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Abstract: New results about the bound characteristics of both the generalized frequency 

response functions (GFRFs) and the output frequency response for the NARX (Nonlinear 

AutoRegressive model with eXogenous input) model are established. It is shown that the 

magnitudes of the GFRFs and the system output spectrum can all be bounded by a 

polynomial function of the magnitude bound of the first order GFRF, and the coefficients 

of the polynomial are functions of the NARX model parameters. These new bound 

characteristics of the NARX model provide an important insight into the relationship 

between the model parameters and the magnitudes of the system frequency response 

functions, reveal the effect of the model parameters on the stability of the NARX model 

to a certain extent, and provide a useful technique to evaluate the truncation error in a 

Volterra series expression of nonlinear systems, and the highest order needed in the 

Volterra series approximation. A numerical example is given to demonstrate the 

effectiveness of the theoretical results. 

Keywords: Bound characteristics, Frequency domain, Nonlinear systems, NARX 

 

1 Introduction 
 

The Nonlinear AutoRegressive model with eXogenous input (NARX) represents a wide 

class of nonlinear systems, and many well-known nonlinear input-output models are 

specific cases of this model (Chen and Billings 1989). Many research studies have been 

carried out for the modelling and analysis of nonlinear systems described by the NARX 

model (Chen, Billings, Cowan and Grant 1990, Dzielinski 1999).  Based on the Volterra 

series approach of nonlinear systems, the NARX model has been analysed in the 

frequency domain, and significant results have been achieved. In George (1959), the 

concept of generalized frequency response functions (GFRFs) was proposed, which 

extended the well-known linear frequency response function to the nonlinear case. Since 

then considerable efforts had been focused on the GFRFs based nonlinear system 

frequency domain studies (Rugh 1981, George 1959, Bendat 1990, Chua and Ng 1979). 

In Peyton-Jones and Billings (1989), a recursive algorithm to compute the GFRFs of the 

NARX model was derived. Billings and Peyton-Jones (1990) extended the result to 

nonlinear systems described by nonlinear integro-differential equations. Swain and 
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Billings (2001) extended thereafter these results to the case of MIMO nonlinear systems. 

The output frequency characteristics of nonlinear systems were studied in Lang and 

Billings (1996) and Lang and Billings (1997). All these results form an important basis 

for further study of the analysis of nonlinear systems in the frequency domain.  

       

In this paper, the bound characteristics of the GFRFs and the output spectrum of the 

NARX model are studied based on the original work in Zhang and Billings (1996) and 

Billings and Lang (1996). The magnitude bounds of the system frequency response 

functions are shown to be a polynomial function of the magnitude bound of the first order 

GFRF of the NARX model, and the coefficients of the polynomial are the functions of 

the model parameters. This provides a significant insight into the relationship between 

the model parameters and the system frequency response functions, though it can be 

regarded as an important extension of the previous work in Zhang and Billings (1996) 

and Billings and Lang (1996). Based on these new results, the truncation error associated 

with the Volterra series expression of nonlinear systems can be studied. Sufficient 

conditions for the BIBO stability of the NARX model can also be established. A 

numerical example is given to demonstrate the results.  

 

2 The frequency response functions of nonlinear systems and the 
NARX model 
 

Nonlinear systems with stable zero equilibrium point can be approximated in the 

neighbourhood of the equilibrium by the Volterra series  
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where ),,( 1 nnh ττ L is called the nth order Volterra kernel, which is a real valued function 

of nττ ,,1 L , N is the maximum order of the system nonlinearity, which may need to be 

large enough to guarantee required accuracy of approximation. The output frequency 

response of the system can be described as (Lang and Billings 1996) 
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where nωσ denotes a small unite in the n dimensional hyperplane ωωω =++ nL1 , and  
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is the nth order GFRF of system (1). When the system is subject to a multi-tone input 

described by 
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The NARX model of nonlinear systems is given by  

∑ ∑ ∏∏

∑

= =

+

+==
+

=

+

−−=

=

m

p

K

kk

qp

pi
i

p

i
iqpqpm

M

m
m

qp

ktuktykkcty

tyty

0 1, 11

1,

1

1

)()(),,()(

)()(

L

                                     

