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Abstract: New results about the bound characteristics of both the generalized frequency
response functions (GFRFs) and the output frequency response for the NARX (Nonlinear
AutoRegressive model with eXogenous input) model are established. It is shown that the
magnitudes of the GFRFs and the system output spectrum can all be bounded by a
polynomial function of the magnitude bound of the first order GFRF, and the coefficients
of the polynomial are functions of the NARX model parameters. These new bound
characteristics of the NARX model provide an important insight into the relationship
between the model parameters and the magnitudes of the system frequency response
functions, reveal the effect of the model parameters on the stability of the NARX model
to a certain extent, and provide a useful technique to evaluate the truncation error in a
Volterra series expression of nonlinear systems, and the highest order needed in the
Volterra series approximation. A numerical example is given to demonstrate the
effectiveness of the theoretical results.
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1 Introduction

The Nonlinear AutoRegressive model with eXogenous input (NARX) represents a wide
class of nonlinear systems, and many well-known nonlinear input-output models are
specific cases of this model (Chen and Billings 1989). Many research studies have been
carried out for the modelling and analysis of nonlinear systems described by the NARX
model (Chen, Billings, Cowan and Grant 1990, Dzielinski 1999). Based on the Volterra
series approach of nonlinear systems, the NARX model has been analysed in the
frequency domain, and significant results have been achieved. In George (1959), the
concept of generalized frequency response functions (GFRFs) was proposed, which
extended the well-known linear frequency response function to the nonlinear case. Since
then considerable efforts had been focused on the GFRFs based nonlinear system
frequency domain studies (Rugh 1981, George 1959, Bendat 1990, Chua and Ng 1979).
In Peyton-Jones and Billings (1989), a recursive algorithm to compute the GFRFs of the
NARX model was derived. Billings and Peyton-Jones (1990) extended the result to
nonlinear systems described by nonlinear integro-differential equations. Swain and



Billings (2001) extended thereafter these results to the case of MIMO nonlinear systems.
The output frequency characteristics of nonlinear systems were studied in Lang and
Billings (1996) and Lang and Billings (1997). All these results form an important basis
for further study of the analysis of nonlinear systems in the frequency domain.

In this paper, the bound characteristics of the GFRFs and the output spectrum of the
NARX model are studied based on the original work in Zhang and Billings (1996) and
Billings and Lang (1996). The magnitude bounds of the system frequency response
functions are shown to be a polynomial function of the magnitude bound of the first order
GFRF of the NARX model, and the coefficients of the polynomial are the functions of
the model parameters. This provides a significant insight into the relationship between
the model parameters and the system frequency response functions, though it can be
regarded as an important extension of the previous work in Zhang and Billings (1996)
and Billings and Lang (1996). Based on these new results, the truncation error associated
with the Volterra series expression of nonlinear systems can be studied. Sufficient
conditions for the BIBO stability of the NARX model can also be established. A
numerical example is given to demonstrate the results.

2 Thefrequency response functions of nonlinear systemsand the
NARX model

Nonlinear systems with stable zero equilibrium point can be approximated in the
neighbourhood of the equilibrium by the Volterra series

yO=2[" [ nmr Jut-e)dr (1)

where h,(z,,---,7,) 1s called the nth order Volterra kernel, which is a real valued function
of 7,,---,7,, N is the maximum order of the system nonlinearity, which may need to be
large enough to guarantee required accuracy of approximation. The output frequency
response of the system can be described as (Lang and Billings 1996)
N n
Y(jo) = Zﬁ(#j Hutions jo[ UGonde., )
where o, denotes a small unite in the n dimensional hyperplane o, +---+ @, =@, and

Hn(ja)la"'a ja)n):J._30 '“J._whn(rla"'arn)exp(_j(a)lrl +“'+a)nTn))dT1 “'dTn (3)

is the nth order GFRF of system (1). When the system is subject to a multi-tone input
described by

u(t) = ZK]Fi |cos(em,t + £F)) )]

the system output spectrum can be written as (Lang and Billings 1996):
N

Y(i@ =Y~ S H,(jo, . o, F@,)F@,) 5)

n
n=1 O+t =0

where,



IR =+l
F(0) - {|F|e if 0 e {o, k=21, K} ©)
else
The NARX model of nonlinear systems is given by
M
UEDIA0) (7a)
m=1
m K p+q
Ya®=D" D Coalkie M)Hy(t k) Jut-k) (7b)
p=0 k;,kp,q=1 i=p+l

