(do).  Thus the system is locally asymptotically stable and hence, if 

inequality (5.30) holds, Condition la  of the RLAW problem is satisfied.

Thus, it remains for us to prove that satisfaction of inequality (5.30) is equivalent to the 

expressions given in the Theorem and that Condition lb  is also satisfied.

ii) Evaluation of the main inequality. The remainder of the proof shows how we can re-write 

the cost function L, equation (5.30), as the conditions given in Theorem 5.1. Evaluating
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equation (5.30) results in an inequality containing several cross terms in d, dun, and x. 

Using similar ideas to those proposed in [90], it is possible to address this issue and avoid 

an LMI formulations.

Expanding (5.30) and substituting d =  dun — dd gives

L =  x'C'CZ -  l 2d!lindiin +  x P x  +  x 'Px  -  2d'eWdd -  2d'Wd  +  2d'eWdHn <  0 (5.36)

We now group the cross-product terms in three steps:

( i)  Cross-product terms involving dnn and d are grouped as follows:

7 2d'Undlin -  2d'(Wdlin] =  - | | ( 7 d,i„ -  7 ~'Wed)\\2 +  't~2d'e2W 2d (5.37)

Combining the above with (5.36), a cost function containing no cross-product terms 

between dun and d is obtained. Using equation (5.23) to expand x  and noticing that 

dd =  Fx:

L =  x ,(C'C +  A ,P  +  P A  +  2F'B'P)x  +

+ 2 x ' {P B  -  eFlW ) d - d ' ( 2 W  -  7 ~2€2W 2) d -  ||7 dHn -  ^ W e d f

(II) Cross-Product terms involving d and x  are grouped as follows:

d'{2W -  -f~2e2W 2)d -  2 x \ B ’P  -  eWF)'d =  - \ \ (Z*d -  Z ” ? (B'P -  eWF)x |2

+  x \ B ’P - W F ) ' Z - l { B ' P - W F ) x  (5.38)

Note that Z  =  (2W  — 7 - 2 e2 VU2) must be positive definite in order to have a well 

posed problem. This condition arises from the necessity of making the quadratic 

term

- \ \ { Z 2 d -  Z ~ l2 (B 'P  -  e W F ) x ) II2

negative for any pair (d, x). It can easily be shown that if Z  <  0, this is not always 

guaranteed. By replacing this new group of terms, a new cost function is obtained. 

This cost function has no cross-product terms between d and x.

L <  x ' { C ' C + A ' P + P A + 2 F ' B ' P + P B Z - l B ' P - 2 F ' W e Z - l B ' P + F ' W e Z - l e W F )x  

( i n )  Terms involving F  and F'F  are grouped:

F'WeZ~leWF  +  2PB(I  — Z~1eW)F =  \\Z~^ (eWF -  (Ze~1W ~ 1 — 7)£?'P) | |2

-  PB(Ze~1W ~ 1 -  I)'Z~1(Ze~1W ~ 1 -  I)B'P  (5.39)
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This last step will yield an expression for the matrix gain F.

Finally, by using results stated in (III)  we obtain an expression for our cost function 

(5.30) as

L =  La +  Lft +  L c (5.40)

where

La =  x' (C'C  +  A' P  +  P A  +  P B Z ~ l B ' P  —

P B ( Z e ~ l W~~1 -  I ) 'Z ~ l { Z € - l W ~ l -  I )B 'P )x  (5.41)

L b =  \ \ Z - l2 ( eW F ~ { Z e - l W ~ l -  I )B 'P)x \ \2 (5.42)

L c =  - | |  z \ d - Z - \ { B ' P - e W F ) x f

- W l d i i n - ^ W e d f  (5.43)

Equation (5.40) comprises three terms; the last, Lc, is a negative definite quadratic term. 

Therefore if the first two terms can be set to zero, then L{.) <  0. Setting the second 

term, Lb, to zero yields a condition for the gain matrix F

(cW F  — (Ze~1W ~ 1 — I )B 'P )  — 0 (5.44)

F  =  - ( ( 2 - r  1 - 7  ~2)B'P  (5.45)r2

where P  =  P 1 > 0  comes from solving the Ricatti equation which makes L a =  0:

C'C  +  A'P  +  P A  +  P B Z ~ XB ' P  -  

P B ( Z e ~ l W ~ l -  I ) 'Z ~ l (Ze~1W ~ l -  I ) B ' P  =  0 (5.46)

which, after some algebraic manipulation, reduces to the Riccati equation given in the 

theorem.

iii) Calculation of the region of attraction. In part i) it was shown that the system is locally

asymptotically stable in a set E C X  where A” is a subset of the region of attraction. Here 

we derive an expression for a E and also show that it can be made arbitrarily large (and 

hence that Condition lb  of the RLAW problem is satisfied). As mentioned earlier, we 

estimate ellipsoidal subsets of the region of attraction and in particular are interested in 

calculating the largest such ellipsoid, E which has the following form

E =  { x  G Rnp+m : x'Px  <  cmax} (5.47)
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For the estimation of the region of attraction it is assumed that dnn =  0 and, to ensure 

that the deadzone is within a reduced sector, that the states x belong to the set

X  =  { x  (E Rnp+m : d E S(do) vt >  0} C A  (5.48)

Thus to calculate an ellipsoidal region of attraction we seek the largest set such that

x  E S => x E S{d0) V* >  0 (5.49)

or equivalently we seek the largest set

£  =  {x  E R nP+m  : x 'Px  <  cmax, \d\ =  \Fx\ ■< d0} (5.50)

Thus if x E £  it follows that d E <S(do) and Dz(d) E Sector[0, e/]; hence the system is

locally stable. To calculate £ , we follow a method used in, for example, [96], [109]. The

largest ellipsoid region of attraction can be posed a maximisation problem:

max x  P x  s.t. |F x | ■< do (5.51)
X

which is equivalent to

max x 'Px  s.t. \F{x\ <  do,z Vi E { 1 , . . . ,  m} (5.52)
X

where, F{ is the i th row of F.  The largest such ellipsoid can then be calculated using

d^i
Cmax =  min F  p l i ' F , (5-53)

Substituting for F  yields

(i&w?
(5.54)^ m a x   ̂ / q  ^( l _ f ) 2 ( ( ^ l l  _ 7 - 2 w 2 ) B / p B .

Note that as e can be made arbitrarily close to unity, cmax can be made arbitarily large 

and thus the ellipsoid £  can be made arbitrarily large, thus satisfying Condition 1 of the 

RLAW problem. For a more detailed of the derivation of cmax, please refer to Appendix 

B. □ □

R em ark 5.7:

a) It is interesting to contrast the rate-limit results with the magnitude-limit results obtained 

in Chapter 4 (see also [90]). Essentially the main difference is that if G were to be stable 

i.e. it had no poles at the origin, then e could be set to unity as G(s)  would be bounded 

real (i.e. S(d,oo)  =  Rm); hence global results could be obtained as in the magnitude 

limit problem. This is not possible for the RLAW case as without the term in e, the 

Riccati equation in the theorem would not be solvable for P  =  P'  >  0
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b) Unlike the m agnitude lim it solution, the rate-lim it solution is som ewhat more intricate. 

The Riccati equation which results is a function of three “free” parameters: 7 , e and the 

diagonal m atrix W  > 0 .  In the m agnitude case the Riccati equation was independent of 

W  (by virtue of e being chosen to be one), making it easy to  change the feedback matrix 

F  independently of the Riccati equation. This is not possible w ith  the rate-limit solution, 

making it more difficult to  tune.

c) It can be seen that as e gets close to  unity, the size of cmax, and hence the size of £ 

increases, for fixed 7  and W . Thus by making e arbitrarily close to unity, the size of the 

region of attraction can be made arbitrarily large for som e appropriate choice of 7  and 

W.  □

5.5  T u n in g  th e  c o m p e n sa to r

In the previous section it was possible to  pose the RLAW  problem as a relaxed version of 

the m agnitude AW problem where asym ptotic stability was only guaranteed locally w ithin a 

domain of attraction X.  This was achieved using the concept of a “reduced sector” which was 

a locally accurate bound of the deadzone nonlinear static function. W hile this enables local 

solutions of the RLAW problem to be obtained, a new param eter e was added to the design  

procedure. Thus, unlike the magnitude limit problem where the only truly free parameter was 

the diagonal m atrix W  >  0, it is evident that Theorem 5.1 now contains three “free parameters” 

which can be used for tuning the com pensators, viz:

•  7  - dictates the local performance of the system

•  e £  (0 , 1 ) - determines the local accuracy of the sector bound on the deadzone

•  W  - a free parameter which influences both the performance level and the size of the 

region of attraction.

Although equations (5.25)-(5.27) give a com putationally simple way to generate AW com pen­

sators, the tuning of the three free parameters, 7 , e and W  becom es tedious due to the interplay 

between them  and their mutual influence on the solution of the Riccati equation (5.25) such 

that P { 7 , e, W ) >  0. Furthermore, for each choice of the triplet (7 , e, W ), condition (5.26) must 

be checked to  ensure Z  >  0. Thus in some sense, the formulation looses its simplicity. Two 

similar algorithms for the tuning of the com pensator are now suggested, a noteworthy feature 

of both  being that the bounded-real type Riccati equation associated w ith the “standard” AW
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problem is replaced by a standard LQR-type Riccati equation which, under mild assumptions 

of stabilisability and detectability of (A , B , C),  is always solvable for some P  =  P'  >  0

5 .5 .1  T u n in g p ro ced u re  I

Using equation (5.26), which imposes the inequality constraint Z  >  0, it is possible re-write 

Theorem 5.1 in a manner where a solution to the Riccati equation (5.25) is always guaranteed. 

Thus we have the following corollary.

C orollary  1 There exists a full order anti-windup compensator 0  =  [0^ G R(9+2m)xm

which solves strongly the anti-windup problem if there exists a matrix P  =  P'  >  0, and positive 

real scalars e €  (0 ,1 ) ,  € (0,2) and p >  0 such that the following Riccati equation is satisfied

A'P  +  P A  -  p P B B ' P  +  C'C =  0 (5.55)

Furthermore, if equation (5.55) is satisfied, a suitable 0  achieving ||T||^2,>v < 7 is obtained by 

calculating the matrix gain F  as follows:

F =  - ( l - ( r \ l  +  ^ h l ) pB ' P  (5.56)

where

7 = V ^ r  (5-57>
4̂n estimate the region of  attraction is given by the ellipsoid

S =  {x  : x'Px <  cmax} (5.58)

where

%Cmax =  max < ------------ —  ----- : —  > (5.59)
' 1 P2( l  +

□

Proof: The proof will show how, by re-defining certain parameters, the expressions in Theorem

5.1 can be re-written as those in Corollary 1. First note that using inequality (5.26), we obtain

a bound on 7 -2  as

7 _2 < 2 ^  ~  (5.60)
el

Introducing k £ (0, 2), this can be re-written as the equality

7 ~2 =  (5.61)
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Substituting this into equation (5.25) yields the Riccati equation

A 'P  +  P A  -  P B R B ' P  +  C'C  =  0 (5.62)

where R  is defined as

R  =  (2 -  k) ^  ~  e^W ~ l (5.63)

Choosing W  =  u> I, allows us to replace R  by the scalar expression

p =  ( 2 - f c ) (1 ~ (C ~l (5.64)

which yields Riccati equation (5.55) in Corollary 1. Similarly using the expressions for p and 

7 -2 in equation (5.27) allows us to write

W ~ l ~
F  =  - { R  +  ) B 'P  (5.65)

e

Manipulating this expression yields the expression for F  given in the corollary as equation

(5.56). In turn substituting this expression for F  into equation (5.59) allows a new expression 

for the region of attraction to be obtained as given in equation (5.58). □ □

R em ark 5.8:

a) Notice that Corollary 1 still has three parameters which must be chosen appropriately 

in order for a suitable anti-windup compensator to be synthesised: k €  (0, 2) > P >  0 and 

€ e  (0,1).  The advantage of this formulation over that of Theorem 5.1 is that the solution 

to the Riccati equation is now just dependent on the parameter p >  0 and, furthermore, 

it is now an LQR-type Riccati equation, and a solution such that P  =  P'  >  0 will always 

exist (as ( A , B , C )  are assumed stabilisable and detectable). The parameters e (E (0,1) 

and k 6 (0, 2) must still be chosen by the designer, but now their choice has no impact 

of the solution of the Riccati equation although they do affect the performance level and 

the size of the region of attraction, as presented in equation (5.58).

b) The local £ 2  performance is now given by the expression in (5.61) and it is no longer a 

free parameter, but one which is fixed by the parameters k , e and u;. Obviously as well as 

affecting the performance, these parameters will also influence the region of attraction, 

so care has to be taken when choosing them. □

Although Corollary 1 is simply a restatement of Theorem 5.1, it is believed to give a simpler, 

more intuitive set of conditions of the same results. In particular the interplay between per­

formance and region of attraction appears more transparent and may allow the designer to
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trade-off these conflicting design objectives more intuitively. However, while it is an improve­

ment over Theorem 5.1 it does contain the parameter k 6  (0, 2) which influences the region of 

attraction and level of local £ 2  performance simultaneously. Note that in equations (5.61) and

(5.56), the effects of k can be offset to a large extent by W  >  0, although this does not appear 

explicitly in the tuning procedure. It can be observed that in the limit when k —> 2, the region 

of attraction will shrink considerably, where the only possible way of counteracting this effect 

is by having extremely small values of p. Nonetheless, observe how k —> 2, by definition of 

p, has this exact effect on p, and after some algebraic manipulations it can be concluded that 

the effects of k on the size of the region of attraction or performance level can be mirrored by 

different choices of W ; different values of k will yield slightly different formulations of the same 

problem, none of which present significant improvements over each other as of yet.

Thus the real value of k appears to be that of simplification. The previous paragraph is 

not trying to categorically state that the choice of k is irrelevant to the solution of the RLAW 

problem. On the contrary, if appropriately chosen, it may significantly simplify the formulation. 

One such choice is k =  1, where the three free parameters are reduced to just two and the 

region of attraction is made “independent” of e. I11 this case, equation (5.56) is reduced to

F  =  - ( 1  — e)~l p & P  (5.66)

and provided (5.55) is satisfied, the system will be guaranteed stable within a domain of 

attraction which can be estimated using the ellipsoid £  defined in (5.58), but this time

I  ^  1
C m a x  =  mm < -------------- > (5.67)

1 { p2B[PBt )

This comes at the expense of having e as the only re-tuning parameter, which may be restrictive 

and sometimes misleading. The most interesting consequence of choosing k =  1 is that our 

expressions for p and 7  are reduced to

7 “ 2 =  =  P (5.68)ezu

This translates into 7  =  1 /  y/p, which is appealing because the Riccati equation is purely a 

function of p and an explicit bound on the local £ 2  gain is given by 7 ; for the case of k =  1 , 

this performance is directly determined by p. The exact behaviour of the region of attraction as 

a function of P ( p ) is not always clear and is rather obscure; nonetheless some basic properties 

and analysis can shed some light on this matter. This will be discussed later in the section.

One of the interesting features of this new simplified strategy is that it allows precise mathe­

matical conclusions to be drawn about the trade-off between the local performance level and
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the region of attraction. Under the assumption that k =  1, it follows from equations (5.68) 

and (5.67) that

1 =  A  <5'69)■Jp

and
[  )

cmax =  rnin < --------------- > (5.70)
2 { p2B [P B { )

These equations embody the trade-off between performance and region of attraction as they 

both involve p. In particular it is interesting to see how the region of attraction’s size alters as 

a function of p. Note that the region of attraction could equivalently be expressed as

€  =  {x  e R np+m : x p E { p ) x  <  l } ,  (5.71)

E{p)  := m in p P (p ) P^ lPS2P^ 1. (5.72)

It is difficult to characterise the size of this ellipsoid, but one way of doing so is by the sum of 

the length of its semi-axes, which is equal to the trace of E ~ l (p), which can be written as

t r [E~l (p)] =  t r j m a x(pP(p))~2^ / B - B ^  (5.73)

-  m axdftr {[pP{p)]~l [pPn{p)]~1  ̂ (5.74)

So the key parameter which determines the “size” of the region of attraction is the matrix 

pP(p).  We will establish how this varies as a function of p. First, multiply equation (5.55) by 

p to get

A ’P p  +  p P A  -  p P B B ' P p  +  pC'C  -  0. (5.75)

Defining Q(p ) := P{p)p  > 0 we now have

A'Q(p)  +  Q(p)A  -  Q(p)BB'Q(p)  +  p C ’C  =  0. (5.76)

Now if [p^C.A)  is detectable, it follows [83, 104, 45] that

^ > 0 ,  lim Q(p) =  0. (5.77)

From this it also follows that dQu(p)/dp >  0. Thus P(p)p  =  Q(p) and pPu(p) =  Qu(p) 

are monotonically increasing functions of p. Hence t r [E~l (p)\ — max  ̂d2tr[Q(p)Qa(p)\ ,  is a 

monotonically decreasing function of p which implies that as p increases, the “size” of the 

region of attraction decreases. Furthermore, in the limit as p tends to zero (e —> 1 i.e. global 

results), the region of attraction be comes the whole state-space.
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Note also that we can write F  as

F  =  j - L b 'QIp ), (5.78)

and thus we can see that as p becomes smaller, F  becomes smaller (in the sense that its norm 

reduces) and as p —> 0, F  —> 0 and we recover the IMC solution; this also corresponds to 

7  =  oo. In other words, we have the “worst” performance for the IMC AW case (which is not 

surprising since G(s)  is not bounded real). In conclusion we can see that

7  oc —— and \S\ oc - ,  (5.79)
y/P P

meaning that there is a clear trade-off between minimising the local £ 2  gain and maximising 

the size of the region of attraction.