)7(

)7(

b

a

 

where ym(t) is the mth-order output of the system, and p+q=m, ki=1,�, K, 
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L . The GFRFs for a specific nonlinear system can be derived by 

using the probing method in Rugh (1981). A recursive algorithm in (Peyton-Jones and 

Billings 1989) can be used to compute the GFRFs of the NARX model as follows: 
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Based on equations (8)-(11), the GFRFs of the NARX model (7) of any order can be 

obtained. The objective of this study is to investigate the bound characteristics of the 

GFRFs and the output spectrum of nonlinear systems described by the NARX model to 

provide an important insight into the effects of the model parameters on these system 

frequency response functions. Note that the bounded-input bounded-output (BIBO) 

stability can be guaranteed by the frequency domain property of bounded-input and 

bounded-output spectrum. The bound characteristics of the NARX model are also 

significant for the system BIBO stability. Sufficient bounded stability criteria of the 

NARX model can be derived from the bound characteristics of the system output 

spectrum.  

 

3 Bound characteristics of NARX model in the frequency domain 
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In this section, some notations and useful operators are introduced first. Then bound 

characteristics of the GFRFs of the NARX model are derived using these notations and 

operators. Finally, the bound characteristics of the system output spectrum are developed.  

 

3.1   Notations and operators 
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Obviously, C(p,q) is a nonnegative function of the coefficients cpq(.) defined on all 

nqp ≤≤ ,0 .  Moreover, let  
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where ωR  is the input frequency range of a NARX model.   

       

In order to develop the bounded characteristics of the GFRFs of the NARX model, define 

two operators as follows. Consider two polynomials of degree n and m respectively,  
T
n

n
na ahahaaf hL ⋅=+++= 10 , and T

m
m

nb bhbhbbf hL ⋅=+++= 10  

where the coefficients a0, a1, �, an; b0, b1,�, bm are all real numbers, h stands for a real 

or complex valued function, a=[ a0, a1, �, an], b=[ b0, b1,�, bm], and ih =[1, h, �, h
i
].  

       

Define a multiplication operator �⊗ � as 

      cba =⊗ , where c is an n+m+1-dimension vector, c(k)= ∑
≤≤≤≤
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kji
jiba

0,0

for nmk +≤≤0 .  
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)( . From this operator it follows that, for example, 

T
mnba baff +⋅⊗=⋅ h . Similarly, define an addition operator �⊕ � as 

      cba =⊕ , where c is an x-dimension vector, x=max{m,n}, c(k)=a(k)+b(k) for xk ≤≤0 . 

If k>n or m, then a(k)=0 or b(k)=0, accordingly.  

From the operator�⊕ � it follows that, for example, T
mnba baff ),max(h⋅⊕=+ . Moreover, let 

)(
(*)
⋅⊗  and )(
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�⊕ �for the series (.) satisfying (*), respectively.  
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3.2   Bound characteristics of the GFRFs 
       

The bound characteristics of the GFRFs are derived in this section. A preliminary result 

is given in Lemma 1, which shows that the magnitude bound of the nth order GFRF can 

be recursively determined from the magnitude bounds of the lower order GFRFs. Then 

based on Lemma 1, Theorem 1 is established which describes the magnitude bound of the 

GFRFs as a polynomial function of the magnitude bound of the first order GFRF )(1 ωjH . 
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Note that mqp ≤≤ ,0  denotes that mp ≤≤0  and mq ≤≤0 , and 11 =prr L means that 

1,,11 == prr L .  
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Although Lemma 1 shows essentially the same result as those obtained in Zhang and 

Billings (1996) and Billings and Lang (1996), Lemma 1 provides a general expression for 

the magnitude bound of the nth-order GFRF in terms of the model parameters and 

11 −nHH L , and compared with the result in Billings and Lang (1996), it is much simpler 

in form and derived in a more systematic approach. Based on Lemma 1 and by using the 

new operators defined in section 3.1, a more comprehensive result about the bound of the 

GFRFs of the NARX model can be obtained.  