Where ym(t) is the mth-order output of the system, and p+g=m, k=I,. K,
Z() Z() Z() The GFRFs for a specific nonlinear system can be derived by

KiKpeg=l k= Kpeq=!

using the probing method in Rugh (1981). A recursive algorithm in (Peyton-Jones and

Billings 1989) can be used to compute the GFRFs of the NARX model as follows:
Ln(w) Hn(leaa an)

K
= CO,n(kla"'akn)exp(_j(wlkl+'“+wnkn))

K ko=
n-1 n—-q K ) ) ) (8)
+Z Zcp,q(kla"'akp+q)exp(_1(a)n—q+lkn—q+l +- +a)p+qkp+q))Hn—q,p(Ja)]s"'sJa)n—q)
g=1 p=1k;,ky, =1
n K
3 Y cpolki o kH, (o, jo,)
p=2 ky,k,=1
n-p+l1
Hn,p('): ZHi(jwla‘”sja)i)Hn—i,p—l(ja)iHs“'aja)n)exp(_j(a)l+'“+wi)kp) (9)
i=1
Hn,l(ja)ls"'ajwn):Hn(jwla"'aja)n)exp(_j(wl+”'+wn)kl) (10)

K
where Li(o)=1-Y"c,, (k) exp(-jok ) and =, +-+a,. Moreover, H, (ja, - jo,) in (9)

k=1
can also be written as

n-p+l p

Hop(jo, e, jo,)= Z HHr‘(ja)rM’”"jwrx,,‘)exp(_j(wrx“ R )k),where X = ZI’ (11)

reerp=loi=l x=1

>r=n

Based on equations (8)-(11), the GFRFs of the NARX model (7) of any order can be
obtained. The objective of this study is to investigate the bound characteristics of the
GFRFs and the output spectrum of nonlinear systems described by the NARX model to
provide an important insight into the effects of the model parameters on these system
frequency response functions. Note that the bounded-input bounded-output (BIBO)
stability can be guaranteed by the frequency domain property of bounded-input and
bounded-output spectrum. The bound characteristics of the NARX model are also
significant for the system BIBO stability. Sufficient bounded stability criteria of the
NARX model can be derived from the bound characteristics of the system output
spectrum.

3 Bound characteristics of NARX model in the frequency domain



In this section, some notations and useful operators are introduced first. Then bound
characteristics of the GFRFs of the NARX model are derived using these notations and
operators. Finally, the bound characteristics of the system output spectrum are developed.

3.1 Notationsand operators

Let L = inf ﬂLn(a))|}, where |, is the non-negative frequency region of the output spectrum

of a NARX model. In what follows, let

K
Z|cp’q(k1,m,kp+q), l1<g<n-lLl<p<n-q
K kg =1
K
C n(k a"'skn)9 q:ns p:()
C(p.q) = Z o (12)
K
Z|cp0(kl,-- ,kp)|, g=02<p<n
K Ky =1
0, else

Obviously, C(p,q) is a nonnegative function of the coefficients Cpy(.) defined on all
0< p,g<n. Moreover, let

Fup = sup(Hy, 0k Hyo =1
H,o()=0forn>0
H,,()=0forn<p

Ho= sup (H,0)|)

®,0,€R,

(13)

where R, is the input frequency range of a NARX model.

In order to develop the bounded characteristics of the GFRFs of the NARX model, define

two operators as follows. Consider two polynomials of degree n and mrespectively,
f,=a,+ah+--+a,h"=a-n],and f,=b, +bh+---+b h™ =b-A],

where the coefficients ag, ay, ..., an; bo, b1,..., by are all real numbers, h stands for a real

or complex valued function, a=[ ao, ay, ..., an], b=[ bo, by,..., bm], and #,=[1, h, ..., hi].

Define a multiplication operator “®” as
a®b=c, where C is an N+ 1-dimension vector, ¢(K)= Zaibj for 0<k<m+n.

i+j=k
0<i<n,0<j<n

Denote (a®b)k)= Zaibj . From this operator it follows that, for example,
i+j=k
0<i<n,0<j<m

.- f,=a®b-a], .. Similarly, define an addition operator “@® ” as

a®b=c, where C is an X-dimension vector, X=max {m,n}, c(k)=a(k)+b(k) for 0 <k <x.
If k>n or m, then a(k)=0 or b(k)=0, accordingly.
From the operator“® ” it follows that, for example, f,+f, =a®b-#

f

T
max(n,m) *

(@)(-) and %(') denote the multiplication and addition in terms of the operator“®” and

Moreover, let

(13

® “for the series (.) satisfying (*), respectively.