5.5.2 Tuning Procedure II

Again, this section assumes that W  =  uol >  0 is a scalar. From our condition on Z  (5.26) we 

obtain

- p 2  ■= 7 “ 2 -  2 ( 1 ~ 2 ) u >  ‘ <  0 (5.80)

From this it follows that our Riccati equation becomes

A 'P  +  P A -  p2P B B ' P  +  C 'C  =  0 (5.81)

and that an expression for F  is obtained as

F  =  - ( p 2 +  a ) B ' P  (5.82)

where a  := uo/e and p2 are both scalars. Note that as p2 >  0, a solution for the LQR-type 

Riccati equation (5.81) always exists. As before, the solution P ( p 2 ) >  0 is independent of the 

other free parameters, in this case, a.  This allows a  to be used to refine the choice of F.  In 

this case it follows that an estimate of the region of attraction of the system given by equation 

(5.28) can be rewritten as

cmax =  m i n - ^ 3 ^  (5.83)

d2
m in ---------------------   =-=r- (5.84)

- (1 -  e)2(p2 + a)2B'PBi

Thus for fixed e the region of attraction can be made larger by choosing p2 >  0 and a  >  0 

as small as possible. On the other hand, the local C2 gain of the system can be found from 

equation (5.80) as
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Thus for fixed e choosing, a  >  0 large compared to p2 >  0 yields a smaller £ 2  gain. There 

is a clear trade-off in o: small a  implies a large region of attraction, large a  implies a small 

£ 2  gain. For both cases a small P2 is desirable. Note that for maximal region of attraction, 

that is a  «  1 and P2 «  1, we recover something very close to the IMC solution as F  «  0. 

Note that for equation (5.85) to hold, we must have

0  >  W ^ 7 f 2 (5'86)

Although this solution may be useful in future work, this thesis has mainly focussed 011 the 

first tuning approach as advocated in Section 5.5.1. The alternative tuning procedure described 

above is given here for completeness and to illustrate how different formulations allow different 

interactions between parameters to be highlighted. None the less, similar conclusions can always 

be drawn; there is a trade-off present between the region of attraction and local performance 

of the system measured as an induced £ 2  gain.

5 .6  E x a m p le

In this section the effectiveness of the results are shown through a known example. The example 

considered here is that of a missile auto-pilot, the same one used in section 4.4, which is a 

two-input-two-output third order dynamic linear system. The usual assumptions of stability 

and good performance are made on the linear closed-loop. This time the actuators have rate 

constraints of ± 7rad /se c  imposed in both channels
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Figure 5.10: Nominal linear response of missile

Figure 5.10 shows the nominal linear response of the missile for a pulse r =  [ 20 —20 ]• Notice

how the system has an excellent response and the outputs are decoupled. However, observe
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Figure 5.11: Rate-limited response of missile (no AW)

how the rate of the control signal is outside the set T> =  {(7, 7), (—7, 7), (—7, —7), (7, —7)} for 

some time. This suggest that the system with actuators reaching the rate-limit bounds might 

have poor performance and may even be unstable. Figure 5.11 confirms this intuitive fact and 

shows clearly how the system loses its decoupling and tracking properties.

Figure 5.12 shows the missile response with the full order AW compensation proposed in this 

paper, initially using Theorem 5.1 with parameters chosen as e =  0.9, 7  =  8, and W  =  8. This 

yields a matrix F  of the form

-0.0119  0.9613 0.0297 -73 .1313 1.4744

-0 .0831 -0 .0264  -0 .0008  1.4744 -1 .4109

Notice the improvement over the uncompensated response: the saturated system now tends to 

follow the linear response closely and the return to nominal linear dynamics is swift.

Observe from equation (5.22) that M (s)  — I  is a function of F,  and consequently the size of 

the control signal dd and the compensator dynamics are affected by this parameter. The poles 

of the AW compensator, i.e. spec(A  +  B F ),  are also a function of F  and therefore increasing 

the size of F,  increases the control signal dd and yields a compensator with faster dynamics. 

The task of choosing appropriate values of the design parameters is not as simple as in [90], 

but the approach is still intuitive. The designer’s task can be simplified by using the tuning 

algorithm proposed in section 5.5.1 and will be discussed next.

Tuning algorithm I provides a simple way of characterising the performance level and stability 

region of the AW compensator. Notice that the available parameters are p and e (the parameter 

k is fixed and has a value of one), where p gives a measure of nonlinear performance and e defines 

the polyhedral set of allowed signals d , i.e. S(do) =  {d  : — do ■< d -< do}. It was mentioned
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Figure 5.12: Rate-limited response of missile: — rl +  full-order A W ; nominal linear

that choosing the parameter k equal to unity yields 7  =  1 /  yfp, so in order to achieve good 

performance (i.e. H ^H ^w  small), it is desirable to choose p large. From equation (5.67) and 

the analysis of section 5.5.1 it can be concluded that for an enlarged region of attraction p 

must be small. To illustrate this trade-off two compensators are designed: e =  0.9 is fixed and 

p takes a values of piow =  1 0 - 4  and phigh — 1 0  for the low and high performance compensators 

respectively. This yields the following matrix gains

F lo w

Fhigh  —

0.0040 0.0511 0.0015 -16.7553 0.3411

-0 .0006 - 0 . 0 0 1 1 -0 .0000 0.3411 -0 .1156

36.4902 26.6139 1.2098 -411.9622 19.2397

-29.9905 -4 .8707 -0 .0962 19.2397 -46.8843

(5.88)

(5.89)
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Figure 5.13: Rate-limited response of missile: — rl +  full-order A W ; nominal linear: piow
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Figure 5.14: Rate-limited response of missile: — rl +  full-order A W ; nominal linear: phigh

The missile’s response due to an input pulse r =  [ 20 —20 ] is shown in Figure 5.13 and 5.14

which depict the responses obtained with the piow and Phigh AW compensators respectively. 

Clearly in both cases the system’s response is enhanced by the use of AW compensation: rate 

saturation levels are reduced, tracking properties are retained (with the usual constraint on 

the admissible reference) and return to linear behaviour is well behaved. It is somewhat more 

difficult to conclude which compensator delivers the best performance; in Figure 5.13, the 

second channel exhibits fast tracking performance while the first channel is sluggish. In Figure 

5.14 the second channel is more sluggish than before, but the response of the first channel is 

improved. Note however, that the local £ 2  gain is simply a bound on the performance measured 

by “energy” gain and is not as precise as many classical “linear” measures. Consequently, 

designs may be conservative and the value of 7  may not always be an accurate indication of 

the system ’s true performance.

5 .7  C o n c lu sio n s

This chapter has addressed the problem of designing anti-windup compensators for systems 

with rate-constrained inputs. The solution method proposed takes as its inspiration the results 

of Chapter 4, but relaxes the global stability criteria to local and semi-global in order to  

obtain computable results. In particular, by modeling the rate-limit as a first order dynamic 

system with saturated states, it was possible to augment the plant and controller and pose 

an equivalent magnitude limit problem. From section 4.2.1, equation (4.12), it is clear that 

a necessary condition for a globally stabilizing compensator to exist is that the plant G is 

bounded real. As this is not the case for the augmented plant G  (even though G  €! 7ZH°° ),
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it was necessary to use a reduced sector condition on the deadzone non-linearity in order to 

address the problem locally.

Theorem 5.1 of this chapter shows how the rate-limit problem can be tackled by solving a 

single Riccati equation which is a function of several free parameters. Although this method of 

solving the rate-limit problem is useful in its own right, the tuning of the compensators using 

the parameters 7 , e and W  >  0 is not straightforward. The results of Section 5.5.1 show how 

the solution to the rate-limit problem can be re-stated and that this version of the solution 

provides more insight into tuning the compensator. Clear relationships between the estimate 

size of the region of attraction and the local £ 2  gain were given and can be traded-off against 

each other.

Although implicitly it is desirable to obtain e ss 1 in order to obtain a larger region of attraction, 

this will produce high compensation signals and fast poles. The estimated region of stability 

E =  {x € Mn : x/Px  <  Cmax} depends not only on c, but also on W  and P , making it desirable 

to make this goal more explicit in the optimization problem. Noting the recent work of [33], 

this could be included in future work.

A simple example has showed the effectiveness of the proposed techniques but there is an 

obvious need for a more significant practical example. The next chapters in the thesis will 

provide more detailed results of the application of these results to a real world problem: rate- 

limiting in an experimental aircraft.



Chapter 6

PIO avoidance in an experim ental aircraft: design and desktop 

simulation

6.1  In tr o d u c tio n

Actuators with strict limits on their magnitude or rate have been identified, throughout the 

thesis, as a cause of problematic behaviour for systems which are otherwise linear. Simple 

examples have shown how linear behaviour can degrade sharply when actuator nonlinearities 

are encountered. The same examples have also shown how this degradation can be limited, 

and performance recovered to some extent, through the use of AW compensation.

One of the application areas in which magnitude and rate limits can be particularly problematic 

is that of flight control. Over recent years numerous problems have been caused due to actuator 

rate, and to some extent magnitude, limits and a significant number of papers and reports have 

now documented the evidence for this ([2, 94, 82, 18, 6]). In particular it appears that, as flight 

control systems have become more advanced and have the ability to bestow what are deemed 

to be more desirable performance characteristics on the aircraft, the appearance of “strange” 

phenomena in aircraft control loops are becoming more common.

One of the most interesting and prevalent of these phenomena is that of pilot-induced-oscillations 

(PIO’s), where magnitude and rate saturation have been implicated in the occurrence of a sub­

class of this phenomenon. In particular, rate-limiting has long been linked with destabilising 

effects and performance degradation in aircraft systems, with PIO behaviour being recorded 

for both civilian and military aircraft. Perhaps the most notable accidents happened during 

the development phase of FBW, 4th generation fighter aircraft, such as the JAS-39 Gripen 

and the YF-22. In both cases the aircraft became unstable as severe actuator rate-limiting 

was encountered and the aircraft were either lost or heavily damaged during crash landing 

manoeuvres. Attention to the effects of rate-limiting and other actuator nonlinearities became
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a priority and a large number of research initiatives, which emphasized the comprehension, 

prevention, and alleviation of the nonlinear effects of rate-limiting, sprouted.

In fact, the literature on the subject of PIO problems due to magnitude and rate saturation 

problems is now very large and a classification system exists; PIO ’s due to nonlinear actuators,

i.e. rate/magnitude saturation, are known as Category II PIO ’s. This class of PIO has been 

particularly troublesome and numerous aircraft have suffered as a result. Perhaps the most 

notorious example is the SAAB JAS-39 Grippen crashes [2] which led to SAAB developing its 

so-called “phase compensator” [81, 44, 82] to alleviate this effect. This and other similar events 

paved the way for the development of programs such as US Air Force program [29, 14], and 

the European GARTEUR Action Groups 12 and 15.

Despite this however, the number of useful, rigorous and systematic techniques available to 

deal with this problem is relatively limited. Much of the work in the literature has a strong 

experimental bias with many practitioners concentrating on predicting and categorising PIO 

events ([64, 51, 50, 20, 29]). While this is useful and certainly equips the control system designer 

with methods to a posteriori test control systems against susceptibility to PIO’s, much of the 

results to date are empirically based and rely on a great deal of engineering insight. Due to the 

complex and elusive nature of the PIO phenomenon, there are few techniques which address 

this in a practical way with a satisfactory theoretical basis.

In contrast, the solutions to the rate-limit problem suggested by the control community have 

tended to be too technical, and lacking in intuition, for practitioners to apply these methods. 

Furthermore many of these techniques are effectively one-stage design techniques (see for ex­

ample [55],[32],[95]) which therefore do not sit well with existing legacy controllers which may 

have been extensively flight tested and which may work admirably in most situations, save that 

of severe rate-limiting.

W ith this background, the aim of the chapter is to describe the application of the rate-limit AW 

techniques introduced in Chapter 5 to a realistic flight control system where PIO behaviour is 

likely to occur. The chapter will begin with a review of PIO ’s in general and briefly examine 

techniques which are already available to deal with this phenomena. The design and extensive 

nonlinear simulation of the techniques advocated in Chapter 5 will then be described. It 

should be mentioned that the process described in this chapter was part of the preparation for 

flight tests performed as part of a GARTEUR AG-15 Action Group, an alliance of European 

institutions formed to study the prediction and prevention of PIO ’s. The flight test results are 

described and analysed in the next chapter.
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6.2  P ilo t- in d u c e d -o sc illa t io n s

6.2.1 Background

The acronym PIO stands for “pilot induced oscillation”, “pilot involved oscillation” or “pilot 

in-the-loop oscillation”. Neither of the three terms has been universally adopted but roughly 

speaking a PIO refers to an oscillation or an oscillatory tendency in an aircraft in which the 

pilot plays an active part: he/she is in the feedback loop. Likewise, no universally acceptable 

definition of a PIO is available although the one given below ([29, 1]) is appealing. In [1] a PIO 

is defined as a

“sustained or uncontrollable oscillation resulting from efforts of the pilot to control the aircraft.”

It can also be described as “rare, unexpected, and unintended excursions in aircraft attitude 

and flight path caused by anomalous interactions between the aircraft and p i lo t” ([64])

Some care is required when interpreting oscillatory events in aircraft and it should be noted 

that not every oscillatory event is a PIO, and, further, that not every PIO will involve actuator 

magnitude or rate-limits. It is important to emphasize that the distinguishing factor in PIO’s, 

as opposed to other oscillatory events, is that a PIO develops from the efforts of the pilot 

to control the system and such an event will normally be sustained over several seconds. In 

order to characterise PIO ’s some informal checklists have been proposed e.g. (i) there must 

be an oscillation, (ii) the aircraft must be out of phase with the pilot, (Hi) the frequency of 

the oscillation must be within a frequency range which the pilot could induce, and (vi) the 

amplitude of control inputs, aircraft responses, or both, must be sufficiently large to be of 

concern. Therefore, not every “strange” aircraft phenomenon can be classified as a PIO.

For some time now ([49]), PIO’s have been divided into several categories which are distin­

guished by their underlying cause; essentially the degree of nonlinearity involved in the event. 

The three most common categories are thus:

•  C ategory I: Linear pilot-vehicle system oscillations. These PIO ’s are the result of linear 

effects such as time delay, phase loss due to filters and highly sensitivity systems. Due to 

their linear nature, these are perhaps the simplest type of PIO to model, understand, and 

prevent. They are also the least common in flight control applications perhaps because 

they are usually a consequence of poorly designed baseline control schemes.

• C ategory II: Quasi-linear events where the only nonlinear contributions come from the 

actuator in the form of rate or position limits. These PIO ’s have an identifiable nonlinear
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contribution which may be accounted for separately; otherwise, the system is assumed 

linear, stable and well behaved. The nonlinearity most commonly linked to PIO events 

is the rate-limiting of servo-hydraulic actuators.

•  C ategory III: Essentially non-linear pilot-vehicle system oscillations with transients. 

Such PIO events are rare and extremely difficult to recognize. In the case such an event 

occurs, its effects are usually severe. Mode switching in the flight control system, or pilot 

behaviour, that cannot be represented by a quasi-linear equivalent is the most common 

trigger.

Several researchers have suggested that there may be other types of PIO’s which may not be 

classified in any of the categories defined above and a “Category IV” PIO, which deals with 

interactions between the pilot and the aircraft’s structural modes, has also been suggested.

CAT I PIO’s are easily identified and are mainly caused by lags in the system, which in turn, are 

due to time delays and filters which are sometimes present in fly-by-wire control applications. 

These are now relatively well understood and by correct adjustment of an aircraft’s linear 

control system, they can be prevented. Cat II PIO ’s, those in which rate-limiting plays a 

prominent role, are the category of most importance in this thesis. They are arguably the most 

troublesome and have led to a number of aircraft crashes and incidents ([18]). Cat III PIO’s 

are much more difficult to deal with and research into such types of PIO is currently still in its 

infancy. This thesis will concentrate on the prevention of Cat II PIO ’s.

6.2.2 Factors in C ategory II PIO  events

A simple schematic of the control loops in a standard fly-by-wire aircraft control system is 

shown in Figure 6.1. This schematic depicts the so-called pilot-vehicle-system (PVS) which 

consists of the raw aircraft dynamics, G (s), the baseline controller, K ( s ), and the nonlinear 

actuators, \I/(.), which represented the saturation and rate-limits. These components are con­

nected through an inner feedback loop and, for many tasks, this system alone dictates the 

aircraft behaviour. However, when the pilot becomes sufficiently engaged within a task, he/she 

enters the loop and thus the outer feedback loop, represented by the dashed line, becomes 

connected to the inner loop by way of the pilot dynamics K p(.). This second biomechanical 

feedback loop is created when the pilot observes the aircraft’s response (visually, haptically) 

and reacts by altering his inceptor input in a manner he sees fit, thus closing the loop. Cate­

gory II PIO’s therefore arise due to the interaction of the various components of the PVS, and 

necessarily the nonlinear behaviour of the actuators.
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Figure 6.1: Pilot Vehicle System (PVS)

As mentioned in Section 6.2.1, the presence of the pilot within the feedback loop is an important 

distinguishing factor from other oscillatory events which may occur in the aircraft. However, 

it is normally the case that, in most recorded PIO events, the aircraft’s susceptibility to such 

unnatural behaviour is not noticeable in normal flying and that PlO-proneness of an aircraft 

may vary from pilot to pilot. This suggests that in order for a PIO to occur, some other factors 

must be present, and normally a PIO is due to a number of factors occurring simultaneously. 

In general, a PIO is initiated by what is called a “trigger” event which can include changes in 

flight conditions, wind gusts, or highly demanding tracking tasks. It is important to remark 

that not all trigger events cause a PIO, but all PIO ’s are initiated by the presence of some 

trigger. Typical triggers may include uncommon or difficult pilot demands, changes in vehicle 

or controller dynamics (perhaps due to controller switching or aircraft damage), or disturbances 

altering the pilot-vehicle coupling. Triggers may come from the environment, the vehicle, or the 

pilot, with the common feature that they put extra demand on the pilot’s ability to concentrate. 