 

Theorem 1. Consider the nth-order GFRF for the NARX model (7). There exists a series 

of scalar positive real numbers nnnn bbb ,,, 10 L , such that  
n

nnnnnnn HbHbHbbjjH 1

2

121101 ),,( ++++≤ LL ωω                               (15a) 

where the coefficients 0nb , ,1nb �, nnb can be recursively determined as follows (denote 

][ 10 nnnnn bbbb L= ):                 

)(),(
1

),(
1

1

11,0

1

2

1

kbqpC
L

knkC
L

b
i

p

i

r

p

i
mnrr

qnr
mqp

mqp

n

m
nk

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛⊗
∑

⊕⋅⊕⊕+−=
=

+−≤≤
−=

≤≤
=+

−

=
L

 for nk ≤≤0               (15b) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
== )0,2(

1
),1,1(

1
),2,0(

1
,, 2221202 C

L
C

L
C

L
bbbb                                                           (15c) 

 b1=[b10,b11]=[0,1]                                                                                                 (15e) 

Moreover, 0
1

=⊗
= ir

p

i
b if p<1, and 0)(

2
=⋅⊕

=

n

m
 if n<2. 

 

Proof. Use the induction method. For the second and third order GFRFs, it is easy to 

obtain from Lemma 1 that 

( )

( ) T

m
mqp

mqp
pq

hbHCHCC
L

HCHCC
L

HqpC
L

jjH

22

2

11

2,21,1

2

2
,0

,2212

)0,2()1,1()2,0(
1

)0,2()1,1()2,0(
1

),(
1

),(

⋅=++=

++=≤ ∑ ∑
=

≤≤
=+

−ωω

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=

≤ ∑ ∑
=

≤≤
=+

−

3

1

22

1

1

2

3

2
,0

,33213

)0,2(
2

)0,3()1,1()0,2(
2

)0,2()1,1(
1

)1,2(

)2,0()0,2(
2

)1,1(
1

)2,1()2,0()1,1(
1

)3,0(
1

),(
1

),,(

HC
L

CHCC
L

CC
L

C

HCC
L

C
L

CCC
L

C

L

HqpC
L

jjjH
m

mqp
mqp

pqωωω

 



 8

                  Thb 33 ⋅=  

 

Hence, the theorem holds for n=2 and 3. Consider the nth order GFRF under the 

assumption that the theorem holds for all the GFRFs of orders less than n. From Lemma 
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LL ωω  for 11 +−≤≤ mnri  

where ][ ,1,0, iiiii rrrrr bbbb L=  and ]1[ 11
i

i

r
r HHh L= , it can be derived by using the 

operators �⊗� and �⊕ � that 

qnr

p

i
mnrr

qnr

qnr
mnrr

qnr

p

i

qnr
mnrr

p

i
rrr hbhbjjH

i

p

i

i

p

i

i

p

irXXi −
=

+−≤≤
−=

−=
+−≤≤

−
=

−=
+−≤≤ =

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛⊗
∑
⊕=

∑

⋅⊗=

∑

∑∑ ∏ ++ 1

11
11

1
11 1

1
11

1
),,(

L
LL

L ωω  

Therefore, 

nr

p

i
mnrr

qnr
mqp

mqp

n

m

n

m
mqp

mqp
qnr

mnrr

p

i
rrr hbqpCjjHqpC

i

p

i

i

p

irXXi
⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛⊗
∑

⊕⋅⊕⊕=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∑
=

+−≤≤
−=

≤≤
=+

−

=

−

=
≤≤

=+
−=

+−≤≤ =
∑ ∑ ∑ ∏ ++ 1

11,0

1

2

1

2
,0

11 1
1

1

1
),(),,(),(

L
L

L ωω  

and (17) can be written as 

( ) nr

p

i
mnrr

qnr
mqp

mqp

n

m

n
nn hbqpC

L
HnCHnCnC

L
jjH

i

p

i

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⊗

∑
⊕⋅⊕⊕+++−+≤

=
+−≤≤

−=
≤≤

=+

−

= 1

11,0

1

2
111

1

),(
1

)0,()1,1(),0(
1

),,(

L

LL ωω

 

This proves equation (15b). (15c) follows from the first two steps of the recursive 

computation. The proof of Theorem 1 is thus completed. Ŷ 
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Theorem 1 throws that the magnitude of the nth-order GFRF can be bounded by a 

polynomial function of the magnitude bound of the first order GFRF )( 11 ωjH  of degree n, 

and the coefficients of the polynomial are the functions of the model parameters. This 

reveals an explicit relationship between the NARX model parameters and the magnitude 

bound of the nth-order GFRF, and is therefore important for the system analysis. From 

Theorem 1, the magnitude bounds of any order GFRFs for the NARX model can readily 

be computed from the model parameters and the first order GFRF.  