3.2 Bound characteristics of the GFRFs

The bound characteristics of the GFRFs are derived in this section. A preliminary result
is given in Lemma 1, which shows that the magnitude bound of the nth order GFRF can
be recursively determined from the magnitude bounds of the lower order GFRFs. Then
based on Lemma 1, Theorem 1 is established which describes the magnitude bound of the
GFREFs as a polynomial function of the magnitude bound of the first order GFRF H,(jo).

Lemmal  H, <—Z D C(P.aH,

_m2p+qm

0<p,g<m
o n-g-p+l p n- q p+l
Hn—q,p s sup z H f j Tx1? h rx )‘ o H H
T =1 i=l1 - i=
rZr:rp:nfq I Zr n- q
i—1 m
where, n>1, X=>"r,, Y ()or Y ()denotes the sum of the corresponding terms with
x=1 p+g=m p.q=0
0<p,g<m p+gq=m

respect to all the combinations of (p,q) satisfying p+g=mand 0< p,g<m. m

Note that 0<p,g<m denotes that 0<p<m and 0<gq<m, and r--r, =1 means that

Proof of Lemma 1. From (8)(12)(13), and noting L is the lower bound of L, (@), it
follows
|Hn(jw19"'a Ja)n)l Z|00n(k1’ : kn)"HO,O(ja)la'”b Ja)n)|

_k, =

n—

B
L
o

1 N , ,
+E Z| pq(kla"'akp+q)|Hnfq,p(Ja)ls"'yJa)n—q)| z Z|Cp0(kla : ak )"Hn p(ja)lv .
= qg=l p=l kK = p 2 ki.k (14)
1 KNS — 1 —
C(O n)H00+_ C(paq)Hn—qp+_ C(pao)an
|_— I_‘q:l p=1 I—‘p:2
L
=1 C(p.aH,
= g=0 p=0

n n-q
It can be easily seen that ZZC(p,q)ﬁH,p includes all the permutations of (p,q)

q=0 p=0
satisfying p+g=m, 0<p,g<m , and m=2,...,n. Hence, it
n n-q _ n _
follows > > C(p.a)H, 4, =Y, D .C(R.DH, 4,
AR ™2 B e

From (11), it can be derived that

n-p+l p

J=swl 3 [[H, (oo, expl i@, +-+o, Ik

noerp=1i=l

>or=n

an = Sup| an(ja)l""s j



n-p+l p n-p+l

< sup Z H

'S I’ =1 i=1 rpeee

Tx.1?

St it
Th f n-g-p+l p n—q—p+lﬁ_
€re1ore H,_ ., <sup oo, ) = H .
P N rzp;l 1:1[ o ‘ ner=l sl
> r=n-q Zr,:n—q
This completes the proof. m

Although Lemma 1 shows essentially the same result as those obtained in Zhang and
Billings (1996) and Billings and Lang (1996), Lemma 1 provides a general expression for
the magnitude bound of the nth-order GFRF in terms of the model parameters and
H,---H,,, and compared with the result in Billings and Lang (1996), it is much simpler

in form and derived in a more systematic approach. Based on Lemma 1 and by using the
new operators defined in section 3.1, a more comprehensive result about the bound of the
GFRFs of the NARX model can be obtained.

Theorem 1. Consider the nth-order GFRF for the NARX model (7). There exists a series

of scalar positive real numbersb,,,b, ,---,b,, , such that
|Hn(jw]a"'z an)| < bnO +bn] Hl +bn2H1 +“'+bnnqln (153)
where the coefficientsb,,,b,, ..., b,,can be recursively determined as follows (denote
bn = [bnO bnl T bnn] ):
b, :—C(kn k)+i %9 ® (C(p,q) [ébr j] (k) for 0<k<n (15b)
L m=2 p+g=m > r=n-q i=1
- 0<p,g<m 1<i 1, <n-mi1
b, =[by,b,,,b,,]= { C(0,2),— C(l 1),— C(2,0)} (15¢)
b _[blo,bu]_[ 1] (15¢)

Moreover b =0i1f p<1, and @() 0 if n<2.