It may be argued that, while prediction of PIO ’s is important and research into PIO triggers is 

worthwhile, it is inevitable that triggers will always be part of the pilot’s uncertain environment 

and that it is difficult, if not impossible, to eliminate all possible triggers. One of the interesting 

aspects of PIO research was that, during the 1990s, rate-limiting was uncovered as an important 

aspect of some PIO ’s, initiating extensive, often experimental, research on addressing this issue.

While a trigger is necessary for PIO type behaviour to occur, it is not the only factor involved 

and three interacting components can be mentioned: the trigger, which has just been discussed; 

the controlled aircraft dynamics, which are normally set by an appropriate baseline controller 

design; and the pilot. The system characteristics are of great importance in assessing an 

aircraft’s susceptibility to PIO’s: slow and lightly damped poles, excessive phase lag or time 

delays may make a given aircraft significantly more PIO prone. Luckily, reasonably good 

models tend to exist for the controller and aircraft dynamics, making off-line simulation and 

prediction possible.
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The third component of a PIO, the pilot, is perhaps the most complex to deal with and becomes 

a major issue when simulating the system. In order to obtain simulation results of PIO events, 

some pilot model has to be used to mimic, to some extent, real pilot behaviour. There has 

been extensive research on pilot models and a range of options are now available ([64, 50] and 

references therein). Pilot modeling is noil-trivial and a full discussion of pilot models is beyond 

the scope of this thesis; the interested reader is referred to [49, 22, 68, 20]. It suffices to say 

that any simulation results which purport to represent PlO -type events need to be interpreted 

with care as they have necessarily been produced with some pilot model which is sometimes a 

poor approximation to a real pilot.

Notwithstanding the above, it is appropriate to discuss some simple pilot models which are 

appropriate for the simulation results given there. As will become clear in the next chapter, 

although the simulation results are based on simple pilot models, they appear to be “good 

enough” for broad conclusions about the behaviour of the real piloted system to be made. Pilot 

behaviour, in relation to PIO, can be divided into two types: compensatory and precognitive. 

In the case of compensatory control, the pilot attem pts to minimize a displayed error, generally 

adding lead compensation to achieve this results. This translates into time delays which often, 

in high gain closed-loop control applications, yield systems with reduced phase margins. The 

system then becomes sensitive to phase shifts and in the event of experiencing pronounced 

rate limiting, a PIO may develop. For precognitive control, the pilot’s learning curve changes 

the way he interacts with the aircraft. It has been observed that for such precognitive control 

strategies, the pilot can be said to behave as a pure gain if the system undergoes demanding 

tracking tasks. The choice for the pilot model in this thesis was determined using the open-loop 

onset point (OLOP) criterion and assumed precognitive; this choice will be discussed shortly.

6 .3  T oo ls  for th e  p r e d ic tio n  o f  p ilo t- in d u c e d  o sc illa t io n s

It has already been mentioned that, in certain aircraft and under certain circumstances, the 

interconnection of nonlinear actuators, vehicle dynamics, control system dynamics, and the 

pilot, may give rise to PIO situations. However, this does not imply that for a given intercon­

nection, PIO type events will result and thus there is an obvious need for tools to predict, in 

a reasonably reliable way, how likely a certain aircraft is to encounter a PIO.

One of the main outcomes of much of the existing PIO literature is a range of methods for 

predicting different types of PIO. These methods were first developed for the prediction of 

linear Cat I PIO’s and have generally been successful in this regard; some are now often used
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in the aerospace industry. A good summary may be found in [64, 63].

A number of techniques are also available for Cat II PIO prediction, although it must be 

remembered that accurate prediction of such events is somewhat more difficult due to the 

nonlinear nature of the behaviour. The chief difficulty is finding a technique which is sufficiently 

precise and non-conservative as to not label an aircraft PIO prone unless it really is, but 

sufficiently rigorous to identify all PIO behaviour. Philosophically this is quite difficult as 

nonlinear stability tools tend to be conservative or approximate. Despite this a number of 

methods have emerged with notable techniques being: Bandwidth/pitch-rate overshoot, Open 

Loop Onset Point, Pilot Vehicle Dynamics Nonlinear (PVDNL) and the Time Domain Neal 

Smith (see [64, 63]). Most of these methods have had some success but most are based on 

practical engineering considerations and arguably have little supporting rigorous theory.

6.3.1 T he OLOP C riterion

The method used in this thesis for predicting the PIO susceptibility of an aircraft is the so-called 

OLOP Criterion. This is perhaps one of the most effective criteria for Cat II PIO prediction 

and has had a number of studies devoted to it ([20, 29]). One of the appealing features of the 

OLOP criterion is that it combines underlying theory with empirical engineering knowledge; 

this has been deeply welcomed by many flight-test engineers. Thus, while the OLOP criterion 

cannot categorically determine whether or not a certain aircraft is PIO prone, it has generally 

been found to provide useful, indicative results. The OLOP criterion was developed at DLR 

(Deutsche Zentrum fur Luft und Raumfahrt) using ideas based on “harmonic balance” or 

describing functions. It was developed to enable flight test engineers to determine how prone 

aircraft were to Cat II PIO in a simple but accurate way. This thesis does not attempt to 

develop the OLOP criterion but a brief discussion on its derivation and application is believed 

to be useful.

O pen-L oop-O nset-Point

The OLOP criterion takes its name from the term “Open Loop Onset Point” which is, rather 

confusingly, defined as the frequency response value (i.e. gain and phase) of the open-loop 

system (i.e. the system from the rate-limit output to the rate-limit input) at the closed-loop 

“onset” frequency, to onset, which is the frequency for which the rate-limit first becomes active 

for full stick input. The idea behind the OLOP criterion is similar to that of describing function 

analysis, in that it uses the frequency domain properties of the linear part of the system to
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obtain stability criteria. It does not however require explicit computation of the describing 

function in order to assess stability.

Stick-Limits

Pilot
Demand

Rate-Limits

Aircraft
Dynamics

Linear Flight 
Controller

Figure 6.2: Determination of u j o n s e t

The OLOP criterion is currently a single-input-single-output technique and therefore each axis 

of the aircraft is handled separately. This has so far proved to be adequate although it obviously 

does not make it appropriate for predicting multi-axis PIO ’s which might occur at high angles 

of attack due to coupling. As mentioned above, the onset frequency, uo onset, is defined as the 

frequency at which the rate-limit first becomes active. It is useful to refer to Figure 6.2 where 

u(t), which represents the desired control input, and r ( t ), which represents the pilot demand, 

are both scalar signals. If the rate-limit nonlinearity is replaced with the identity operator and 

we represent the maximum demand fed into the control signal (dictated by the stick limits) as 

f  > 0, then the u o n s e t  can be determined from the equation (see for example [20, 29, 119]) as

f  \\Tu,r (jujonset)\\ =  — —  (6.1)
^ o n s e t

where Tu r(s) is the closed-loop transfer function from the pilot reference demand r to the 

nominal control demand u, f  is the maximum stick input and d >  0 is the maximum rate- 

limit. Note that Tu r̂ {s) is the transfer function from pilot stick input to control signal in 

one axis only. Thus for the pitch axis it would be the transfer function from longitudinal stick 

command to elevator deflection; for the lateral axis it would be lateral stick command to aileron 

deflection. Note that equation (6.1) can be solved graphically using a Bode plot to determine 

the intersection of the frequency response of \Tu r̂ (jcu)\ with d/juo: u j o n s e t  is the frequency at 

which the two lines intersect.

P ilo t gain determ ination

The main use of the OLOP criterion in the work described here is that it allows the determi­

nation of a suitable pilot model which exposes PIO behavoiur. In the OLOP criterion a simple 

gain, K p, is used to model the pilot; although this model is crude, it seems to be adequate for
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rough prediction of PIO tendency. In the OLOP criterion, the pilot model is chosen such that 

the gain of the open-loop pilot-plus-aircraft system, as depicted in Figure 6.3, is such that phase 

cross-over angle is close to the critical —1 point. Thus K p is chosen such that the cross-over 

phase of the transfer function K pT(pi0 r (s) is <FC 6 [—90, —130] degrees for the longitudinal axis 

and 4>c € [ -1 1 0 ,-1 6 0 ] for the lateral axis. In this notation T^/q̂ s) represents the transfer 

function from the pilot stick demand to either roll attitude, 0, or pitch attitude, 6 (depending 

on whether the pitch or roll axis is under consideration).

Open-Loop A ircraft-P ilot System

Rate-Limits

A ircraft
D ynam ics

L in ear F light 
C on tro lle r

Figure 6.3: Pilot vehicle system: Open and Closed-Loop 

D eterm in ing PIO  susceptib ility

The final stage of the OLOP criterion is to use the frequency response of the nominal linear 

part of the system to determine the aircraft’s susceptibility to PIO for the given pilot gains. It 

is instructive to consider Figure 6.4 . Note that the stability of the system may be determined 

by breaking the loop either side of the rate-limit, and calculating the transfer function of the 

linear part of the loop. Nonlinear stability can be (and normally is) assessed by either using 

describing function techniques or by using tools such as the Circle or Popov criteria. The OLOP 

criterion takes a different approach as suggested in [98, 20], where the “open-loop” frequency 

response - gain and phase - is plotted on the Nichols chart. In addition the so-called OLOP 

boundary, which can be interpreted as something akin to an empirical describing function, is 

also plotted. The aircraft is then said to be PIO free if the OLOP point (value of the open-loop 

at frequency u j o n s e t )  lies below the boundary and PIO prone if it lies above the boundary. A 

sample OLOP plot is shown in Figure 6.5. It is emphasised that the OLOP boundary has 

been determined empirically and does not have much underlying theory associated with it. 

Nonetheless, it does appear to be useful for predicting single-axis PIO ’s in aircraft.
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Figure 6.4: Transfer function for OLOP graph

Sum m ary o f OLOP

In summary, the OLOP criterion thus consists of three stages:

1. Determine the closed-loop onset frequency, u)onset, by solving equation (6.1) using maxi­

mum stick amplitude.

2. Calculate the required open-loop frequency response and find the set of pilot gains (K p) 

such that the cross-over phase angle (4>c)

-130deg <  4>c <  -90 deg (longitudinal)

-160deg <  4>c <  -110 deg (lateral)

3. Calculate the transfer function around the rate-limit and plot the frequency value at the 

onset frequency.

Such analysis and its success depends greatly on the fidelity of pilot behavior models, especially 

during demanding tasks where rate-limiting often presents severe complications. Often simple 

gain or first-order models are employed, with the overall piloted aircraft system being repre­

sented as in Figure 6.1. As the accuracy of the pilot model is always questionable, high fidelity 

simulation analysis of piloted-aircraft behaviour is a difficult task. However, existing analysis 

techniques such as OLOP and other more recent derivatives have been found to give a good 

indication of PIO tendencies [64]. Other pilot models like the Neal-Smith, and its subsequent 

modifications, have been argued to be more accurate, but a full discussion of these falls beyond 

the scope of this thesis. The interested reader is referred to [123, 53] for a more complete 

discussion of this topic. Figure 6.5 shows graphically PIO analysis of a system via the OLOP 

criterion. In this case, the system is PIO prone as the OLOP point (square marker) lies above 

the OLOP boundary 1; if the OLOP point were to lie below this bound, then the system would 

be deemed free of PIO ’s.

: It is worth mentioning that this bound has been obtained experimentally
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Figure 6.5: PIO determination via the OLOP Criterion

Although some of the predictions may be slightly inaccurate due to pilot-model mismatch, such 

procedure provides some theoretical insight into some of the troubled regions where PIO’s may 

develop. It also provides a baseline pilot-plus-vehicle model on which different AW strategies 

may be tested for performance and stability, this being the basis for our desktop simulations.

6 .4  T o o ls  for P IO  su p p re ss io n

Despite the vast literature on PIO ’s, the number of tried-and-tested useful methods to deal with 

Category II PIO’s is relatively limited. By and large, “robustness” to rate-limited actuators can 

be improved in one of three ways: a complete controller re-design, pilot command shaping, or 

augmenting the existing controller with an extra element active only during saturation. There 

are advantages and disadvantages to each method, as discussed below.

Controller re-design. Although such an approach is possible in principle, and indeed there have 

been many theoretical studies on the design of one-stage controllers to handle actuator rate- 

limits (see for example [55], [32], [95]), the general feeling in the aerospace community is that 

such an approach is impractical. A baseline controller re-design is expensive and time consum­

ing, and may even require re-certification by the relevant aviation authorities. Furthermore, 

although such an approach may allow PlO-free control systems to be developed, such tech­

niques may restrict performance during small-signal operation in order to deliver acceptable 

performance during large signal operation.
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Pilot command shaping. This is commonly used in many aircraft to eliminate undesirable 

pilot commands and/or to make the aircraft handling qualities different depending on whether 

coarse or precise maneuvers are being performed. The basic idea is to leave the main feedback 

control loop intact and only alter the feed-forward path. However, when the pilot is engaged 

within the outer feedback loop, stability problems can still result and there are no reported 

methods which address this problem rigorously. While the usefulness of such shaping filters 

is acknowledged, it is again stressed that, to completely eliminate large or undesirable pilot 

inputs, an unacceptable compromise of the small-signal performance of the system may be 

required. Some examples of pilot command shaping are the PIO suppression filters developed 

by NASA [85] and the DLR phase compensation filter [98]. In both cases, the pilot’s input is 

shaped to reduce the amount of rate limiting and time delay present in the closed-loop system.

Baseline control system augmentation. The third approach to reducing an aircraft’s suscepti­

bility to PIO behaviour is to “retro-fit” an additional compensator to the baseline controller. 

It is assumed that linear control dynamics deliver acceptable performance and stability mar­

gins, but when severe rate-limiting situations arise, an additional control element is introduced 

to reduce the likelihood of PIO behaviour. There are fewer reports on this approach in the 

literature, although some techniques have emerged, mainly from industry and research estab­

lishments (see [81, 44, 73]). Perhaps the best known approach is the “phase-compensation” 

approach advocated by SAAB [81]. This is essentially a form of AW compensation whereby the 

controller is augmented with an extra element and, indeed, the name “phase compensators” 

often refers to an AW-type strategy to address the phase-shift between commanded and ac­

tual actuator signal which often occurs during rate-limiting. One of the problems with such 

methods is that they concentrate on eliminating the phase shift induced by the rate-limit, but 

do not directly account for stability 2 and performance of the complete nonlinear closed-loop 

system.

6.4.1 T he anti-w indup  approach and its  advantages

Although some attem pts at applying modern anti-windup (AW) schemes to flight control prob­

lems have been reported( for example in [4, 60]), the systems on which they have been assessed 

have been grossly simplified, linear, low-order approximations of the true aircraft. Other po­

tential techniques are those of [102] or [120]. However, both schemes involve LMI optimisation, 

which may suffer from initialisation problems and numerical errors, especially when dealing

2Even if phase shifts are eliminated, a divergent in-phase oscillation may still develop
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with large, complicated system s. Thus there is a lack of scientific assessment of modern anti­

windup techniques in real flight control situations.

This chapter describes the simulation studies which were conducted in preparation for the 

flight tests that took place in July 2006 as part of the GARTEUR AG-15 activities. The 

results reported here make use of the results in Chapter 5 (see also [92, 89]) where an intuitive 

but rigorous solution to the rate-limit problem was given; this combination appears rare in the 

study of PIO problems. At this stage, it is useful to note that although aircraft actuators are 

both position and rate-limited, position saturation is encountered much less frequently in flight 

control, making it desirable to concentrate on the rate saturation problem. There are several 

notable advantages to using the AW results given in Chapter 5 which make them attractive 

for the flight control setting:

•  The AW compensator is only active during and immediately after saturation has occurred. 

This means that existing legacy controllers, which probably had great effort devoted to it, 

may later be augmented with an AW compensator without any extra restrictions being 

imposed.

•  The design of the AW compensator is independent of that of the linear controller and thus 

a single AW compensator can be used with many  different linear controllers (although 

the transient response will obviously change). This can be useful in flight control systems 

as controllers sometimes have both attitude-command and rate-command modes.

•  The method only requires the solution of a single Riccati equation with three free pa­

rameters (later reduced to two as discussed in Section 5.5.1); thus it is relatively simple 

to construct an anti-wind up compensator which guarantees stability and performance.

One of the interesting features of the work in Chapter 5 is that it is local in nature, with 

one of the main trade-offs being that between performance (measured as an £ 2  gain) and the 

size of the region of attraction 3. The tuning framework introduced in Section 5.5.1 allows 

a reasonably transparent and intuitive trade-off between these two conflicting goals, which is 

vital for practical implementation.

6 .5  T h e  A T T A S  a ircra ft

The ATTAS (Advanced Technologies Testing Aircraft System) is a highly augmented VFW- 

614 experimental aircraft operated by DLR (Deutsche Zentrum fur Luft und Raumfahrt) and

3 A similar trade-off was observed in [102]
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Figure 6 .6 : Front view of ATTAS aircraft

used to assess flying qualities and flight control laws. It is a medium sized jet aircraft which, 

before modification was capable of seating approximately 2 0  passengers, together with a two 

person flight crew. Since modification, much of the former passenger area is now devoted to 

computer equipment and instrumentation.

The ATTAS has several customized systems such an adaptive fly-by-wire flight control system  

capable of hosting different flight control strategies, cockpit display and an extensive set of flight 

test instrumentation. For the SAIFE campaign the aircraft was fitted with a passive side-stick 

as the primary control inceptor, allowing the pilot to reach high amplitude/frequency control 

inputs with relative ease. This also augmented the maneuvering capabilities of ATTAS while 

reducing the workload on the pilot. Safety of the ATTAS is ensured with a mechanical back­

up control system that is activated only in the event that the safety pilot needs to override 

the experimental control laws. This allows relatively easy and fast clearance procedures, and 

therefore, experiments can be flight tested without going through the extensive process of flight 

certification.

