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In this paper the problem of on-line identification and adaptive control of a Wiener type non-

linear system is studied. First, a Wiener model is defined whose linear and non-linear parts are

described using Laguerre and piecewise linear basis functions, respectively. Then, an adaptive

identification algorithm for this model is presented. A local convergence analysis for

the adaptive identification is performed. The model obtained is used to adapt the parameters

of a controller designed for the specific structure of the model. The complete scheme is applied

to a simulation of a pH neutralization reactor subject to several perturbations. The results

show the improved behaviour of the proposed scheme compared with other approaches found

in the literature.

1. Introduction

In the last decades, many contributions for controller

design have been based on the assumption of a linear

model of the system. However, in some cases it is

difficult to represent a given process using a linear

model. This is the case when the system is highly

non-linear and the operating point changes within a

wide region, or when the process is non-stationary,

i.e., the characteristics change with time.
In these cases, the controller design can be performed

using special techniques, such as exact linearization,

non-linear model predictive control, or other

special-purpose procedures (Ogunnaike and Ray 1994).
One of the solutions to control such a system is

adaptive control, where the parameters of a linear

controller are adjusted to follow the variations of the

process behaviour. Several control schemes assume

a model structure whose parameters are identified

on-line using an adaptive identification algorithm.

The identified model parameters are then used for
updating the controller parameters.

It is well known that some systems can be described
by a linear dynamic model followed by a static
non-linearity, referred to as Wiener systems (Pearson
and Potman 2000, Pearson 2003). Pajunen (1987)
proposes two adaptive control schemes for the control
of Wiener systems. However, in the identification
algorithms of these schemes, the Wiener structure is
lost, resulting in a large number of parameters for the
process model.

The first step in the construction of an adaptive
control algorithm is to obtain an efficient adaptive
identification scheme. In the literature we can find
four main approaches for the identification of Wiener
models. The first one is the traditional iterative
algorithm proposed by Narendra and Gallman (1966)
for the identification of the Hammerstein model. In
this algorithm, an appropriate parameterization of the
system allows the prediction error to be separately linear
in each set of parameters characterizing the linear and
the non-linear parts. The estimation is carried out by
minimizing alternatively a quadratic criterion on the
prediction errors with respect to each set of parameters.*Corresponding author. Email: figueroa@uns.edu.ar
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An analytical counterexample by Stoica (1981) showed
that the original algorithm could diverge in some
particular cases.
The second approach, based on correlation

techniques, was introduced by Billings and Fakhouri
(1978) and Billings (1980). The method relies on a
separation principle, but with the rather restrictive
requirement on the input to be white noise. A similar
approach was introduced by Greblicki (1994).
The third approach is a more recent technique for

the identification of Wiener models introduced by
Kalafakis et al. (1995, 1997) and extended to general
block-oriented models by Bai (1998). In particular, Bai’s
algorithm is based on least-squares estimation (LSE)
and singular value decomposition (SVD). The approach
is useful only for the single input/single output (SISO)
cases due to the particular parameterization used.
Gomez and Baeyens (2004) extended the results of
Bai to include a more general parameterization that
enables the use of multiple input/multiple output
systems (MIMO).
The fourth approach introduced by Wigren (1993,

1994) is a recursive identification scheme that uses a
non-linear Wiener model with a fixed (known) piecewise
linear (PWL) non-linearity. In particular, parameter
convergence can be verified using an IIR model in
the linear part if the non-linearity is strictly monotonic
(i.e., invertible). In addition, output error convergence
for an FIR linear part can be obtained if the known
non-linearity is monotonic (Wigren 1998). Figueroa
et al. (2004) presented an algorithm for adaptive filtering
using a Wiener structure with an FIR filter to describe
the linear block and a PWL non-linear function to
describe the non-linear gain. The same non-linear
description is used in the present work.
In this paper we propose a new approach for adaptive

control of Wiener type systems. Using a particular
parametrization of the model, an adaptive
identification scheme is proposed extending the idea of
Gomez and Baeyens (2004). Using this approach,
the inverse of the non-linearity is directly identified,
avoiding the inversion problem. After that, the structure
of the Wiener model is fully exploited to obtain all
possible advantages.
The performance of the proposed algorithm is tested

in the control of a neutralization reactor. It is well
known that the control of pH processes is particularly
difficult. The main reason is the strong non-linearity
involved. The slope of a chemical system’s titration
curve can vary several orders of magnitude over
a modest range of pH values, causing the overall
process gain to change accordingly. Several non-
linear schemes have been proposed for the control of
this kind of processes (Norquay et al. 1998, 1999,
Gerkšič et al. 2000, Lussón Cervantes et al. 2003a,

Biagiola et al. 2004, Åkesson et al. 2005). The basic
assumptions of these schemes are a fixed Wiener
structure of the model and a non-linear controller.
Several control strategies were used, including gain
scheduling, model predictive control, H1, etc.