Proof. Use the induction method. For the second and third order GFRFs, it is easy to
obtain from Lemma 1 that

o 1< _
|H2(Ja)1,Jw2)|SEZ ZC(p,q)Hz,q,p:

—= m=2 p+g=m
0<p,g<m

%(C(O,Z) +CLDH,, +CR.0H,,)

:%(0(032) +C(LHH, +C(2,0)H ): b, -hT

o 1< =
HiGor, jo,, jo) <72 D CP.OH.,,
= m=2 p+g=m
0<p,g<m

(C(0,3) + %C(I,I)C(O,z)J + (C(I,Z) + %0(1,1)2 + %C(Z,O)C(O,Z)jﬁ 1
1 L L L

k + [C(z,l) + %0(1,1)0(2,0) + %(3(2,0)C(1,1)Jﬁ12 + [C(3,0) + %C(2,0)2 ]ﬁf



:b3'h3T

Hence, the theorem holds for n=2 and 3. Consider the nth order GFRF under the
assumption that the theorem holds for all the GFRFs of orders less than n. From Lemma
1,

P
H.(jo, - ,Jco)|<—Z > ciasw| Y []H.0 (16)
= m_2 p+g=m I<r-rp<n-m+l =1
0<p,gsm >r=n—q

Note 1<n-m+1<n-1 and O£Zri =n-qg<n, each |Hn (.)| is bounded by a polynomial of

the form of (15a) with degree r,(<n-1), is therefore bounded by a

polynomial of the form (15a) with degree n-q (<n). It follows from inequality (16) that
|H,(je,, -, jo,)| must be bounded by a polynomial of the form (15a) with degree n.

The explicit expression for the coefficients in (15a) is derived as follows. It follows from
(16) that

P
Ho(joy,, jo,)| < { > Cp.afsup Y H|H Of|+— Z cpafswp ., []H.0

= p+g=n I<r -y <l =l = m=2 p+g=m I<r-ry<n-m+l =1
0<p,g<n 3= n q 0<p,g<m 3 h=n-q
1 — —n .
:E(C(O, M)+ C(L,n=DH, ++CO)A," )+ —supz Y cpa Y JIHO a7
—_ m=2 (’;J:g qu lil'ln :I'rfqn—m-ﬁ-l i=1
Because
H, (i, @, )| <B, o +b, H, +-+b,  H" =b, b for 1<, <n-m+1
whereb, =[b,, b, - b land h =[1 H, - H"], it can be derived by using the

operators “®” and “® ” that

p
Z 1_‘[‘Hr‘(ja)rx“5”"jwrxArI )‘: Z ébr, 'hn—q :[ Z® [ébr jJ'hnq
1<f,

11 <n-mal =1 I<rerp<n-mal ...E:jr:?mu =l
> r=n-q > r=n-q oo
Therefore,
n-1 n-1 P
> S cpa Y] HH (jo, o, | |=| © @ |Cp.a- [@b,,j -,
- - i m=2 p+g=m Zri:n—q i=1
m=2 p+g=m 1<r - rp<n-mal i=1 <p.g< <t <nemsl
0<p,g<m Zr =n-q <hrp<

and (17) can be written as

_ _ n-1
IHn(m,~--,jwn>|<%(c<oa“>+c<l’“1>H1+'“+C(”’O)Hln)+%[ S?W[C(p’q)' (é“jﬂ.hﬁ
- p.

This proves equation (15b). (15¢) follows from the first two steps of the recursive
computation. The proof of Theorem 1 is thus completed. m



Theorem 1 throws that the magnitude of the nth-order GFRF can be bounded by a
polynomial function of the magnitude bound of the first order GFRF H, (jw,) of degree n,
and the coefficients of the polynomial are the functions of the model parameters. This
reveals an explicit relationship between the NARX model parameters and the magnitude
bound of the nth-order GFRF, and is therefore important for the system analysis. From
Theorem 1, the magnitude bounds of any order GFRFs for the NARX model can readily
be computed from the model parameters and the first order GFRF.

3.3 Bound Characteristics of the output spectrum

Based on Theorem 1, a bound function in polynomial form can be derived for the system
output spectrum in terms of the magnitude bound of H,(jw,), and a sufficient condition
for the convergence of the bound function can be obtained in terms of the system model
parameters which can guarantee the BIBO stability of the NARX model. The results for
the boundedness of the output spectrum of the NARX model (7) when subject to a
general input are given in the following theorem.