 

3.3   Bound Characteristics of the output spectrum 
       

Based on Theorem 1, a bound function in polynomial form can be derived for the system 

output spectrum in terms of the magnitude bound of )( 11 ωjH , and a sufficient condition 

for the convergence of the bound function can be obtained in terms of the system model 

parameters which can guarantee the BIBO stability of the NARX model. The results for 

the boundedness of the output spectrum of the NARX model (7) when subject to a 

general input are given in the following theorem. 

 

Theorem 2. Assume the input of the NARX model (7) is a general input with spectrum 

)( ωjU defined by 
⎩
⎨
⎧ ∈

=
otherwise0

)(
)(

ωωω
ω

RjU
jU . Then the output spectrum of the NARX model 

is bounded by 

T
Nnn

N

n

T
nnn

N

n
hbjUUhbjY ⋅⎟

⎠
⎞

⎜
⎝
⎛ ⊕=⋅⋅⋅⊕≤

=−=
αω

π
ω

111
)(**

)2(

1
)( L                         (18a) 

and the series on the right side of (18a) is convergent if the model parameters satisfy 

1
1

1
)(lim

H
kbk

nn

N

n
k
N

<⎟
⎠
⎞

⎜
⎝
⎛ ⊕

=
∞→
∞→

α                                                   (18b) 

In (18a,b), ]1[ 11

N
N HHh L= , ][ 10 nnnnn bbbb L= , 

44 344 21
L

n

n
n jUU )(**)2( 1 ωπα −= , and 

∫ ∏
=++ =

=
ωωω

ωσωω
n

n

i
ni

n

djU
n

jUU
L

44 344 21
L

1
1

)(
1

)(** . 

 

Proof. It can be derived from equation (2) that 

∑

∑ ∫ ∏∑ ∫ ∏

=
−

= =++ =
−

= =++ =
−

=

≤≤

N

n
n

nnn

N

n

n

i
nin

nn
N

n

n

i
in

nn

jUUjjH

djU
n

jjH
djU

n

jjH
jY

nn

1

**

11

1 1
1

**

1

1 1
1

**

1

)(**),,(
)2(

1

)(
)2(

),,(
)(

)2(

),,(
)(

11

44 344 21
LL

LL

LL

ωωω
π

σω
π

ωω
σω

π

ωω
ω

ωωω
ω

ωωω
ω

                               (19) 

where ),,( **

1 njj ωω L is a point on the hyper-plane ωωω =++ nL1 .  According to Theorem 1,  
n

nnnnn
T
nnn HbHbHbbhbH 1

2

12110(.) ++++=⋅≤ L  

Thus using the operator �⊕ �, inequality (19) yields 
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T
Nnn

N

n

T
nnn

N

n
hbjUUhbjY ⋅⎟

⎠
⎞

⎜
⎝
⎛ ⊕=⋅⋅⋅⊕≤

=−=
αω

π
ω

111
)(**

)2(

1
)( L  

which can be rewritten as 

LL +⎟
⎠
⎞

⎜
⎝
⎛ ⊕++⎟

⎠
⎞

⎜
⎝
⎛ ⊕+⎟

⎠
⎞

⎜
⎝
⎛ ⊕+⎟

⎠
⎞

⎜
⎝
⎛ ⊕=≤

====

k
nn

N

n
nn

N

n
nn

N

n
nn

N

n
HkbHbHbbYjY 1

1

2

1
1

1
11

)()2()1()0()( ααααω      (20) 

The bound of the output spectrum is in general an infinite series as given by (20). The 

convergence of the series guarantees the stability of the NARX model. According to 

Cauchy�s criterion (Weisstein 1999) for convergence, a sufficient condition for the 

convergence of the series in (20) is 1)(lim)(lim
1

11
1

<⎟
⎠
⎞

⎜
⎝
⎛ ⊕=⎟

⎠
⎞

⎜
⎝
⎛ ⊕

∞

=∞→=
∞→
∞→

k
nn

nk
k

k
nn

N

n
k
N

kbHHkb αα . This 

completes the proof. Ŷ 

       