The ATTAS dynamics are fairly benign with few stability issues and rate-limits sufficiently 

high to avoid most PIO type behaviour. ATTAS has a large flight envelope and the dynamics 

of the aircraft vary with Mach number and altitude. However, for small perturbations about 

the trim condition, it can be considered as essentially linear and a scheduled “linear” controller 

can be used to endow the system with adequate stability and performance properties.

Although the ATTAS is typically not prone to unexpected behavior, the objective of the work
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was to make the un-augmented system  susceptible to PIO ’s and then to add the AW com­

pensator in order to reduce or eliminate this susceptibility. PlO-type behaviour was therefore 

induced by applying sufficiently aggressive pilot inputs and using sufficiently low software rate- 

limit values which can be adjusted using the on-board flight control computer (i.e. software 

rate-limits were adjusted to half their nominal values). Although such a procedure can be 

viewed as a little artificial, the outcome from these simulations (and the flight tests which 

followed) was expected to shed some light on the assessment of the anti-windup techniques 

developed in Chapter 5. Furthermore, note that an approach using artificially degraded rate- 

limits is the only safe way of conducting flight tests, as any dangerous rate-limiting can easily 

be removed by reverting to the standard fly-by-wire configuration, or allowing the safety pilot 

to take control with the mechanical system.

6.5.1 T he ATTAS aircraft and flight control sy stem

A block diagram of the basic ATTAS configuration used in this chapter is depicted in Figure 

6.7. It consists of consists of three main parts: the nonlinear flight dynamics, the actuators 

(including the engine), and the controller. In addition, the “inner” control loop is augmented 

with an “outer” loop which represents the actions of the pilot. This is the same structure 

proposed in figure 6 .1  and represents the general structure of most flight control systems.

A nonlinear model of the inner loop (the nonlinear plant, actuators and controller) was provided 

by DLR together with a set of trim points which corresponded to different flight conditions 

scattered across the flight envelope. The sample period used in the ATTAS on-board FBW  

system was set to 0.03 seconds; this was imposed on the simulation model too. It is important 

to have this in mind as to avoid sampling and numerical issues (which manifest themselves as 

spurious aircraft behaviour), it was necessary that any AW compensators had relatively slow 

poles.

N onlinear plant

This is the nonlinear model of the main airframe augmented with the linear portion of the 

actuator models. The resulting plant is thus a complex high-order nonlinear system with 27 

states, 23 inputs (17 are pilot commands and 6  are wind related disturbances) and 32 outputs, 

although only 12 are used for feedback. For this work, the aircraft dynamics were partitioned 

into longitudinal and lateral/directional axes (see Table 6.1). The longitudinal channel has 

the elevator command (for pitch control) and the Power-Lever command (thrust, for airspeed
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Figure 6.7: Block Diagram of ATTAS aircraft model

control) signals as control inputs, the first of which has strict rate constraints. Measurements 

of pitch angle 0{rad ), and pitch rate q (ra d /s ) are the primary variables used for feedback in 

this axis, with the airspeed being used to schedule the control law.

Input Symbol Units

elevator X< radians

power lever PL radians

Output Symbol Units

Pitch attitude e radians

Pitch rate Q radians /  s

Angle of attack a radians

Flight path angle 7 radians

True airspeed VTAS knots

longitudinal velocity U K m /s

vertical velocity W K m /s

Table 6.1: ATTAS longitudinal input/output information

The lateral channel has the aileron and rudder command signals as control inputs with both 

channels having strict rate constraints. The primary lateral outputs for feedback are the roll 

angle 4>{rad), and the roll and yaw rates - p ( r a d / s ) and r(ra,d/s) respectively. The lateral
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input-output structure is summarised in Table 6.2.

Input Symbol Units

aileron V radians

rudder c radians

Output Symbol Units

Roll attitude 0 radians

Roll rate P radians/s

Yaw angle V; radians

Side-slip angle P radians

Yaw rate r radian/s

lateral velocity v K m /s

Table 6 .2 : ATTAS lateral input/output information

As our AW design method requires the plant to be linear, the system was trimmed and linearised 

using DLR algorithms. This was done around eight distinct flight conditions spread across the 

FBW  envelope. The flight condition initially preferred for anti-windup design was Mach 0.3, 

2 0 , 0 0 0  feet, straight and level flight, which was chosen since simulation revealed that it was one 

of the most problematic flight conditions; additionally the plant was open-loop stable in both 

channels. Interestingly, it was observed that the AW compensator designed at this operating 

point seemed to function successfully at other flight conditions despite the change in aircraft 

dynamics.

Flight control system

A block diagram of the main ATTAS flight control system is shown in Figure 6 .8 . The inputs 

on the left hand side represent the four pilot commands and the feedback signals used in the 

control laws. Notice that the velocity and the yaw controllers are simply open-loop controllers 

and effectively only scale the pilot input to yield suitable control signals to the plant. The pitch 

and roll controllers do, however, use feedback of pitch/roll attitudes and rates respectively, both 

being scheduled with airspeed.

As the velocity and yaw controllers do not affect the aircraft’s proneness to PIO and as they 

are simply open-loop, they will, by and large, be ignored in much of the subsequent analysis 

and design. The two important controllers, in terms of PIO and AW implementation, are the 

pitch and roll controllers. Both of these controllers are rate-command-attitude-hold controllers,
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Figure 6 .8 : Simplified ATTAS flight control system

normally acting as a pure rate command controller unless the pilot stick command is zero. The 

pitch controller is essentially a proportional rate controller which generates an elevator com­

mand from pilot stick force and pitch rate feedback. During zero pilot demand, the controller 

switches (in a continuous sense) to a PI attitude controller by feeding back 9 and its integral. 

Some decoupling is also achieved through feeding back the square of the roll rate, 0, although 

the gain associated with this is relatively low.

The roll controller behaves similarly, with the controller generating two aileron inputs from 

the pilot stick force, and the roll angle and rate feedback, with the attitude portion of the 

controller becoming active during zero pilot demand. There is no decoupling term in this 

controller and the yaw channel is left open-loop. Both the lateral and longitudinal controller 

gains are scheduled over the flight envelope by a measurement of the airspeed, VTAS.

The controller has been used on ATTAS for many years and was designed with no performance 

specifications in mind, but with the sole goal of retaining stability and reducing pilot workload. 

Initially this controller was intended to help pilots reach trim points with reduced effort and fly 

for longer hours. This is mentioned as later in the Ground simulation phase it was noticed that 

the attitude hold portion of the controller could be removed to enhance aircraft sensitivity.
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A ctuators

The actuator block includes saturation and rate-limiting of the control inputs, and a nonlinear 

model of the engine. In the longitudinal axis, only the elevator command signal has rate-limit 

constraints modelled as in Figure 5.3 with H  =  6.7 and rate saturation of 0.523rad/sec. The 

power lever command signal is not rate-limited and open-loop, therefore it is not included in 

AW compensator design.

The lateral axis actuators have rate-limits in both the ailerons and rudder signal. The rudder 

rate-limit is of less importance as the yaw channel is open loop - it is also removed from the 

design process. The aileron actuators have a bandwidth determined by i f  =  6.7 and rate-limits 

of O A lrad j sec.

P ilo t

For this work it was assumed that the pilot provides an outer-loop of attitude stabilisation, that 

is, the pilot is a system providing a stick input on the basis of higher-level attitude commands 

and observed attitudes. For simplicity, the pilot was modelled as a diagonal constant matrix 

with its two diagonal elements representing the pilot “gain” in the pitch and roll axes:

Pp ~  d iag(A p/on, Ppiat)

Although crude, there has been some success with such models in the past, and as mentioned 

earlier, this static model mimics the behavior of a precognitive type pilot when he encounters a 

PIO event. The pilot gains, K pion and K piat, were chosen using the OLOP criterion, rendering 

an open-loop cross-over phase of about 4>c/on ~  —130° and $ ciat ~  —160° respectively.

Flight E nvelope

The flight envelope of the ATTAS in FBW  mode is given in Figure 6.9. The linearised ATTAS 

models provided by DLR, and proposed for the subsequent flight test, where chosen as follows 

(for more detail see table 6.3):

•  Flight conditions 1 to 3 are at 10 ,000 /t with velocities ranging from Mach 0.3 to Mach 

0.5

•  Flight conditions 4 to 7 are at 20,000 ft with velocities from Mach 0.3 to Mach 0.6
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Figure 6.9: ATTAS Flight Envelope

Flight Condition Velocity Altitude Comments

No. (VIAS) [kts] [ft]

1 198.44 1 0 0 0 0

2 264.59 1 0 0 0 0

3 330.74 1 0 0 0 0

4 198.44 2 0 0 0 0

5 164.59 2 0 0 0 0

6 330.74 2 0 0 0 0

7 396.88 2 0 0 0 0

8 135 1350 -3deg 7

9 135 2 0 0 0 0 -5deg 7

Table 6.3: Up-and-away and lading approach Flight Conditions (FC)

• FC 8  and 9 are landing approach configurations at 1500 ft and 135 knots with flight path 

angles, of 7  =  —3 deg and 7  =  — 5 deg respectively

Flight conditions are well spread within the flight envelope, touching different types of flight dy­

namics. At low speed the aircraft becomes less responsive; at high speeds, the maneuverability 

of the system is increased and noticeable effects may emerge from rate-limiting.

6.6 A nti-w indup design and im plem entation  for ATTAS

As mentioned in the previous section, like most fixed-wing aircraft, ATTAS can be naturally 

decoupled into the longitudinal and lateral/directional dynamics. Likewise, apart from a small
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Figure 6.10: Block diagram of the system with added software rate limits

cross-coupling from the lateral dynamics to the longitudinal controller (see Figure 6 .8 ), the 

control system can also be decoupled into lateral and longitudinal parts. Again, as mentioned 

before, due to the nonlinear nature of the ATTAS flight dynamics and the scheduled nature 

of the ATTAS controller (which is known as “RACOSS”), an anti-windup compensator must 

de designed using a linearisation around a trim point. DLR provided 9 different trim points, 

all of which could be potential candidates for AW design. However, after some investigation, 

Flight Condition (FC) 4 was chosen as the point around which the AW compensator would be 

designed.

At FC4, the aircraft is trimmed at Mach 0.3, 20,000 feet, which is a low speed, high altitude 

flight condition; at this trim point the aircraft tends to be more difficult for the pilot to 

control satisfactorily as the aircraft is, in theory, less responsive. During initial simulations of 

the nonlinear ATTAS model, it was observed that FC4 was perhaps the most problematic of 

all nine flight conditions and, using suitable pilot gains, it was possible to excite oscillatory 

behaviour using sufficiently demanding synthetic pilot references. Furthermore at FC4, the 

linearised ATTAS dynamics were stable in both the lateral and longitudinal axes, making it 

possible, in principle, to achieve semi-global stability.

It was also discovered that, because ATTAS dynamics do not vary greatly with changes in 

flight condition, AW compensators designed at FC4 tended to function well when implemented 

at other trim points. In fact, unlike other more complex aircraft, ATTAS seemed an ideal 

test-bed for linear AW techniques as, certainly around its trim points, the aircraft behaved in 

a largely linear manner.

The architecture used for the nonlinear simulation (and also subsequent flight test) is shown 

in Figure 6.10. The fully coupled lateral/longitindal nonlinear model was used together with 

the linear RACOSS controller (although this is approximately decoupled as mentioned earlier)
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for simulation purposes. The nonlinear simulation features two sets of rate-limit, the first 

modeling the physical rate-limits in the aircraft; the second modeling the software rate-limits 

which can be adjusted to any level below the physical rate-limits and to which we have full 

access. Note that, providing the software rate-limits are set below the physical actuator the 

physical rate-limits will never enter their nonlinear regime and will behave linearly. The anti­

windup compensator shown is actually decoupled into longitudinal and lateral parts, viz G(s) =  

diag(Oiong(s), Oiat(s)), each element of which was designed for the longitudinal and lateral 

dynamics respectively. The anti-windup compensator becomes active only when rate-limiting 

occurs in the software rate-limits.

One of the main features of the scheme is the introduction of an extra software rate-limiter 

with added AW compensation. This approach is closer to real control applications as such 

“protective” elements are common practice in flight control systems; it is undesirable that the 

actual control effectors reach their limits, so software limits (either using logic or dynamic 

filtering) are added.

The protective rate-limiter added to the system is realised as depicted in figure 5.9, where the 

level of rate saturation and the linear bandwidth (BW) of the added protection are parameters 

chosen by the designer within the constraints that the rate-limit must be less than the physical 

limits and the bandwidth must be sufficiently high so not to interfere with the linear controller. 

One of the advantages of inserting such software limiters is that rate-limit levels can be manip­

ulated via the on-board computer, allowing the assessment of the influence of rate-limit levels 

on PIO susceptibility. Furthermore, notice that by adding software limits, full availability of 

the signal d =  d - s a t ( d ) ,  which is required by the AW compensator, is automatically obtained; 

this would not be the case if using the physical rate-limit. The software rate-limiter has been 

designed to switch between three different levels of saturation: full rate-limits (i.e. 0.47rad /sec  

for the lateral channel and 0.523rad /sec  for the longitudinal), 60% and 50% of the original 

value. The linear software rate-limit BW  is set by choosing H  =  50, which is greater than the 

actual actuator’s BW; this reduces the impact that the newly added linear dynamics have on 

“regular” dynamics (i.e. no added software rate limits).
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6.6.1 Design parameters

The design method of Section 5.5.1 was used to produce a full-order AW compensator around 

the design point of Mach 0.3, 20,000 feet 4. For simplicity, the free parameter k was set to

unity, reducing F  to equation (5.56). The size of the region of attraction can be enlarged by

making cmax in equation (5.59) large (which is equivalent to p being small). The performance 

index 7  is related to the £ 2  gain of the map Tp (see Chapter 5) and must be made small in order 

to have good performance. As 7  =  1 / v/p, a trade-off must be made between performance and 

the size of the region of attraction. The main issues that need to be addressed when designing 

AW compensation may be summarised as follows:

•  Stability of the closed-loop compensated system must be guaranteed for a sufficiently big 

domain of attraction (i.e. p must be small, and consequently cmax big)

•  As AW performance is of great concern, the map ||^>||i,2 ,w <  7  must be as small as 

possible, which translates into a small performance index 7  (i.e. making p big)

•  The system must exhibit an improvement in its stability margins and performance

As mentioned above, due to the natural decoupling of the longitudinal and lateral dynamics 

at the trim point, the longitudinal and lateral AW designs were carried out separately. As k 

was chosen as unity for both channels, this reduced the design choices to p and e in both axes; 

after several iterations, these were chosen as indicated in Table 6.4, yielding the optimal matrix 

gains, where F}on £  R l x 1 4  and Fiat 6  R lx l6as

[0.0655  - 0.0294 0.7356  4.3948  0.0012  0 0.0012
F la n  =  (6 -2)

0 0 0 - 0.0605  - 0.0008  - 0.0446  - 50 . 1453]

[0.0156  2.5669  6.6531 4.1785  0.4310 - 0.0749  - 0.0061  - 0.0533
Fiat =  ( 6 -3 )

0.0681 0.0061 0.0595 - 0.0464 - 0.0014 - 0.0657  - 81.1278 - 9 . 4727]

Compensator p € £ 2  gain

A W  C  Aiong 10“ 8 0.998 104

AWCAiat 10~6 0.998 103

Table 6.4: D esign parameters and £ 2  gain for FC4

4This flight condition was initially considered but later removed from the actual flight test plan - see next

chapter
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The parameters values in Table 6.4 were chosen after a process of simulation based tuning. Due 

to the complexity of the ATTAS model, it was somewhat more difficult to arrive at “optimum” 

values for p and e. It is also important to note that as 7  represents the local nonlinear £ 2  gain 

of the system, it is a somewhat more vague measure of actual system performance; this is in 

contrast to the linear systems case, where the £ 2  gain is equal to the 7i°° norm, which has a 

well-defined frequency domain interpretation. As with all nonlinear systems the correspondence 

between the £ 2  gain and the performance of the system as observed due to specific inputs is 

not always clear. However it did seem to be the case that the system response with AW was 

significantly better than without AW for most parameter choices.

One of the difficulties in the tuning of the compensator was managing the trade-off between 

region of attraction and performance: according to the formulae of Section 5.5.1, whatever is 

gained in performance is paid for in region of attraction size.

However, it must be emphasized that the expression for cmax derived in Section 5.5.1 is a bound 

on the size of an ellipsoid which is contained within the region of attraction; the actual region of 

attraction is often larger ([33, 12, 100, 102]). Moreover, as the region of attraction is estimated 

from the Circle Criterion, it is likely to be much larger than guaranteed by this method: it is 

guaranteed that £  C A; the converse is rarely true. Thus there is often conservatism in the 

estimation of the region of attraction.

It was noticed that for values of e which yielded a very tight sector bound, the system becomes 

less sensitive to changes in p , giving more room for fine tuning. It was also observed that 

even though performance is not directly dependent 011 e ( 7  =  1 /  y/p for the case of choosing 

k =  1 ), a degradation of tracking performance was noticed as the reference signal increased 

(this translates into bigger stability regions of the autonomous system, i.e. dnn =  0). This 

means that e must be chosen large enough as to ensure that d E S{d,  do), but small as to allow 

for performance enhancement to be noticeable.

6.7 Nonlinear simulations

6.7.1 Desktop Simulation Setup

Nonlinear simulation is used as a tool for the comparison and verification of different AW 

compensation schemes. The model provided by DLR, is an almost exact copy of the one existing 

within the ground simulator; this means that any problems found in desktop simulations will 

replicate themselves in ground simulations. This was observed by applying “clinical” reference
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inputs (with clinical we mean constructed signals such as doublets or 3-2-1 type signals) to 

the vehicle system and comparing desktop and ground simulation results; this demonstrated 

that the two where highly correlated. As mentioned earlier the only noticeable source of 

discrepancy would come from the pilot model and the “real” pilot. As the AW compensator 

will be implemented on the nonlinear model, there are no guarantees that the closed-loop 

compensated system will retain stability or performance, nevertheless, if the aircraft remains 

close enough to trim point, similar dynamics to that of the linearised system can be expected.