Theorem 2. Assume the input of the NARX model (7) is a general input with spectrum

U(jw) defined by U(jw) = { (Jo) weR, . Then the output spectrum of the NARX model
otherwise
is bounded by
. N 1 . N
Y(jo)<® a2 ‘b, -h] -|U|*~-~*|U(ja))|:(r@lanbnj-hL (18a)

and the series on the right side of (18a) is convergent if the model parameters satisfy

éi}gck/[%anbnj(k) <H_L] (18b)

In (18ab), h, =1 H, - A ],b,=[b, b, b1, a,=@Qn)'"U|**U(jo)|, and
n
U U d
bl bo)= | HI (jo|do,

(u,+ +o,=0 1=

Proof. It can be derived from equation (2) that

Hn(jwl*"“ i : n
U(jw)do,|<
n=1 \/ﬁ(zﬂ-) " (ol+---.[w"—w];[

S

Hn(Ja)l*, i : N
U(jo )ld
n=1 \/ﬁ(zﬂ-)n_] (u,+.._.[w"—w]i:[| (]a)l )| Ton

Y(jo)| <

]wl"

; U (jo)|

n

o™
(19)
where (jo,, -, jo,)1s a point on the hyper-plane o, +---+ o, =w. According to Theorem 1,
[H,[<b, -h =by, +b,H, +b,H*++b,H,"
Thus using the operator “® ”, inequality (19) yields




1
(272_) n-1

|Y(ja))|sn%1 b, -h! ~|U|*~-~*|U(ja))|:(éanbn)-hL

which can be rewritten as
Y(jo)<Y = (%anbnj(0)+((%anbnj(l)ﬁ] +(c%lanbn)(z)ﬁf +...+(%anbn](k)ﬁﬁ + (20)

The bound of the output spectrum is in general an infinite series as given by (20). The
convergence of the series guarantees the stability of the NARX model. According to
Cauchy’s criterion (Weisstein 1999) for convergence, a sufficient condition for the

N — — o .
convergence of the series in (20) is lim k,[c-_Blanan(k)Hlk =H, lim k/[@lanan(k) <1. This
k—o0 B e n=

completes the proof. m

Note that in Theorem 2, b, =[b,, b

1 j [[M(@)do,, can be calculated by an algorithm given in

vin o+ to, =0 1=1

Billings and Lang (1996). Similarly, the following result can be obtained for the output
spectrum of the NARX model (7) when the input is a multi-tone signal.

- b,,] can be determined according to Theorem 1,

nl

and U|*---*U(jo)| =
L

Theorem 3. Assume the input of the NARX model (7) is the multi-tone signal (4). Then
the output spectrum of the NARX model is bounded by

Wﬂwﬂﬁéiznbmh:' EHFMm)WFOWJﬂ=(§ﬂJ%)hL (21a)

R )

and the series on the right side of (21a) is convergent if the system model parameters
satisfy

. N 1
tim[ &0 Joo < @1b)
In (2la,b) hy=(1 H, -~ H" ], b,=[b, b, - b,] which can be determined

according to Theorem 1, g, =27" z F(o, ) F(o, )|.

O ot O =0

Proof. From equation (5), it follows that
N
Yo=Y = Yo, o, )|F@)F@, )

O+t o =0

n=1
Si |Hn(ja)k,"“’ja)kn)|.2_n ZF(a)kl).“F(wkn)|
n=1

W O =0

According to Theorem 1, and following a similar process as the proof of Theorem 2, the
conclusion of the theorem can be reached. m

In order to illustrate the results above, consider a specific but frequently encountered case

of the NARX model (7). When there are only pure output nonlinearities in (7), the NARX
model is

10



M K p K
yty =y ( D Cooki k] [ Yt =k +S(M=1) " ¢, (K u(t —k;) (22)
3 i=1

m=p=11\ Kk .k,=1 k=1

I, m=0 . . .
where 5(m):{0 e For many engineering systems, this model can be regarded as a
, else

general linear/nonlinear state feedback system, and consequently has significance in the
analysis and synthesis of feedback control systems in practical applications (Jing, Lang
and Billings 2006). When the input is only a sinusoidal signal u(t) = F, sin(@,t) (F, >0),
then F(o, )=-jkF, for k =+1,w, =k,, and | =1,---,n in (5). In this case, the following

result can be achieved.