Note that in Theorem 2, ][ 10 nnnnn bbbb L=  can be determined according to Theorem 1, 

and ∫ ∏
=++ =

=
ωωω

ωσωω
n

n

i
ni

n

djU
n

jUU
L

44 344 21
L

1
1

)(
1

)(**  can be calculated by an algorithm given in 

Billings and Lang (1996). Similarly, the following result can be obtained for the output 

spectrum of the NARX model (7) when the input is a multi-tone signal. 

 

Theorem 3. Assume the input of the NARX model (7) is the multi-tone signal (4). Then 

the output spectrum of the NARX model is bounded by 

T
Nnn

N

n
kk

T
nn

n
N

n
hbFFhbjY

nkk

n
⋅⎟
⎠
⎞

⎜
⎝
⎛ ⊕=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅⋅⊕≤

=
=++

−

= ∑ βωωω
ωωω

11

1

1
)()(2)(

L

L                      (21a) 

and the series on the right side of (21a) is convergent if the system model parameters 

satisfy 

1
1

1
)(lim

H
kbk

nn

N

n
k
N

<⎟
⎠
⎞

⎜
⎝
⎛ ⊕

=
∞→
∞→

β                                                  (21b) 

In (21a,b) ]1[ 11

N
N HHh L= , ][ 10 nnnnn bbbb L=  which can be determined 

according to Theorem 1, ∑
=++

−=
ωωω

ωωβ
nkk

nkk
n

n FF
L

L

1

1
)()(2 . 

 

Proof. From equation (5), it follows that 

∑ ∑

∑ ∑

= =++

−

= =++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅≤

≤

N

n
kk

n
kkn

N

n
kkkknn

nkk

nn

nkk

nn

FFjjH

FFjjHjY

1

1

1

11

1

11

)()(2),,(

)()(),,(
2

1
)(

ωωω

ωωω

ωωωω

ωωωωω

L

L

LL

LL

 

According to Theorem 1, and following a similar process as the proof of Theorem 2, the 

conclusion of the theorem can be reached. Ŷ 

       

In order to illustrate the results above, consider a specific but frequently encountered case 

of the NARX model (7). When there are only pure output nonlinearities in (7), the NARX 

model is 
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∑ ∑∑ ∏
== == =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−+−=

M

pm

K

k

K

kk

p

i
ipp ktukcmktykkcty

p1 1

111,0

1, 1

10,

11

)()()1()(),...,()( δ                    (22) 

where
⎩
⎨
⎧ =

=
else,0

0,1
)(

m
mδ . For many engineering systems, this model can be regarded as a 

general linear/nonlinear state feedback system, and consequently has significance in the 

analysis and synthesis of feedback control systems in practical applications (Jing, Lang 

and Billings 2006).  When the input is only a sinusoidal signal )0()sin()( 0 >= dd FtFtu ω , 

then dlk FjkF
l

−=)(ω  for 0,1 ωω lkl kk
l
=±= , and nl ,,1L=  in (5). In this case, the following 

result can be achieved.  

 

Corollary 1. Assume the nonlinear system described by NARX model (22) is subject to 

the input signal )0()sin()( 0 >= dd FtFtu ω . The nth-order GFRF for this nonlinear system 

is bounded by 
n

nnnn HbjjH 11 ),,( ≤ωω L                                                (23a) 

and the output spectrum of the NARX model is bounded by 
⎣ ⎦

∑
−

=

+
++

+
+≤

2
1

0

12

112,12

12

12 )
2

()(

N

n

n
nn

ndn
n Hb

F
CjY ω                                      (23b) 

which is convergent if the system model parameters satisfy 

1

12
12,1212

2
lim

HF
bC

d

n
nn

n
n

n
<+

+++∞→
                                              (23c) 

where ∑ ∑ ∏
−

=
+−≤≤

= = ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∑
+=

1

2

11

1

1

)0,(
1

)0,(
1

n

m
mnrr

nr

m

i
rrnn

p

i

ii
bmC

L
nC

L
b

L

, ⎣ ⎦⋅ is to take the integer part of (.). 