It is DLR’s policy to reject any control scheme or experiment that has problems during the 

desktop and ground simulation phase, so it is important to develop accurate, well structured 

testing procedures in order to avoid future problems. The results obtained during desktop 

simulation provided valuable information as to how the system is expected to behave when 

being tested on the ground simulator with a real pilot. Although this will be discussed later, it 

is important to mention again that the greatest source of mismatch comes from the pilot model, 

not the vehicle itself, so actual ground tests were expected to be somewhat “unpredictable”. 

This is an aspect that cannot be overlooked as PIO ’s by definition are only present in a PVS 

and are due to the interaction existing between the aircraft and the pilot.

Nonlinear simulations were carried out using software rate-limits to generate the signal d, which 

drives the anti-windup compensator. The rate-limit value, as mentioned above, could be set 

at 50 %, 60 % and 100%, to artificially modify the aircraft’s susceptibility to PIO. After some 

initial simulation studies, it was found that PIO susceptibility was negligible for normal rate- 

limit values and that a 50 % rate-limit value seemed to make the aircraft noticeably more PIO 

prone. One of the main concerns about reducing the rate-limits was that pilots could find 

certain tasks difficult to perform due to a general “sluggish” feel to the aircraft rather than 

PIO proneness. However with the rate-limits set at 50 %, the chances of encountering PIO 

events seemed sufficiently increased, without greatly affecting the general “feel” of the system.

It was found, using the OLOP criterion, that pilot gains Kp/on =  K piat =  —1.2 stabilised the 

pilot-plus-aircraft system (for the nonlinear plant), yielding well damped dynamics in absence 

of rate-limits. Note that it is normally possible to achieve stability by lowering the pilot gains; 

this comes at the expense of having reduced performance. The idea here is to show how 

AW compensation copes with stability and performance issues that may arise when highly 

demanding reference signals are combined with “aggressive” pilot models. Figure 6.11 shows 

the effects of closing the pilot-vehicle loop with an aggressive pilot model, which translate to 

high gain, pilot control strategy and exposes the theoretical PIO tendencies of the ATTAS.
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Figure 6.11: OLOP analysis for flight condition FC4

6.7.2 Longitudinal Simulation Results

For the longitudinal axis simulations, a pitch-attitude doublet pulse reference (period 20 sec­

onds, duty cycle 50 %, amplitude 6 degrees) was applied. The reference sequence starts at 5sec 

and returns to zero after one cycle (i.e. 25sec). This type of task is useful as the pilot needs 

to give aggressive stick commands, exciting the rate limits in such a way that PIO behaviour, 

if any, is exposed; both gross acquisition and fine tracking can be evaluated by analising this 

maneuver. The maximum pitch attitude sought was large, but not too close to the aircraft’s 

maximum attainable angle at the flight condition in question. In addition to exciting severe 

rate-limiting, this caused the aircraft to deviate from its trim point, thus testing the AW com­

pensator non-locally and in a nonlinear regime. This potentially increased the difficulty of the 

AW compensator’s task of maintaining stability as it had to function away from its design 

point.

Figure 6.12 shows the simulated behaviour of the aircraft for the aforementioned reference 

demand. When no AW compensation is used, the pitch attitude, 6 continues to oscillate long 

after the reference command has returned to zero value; the system has lost stability and 

entered a limit cycle consistent with PlO-type behaviour. The same figure shows the pitch 

attitude response to the same input, but this time with AW protection employed. Although 

some oscillatory behavior is still present, the AW compensator manages to provide stability 

and recovers tracking performance swiftly. The initial response of the system is slightly more 

sluggish with the AW compensator engaged; this is typical of the behaviour induced using AW 

compensation and appears to be necessary to preserve local stability. In other words, some 

responsiveness of the aircraft has been sacrificed for greater stability properties.
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Figure 6.12: Pilot-plus-Aircraft model simulation: Longitudinal channel

Figure 6.12 also shows the signals entering and leaving the software rate limiter, i.e. u and ur . 

Both with and without AW compensation, the signal ur tries to follow the real control signal u 

but with limited rate, in this way verifying that the software rate-limits are indeed “limiting”
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Figure 6.12: Pilot-plus-Aircraft model simulation: Longitudinal channel

Figure 6.12 also shows the signals entering and leaving the software rate limiter, i.e. u and ur . 

Both with and without AW compensation, the signal ur tries to follow the real control signal u 

but with limited rate, in this way verifying that the software rate-limits are indeed “limiting”
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the control signal's rate. When no AW is used, the rate limited control signal reaches a state 

of full saturation similar that exhibited in Figure 5.2. This is to be expected as the system  

enters a limit cycle that causes it to be “locked” in saturation. When AW compensation is 

implemented, the system recovers stability and a decrease in the system ’s rate saturation level 

is achieved. Observe how the AW compensator avoids severe rate saturation by conditioning 

the control signal u before it enters the rate limiter, resulting in reduced phase lag between the 

intended control signal u and the real control command ur . Note however that a reduction of 

phase lag is not alone sufficient to prevent PIO ’s, as is sometimes indicated in the literature; 

this is an oversimplification of a nonlinear phenomenon and extra care concerning stability 

issues must be taken.

As the AW compensators were designed using de-coupled linearisations, it is important to take 

into account the coupling effects that exist in the nonlinear model. It is possible to obtain 

a general idea of the degree of this coupling by observing how much 0  drifts from its trim 

value. As shown in Figure 6.13, when AW is engaged, the roll angle 0  remains very close to 

its trim value meaning that there is little coupling from the pitch axis intro roll. Without 

AW compensation engaged, there is somewhat more coupling and the roll angle appears to be 

trapped in a low amplitude limit cycle.

D 0.05

30
TtME[ s 1TIME [ s

0 [Deg], No AW 0 [Deg] +  AW

Figure 6.13: Signal 0: Pilot-plus-Aircraft model

Next we will discuss how changes in trim point and pilot gains may affect the overall response. 

Robustness to plant uncertainty was discussed in Chapter 4, where it was shown that the AW 

synthesis methods proposed there had some inherent robustness properties that where dictated 

by the “stability multiplier” W . As the rate limit AW scheme proposed builds on such methods, 

it may be expected that some of this robustness tolerance permeates to the local AW problem
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solution. This is of great importance as uncertainty may come with deviation from trim point, 

an issue of great interest when dealing with nonlinear systems. If the AW compensator is robust 

enough, it is expected that it will retain stability for more than one point in the flight envelope. 

Figures 6.14 and 6.15 show the pitch angle, 6 , for flight conditions 2 and 6 respectively. In both 

cases the AW compensator implemented was designed using the linearised model of FC4 (the 

same used for simulation of figure 6.12), and, as can be observed, the compensator appears to 

be reasonably robust to changes in trim point. At FC2 the aircraft with AW engaged is able 

to avoid PIO behaviour, whereas without AW compensation it is not. At FC6, the aircraft’s 

response becomes oscillatory even with AW engaged, although the amplitude of oscillation 

is notably lower than when AW is not active. In fact for most operation points, the AW 

compensated aircraft yields much better responses than when AW is not engaged, and it would 

perhaps be possible to consider one robust AW compensator to cover the whole of the flight 

envelope.
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Figure 6.14: Pitch angle 0: Pilot-plus-Aircraft model - FC2

To finalise the analysis of the longitudinal axis, it is worth mentioning that the results obtained 

in desktop simulation are susceptible to changes in the pilot model. This is demonstrated 

through simulation (see Figure 6.16) of the closed-loop system with reduced pilot gains (i.e. 

\Kpiong\ — 0-8)- Although instability is not encountered using this lower gain, it is still inter­

esting to note the decreased oscillatory behaviour of the system when AW is engaged, although 

the speed of response is slightly slower.
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6 .7 .3  Lateral S im ulation R esu lts

The lateral axis appeared less PlO-prone than the longitudinal axis and, in order to excite PIO- 

like behavior, roll-attitude references with shorter periods and larger amplitudes were required. 

Thus, the roll-attitude reference was chosen as a pulse train of period 10 seconds, duty cycle 

50% and amplitude 25 degrees. The pulse has a start at 5sec and then returns to zero after 

lbsec. (i.e. after completing one cycle). Figure 6.17 shows the behaviour of the lateral axis due 

to the above reference being applied. Without AW compensation, a slow divergent oscillation 

in roll attitude, <fi, is evident. With AW compensation, things are different: the response of 

the system due to the same roll attitude demand converges rapidly to the trim point (0 =  0 

degrees) after the demand is removed, with only a residual oscillation slightly tarnishing the 

system's response.



Chapter 6. PIO  avoidance in an experimental aircraft: design and desktop simulation 149

The tracking performance with AW is still rather sluggish but it is clearly stable. It must be 

emphasized that anti-windup cannot “remove” the physical rate-limiting but can improve the 

way the system copes with these limits.

It is useful to observe how the signals around the rate saturation element behave. From 

Figure (6.17) it is possible to observe that the actual control signal ur has limited rate. Notice 

how the system with AW control has a faster and smother return to linear dynamics, that 

is u =  ur . This can essentially translate into a system that is outside linear constraints for 

shorter periods of time and, therefore, is less prone to performance degradation and PIO events. 

This is enforced by the extreme reduction obtained in saturation level when using AW. This 

is measured through the signal u and as shown in Figure (6.17), rate limiting occur less often 

and with less magnitude when using AW

Once again, it is a good exercise to analyse the coupling existing between lateral and longitu­

dinal axis. In this case we observe the effects that changes in the roll angle have on the pitch 

angle. As previously discussed for the longitudinal axis, the effects of pitch to roll coupling 

are tolerably small. However, from Figure 6.18 the converse is not true. The lateral instability 

which occurs when no AW is present causes large (60 degree) excursions in the pitch attitude

0. When AW is engaged some coupling is still observed, but is an order of magnitude smaller 

and convergent. While one expects some coupling between lateral and longitudinal axes in 

nonlinear simulation, it appears that during rate-saturation this coupling can be significant if 

AW is not used.

The same AW compensator designed for FC4 was tested on FC2 and FC6. Figures (6.19) 

and (6.20) show that this compensation scheme is robust to deviations from trim point and 

provides enhanced performance at both FC2 and FC6. At both trim points the use of the 

AW compensator designed at FC4 prevents the system from becoming unstable. In fact, as 

FC2 and FC6 seem more PIO prone than FC4, it can be observed that AW is more useful at 

these flying conditions with very oscillatory responses being observed without AW engaged. 

Although the AW compensator was not designed specifically for these flight conditions, as it 

inherently incorporates some robustness, one can expect it to function reasonably well providing 

the dynamics of the system are not too different at these other trim points.

Figure 6.21 shows the response of the PVS when the pilot gain is reduced (K piat =  0.8). As 

expected, for this lower pilot gain, the aircraft has better stability properties for both cases; 

with and without AW. The system settles down relatively swiftly after the reference demand 

is withdrawn. Note that for this case, the rate-limiting is not as severe and thus one would not



[Beal 4> 
[B»a] 

[sy6ea]

Chapter 6. PIO avoidance in an experimental aircraft: design and desktop simulation 150

Q
•&

TIME[ s ]TIME( s  ]

0  [Deg], No AW (f) [Deg] +  AW
150

100

50

0

-50

•100

•150 10 15
TIME ( s j

0 5 20 25 30

u and ur [Deg], No AW u and ur [Deg] +  AW

TIME [ s ]

6000

4000

2000

0
y  -200

-2000

-4000

-6000

-80000 5 10 15
TIME ( s ]

20 25 30
TIME [ s ]

d [Deg], No AW d [Deg] +  AW

Figure 6.17: Pilot-plus-Aircraft model simulation: lateral channel

expect as much of a difference between AW and no AW responses.
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Figure 6.20: Roll angle 0: Pilot-plus-Aircraft model - FC6

6 .8  C o n c lu s io n

The results obtained in this section have illustrated the advantages of using AW compensation 

in a realistic flight control application. By reducing the level of rate saturation to 50% of its
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Figure 6.21: Roll angle 0: Pilot-plus-Aircraft model - Kpion =  0.8

original value, it was possible to degrade the ATTAS performance and induce what may be 

thought of as Category II PIO ’s. It may be observed through time domain analysis that AW 

compensation increases stability margins and reduces the risk of PIO events developing. Such 

events where present for reference signals that demanded aggressive inputs from the pilot. The 

reference signals where chosen as to considerably excite the rate limits in such a way that the 

overall closed-loop compensated system had a clear performance degradation; the reference 

signal tried to make the pilot use full stick inputs at frequencies near to the system ’s onset 

frequency. This was achieved by using the reference signals describe in the previous section 

and a simple gain pilot model.

It is important to mention that even though the results presented in this chapter where suc­

cessful in showing the benefits of using AW compensation, the simplicity of the pilot model 

makes this nonlinear simulation a simple approximation of what might happen when a “real” 

pilot commands the aircraft. Having this in mind (see [64]), any PIO event that may occur 

during desktop simulations may not necessarily happen during ground simulation, or in real 

flight. Although this is a great limitation and more complex, accurate pilot models may be 

desired, this is outside the scope of this research but acknowledged as a fundamental part in 

obtaining high fidelity results during the design phase of such rate compensation applications.

An advantage of using the algorithms proposed in section 5.5.1 is that the designer may choose 

how fast the compensator poles are. This is of great importance as a constraint in the sampling 

rate was imposed by DLR. This means that if compensator poles are sufficiently large, numerical 

errors may occur and may even be confused with PIO behaviour. Choosing the size of the 

compensator poles is a characteristic that is not present in similar LMI formulations ([100]).
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Previous chapters have described some of the perils of rate and magnitude saturation and have 

advocated anti-windup solutions to these problems. Chapter 6 described the application of the 

rate-limit anti-windup compensation results developed in Chapter 5 to a complex flight control 

problem where it was shown, through nonlinear simulation, that anti-windup techniques had 

the potential to improve aircraft resilience to Category II PIO’s. This chapter describes how 

the anti-windup compensators discussed in Chapter 6 were applied in practice and the results 

of their subsequent flight testing.

The flight tests described in this chapter formed the major part of the SAIFE (Saturation Alle­

viation In-Flight Experiment) campaign which was conducted at DLR Braunschweig, Germany, 

in the summer of 2006. These flight tests were seen as important because they implemented the 

anti-windup compensators developed in Chapters 5 and 6 on a real aircraft and were flown by
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a real p ilo t; the latter is particularly difficult to replicate in simulation. It is believed that the 

anti-windup compensators tested in the SAIFE campaign are the first “advanced” anti-windup 

compensators to be tested in-flight and mark a significant step forward into the understanding 

of the design and evaluation of anti-windup compensators for PIO avoidance. In fact, these 

flight tests were considered so successful that follow-up tests are planned for August 2007.

7.1 T h e  S A IF E  E x p er im en t: o b je c t iv e s  a n d  p rep a ra tio n

This section will describe the Saturation Alleviation In-Flight Experiment (SAIFE) that was 

conducted in July 2006 at DLR, Braunschweig. The flight tests were conducted on the ATTAS 

aircraft described in Chapter 6, where the vehicle was operated in “degraded” mode (rate-limits 

at 50 % of nominal value) in order to increase its susceptibility to PIO behaviour. The flight 

tests’ main objectives were to:

•  Quantify, through pilot ratings and time domain analysis, the degree of success that the 

AW scheme for rate-limits, developed in Chapter 5 and designed in Chapter 6, could have 

in a real flight control application

•  Verify the claims of modern AW techniques: “Can modern A W  compensation schemes 

deliver in a real industrial environment the saturation alleviation and performance en­

hancement that they claim ?”

•  Increase the involvement of industry in researching and implementing modern AW tech­

niques

Another objective, of less importance, was to collect data of any possible PIO instances of the 

“degraded” ATTAS; future work may use this flight data to asses the detrimental phase shift 

associated with rate-limiting and corroborate prediction techniques such as the OLOP criterion. 

The experiment was conducted in such a way that at each flight condition (see table 6.3) two 

pilots evaluated a series of tasks ( HQDT, the “birdie” , off-set landings) for a degraded ATTAS 

aircraft, providing PIO (on the PIO rating scale) and HQR (on the standard Cooper-Harper 

rating scale) ratings. This was done for various flight conditions and for both the system with 

and without AW compensation, providing an extensive set of in-flight data which is one of the 

highlights of this work.
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Handling Qualities Rating Scale

Adequacy for Selected Task 
or Required Operation

Aircraft Demands on the Pilot in Selected Pilot
Characteristics Task or Required Operation* Rating
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p erfo rm a n ce  a tta in a b le  
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w o r k lo a d ?

Deficiencies
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Improvement
mandatoryIs it controllable?

P i lo t  D e c i s io n s

Excellent 
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Pilot compensation not a factor 
for desired performance
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Pilot compensation not a factor for 
desired performance

Fair- Some mildly 
unpleasant deficiencies

Minimal pilot compensation 
required for desired performance
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Desired performance requires 1 
moderate pilot compensation

Moderately objectionable 
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Adequate performance requires 
considerable pilot compensation

Very objectionable but 
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Adequate performance requires I 
extensive pilot compensation

Major deficiencies
Adequate performance not attainable with 
maximum tolerable pilot compensation 1

Major deficiencies
Considerable pilot compensation 
is required for control !

Major deficiencies Intense pilot compensation is 
required to retain control

1 |  Major deficiencies
Control will be lost during some 
portion of required operation

* Definition of required operation involves designation of flight 
phase and/or subphase with accompanying conditions

Figure 7.2: Cooper-Harper Handling Qualities Rating Scale

7.1 .1  From d esign  to  flight te s t

The SAIFE tests involved flight testing and assessment of very new anti-windup compensators, 

and it is thought that this is the first practical in-flight application of modern AW schemes. 