Corollary 1. Assume the nonlinear system described by NARX model (22) is subject to
the input signal u(t) = F, sin(w,t) (F4 >0). The nth-order GFRF for this nonlinear system

is bounded by

|Hn(ja)1""’jwn)|Sbnnﬁln (233)
and the output spectrum of the NARX model is bounded by
LA = o
|Y( ] C())| < z C2nn+l (Td)2n+1 b2n+l,2n+1 H 12"+1 (23b)
n=0

which is convergent if the system model parameters satisfy

2
lim2”+‘Cnn+bn+ l <—— 23C
TN 041 Pansn 20 FH, ( )

n-1 m
whereb,, = %C(n,O) +%Z cmo) > []b., |» [-]is to take the integer part of (.).
= = m=2 Zr =n i=1
1= r,<n-m+l

Proof. According to (15b) in Theorem 1,

b, = l[%al C(m0) [@% b j}(k) for 0<k<n (24a)
L[ m=2 Zr‘:n i=1
- 1<r 1y <n—m+1
1 1| i

by —Icm,onz( 8 C(mo) z@ 7 l(i®‘ b, j}(n) (24b)

Note b;=[0,1] and b, ={0,0,ﬁC(2,0)] It is easy to show that b, =0 for 0<k<n in
4]

2

(24a). Hence (24b) can be written as

b :lC(n,O)+%§ cmo) ﬁbm (24¢)
Zr»:n i=1

n —
L = m=2

1<h--ry<n-m+1

Hence, from Theorem 1 |H, (jo,, -, jo,)| <b,H,". From (21a), it follows that
N N _
Y(jo)| < [gﬁnbn]-hﬁ => B, H" (25)
n=1

Note that, when the input is a single tone function,

11



o, =k oy, Kk ==,

1<l<n } (26a)

Fd n
Ba=2" Y |F(@)Fo)|= ) 2 we{wk,+~-~+wkn

O+t o, =0

O+t O =0

0 else

Consider the frequency of interest is w = w, . It is easy to verify that

C”% n=2k+1,k=0,12...
Zl - {0 " else (26b)
n-(n—1)----- (n-m+1) n!
m-(m-1)----2  m(n-m)!
is derived from (24c¢) and (25) that
A = o
|Y( J w)| < Z C2nn+1 (7d)2n+1 b2n+1,2n+1 H lszrl

n=0

where, C" = . Note that g, is zero if n is an even number, it

From Cauchy’s criterion, if (23c) holds, the bound of |Y(jw)| is convergent. This
completes the proof. m

Corollary 1 gives a very clear and simple expression for the boundedness of the
frequency response of the NARX model (22) in terms of the model parameters and the
bound of the 1% order GFRF. The effect of the system model parameters on the
boundedness of the system output spectrum and consequently the BIBO stability of the
NARX model can be analysed through checking the inequality (23c). This simple
analytical bound expression for the output frequency response function also provides a
very useful and simple method to evaluate the truncation error associated with the
Volterra series expression of nonlinear systems and the highest order N needed in the
Volterra series’ approximation. Although the check of the stability for a nonlinear system
theoretically involves the computation of a limitation as given in (18b) or (21b) or (23c¢),
the result obtained for a sufficiently large N and K or n should be sufficient to provide a
significant indication of the system stability.

4 Numerical examples

Consider a nonlinear system

y(t) = 0.15y(t —2) + 0.1u(t — 1) — 0.05y(t — 1) y(t — 2) - 0.02y(t —1)* —0.01y(t - 1)* (27)
which can be written into the form (22) with ¢ (2)=0.15,c,,(1)=0.1,
C,0(1,2) =-0.05,¢,,(11) =-0.02,c, , (1,11) = -0.01 else c,,() =0, and K=2, M=3. There are only

pure output nonlinear terms in this model.

Compute the magnitude bound of the GFRFs up to 5™ order for system (27) according to
Corollary 1. From equation (8), it can be obtained

. 0.1
|H1(Ja))|:

0.1exp
1-0.15exp '2*

where L ={1-0.15exp*” :\/(1—0.1500520))2 +(0.15sin2w)* . It is easy to have L =0.7225 so

that H, =0.1384. According to Corollary 1, only bn, is needed for evaluating the
magnitude bounds of the GFRFs:
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For n=1 and 2, b ,;=1,b,, :%0(2,0) =0.07/L=0.09689, so that

|H,(jo,. jo,)|<b, -h] = 087 H,> =0.001856

For n=3,

1 1<
b, , :ZC(3’O)+IZ cmoy > J]b.