 

Proof. According to (15b) in Theorem 1, 

)()0,(
1

1

11

1

2

1

kbmC
L

b
i

p

i

r

m

i
mnrr

nr

n

m
nk

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⊗

∑
⊕⊕=

=
+−≤≤

=

−

=
L

 for nk <≤0                                (24a) 

)()0,(
1

)0,(
1

1

11

1

2

1

nbmC
L

nC
L

b
i

p

i

r

m

i
mnrr

nr

n

m
nn

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⊗

∑
⊕⊕+=

=
+−≤≤

=

−

=
L

                                   (24b) 

Note b1=[0,1] and ⎥
⎦

⎤
⎢
⎣

⎡
= )0,2(

)(

1
,0,0

2

2 C
L

b
ω

. It is easy to show that 0=nkb for nk <≤0  in 

(24a). Hence (24b) can be written as 

∑ ∑ ∏
−

=
+−≤≤

= = ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∑
+=

1

2

11

1

1

)0,(
1

)0,(
1

n

m
mnrr

nr

m

i
rrnn

p

i

ii
bmC

L
nC

L
b

L

                                  (24c) 

Hence, from Theorem 1 n
nnnn HbjjH 11 ),,( ≤ωω L . From (21a), it follows that 

∑
=

=
=⋅⎟

⎠
⎞

⎜
⎝
⎛ ⊕≤

N

n

n
nnn

T
Nnn

N

n
HbhbjY

1

1
1

)( ββω                                           (25) 

Note that, when the input is a single tone function, 



 12

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤≤

±==
++∈

== ∑∑ =++
=++

−

else0

1

,1,
,1)

2
(

)()(2

0

1

1

1

1
nl

kkF

FF
llk

kk
nd

kk
n

n

l

n

nkk

nkk

n

ωω
ωωω

ωωβ ωωω
ωωω

L
L L

L

  (26a) 

Consider the frequency of interest is 0ωω = . It is easy to verify that 

⎩
⎨
⎧ =+=

=
−

∑
=++ else0

...2,1,0,12
1

2
1

01

kknC
n

nkk

n

ωωω L

                                      (26b) 

where, 
)!(!

!

2)1(

)1()1(

mnm

n

mm

mnnn
C m

n −
=

⋅⋅−⋅
+−⋅⋅−⋅

=
L

L
. Note that nβ is zero if n is an even number, it 

is derived from (24c) and (25) that  
⎣ ⎦

∑
−

=

+
++

+
+≤

2
1

0

12

112,12

12

12 )
2

()(

N

n

n
nn

ndn
n Hb

F
CjY ω  

From Cauchy�s criterion, if (23c) holds, the bound of )( ωjY  is convergent. This 

completes the proof. Ŷ 

       

Corollary 1 gives a very clear and simple expression for the boundedness of the 

frequency response of the NARX model (22) in terms of the model parameters and the 

bound of the 1
st
 order GFRF. The effect of the system model parameters on the 

boundedness of the system output spectrum and consequently the BIBO stability of the 

NARX model can be analysed through checking the inequality (23c). This simple 

analytical bound expression for the output frequency response function also provides a 

very useful and simple method to evaluate the truncation error associated with the 

Volterra series expression of nonlinear systems and the highest order N needed in the 

Volterra series� approximation. Although the check of the stability for a nonlinear system 

theoretically involves the computation of a limitation as given in (18b) or (21b) or (23c), 

the result obtained for a sufficiently large N and K or n should be sufficient to provide a 

significant indication of the system stability.  

 

4 Numerical examples 
 

Consider a nonlinear system 
32 )1(01.0)1(02.0)2()1(05.0)1(1.0)2(15.0)( −−−−−−−−+−= tytytytytutyty                (27) 

which can be written into the form (22) with ,1.0)1(,15.0)2( 1,00,1 == cc  

01.0)1,1,1(,02.0)1,1(,05.0)2,1( 0,30,20,2 −=−=−= ccc  else 0)(, =⋅qpc , and K=2, M=3. There are only 

pure output nonlinear terms in this model. 