However, when perturbations are applied to the
process, a fixed Wiener model cannot represent the
process adequately. For example, the titration curve
changes drastically (Kalafatis et al. 2005a). Some
authors have applied robustness ideas in the controller
design (Lussón Cervantes et al. 2003b), by using
feedforward controllers (Kalafatis et al. 2005a) or
adaptive identification algorithm (Kalafatis et al.
2005b). Pajunen (1992) proposes an adaptive algorithm
to adapt the controller parameters when the process
is varying. In this paper we want to propose a more
efficient algorithm to solve the adaptive control.

The paper is organized as follows. In x 2, the model
structure and the adaptive identification procedure are
presented. The control design for fixed parameters is
discussed in x 3. Section 4 describes the adaptive control
algorithm and discusses some implementation details.
A simulation example describing the application to
control a pH neutralization reactor is detailed in x 5.
Finally, x 6 draws the conclusions.

2. Adaptive identification scheme

2.1 Model description

In this paper, we propose a special description for the
process where the linear dynamic model is described by
a Laguerre basis series and the non-linear static block is
modelled as a PWL model. This model is illustrated in
figure 1.

The Laguerre basis allows the use of prior knowledge
about the dominant poles (Wahlberg 1991, 1994,
Lindskog 1996). This model describes the linear model
with the following basis function expansion

HðzÞ ¼
XM
i¼0

hiLiðz, aÞ, ð1Þ

L0(z, a)

L1(z, a)

LM(z, a)

u

h1

hM

h0

yv
N(v)

Figure 1. The Laguerre-PWL Wiener model.
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where

Liðz, aÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

z� a

1� az

z� a

� �i�1

ð2Þ

and hi are the parameters of the model, a 2 < is a filter

coefficient chosen a priori (Wahlberg 1991).
For the representation of the static non-linear gain,

N(�), we use a PWL description. In general N(�) is

real-valued function of one variable, i.e., y ¼ NðvÞ:
<1 ! <1, which we assume to be invertible. (This is

a common assumption is the literature on Wiener type

systems that simplifies the identification and controller

design (Lussón et al. 2003a). However, it is not necessary
considering the non-invertible static non-linearity used

in the algorithms of Wigren (1990, 1993).) For the

specific control algorithm that we use, we prefer to
describe the inverse of this non-linearity, i.e., v¼N�1(y).
The PWL function have proved to be a very powerful

tool in the modeling and analysis of non-linear systems

(Chua and Ying 1983, Julián et al. 1999). These
functions allow a systematic and accurate treatment of

approximating functions. The PWL functions enable

the representation of a non-linear system through a set
of linear expressions, each of them valid in a certain

operating region. To make this approximation, the

domain of variables @i is partitioned into a set of �
non-empty regions @i, such that @ ¼

S�
i¼1 @

i. In each of

these regions, @i, the non-linear function is approxi-

mated using a linear (affine) representation.
It can be proved (Julián et al. 1999) that any

continuous non-linear function fðvÞ: <m ! <1 can be

uniquely represented using PWL functions. Lussón

et al. (2003) use these functions in the context of a

model predictive control algorithm for Wiener models.
Moreover, Figueroa et al. (2004) use this representation

in the context of an adaptive filter algorithm.
To express the nonlinear function (see figure 1), we

will use a function expansion with the basis functions

and parameters (Julián et al. 1999)

v ¼ N�1ðyÞ ¼ cT,ðyÞ: ð3Þ

We will consider the case where the basis functions that

are included in the vector , have been predetermined

and the values of vector c are the parameters to be
estimated. In this paper we use the orthogonal basis

description proposed by Julián et al. (2000). The

elements of the basis depend on the partitioning of the
domain ð@iÞ and on the variable y.
Since the basis functions , are fixed, the output is

a linear function of the parameters. This allows us to use

linear regression to estimate the parameters. The two
basic advantages of this approach are that it is fast and

gives a unique estimate.

We note that in Kalafakis et al. (1995, 1997) a similar

parameterization for the model is used. In that paper,

the linear block is modelled as a frequency-sampling

filter and the nonlinear block as a polynomial basis.

In particular, the choice of PWL functions allows a

more efficient realization of the static non-linearity

(Figueroa et al. 2004).

2.2 Adaptive implementation

Let us define an adaptive algorithm for the identification

of the Wiener model described in previous section.

As shown figure 1, the signal v(k) is given by

vðkÞ ¼
XM
i¼0

hiLi½uðkÞ� ð4Þ

and also as

vðkÞ ¼ N�1½yðkÞ� ¼ cT,½yðkÞ� ¼
XN
i¼0

ciKi½yðkÞ�: ð5Þ

By equalling both sides of (4) and (5) (including �(k) to
allow for a modelling error), and fixing the parameter