Although tests of similar compensators have been reported in [41, 59], the SAIFE campaign 

involved pilots, and as such, safety was the priority in these tests, particularly as the aircraft 

would be flying in a degraded manner with its manouevrability significantly retarded. Therefore 

in order to ensure the results were conducted under safe and scientific conditions, a somewhat 

lengthy procedure, starting with AW design and culminating with flight test was followed.

Table 7.1 briefly describes the step-by-step procedure which was followed to enable an AW com­

pensator to be implemented on the ATTAS aircraft. The first few stages are self-explanatory
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Pilot Induced Oscillations Rating Scale
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Figure 7.3: PIO Rating Scale

and have been extensively discussed in previous chapters, especially Chapter 6. It is worth 

mentioning that, in order to have different levels of rate saturation and to accommodate sev­

eral AW compensators in one flight test, it was necessary to implement a switching strategy 

using the on-board flight control computer and switch box. This was operated by the flight test 

engineer present in both ground and flight test. The existing baseline controller (the RACOSS 

controller) was also implemented in a form which was amenable to anti-windup compensa-
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STEP COMMENTS

1. AW compensator design Design AW compensator as described in Chapter 6

2. Desktop simulation Add software rate limit, AW compensator and Pilot 

model and simulate the nonlinear model for different 

flight conditions

3. Ground test (informal at DLR) Different AW schemes at different flight conditions 

where tested on the Ground simulator in order to pre­

pare for piloted tests

4. Piloted Ground test Experimental Flight test pilots asses the various AW 

compensations scheme and give comments

5. Re-design Through pilot comments the compensation design is 

evaluated. If it the general feeling is that the compen­

sator is in someway optimal, then we proceed to the 

Flight test stage. If not, we go back to the first step.

6. Flight test The ATTAS aircraft is assessed by two different pilots 

through a set of predefined manoeuvres as described 

in table 7.3.

Table 7.1: Steps leading to the ATTAS SAIFE tests

tion. This was then exported using the Real-Time Workshop and integrated to the Ground 

simulator. Over the duration of the campaign this process was streamlined and it is now rela­

tively easy to  accommodate a new AW compensator within the ATTAS switching and control 

framework. This was useful as it enables the AW design process to be somewhat more “prac­

tical”, allowing quick re-design based on pilot comments rather than purely simulations - the 

designs were produced specifically for human interaction and perception, which is far more 

complicated than usual time domain criteria (i.e. raise time, overshoot, damping, etc.) used to 

measure performance of control strategies. Thus the streamlined AW implementation scheme 

allowed for quick and convenient re-design of compensators allowing more pilot feedback in the 

understanding and design of the AW strategies.

7.2  G ro u n d  B a se d  S im u la tio n s

Section 6.7 discussed desktop nonlinear simulations that produced an initial AW scheme and 

provided a “feel” for AW compensation design for the ATTAS aircraft. Ground-based simula­
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tion was the first step beyond this and a necessary evaluation stage before real flight test. The 

ground tests of the SAIFE campaign were all conducted on the ATTAS Ground simulator at 

DLR, Braunschweig. The ATTAS simulator provides a convincing replica of the real system, 

including an ATTAS cockpit, on-board computers and visual systems, and pilot inceptors. It 

is used to verify the safety of any experiment prior to actual flight. Some of the “head-down” 

displays were custom-designed for the SAIFE campaign, providing a “birdie” visual tracking 

cue, the compensator being used, and an O N/OFF flag for rate limit activity.

Figure 7.4: ATTAS Ground Simulator, DLR Website

The initial objective of the ground simulations was to test the software developed for the AW 

compensators and to ensure that it functioned harmoniously with the existing ATTAS systems. 

In this aspect the ground tests were useful as the flight-simulator at DLR features an exact copy 

of the flight control hardware used on the real ATTAS aircraft. Thus satisfactory functionality 

of the in-flight software could confidently be predicted through ground test.

The second important objective of the ground tests was to provide a preliminary assessment of 

the anti-windup designs which were obtained through desktop nonlinear simulation. Ground 

simulation allowed pilot feedback to be obtained and compensators were sometimes re-designed 

on this basis. Although it was found that the compensators designed using nonlinear simulation 

were fairly good when tested in the ground simulator, several changes to the flight test campaign 

were made due to the discoveries made at this stage. The most noteworthy ones are described 

below.

• The first ground-based tests consisted of “informal” flying in the simulator, viz, no testing 

of specific manoeuvres but general “flying” of the aircraft in the simulator. For these first 

few tests, the main pilot pitch and roll inceptor consisted of a heavy yoke (somewhat like 

a steering wheel which could be pushed forward) which had the characteristics of a highly 

damped mechanical filter. This effectively added a feed-forward “command shaping” filter 

to the pilot reference input which prevented the pilot from applying aggressive commands
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which could cause severe rate-saturation. In fact, this type of inceptor degraded the linear 

performance of the aircraft and prevented rate-saturation meaning that the anti-windup 

compensators never became active. The yoke was then replaced with a passive side- 

stick (which resembles a “joystick”), allowing the pilots to be more aggressive in their 

reference commands with reduced workload. This allowed ATTAS manoeuvrability to 

be more fully exploited and, as no command filtering was present, more rate-saturation 

was likely to to occur. This uncovered issues that where key to the redesign of the AW 

compensator and the flight test itself.

•  After a few hours of informal flying plus about an hour of formal testing of various 

manoeuvres it became clear that another change was required for in-flight testing: the 

reduced rate-constraints were removed from the elevators and it was decided not to test 

the longitudinal axis in flight. There were several practical reasons for this. Firstly, 

it was observed that, in order to induce any noticeable degradation of the longitudinal 

axis, the pilot had to make high pitch angle acquisition manoeuvres, making the aircraft 

drift rapidly from its trim value. In fact, when the rate-limits were significantly excited, 

inevitably the system would operate far from its trim value most of the time. This was 

an issue partly because the AW compensators were designed around a specific trim point, 

and thus testing far from it would possibly yield unpredictable results, but also because 

the structural constraints of the aircraft would make the required manouevres difficult 

to perform in flight. The second reason for excluding the longitudinal axis from flight 

testing is that the baseline RACOSS controller did not behave as well in the pitch axis 

and produced reasonably large overshoots, making the recovery of linear performance not 

entirely desirable.

•  The standard baseline (RACOSS) controller for ATTAS’ pitch and roll axes has both a 

rate-command and an attitude hold part. During non-zero stick displacement, the rate- 

command portion of the controller is active, but when the stick is centred an additional 

attitude hold (AH) element is also added to the control law. The AH part of the con­

trol law was crudely designed and after several hours of ground-based simulation it was 

noted that there appeared to be no clear advantages of including the AH portion of the 

controller. Thus the AH element was removed from the RACOSS controller, making the 

baseline linear controller simply a rate-command type controller. This had the beneficial 

side effect of reducing the RACOSS controller to a simple gain matrix, which simplified 

later analysis.
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• Section 6.7 and the discussion therein mildly explored the robustness of AW compensators 

to changes in flight condition. Robustness was not methodically treated for the RLAW 

problem, but from nonlinear ATTAS desktop simulation and the results of section 4.3, it 

was expected that a robust compensator could be designed and implemented for all FC’s. 

In simulations this appeared to be true, with improved performance being observed across 

the flight envelope with an AW controller designed at FC 4. However, ground-based tests 

revealed that the effects of deviating from flight condition appeared to be somewhat 

more severe than initially thought, and the approach of “one robust AW compensator” 

for the whole of the flight envelope was replaced by the idea of designing a dedicated AW 

compensator for each flight condition. This posed no computational problems for the 

on-board computers but required the design of a switching strategy which could select 

between eight (including the “no AW” case) different AW compensators (see table 7.2). 

The appropriate compensator had to be switched “in” at a given FC by the flight test 

engineer in synchronicity with the pilot.

In addition to allowing the various practical issues identified above to be addressed, the ground 

tests also gave an opportunity to re-design the AW compensators based on pilot comments as 

well as simulation results. This was particularly important for the SAIFE tests as the pilot is 

such an important factor in PIO behaviour; it is nearly impossible to replicate human behaviour 

in a desktop simulation environment. Designing for systems where humans interface with the 

control strategy is fundamentally complex as it implies addressing issues such as workload and 

perception, given to us in the form of pilot ratings, and are generally not easy to abstract. The 

initial designs were lacking this “pilot feedback” and hence, re-designs based on pilot comments 

were considered prudent. Moreover, during the ground simulations, a few unexpected problems 

emerged, some of which were solved by retuning the compensator.

The most noticeable, negative comment which was initially made by the pilots was with regard 

to the aircraft’s increased sluggishness when AW was added. This was due to an over cautious 

conditioning scheme that retained stability for a large set of signals at the expense of degrading 

the small signal performance of the overall system. Although some improvement was noticed 

(as commented by the pilots the system was more predictable) it was probably not worth using 

AW compensation if such a high amount of performance had to be sacrificed. In other words 

PIO -“resistance” was obtained at the price of sluggish performance.

As mentioned before, the system ’s performance is strongly related to the value of the parameter 

p, where lager values render better system performance. Initially it was thought that having
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a large sector bound, i.e. e =  0.998, would give large regions of attraction and acceptable 

performance levels. A restriction present throughout is that of the sampling rate, which in 

this case is set to 0.03sec, and which in turn restricts the size of the compensator’s poles and 

consequently the achievable performance levels. The issue of acceptable performance levels was 

addressed and the following steps where taken: (i ) the size of the sector bound was reduced 

by reducing the size of e, (u) the size of p was increased as to enhance local performance of 

the closed-loop compensated system; this reduced the allowed set of plant states such that 

d  E »S(d, do), reduced the size of the system ’s poles, and allowed lower £ 2  gains to be obtained. 

In general, choosing a smaller sector bound relaxes the limitations imposed on the allowed 

small-signal £ 2  gain by compromising stability; our system is guaranteed stable within a smaller 

region of attraction but can achieve better local performance levels (measured as the size of a 

predefined £ 2  induced gain, i.e. ||7^||j52,w in Definition 5.3). It is important to highlight that 

the restriction on the size of p comes mainly from the constraints imposed on the sampling 

rate of the ATTAS on-board computational system. Another source of restriction is having 

unstable plant dynamics.

Pilot comments enabled an understanding of certain characteristics that were desirable and 

allowed re-design based on a more realistic pilot-plus-aircraft system than was possible in 

desktop simulation. Some of these comments were not entirely in agreement with conventional 

control engineering wisdom. In particular, the initial design strategy was to keep overshoot as 

small as possible and to maintain damping and stability for as large a possible region. The pilots 

observed that the reduction in overshoot implied a reduced rise time, which in turn translated 

into a “more sluggish” , less responsive system. Thus, with this in mind, the AW compensators 

were then retuned to retain the aircraft’s initial time response as much as possible while still 

reducing the level of rate saturation and increasing the region of guaranteed performance and 

stability. The final parameters used for the AW compensators are shown in Table 7.2.

7.3 Flight Plan

It was mentioned in Chapter 6 that nine different flight conditions were used as potential design 

and test points for the AW compensators. However, during the ground tests it became clear 

that time would prevent testing at all flight conditions. This was partly due to the time required 

to re-trim the aircraft at diverse flight conditions and also due to fuel limitations which would 

require the aircraft to re-fuel before certain conditions were attained; in conclusion, re-trimming 

is a time consuming process which restricts the allowable test points.
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Figure 7.5: Flight Test Trim Points

Therefore, it was decided to select approximately half of the original flight conditions; test 

points are shown in Figure 7.5. In short, four up-and-away flight conditions, two low speed 

(FC1 and FC5), two high speed (FC2 and FC6), would be tested; one landing approach would 

also be included in the experiment (FC8). It should be noted that this flight test plan excludes 

FC4 which was observed to be one of the most troublesome flight conditions in simulation. 

Unfortunately this flight condition was located on the edge of the fly-by-wire flight envelope 

and therefore was considered too risky to assess in real flight. While the flight conditions 

indicated in Figure 7.5 are obviously a proper subset of those tested in simulation, they do 

represent a wide range of flying conditions, providing information that can later be extrapolated 

to other points in the envelope.

As PIO susceptibility is highly dependent of the “type” of pilot, two experimental test pilots 

from the German Air Force where assigned to the SAIFE campaign. These pilots were both 

experienced test pilots (actually involved in the Eurofighter programme) with a wide range 

of flying experience but with no knowledge about the VFW-14 aircraft on which ATTAS is 

based. Prior to in-flight testing they were familiarised with the aircraft handling and controls 

in the ATTAS simulator. It was thought advantageous to use very experienced pilots without 

an intimate knowledge of the ATTAS aircraft so that pilot ratings would not be biased by the 

“inverse model” which pilots may obtain after flying with a certain aircraft for long periods of 

time.
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Both pilots had very different flying strategies, which must not be confused with experience. 

Pilot I was known to be a high gain pilot while Pilot II was know to be a low gain pilot. 

This differing approach was believed to be appropriate as it would give a more balanced repre­

sentation of the AW compensators’ performance and would allow a comparison of both flying 

strategies.

AW compensation schemes where designed for each specific flight condition; all compensators 

were mounted in a “rack” and selected via on-board switching. Seven different compensators 

where designed (as described in section 6.7): one dedicated compensator for each flight condi­

tion, with FC 2 and FC 8 having an extra compensator for comparative purposes. Table 7.2 

shows the trim point and design parameters p and e for each of the AW compensators.

Compensator

No.

Flight Condition 

No.

(P) e

1 1 1 ( T 7 0.96

2 2 1 ( T 6 0.96

3 2 1 ( T 5 0.96

5 5 1 ( T 7 0.96

6 6 i o - 7 0.96

8 8 i ( r 8 0.96

9 8 1 ( T 6 0.96

Table 7.2: AW compensation parameters

A fixed e equal to 0.96 was chosen as it is thought to give a sufficiently large sector condition; 

the existing trade-off is then captured exclusively by p. The compromise between large ROA 

and closed-loop system performance was observed both in desktop and ground based simula­

tions, and therefore, the parameter p must guarantee large stability regions without sacrificing 

too much system performance. Compensation focused on enlarging the system ’s region of at­

traction; this implied choosing p as small as possible. For FC2 and FC8 an extra compensator 

was designed, where p  was increased as to improve closed-loop performance, but at the expense 

of decreasing the size of the estimate of the region of attraction 1.

Pilot induced oscillations can cause catastrophic behaviour in aircraft and thus, to guarantee 

the safe operation of the aircraft and to ensure that these potentially hazardous situations are

1Note that only the size of the estimate is reduced; the actual region of attraction may stay unchanged
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approached safely, it was imperative that PIO situations were approached methodically and 

safely. Thus the following build-up approach was used at all flight conditions by both pilots.

1. Low Bandwidth Testing

2. High Bandwidth Testing

3. Operational Testing

This was also believed to be advantageous because the very nature of the flight tests was to 

induce unnatural aircraft behaviour and so, some caution was necessary. The different phases 

of testing are described below

•  Low Bandwidth Testing consists of semi closed-loop and closed-loop bank angle capture 

tasks. This enables the pilot to a have a “feel” for the system and become familiar with 

ATTAS dynamics. This gives the pilot a general notion of how the system behaves under 

relatively simple roll commands; this stage may also be referred to as warm-up testing.

•  High Bandwidth Testing employs HQDT (Handling Qualities During Tracking) test tech­

niques, which currently is the only method that allows for systematic, high bandwidth 

PIO resistance testing, and is therefore sometimes also referred to as handling qualities 

stress testing. When the pilot is required to perform a tracking task, i.e. an error signal 

prompts the pilot to close the control loop, he will adopt by nature a low gain flying 

technique consistent with satisfactory task performance. Interestingly, when pilots ex­

perience stress, anxiety or fear they will assume a high gain control strategy which may 

excite rate-limits quite considerably.

The aim of HQDT testing is to artificially increase pilot bandwidth, i.e. the frequency and 

amplitude content, by requiring the pilot to track a point as aggressively and rapidly as 

possible, correcting even the smallest tracking error. The test is also setup in a build-up 

approach where initially the pilot is required to track small amplitude and low frequency 

inputs, progressing to higher frequencies and amplitudes up to the point where the pilot 

reaches a “bang-bang” control strategy; the pilot behaves like a switching function, re­

versing the control input as soon as the error signal changes sign. The degree to which 

an aircraft withstands such violent inputs is quantified using PIO Ratings (PIOR’s).

During the SAIFE campaign the pilot was asked to apply HQDT while capturing a wings 

level roll attitude from an initial 30 degree offset using the roll attitude indicator in the 

main head down display (MHDD) as reference.
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•  Operational Testing tries to uncover PIO tendencies in routine tasks such as offset land­

ings and tracking of certain visual cues.

— The “B irdie” Target Tracking Task was used at up-and-away flight conditions and 

requires the pilot to closely track a generic birdie (aircraft symbol) projected onto the 

ATTAS head-down-display (HDD) with an aircraft water line symbol. The tracking 

reference is made up of a set of ramps and steps that are believed to excite the 

rate-limits and expose PIO tendencies. Once the task has concluded, the pilot gives 

HQR’s for gross acquisition and fine tracking, and PIO ratings for the “birdie” task. 

Display latency was found to be no factor during the assessment. Figure 7.6 shows 

the pilot’s HDD during a birdie tracking task and also depicts the roll trajectory of 

the birdie. For each birdie task performed the pilot rated the handling qualities and 

PIO tendencies of the aircraft.

— The Offset Landing Approaches were conducted at the Schwerin-Parchim airfield, 

shown in Figure 7.7. For these landing approaches, the aircraft was reconfigured 

with flaps set to 14 degrees and landing gear extended. As this was considered a 

demanding task, the rate-limits were increased from 50 % of their nominal values 

to 60 %, although the pilots still remarked upon the sluggishness of the aircraft 

dynamics. For this task, the pilots where asked to capture centreline on the active 

runway from an initial 200 meter lateral offset from the nominal approach path; focus 

was placed on the centreline capture task. Two different AW compensator designs 

where tested for this approach/landing task enabling a comparison of performance 

levels through pilot comments, HQR’s, and PIO R’s.