= m=2 =3 i=1
r

:—OSI+IC(20) Z ann=0fl 007(2b“b22) 0.03261

thus |H,(je,, -, jo,)| <b; -h{ =0.03261H, = 0.0000864609
For n=4,

b, =—C(4O)+LZ C(m0) Z Hb,r

= m=2
r <4-m+l

2 3
=% ceo Y [[b.+cco > []b. = % (0.07(2b,, +b2)+0.01(3b,,))=0.01125
a érlr'-f::sztfzu - 1sr,r-f?ps473+1 - a
thus
|H,(jo,,-, jo,)|<b,-h] =0.01125H,* =0.0000041289
For n=5,
b, :—C(S 0)+— Z cmo) > Hb,r
- r :75 <5-m+l1
1 4
=T| €20 > Hlo,r +C(30) 2 Hbrr +C40 > []b.
N lSrlrl:rSpSS—ZH l<rI TR <5-3+1 r,r‘jrspss—4+l -
%( 07(2b,,b,, +2b,,)+0.01-3(by, +b2))=0.004537
thus

|H;(jo,,-, jos)| <bs -h{ =0.004537H,’ < 0.00000023036

Carrying on with the above recursive calculation process, the magnitude bound of the
GFRFs of any order can be obtained according to Corollary 1. It should be noted from the
above computation that, with the order n going larger, by, is becoming smaller, and so is
the magnitude bound of the nth order GFRF. These information can be used to determine
the truncation error of the Volterra series expression of system (27) and to determine the
largest order N in the Volterra series approximation (Billings and Lang 1997).
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To demonstrate the bound characteristics of the system output spectrum of the NARX
model, consider system (27) is subject to input u(t)=10sin(w,t) (F, >0). Then, according

to Corollary 1,

. LNi%J Fd 2n+1 1 2n+l
|Y( J [ )| < z Cznn+1 (7) " b2n+1,2n+1 H 1
n=0

F, — 3F; —, 5F; — 5 35F] — F —
=7dH1+ gd 0.03262H,° + 16“ 0.004537H,” + 128“ 0.00086719H15+--.+cl,"nﬂ(7d)““bmmHl2 “

To check the convergence of this series in the bound expression, the condition

[ — 2

: n

hm 2y CZn+1 b2n+1,2n+1 < e
n—w Fd H

should be analysed. Note that if

1

2n+ nel
b { ] 1 14451
2n+1,2n+1 oy -
Ry SR Fd H 1 C2nn+1 Cznn+1

2n+1
then the convergent condition must hold. Let b(n)=b,,,, ,,,, and bb(n):%, which

2n+1

can be easily computed for any n by a computer program. Obviously, if b(n)<bb(n), then
the bound series is convergent. The result is shown in Figure 1, which indicates the
convergence of the bound series where b(n)=b,,,,,,,,1s computed up to the 41% order.

Figure 1 indicates a very quick convergent rate of the bound series in this specific case.

15

bb(n)
— —b(n)

b(n) and bb(n)

12 14 16 18 20

Figure 1. Boundedness of the output spectrum
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Moreover, it shall be noted that through symbolic manipulations, an analytical expression
for the bound expressions of both the GFRFs and the output spectrum of system (27) can
be obtained in terms of model parametersc, (). Thus the magnitude of the GFRFs and

output spectrum can be optimized and analysed with respect to considered model
parameters. This issue will be discussed in later publications.

5 Conclusions

The bound characteristics of the frequency response functions of the NARX model
including the GFRFs and the output spectrum are investigated in this paper. The
magnitude bounds of the GFRFs and system output spectrum can all be expressed as a
polynomial function of the magnitude bound of the first order frequency response
function, and the coefficients of the polynomial are the functions of the system model
parameters. These bound characteristics reveal an important relationship between the
model parameters and the boundedness of the system frequency response functions, and
provide a significant insight into the truncation error associated with the Volterra series’
approximation of nonlinear systems. Sufficient conditions for the BIBO stability of the
NARX model can also be derived from these results. Note that the boundedness results
derived in this paper are based on the use of the triangular inequality. This may introduce
conservatism to a certain extent. Further studies will focus on practical applications of the
established theoretical results, and the development of methods to reduce possible
conservatism associated with these the boundedness results.
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