        

Compute the magnitude bound of the GFRFs up to 5
th

 order for system (27) according to 

Corollary 1. From equation (8), it can be obtained   

L
jH

j

j
1.0

exp15.01

exp1.0
)(

21 =
−

=
−

−

ω

ω

ω  

where 222 )2sin15.0()2cos15.01(exp15.01 ωωω +−=−= − jL . It is easy to have 7225.0=L so 

that 1H =0.1384. According to Corollary 1, only bn,n is needed for evaluating the 

magnitude bounds of the GFRFs: 
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For n=1 and 2, b1,1=1, )0,2(
1

2,2 C
L

b = =0.07/ L =0.09689, so that 

001856.0
07.0

),(
2

122212 ==⋅≤ H
L

hbjjH Tωω  

For n=3,  

03261.0)2(
07.001.0

)0,2(
101.0

)0,(
1

)0,3(
1

2211

2221

3

2

1

2

2
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3 1
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=+=
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⎟
⎟
⎟
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⎜
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⎛
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m
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i
rr

L

L  

thus 0000864609.003261.0),,(
3

133313 ==⋅≤ HhbjjH Tωω L  

For n=4,  

( ) 01125.0)3(01.0)2(07.0
1

)0,3()0,2(
1

)0,(
1

)0,4(
1
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2

2233
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4

3

1
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4

2

1

3

2
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4 1
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⎟
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⎟
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∑
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thus 

0000041289.001125.0),,(
4

144414 ==⋅≤ HhbjjH Tωω L  

For n=5,  

( ) 004537.0)(301.0)22(07.0
1

)0,4()0,3()0,2(
1

)0,(
1

)0,5(
1

2
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1
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1
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2
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5 1
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LLL
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thus 

60000002303.0004537.0),,(
5

155515 ≤=⋅≤ HhbjjH Tωω L  

       

Carrying on with the above recursive calculation process, the magnitude bound of the 

GFRFs of any order can be obtained according to Corollary 1. It should be noted from the 

above computation that, with the order n going larger, bnn is becoming smaller, and so is 

the magnitude bound of the nth order GFRF. These information can be used to determine 

the truncation error of the Volterra series expression of system (27) and  to determine the 

largest order N in the Volterra series approximation (Billings and Lang 1997).  
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To demonstrate the bound characteristics of the system output spectrum of the NARX 

model, consider system (27) is subject to input )0()sin(10)( 0 >= dFttu ω . Then, according 

to Corollary 1,  
⎣ ⎦
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To check the convergence of this series in the bound expression, the condition 
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then the convergent condition must hold. Let 12,12)( ++= nnbnb and
n
n

n

C
nbb

12

124451.1
)(

+

+

= , which 

can be easily computed for any n by a computer program. Obviously, if b(n)<bb(n), then 

the bound series is convergent. The result is shown in Figure 1, which indicates the 

convergence of the bound series where 12,12)( ++= nnbnb is computed up to the 41
st
 order. 

Figure 1 indicates a very quick convergent rate of the bound series in this specific case.    
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Figure 1. Boundedness of the output spectrum 
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Moreover, it shall be noted that through symbolic manipulations, an analytical expression 

for the bound expressions of both the GFRFs and the output spectrum of system (27) can 

be obtained in terms of model parameters )(, ⋅qpc . Thus the magnitude of the GFRFs and 

output spectrum can be optimized and analysed with respect to considered model 

parameters. This issue will be discussed in later publications.  

 

5 Conclusions 
 

The bound characteristics of the frequency response functions of the NARX model 

including the GFRFs and the output spectrum are investigated in this paper. The 

magnitude bounds of the GFRFs and system output spectrum can all be expressed as a 

polynomial function of the magnitude bound of the first order frequency response 

function, and the coefficients of the polynomial are the functions of the system model 

parameters. These bound characteristics reveal an important relationship between the 

model parameters and the boundedness of the system frequency response functions, and 

provide a significant insight into the truncation error associated with the Volterra series� 

approximation of nonlinear systems. Sufficient conditions for the BIBO stability of the 

NARX model can also be derived from these results. Note that the boundedness results 

derived in this paper are based on the use of the triangular inequality. This may introduce 

conservatism to a certain extent. Further studies will focus on practical applications of the 

established theoretical results, and the development of methods to reduce possible 

conservatism associated with these the boundedness results.  
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