To assist and prepare the pilots for flight test, and for reference in-flight, each pilot was given a 

set of flight test cards which described the sequence of tests to be carried out at each manoeuvre. 

Table 7.3 gives a summary of the chronological development of the test.

7 .4  F lig h t T est R e su lts

The SAIFE campaign culminated in 6 hours of flight tests which were carried out in two sessions 

in a single day. As mentioned earlier, each pilot evaluated various manoeuvres in the ATTAS 

aircraft at all five of the test conditions. At every test condition the aircraft was flown both 

with and without AW compensation engaged. The improvement in flying qualities was assessed 

using pilot “questionnaires” in which the pilots assigned ratings for certain manoeuvres and
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Figure 7.7: Schwerin-Parchim airfield

made comments on the general feel of the aircraft or any specific incidents; data was also logged 

for each test point, allowing the assessment of performance improvements, if any, via time data. 

Thus the results can be divided into two categories: those due to pilot ratings and comments, 

and the time domain data collected.

7.4.1 P ilo t evalu ation

As mentioned earlier, at each flight condition the two pilots evaluated a series of tasks. At 

the up-and-away flight conditions (flight conditions 1,2,5 and 6) these tasks were based on the 

HQDT technique for bank-angle capture and “birdie” tracking task; for flight condition 8, the
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Flight Test card

STEP No.

1 Check trim values and stabilise at reference Flight Condition

2 Activate rate-limit reduction (60%-50%),Switch to appropriate AW com­

pensator and turn SIM mode on (start recording data)

3 General discrete tasks to familiarise the pilot with the compensator 

(bank-to-bank and roll doublet manoeuvres)

4 Recapture FC and make qualitative comments

5 From a bank angle of ±30, recapture zero using HQDT methods at 

different levels

6 Re-establish Initial Conditions and give PIO ratings

7 Start “Birdie” task

8 Track visual reference signal in the roll axis until sequence terminates

9 Provide HQR for gross acquisition and fine tracking. Give a general PIO 

rating for the “birdie ’’task

10 Turn SIM mode off

Table 7.3: Flight Test Card - overview of the flight plan

pilot was required to perform an offset-landing approach. Again, each pilot performed the same 

manoeuvres using the degraded rate-limits both with and without AW compensation. For each 

manoeuvre, the pilots assigned PlO-ratings (measured on the PIO Rating scale [49, 29]) and/or 

handling qualities ratings (HQR’s) based on the standard MIL specifications (as described in 

[1, 29]). Although a full discussion of these ratings is somewhat beyond the scope of the thesis, 

for both of these scales lower ratings are better: an aircraft with low PIO and HQR ratings is 

considered less prone to PIO and to have better handling qualities.

The results for the up-and-away flight conditions are tabulated in Table 7.5 and the results 

for the offset landing approach axe given in Table 7.6. The notation “w/1” indicates that the 

rating given was due to the workload involved and “n /a ” indicates that this rating was not 

applicable or was not assigned. The key tasks which were rated are summarised in Table 7.4.

From the ratings in the tables it can be inferred - at least as far as PIO ratings and HQR’s were 

concerned - that the presence of AW did not degrade the aircraft’s performance at any flight 

condition. For up-and-away flight conditions it appears that, at lower speeds (flight conditions 

1 and 5), both pilots found that AW compensation typically bestowed some minor improvement
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PIO-c PIO rating: bank angle capture

HQR-g HQR: gross acquisition, birdie

HQR-f HQR: fine tracking, birdie

PlO-b PIO rating: birdie

HQR-cl HQR: centreline capture

HQR-t HQR: touch-down zone

PlO -t PIO rating: touch-down zone

Table 7.4: Key to HQR/PIO ratings

in aircraft performance. Pilot I (the high gain pilot) gave PIO and HQR ratings which were 

roughly the same for the aircraft both with and without AW compensation engaged. At FC1 he 

noted that the gross acquisition of the aircraft with the AW compensator engaged was slightly 

better than without but otherwise the ratings were identical for FC1 and FC5.

Pilot II (the low gain pilot) seemed to find minor improvements in the low speed behaviour of 

the aircraft with AW engaged. Although the PIO ratings and HQR’s he awarded at FC1 and 

FC5 were not vastly different comparatively, one can detect frequent instances where either 

the PIO susceptibility or handling qualities were improved when AW was used. For example 

at FC5 the pilot awarded an HQR of 7, corresponding to Level 3 flying qualities, for gross 

acquisition in the birdie task. When the AW compensator was switched in, the HQR fell to 5, 

corresponding to Level 2 flying qualities, which is a significant improvement.

For the up-and-away flight conditions it seemed that most performance improvement was ob­

served at high speeds (flight conditions 2 and 6). At these flight conditions significant improve­

ments were detected by both pilots. For instance at FC 2, both pilots gave a birdie tracking 

PIO rating of 4 with no AW; this dropped to a 2 with AW Compensator 3. In fact, at FC 2 AW 

compensator 3 improved HQR and PIO ratings in all cases. A similar story can be observed 

at FC6 where AW compensator 6 improved HQR and PIO ratings in all cases except for the 

PIO rating for the “birdie” task where no PIO rating was assigned when AW was not engaged. 

One remarkable feature of the flight tests was that improvements were noticed not only on the 

PIO ratings; the HQR ratings improved as-well.

It is more difficult to interpret the results for the offset landing approach shown in Table 7.6. 

The presence of AW does, on average, seem to bestow some performance improvement on the 

aircraft, particularly in the centerline capture task. In this task Pilot II actually awarded the 

AW compensator an HQR rating of 3 (Level 1 flying qualities) whereas when AW was not
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used, this degraded to an HQR of 6 (which is borderline Level 3). However, it must also be 

noted that several entries in this table were not completed due to the extreme difficulty of 

this manoeuvre. During the execution of this task, which is considered difficult in the ATTAS 

aircraft, strong cross-winds were encountered near the airfield, thereby increasing the difficulty 

even further. Thus, in some cases, the pilot had to either abandon the manoeuvre before its 

completion, or it was completed with inadequate accuracy preventing the award of an HQR 

or PIO rating. In addition it must be mentioned that Pilot II did encounter a PIO in the 

final stages of the landing approach with AW compensator 8 engaged. Although this task was 

repeated and no PIO occurred, it is not clear why this was the case, although again the difficult 

weather conditions could be the cause. This is currently the subject of further investigation.



FC Compensator Pilot 1 (high-gain) Pilot 2 (low-gain) Improvement

No. PIO-c HQR-g HQR-f PlO-b PIO-c HQR-g HQR-f PlO-b Pilot 1 Pilot 2

1 none 4 6 5 3 4 6 5 4 n/a n/a

1 1 4 5 5 3 3 5 5 3 slight minor

2 none 5 6 5 4 4 6 5 4 n/a n/a

2 2 4 5-6 5(w/l) 3 2 5 4 4 minor major

2 3 3(good) 5 (w/1) 4 2 2 5(w/l) 4 2 major major

5 none 5(good) 7 6 5 4 7(w/l) 6 4 n/a n/a

5 5 5 7 6 5 4 5 5 4 none minor

6 none 5 6 5 n/a 5 6(w/l) 5 4 n/a n/a

6 6 3 5 (w/1) 4 3 3 5 4 (w/1) 2 major major

Table 7.5: Up and away flight conditions

Flight Condition Compensator Pilot 1 (Q) Pilot 2 (Markus) Improvement

No. HQR-cl HQR-t PlO-t HQR-cl HQR-t PlO-t Pilot 1 (high gain) Pilot 2 (low gain)

8 none 5 6 4 6 n /a n /a n /a n /a

8 8 4 5 3 4 n /a 5 some* some*

8 9 4 6 4 3 3 n /a slight* major*

Table 7.6: Landing approach flight conditions
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7.4.2 T im e D om ain  A nalysis

Flight test data was gathered for all tasks which were performed and, in total amounted to 

several hundred megabytes. In this section, certain portions of this flight test data will be 

presented and analysed. For the up-and-away flight conditions, data is presented for the birdie 

tracking task only, as this allows the aircraft bank angle to be plotted against the true reference 

- “the birdie” - which the pilot was attempting to follow. Data collected from the HQDT task 

is more difficult to analyse as the manner in which the pilot performs it is very dependent on 

his/her own perception of the bank angle tracking and PIO’s can be easily avoided by the pilot 

lowering his/her gain; the main value of this task is in the ratings which were discussed earlier.

Flight test data is presented for high-speed flight conditions (FC 2 and FC 6), for one low speed 

flight condition (FC5), and for the landing approach FC8. It is believed that this data gives a 

complete overview of the data obtained during flight.

W hen assessing the data it is important to be aware that there is a human element that 

needs to be taken into account. When pilots first fly an aircraft, they are still adapting to its 

environment and the capabilities of the vehicle and may, initially, give biased ratings. W ith 

time, pilots may become more familiar with the aircraft and confuse this with actual controller 

action. The tests were spread out in time such that there is some assurance that the learning 

factor  will not play such a large role in the pilot’s appreciation of the aircraft’s manoeuvrability.

Figures 7.8 - 7.13 show experimental time histories for the birdie tracking tasks for the high gain 

pilot (Pilot I) and the low gain pilot (Pilot II). Time histories are shown with and without AW 

compensation. The signals shown are roll angle 0, pilot stick command, control signal demand?! 

and rate-limited control signal ur . Although the task is very demanding and generally the steps 

are not long enough as to analyse the system ’s characteristics classically, the plots give a rough 

indication of the aircraft’s performance. The following criteria are of particular interest:

•  PIO tendency of the pilot-aircraft loop and how hard is it for the pilot to maintain 

stability.

•  Level of rate-limiting present in the system and how far is the system from linear opera­

tion.

Pilot I, FC2 (Figure 7.8): High gain pilots have generally been linked to PIO ’s and are therefore 

very useful for test purposes. Initially the system with no AW is considered. The roll angle 

exhibits some oscillatory behaviour and some high overshoots. There are also instances when
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Figure 7.8: Lateral Tracking Task for Pilot I and FC No. 2 - AW compensation No. 1

it appears that a divergent oscillation may be developing and the pilot is “lowering his gain” 

to prevent this. Notice that the system has very high levels of rate-limiting and operates 

outside its linear range most of the time with high levels of control signal phase-shift. Some
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Figure 7.9: Lateral Tracking Task for Pilot II and FC No. 2 - AW compensation No. 1

improvement in the aircraft behaviour can be observed when using AW compensation, perhaps 

with finer tracking achievable and slightly less oscillatory behaviour. Note the markedly reduced 

rate-limiting in the lower graphs, with the rate-limited signal remaining much closer to the
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commanded control signal.

Pilot II, FC2 (Figure 7.9): This pilot was inherently lower gain, and less likely to generate PIO 

events. W ith no AW compensation, observe that the roll angle has frequent, large overshoots 

and fine tracking seems poor. Tracking capabilities of the system are deeply affected by rate- 

limiting; high oscillations develop, especially when the pilot initiates abrupt manoeuvres (i.e. 

step reference signals). Notice that the pilot uses full stick commands most of the time in order 

to control the system, increasing the work load and tendency to PIO. In addition, the control 

signal remains rate-limited for a considerable amount of time and there is a large difference 

between the commanded and actual control signal (i.e. d is large). When AW is introduced, 

tracking performance appears to be slightly better and is a little less oscillatory.

Pilot I, FC5 (Figure 7.10): The system with no AW appears to be less PIO prone for this 

flight condition and performance is not as affected as in the previous data (FC2). The system  

still exhibits oscillatory behaviour and fine tracking issues. AW compensation does not offer 

the level of performance enhancement that was expected and time domain data agrees with 

pilot ratings in that few performance benefits can be observed from looking at the roll angle, 0. 

However, the lower graph does show that rate-saturation is substantially lower when using AW, 

although it is not clear that this has a major effect on performance. The “failure” of AW to 

provide much performance improvement can perhaps be attributed to the lack of performance 

degradation during rate-saturation at FC5; in other words, if deviation from linear dynamics 

is not detrimental for the closed-loop system, then AW conditioning will probably have little 

effect on the systems overall performance.

Pilot II,FC5 (Figure 7.11): This time the system with AW seems to have enhanced performance, 

allowing the pilot to achieve some fine tracking and reduce oscillations considerably. In general, 

pilot II has been labelled as the low gain pilot, but in this case, Pilot II seems to be slightly 

more aggressive than Pilot I. This may explain why the benefits of AW compensation may only 

be noticeable in the time history of Pilot II.

Pilot I, FC6 (Figure 7.12): Again, Pilot I seems to be behaving in quite a conservative manner, 

not demanding too much from ATTAS. Rate limits are excited less and therefore represent less 

of a threat for the system. When AW is used, rate saturation levels are, again, reduced but 

performance in not greatly enhanced. The system exhibits better gross acquisition but more 

overshoot. It may also be observed that AW compensated system tends to be less PIO prone, 

(with some slow build oscillatory behaviour observed when the system  has no AW).

Pilot II, FC6 (Figure 7.13): This figure perhaps shown the advantages of AW compensation
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Figure 7.10: Lateral Tracking Task for Pilot I and FC No. 5 - AW compensation No. 5

most clearly. W ithout AW compensation the roll attitude response was oscillatory and ap­

peared unpredictable. When AW compensation was introduced, the roll angle had noticeably 

better tracking properties with overshoot and oscillation dramatically reduced. Although the
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Figure 7.11: Lateral Tracking Task for Pilot II and FC No. 5 - AW compensation No. 5

aircraft appears to be more sluggish, fine acquisition is possible but with an increase in the 

workload. It is important to observe that the conditioned control signal is less aggressive, 

and therefore, the system is outside linear behaviour for shorter periods of time. Pilot stick
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Figure 7.12: Lateral Tracking Task for Pilot I and FC No. 6 - AW compensation No. 6

commands are reduced and in general, with the exception of fine tracking, the workload is less.

The analysis for up-and-away flight conditions showed great potential, especially for high speed 

flight conditions, improving pilot ratings in general. Although it is always difficult to corrob-
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Figure 7.13: Lateral Tracking Task for Pilot II and FC No. 6 - AW compensation No. 6

orate exactly what the pilot comments with both time histories and pilot ratings, we may say 

that the three where quite congruent.

Now landing approach FC’s will be analysed in a similar way. Note that the landing approach
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Figure 7.14: Landing Approach task for Pilot I and FC No. 8 - AW compensation No. 9

was considered an extremely demanding manoeuvre by the pilots - for the ATTAS aircraft 

at least. It is something of a multi-axis manoeuvre too with the pilot exerting a lot of effort 

in the yaw channel as well as the roll channel. For this and the associated safety issues, the 

pilots seemed to be less aggressive and therefore a milder rate-limit excitation seemed to cause
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Figure 7.15: Landing Approach Task for Pilot II and FC No. 8 - AW compensation No. 9

sufficient problems. It is also very important to notice that at this particular trim point, 

the aircraft is more susceptible to outside disturbances such as wind gusts, allowing for extra 

sources that may trigger a PIO.
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Pilot I, FC8 (Figure 7.14): It is possible to observe that centre line capture is slightly easier 

when using AW compensation. The pilot comments mentioned that the aircraft felt more 

predictable and had acceptable performance. This is also reflected on the ratings (see Table 

7.6) given by the pilot, where HQ and PIO ratings improved. Although most of the time the 

system appears to be within acceptable limits of linear behaviour, once close to the ground, 

the pilot seems to enter a state of alert (the pilot is approaching the ground) and the system  

exhibits higher rate-limiting action. This is reduced when using AW compensation, minimising 

the risk of PIO occurrences.

Pilot II, FC8 (Figure 7.15): Most of the comments of Pilot I seem to be corroborated by Pilot 

II; predictability, enhanced fine tracking and less PIO tendencies. This is true for most of 

the task, but the pilot mentioned that at the end of the task, that instant before touching 

ground, undesirable dynamics developed and the pilot had to reduce the gain drastically in 

order to recover. Although the precise nature of these dynamics is still under scrutiny, it may 

be difficult to target the cause of this “PIO” as factors such as wind and pilot’s lack of practice 

play important roles.

7.4 .3  D iscussion

The qualitative pilot ratings clearly show the advantage of adding anti-windup compensation 

for the degraded aircraft with rate-limiting. This seems to be true for all flight conditions, 

although the advantages of anti-windup are most striking at higher speeds (FC2 and FC6) 

where Table 7.5 indicates PIO rating improvements by two points in some cases and often 

HQR improvements too. The time-histories most clearly show the improvement due to anti­

windup for the case of the low-gain pilot (II) where a clear reduction in pilot workload and 

oscillatory response can be observed (see Figure 7.13) when AW is present. It is thus not 

surprising that Pilot II records some of his best PIO /H Q R ratings for AW compensations at 

this flight condition (FC6) and these ratings are substantially better than those with no AW.

Correspondence between time-domain data and the results given in Table 7.5 is less clear for 

the high gain pilot (I). Although Table 7.5 shows that this pilot preferred the response of the 

aircraft with AW (with ratings given being similar to Pilot II), it is less evident how this is 

manifested within the time-domain data. While some mild improvement in tracking, together 

with a reduction in rate-limiting may be observed in Figure 7.12, the improvement is not 

striking. However, it should be pointed out that the pilots may consciously or unconsciously 

adjust their “gain” and piloting technique as the task progresses. Indeed, close inspection of
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Figure 7.12 reveals that the pilot stick command is zero for short periods, perhaps as the pilot 

removes himself from the loop to prevent oscillations building up (the pilot remarked on this 

during the flight).

Both pilots remarked that they felt that AW improved the predictability of the aircraft response, 

although mentioned that the aircraft also felt more “sluggish” . On the basis of these flight tests, 

it is not clear yet how AW compensators affect sluggishness and how this can be avoided; an 

investigation into this aspect would be desirable, requiring further flight testing.

7 .5  C o n c lu sio n

This chapter has presented results from a flight test at DLR Braunschweig which were con­

ducted using the RLAW scheme developed earlier in the thesis. Pilot ratings and inspection of 

recorded time-domain data clearly show the nonlinear (rate saturated) performance improve­

ment attainable with anti-windup compensation, particularly at high-speed, up-and-away flight 

conditions. An important characteristic, and one that was expected, is the reduction in the 

level of rate-limiting of the control signal when AW is present, reducing deviation from linear 

dynamics and probably increasing the life of the actuator.

However, it must be said that the difference between the AW-free and the AW-engaged re­

sponses were not as marked as initially expected; PIO tendency and performance degradation 

where not as high as in desktop simulation. This may be the cause of pilot model mismatch; 

the simulated pilot gains may have been chosen too large. It was observed that our high gain 

pilot, Pilot I, did not deliver the aggressive manoeuvres that were necessary to make the loss 

in tracking and stability properties clearly visible; in fact, the low gain pilot exploited more of 

the ATTAS capabilities, driving the system to more difficult regions, this being the case where 

AW proves to be beneficial. Another source of discrepancy, as highlighted by the pilots, is the 

fact that in-flight, testing always tends to be more cautious as the pilot knows and feels that 

this is real and that any mistake may develop into severe, even deadly, consequences.

While there seemed to be broad correspondence between the choice of AW tuning parameters 

and the performance observed in-flight, the precise effects of changing these parameters could 

not be determined from the flight tests and further investigation is required to obtain clearer 

tuning guidelines.

Overall, the SAIFE tests were considered very encouraging and the results should aid the 

development of PlO-free aircraft. The results obtained from the SAIFE tests were well-received 

by the European Aerospace community, particularly the GARTEUR AG-15 action group and
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several papers have resulted from this research: [9, 92]. Based on the success of these flight 

tests another set of tests is planned for August 2007 where a clearer picture of the tuning 

parameters’ effects is sought and a more detailed investigation into the AW compensators’ 

robustness will be carried out.



Chapter 8

Conclusions

The main goal of this thesis was to present a “novel” way of synthesising plant-order AW 

compensators and their application to the Category II PIO problem. The reader has been 

introduced to some of the most important AW schemes, “traditional” and “modern” com­

pensation are considered, in order to set the “mood” for the work later developed. The AW 

compensation methods developed have addressed the following questions

(i) Is it possible to guarantee stability of the closed-loop saturated system?

(ii) Is it possible to enforce performance guarantees? How much does the system diverge 

from linear dynamics?

Traditional compensation schemes are deeply rooted in industry, where no stability or perfor­

mance guarantees are given and design is usually fairly ad hoc. Many m odem  AW techniques 

have been successful at guaranteeing stability but have not been able to satisfactorily address 

performance. This thesis has attempted to improve on these stability results by proposing 

compensators that guarantee performance in an intuitive way and in a way which is of central 

interest to the practising control engineer. Thus, in a certain sense, this thesis has tried to  

blend the aspirations of traditional AW with the rigour of modern AW.

Throughout this thesis, the control input saturation problem has been addressed using full- 

order AW compensation and the Weston-Postlethwaite AW configuration. In early work [37, 

36], the problem had been formulated and solved using LMI optimisation techniques where a 

clear performance index (the map from uun to yd) was minimised. This procedure was used to  

design suboptimal compensators, i.e. static and low-order, as well as full-order compensators. 

The work in [110] was based on LMI methods however and, while useful, these have two distinct 

disadvantages: (i) their computational cost is high, and problematic for high-order plants; and
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(ii) the role of some parameters is clouded by the optimisation process. The methods proposed 

in this thesis improve upon this by replacing the LMI optimisation with a Riccati equation, 

thus lowering the computational burden, and also providing a fam ily  of optimal compensators 

parametrised by the so-called “stability multiplier” , giving more flexibility to the designer.

The main contributions of the thesis can thus be summarised as

•  The development of Riccati-based AW synthesis techniques. As mentioned above, these 

lessen the computational burden and provide increased flexibility to the designer. These 

properties are thought to be useful in practice, particularly when the control engineer is 

faced with large, complex systems. The robust AW problem is naturally addressed by 

this method and an important link between the stability multiplier and the robustness of 

the overall system was uncovered. Thus, the robust anti-windup problem can be solved 

using the Riccati framework with little extra effort. This is important as we may capture 

the design trade-offs without adding any extra weighting matrices in more transparent 

intuitive manner. As an aside, it was also noted that an optimally robust AW compensator 

- the IMC compensator - appears as a special case of the results here described, which is 

in agreement with the literature.

•  The development of Riccati-based AW synthesis techniques for systems with rate-limits. 

This problem is a natural extension of the magnitude limit problem but features several 

technical difficulties, notably lack of bounded realness, which complicate the problem. It 

was shown how the global anti-windup problem could be relaxed to a semi-global/local 

anti-windup problem when rate-constraints were present and a solution obtained using 

similar Riccati machinery to those developed for the magnitude problem. Due to a more 

complicated interaction of design parameters in the rate-saturation case, a tuning tech­

nique was then devised which enabled the designer to trade-off performance against the 

size of the region of attraction bestowed by the anti-windup compensator. In particular 

it was shown that the system ’s local £ 2  gain had to be traded-off against the size of an 

ellipsoidal estimate of the region of attraction.

•  The application of Riccati-based techniques to a realistic Cat II PIO alleviation problem. 

The Riccati-based rate-limit anti-windup techniques were applied to a simulation of the 

ATTAS aircraft for which the actuator rate-limits where artificially degraded to make the 

aircraft PIO prone. Extensive nonlinear simulation showed that when the Riccati-based 

AW techniques were applied, the system was substantially less PIO prone than with no 

AW tested. Moreover, the presence of the AW compensators often prevented divergent
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behaviour which would have occurred otherwise.

•  The implementation and flight test of Riccati-based AW techniques on a real aircraft. 

The highlight of this thesis was the testing of the AW design techniques developed here 

in a real flight environment, where its performance was quantified by pilot ratings for 

both handling qualities and PIO tendency. It is thought that this is the first in-flight 

assessment of a modern A W  compensation scheme. Flight tests were made possible 

thanks to the GARTEUR AG-15 group, and more specifically thanks to DLR and its 

Advanced Testing Technologies Aircraft System. The aim of this test was to prove 

that modern AW compensation schemes, more specifically the scheme proposed here, 

may deliver stability and performance enhancements in highly demanding environments, 

reducing the PIO tendencies of highly agile aircraft.

The test was carried out by two test-pilots from the German air-force, making their com­

ments and ratings reliable and valuable. The results demonstrated that PIO tendencies 

in aircraft can be substantially reduced by using AW compensation. The most dramatic 

improvements were observed for the flight conditions when the aircraft was most agile, 

auguring well for the use of such techniques in the aerospace industry. The tests were 

considered so successful that more are being planned for late 2007.

While the findings of the thesis were considered fairly successful, there remains more research 

to be conducted in AW compensation. Some particularly important avenues for future research 

are

•  More robustness analysis of the AW compensators. Although attention to robust stability 

was given in Chapter 4, the treatment there effectively uncovered the robustness prop­

erties which the Riccati approach yielded “for free” . Future research could concentrate 

on incorporating robust performance directly in the optimisation process, in the spirit of

[61]

•  Further flight testing of the AW compensators. Of particular interest is the robust perfor­

mance of the compensators in different flight conditions. For the flight tests described, an 

AW compensator was designed for each different flight condition. A subsequent analysis 

revealed that the compensators had broadly the same frequency response but it would be 

interesting to discover how significant this was and whether a single compensator could 

function throughout the entire flight envelope or whether some form of scheduling was 

necessary. A potential problem with the AW compensators tested was that, as they were
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full-order, they had rather large state dimension. In practice, something of much lower 

order would be preferred and research on how the order can be reduced while guaranteeing 

the AW compensator properties is required.

•  Extension of the AW techniques to nonlinear systems. All the techniques developed here 

assumed that the system was linear apart from actuator magnitude and rate-limits. Al­

though such a simplification is often a good engineering approximation, it is well known 

that some systems, such as highly agile aircraft have dynamics which are more nonlinear. 

An obvious avenue of future research is to try to extend these AW techniques to nonlin­

ear systems using either linear parameter varying (LPV) techniques or state-dependent- 

Riccati equation (SDRE) techniques. An obvious difficulty with this extension is that 

the Weston-Postlethwaite scheme depends heavily upon the superposition principle which 

would not be valid in the nonlinear scenario.

In conclusion, the methods of AW compensation have developed greatly over the last two 

decades, progressing from ad hoc modifications to systematic design routines. This thesis has 

presented an AW scheme which is thought to make the anti-windup synthesis problem rigourous 

yet intuitive, making it useful for complex practical applications.



A ppendix A

Proof of Theorem  4.1 for D ^  0

Consider the formulation of the standard AW problem given in chapter 4, and assume D  ^  0. 

Using the same problem formulation of equation (4.11)

L =  x 'P x  +  x 'P x  +  y'y — j  u'linunn +  2u'W  (u — u) <  0 (A .l)

where u =  uun — F x , and for the case of D  ^  0, y — (C  +  D F )x  +  Du. Using the same technique 

of completing squares in order to reduce the original equation, it is possible to pose a simple 

set of constraints that guarantee stability (L is negative definite) and a certain performance 

level. Substituting u and expanding equation (A .l)

L =  x 'P x  +  x 'P x  +  y'y — 2 u W F x  — 2 u'W u — 7 2u[inunn +  2 u'W uun

Cross terms in unn and u are reduced in the same manner as in step one of the proof give for 

the case of strictly proper systems, i.e D  ^  0. This reduces the above equation to

L =  x P x  +  x'P x  +  y'y — 2u'W F x  — u'(2W  — 7 ~2W 2)u — \\^uun — 'y~1W uun\\‘2 

Noting the quadratic term is negative definite, this implies

L < x 'P x  +  x 'P x  +  x'(C  +  D F )'{C  +  D F )x  +  2x'{C  +  D F )'D u  -  2u 'W F x -  u'Zu  

where

Z  =  2W  -  7 _2VU2 — D 'D  >  0 (A.2)

As before Z  must be positive definite in order to guarantee a well-posedness of the problem. 

We now proceed to substitute x  (see equation 4.1) and expand (and group) as follows:

L <  x '[A 'P + P A + 2 P B F + (C + D F )'{C + D F )]x + 2 x 'P B u + 2 x '(C + D F )'D u -  2u 'W F x -u 'Z u
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Terms involving u and x, are grouped as follows:

- u ’Zu  +  2x'[C'D  +  F ’(D ’D  - W )  +  P B ]u  =  

- | |Z u  -  Z ~ l / 2[B'P  +  D 'C  +  (D 'D  -  W )'F]\\2 

+ x ’[C’D  +  F '(D ’D  -  W )  +  P B ]Z ~ l [D'C  +  (D ’D  -  W )F  +  B 'P \x

This reduces our main inequality to

L < x’ (A ’P  +  P A  +  2 P B F  +  (C  +  D F )'(C  +  D F )+  

[C'D  +  F '(D 'D  - W )  +  P B \Z ~ l [D’C  +  (D ’D  -  W )F  +  B ’P}) x

Expanding and grouping terms in F , it is possible to reduce even further our inequality and 

obtain a condition that allow us to guarantee that L  is negative definite. We now have,

L <  x '[A !P + P A + C 'C + (P B + C ’D ) Z - l (B 'P + D 'C )+ F ’H F + 2 (P B + C ’D ) ( I + Z - l D ' D - Z - l W )F]

where the matrix H  is defined as

H  =  (D 'D  -  W )Z ~ 1 (D 'D  - W )  +  D 'D  (A.3)

We now reduce the terms containing F  in order to find an expression for the matrix gain. The 

terms can be grouped as

F 'H F  +  2(P B  +  C ’D )(I  +  Z ~ l D 'D  -  Z ~ l W )F  =  

| |F 1/ 2F  +  H ~ l / 2(I  +  D 'D Z ~ l -  W Z - l )(B 'P  +  D'C)\[ 

- ( P B  +  C 'D )(I  +  Z ~ l D 'D  -  Z ~ 1W )H ~ 1 (I  +  D 'D Z ~ l -  W Z ~ 1)(B 'P  +  D ’C)

We can make our problem less mathematically exhausting by using the matrix inversion lemma, 

where

H ~ l = 1 2W ~ l Z R - l W - 1

and F  =  y 2 -  D 'D  >  0. It is easy to observe that L <  0 if the group of terms

A’P  +  PA  +  C'C +  (PB  +  C'D)[Z~l -  Z~l (W -  i ~ 2W 2)H~l (W -  7 - 2W 2)Z~l ](B'P +  D'C)

+  | | i /1/2F  +  H~ xI2(I +  D' DZ - 1 -  W Z ~ 1)(B'P +  D ’C)\\ <  0

is guaranteed negative definite. After some algebraic manipulations, and assuming D ’D  7  ̂ 0, 

it can be proved that we have stability if

L <  A 'P  +  P A  +  C 'C  +  (P B  +  C ,D ) R - 1(B ’P  +  D ’C)

IIH l / 2F  +  H - l/2 (I  +  D 'D Z ~ l -  W Z ~ l )(B 'P  +  D 'C ) | |2 <  0 (A.4)

A sufficient condition for this to be the case is then
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i) A 'P  +  P A  +  C 'C  +  (P B  +  C 'D )R ~ l (B 'P  +  D'C) =  0

ii) IIH ^ 2F  +  H ~ l/ 2(I  +  D 'D Z - 1 -  W Z ~ l )(B 'P  +  D 'C )\\2 =  0

Thus, negative definiteness of L(.) can be guaranteed if the Riccati equation in (i) has a positive 

definite solution P' — P  >  0 and the term F  is chosen such that the expression (ii) holds. To 

complete the proof, we will reduce the remaining quadratic term to the conditions give in 

Theorem 4.1. First notice that the quadratic term can be made zero by virtue of the free 

parameter F. Equating this term to zero we obtain

F  =  H ~ l ( W - ~ { - 2W 2) Z - l ((B 'P  +  D 'C )

=  ,y2W ~ l Z R ~ l W ~ 1(W  -  T 2W 2) Z - x(B 'P  +  D 'C ) (A.5)

F =  7 2(PF-1 — 'y~2)R ~ 1(B ,P  +  D 'C )

The previous equation shows how the matrix gain F  is obtained by properly adjusting the free 

parameters in order to guarantee inequality (A .2). We now proceed to reduce equation (A.4) 

to obtain the conditions of theorem 4.1. Thus expanding equation (i) and grouping the terms 

in P  yields

(A  +  B R ~ l D ’C )'P  +  P (A  +  B R ~ l D 'C ) +  C '(I  +  D R ~ 1D ')C  +  P B R ~ l B 'P  <  0 (A.6)

Therefore we an conclude that if the Riccati equation (A.6 ) has a solution for P  — P ' >  0, 

the there exists a full-order AW compensator that guarantees stability of the saturated closed- 

loop. The free parameters W  and 7  must be chosen as to guarantee inequality (A .2), but at 

the same time can be used obtain a family of stabilising compensators parametrised by W  

(shown in equation (A.5) ); the designer has the freedom to choose the one that delivers the 

best performance for the specific application.



A ppendix B

Proof o f Estim ate of Region of A ttraction

As discussed in Chapter 5, a key objective of the AW problem is to maximise the size of the 

ellipsoid estimation of the region of attraction, which requires a bound on the size of the signal 

d entering the deadzone function. As the region of attraction is to be estimated, it is assumed 

that dnn =  0 and hence it is required that |d| d  do. Thus, we want to find the largest scalar, 

C m a x  such that

max x 'P x  <  cmax s.t. \d\ d  do (B .l)
x

As diin =  0, then d =  —F x  and it follows that

|Fx| dido <=> - d 0,i <  Fix <  do,i Mi e  { 1 , . . . ,  m }  (B.2)

where F* is the i th row vector of the matrix F. As we are interested in the largest ellipsoid 

x'P x  (such that \d\ d  do), our objective is to find the maximum values of AW states x such 

that equation (B.2) is satisfied. For simplicity, and without any loss of generality, only the 

positive values will be used in the proof; as we are trying to maximise the size of a quadratic 

function of x, the sign of this signal is of no concern. In this way the maximum x  such the 

equality F\x =  do holds is given by

x  =  F}doj (B.3)

where f denotes the right pseudo-inverse. Now define

Xopt := mini^do,* (B.4)
i

and also

x ’ tPxopt =  m m d l ^ F })'P {F })  =: cmaxI (B.5)
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Then it follows that for all x G E where
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£-.=  { x e  Kn+m : x'Px <  w }  (B.6)

that |d| ■< do and, furthermore, that this is the largest ellipsoid in which this holds. Defining 

the diagonal matrix K  as

i ( B . 7 )

it follows that F  can be written as F  =  KB'P and that F{ =  kiB [P  where hi is the i th diagonal 

element of K  and Bi is the i th column of the matrix B. Using this definition, the right pseudo 

inverse of Fi can be written as

F} =  k - ' B i i B l P B t r 1 (B.8)

The term {B[PBi) is always guaranteed nonsingular as Bi has full column rank and P is 

positive definite. The expresion for the ellipsoid cmax in equation (B.6) can thus be written as

Cmax =  rnin 4 i{Fi)'P(Fl)  =  min ( ^ ) 2(B'iP B i) - 1B’iP B i(B'iP B i) - 1 (B.9)
i ’ i Ki

As the term B^PBi is a scalar, it is easy to observe that

(R 10)

After some algebraic manipulations, the expresion given in equation (B.10) can be reduced to 

that given in Theorem 5.1, thus completing the proof.
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