h0¼ 1 to overcome the well-known gain ambiguity in

Wiener models, the following equation is obtained

XN
i¼0

ci�i½yðkÞ� ¼ L0½uðkÞ� þ
XM
i¼1

hiLi½uðkÞ� þ �ðkÞ ð6Þ

or rewritten as a linear regression

�ðkÞ ¼
XN
i¼0

ci�i½yðkÞ� � L0½uðkÞ� �
XM
i¼1

hiLi½uðkÞ�

¼ hTðkÞ�ðkÞ � L0½uðkÞ�, ð7Þ

where vectors h(k) and �ðkÞ are defined as

hðkÞ ¼ ½c0, c1, c2, . . . , cN, h1, h2, . . . , hM�
T

ð8Þ

�ðkÞ ¼ ½�0½yðkÞ�,�1½yðkÞ�, . . . ,�N½yðkÞ�,

� L1½uðkÞ�, � L2½uðkÞ�, . . . , � LM½uðkÞ��T: ð9Þ

Next we consider an LMS (or stochastic gradient)

algorithm that allows us to recursively estimate

the parameters of the model h. For this purpose, we

use as an objective function J� the instantaneous squared

error

Jh½�ðkÞ� ¼ �2ðkÞ ¼ hTðkÞ�ðkÞ � L0½uðkÞ�
� �2

: ð10Þ

The recursion of the LMS based algorithm that

minimizes the above objective function is given by

hðkþ 1Þ ¼ hðkÞ þ ��ðkÞ�ðkÞ, ð11Þ
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where � is the step size controlling the convergence and
final error of h.
In order to ensure convergence, the step size � in

equation (11) is chosen in the range

0 < � <
1

l
, ð12Þ

where l is the maximum eigenvalue of the matrix
Eð��TÞ.

2.3 Local convergence analysis

Local convergence analysis of the proposed algorithm
can be performed using the ordinary differential
equation (ODE) method (Ljung 1977a, 1977b, Ljung
and Söderstrom 1983). The general ODE approach
comes from the field of stochastic approximation theory,
and enables us to convert the study of convergence of
a stochastic non-linear equation into the study of the
stability of the solutions of a deterministic differential
equation.
Two different kinds of algorithms can be studied in

this form: vanishing-gain algorithms (i.e., with the step
size � ! 0), mostly oriented to estimation in a
stationary environment, and constant-gain algorithms
(of interest here), where the step size � is kept constant
in order to consider tracking situations. For the latter
case the ODE method guarantees that the adaptation
algorithm converges in probability (not with probability
one as with vanishing gain algorithms).
Consider a generic stochastic gradient algorithm of

the form

hðkþ 1Þ ¼ hðkÞ þ ��½hðkÞ�;½hðkÞ� ð13Þ

where h(k) is the parameter vector, �(k) is the error to
be minimized and ;ðkÞ is the estimated gradient of �(k).
The associated ODE has the form

@hDðtÞ

@t
¼ fðhDÞ ð14Þ

where fðhDÞ depends on the specific algorithm used. In
order to guarantee the ODE association some condi-
tions much be verified.
Following the ODE method, the input u(k) and the

output y(k) signals are considered stochastic stationary
processes and the filters that generate the signals �(k) and
;ðkÞ are considered exponentially stable. Then, f (�)
represents an average adaptation direction that can
be used to study the convergence properties of the
algorithm. For example, stationary points h* of
the generic algorithm can be obtained by means of the
solutions of f (h*)¼ 0. In particular, if local convergence
is addressed, we can use the indirect method of
Lyapunov (i.e., linearization around a stationary point)

to perform the study. Then, based on a Taylor series
expansion of (14), we construct a related linear differ-
ential equation of the form

@hDðtÞ

@t
¼ �

@f½hDðtÞ�

@hD

� �
hD¼h�D

½hDðtÞ � h�D�: ð15Þ

The point h�D is a stable stationary point of (14) if and
only if hD¼ 0 is an exponentially stable stationary
point of (15). This is equivalent to showing that the
eigenvalues of the stability matrix �½@fðhDðtÞÞ=@hD�h�D is
a stability matrix if it is positive definite.

Now, the ODE associated with our problem is

@h

@t
¼ E ½��ðkÞ� ð16Þ

Assuming that the true non-linear model is described by
the Laguerre-CPWL filter except for a bounded zero-
mean measurement noise r(k), it can be verified that
a stationary point h* of the proposed algorithm
corresponds to the solution of E ½��ðkÞ� ¼ 0. This
rather restrictive assumption is usually made (Wigren
1993).

With local convergence properties in mind, a linear-
ization of (16) in a neighbourhood of the stationary
point h* leads to the following expression

@h

@t
ffi �

E ½��ðkÞ�

@h

����
h�
ðh� h�Þ: ð17Þ

Using the basic definitions from equations (10) and (11)
we obtain

Pðh�Þ ¼
E ½��ðkÞ�

@h

����
h�
¼ E ½��T�h� : ð18Þ

Local convergence can be guaranteed if the eigenvalues
of PTðh�Þ have positive real part. Note that matrix P(h*)
is symmetric and positive semidefinite. Therefore, local
convergence is assured if matrix P(h*) is positive
definite.

With � defined in (9), equation (18) becomes

Pðh�Þ ¼
,
B

� �
,
B

� �T" #
h�

, ð19Þ

where , ¼ ½,0½yðkÞ�, . . . ,�N½yðkÞ��
T and L¼

½�L1½uðkÞ�, . . . , � LM½uðkÞÞ�. Note that matrix P(h*) is
independent of the parameter vector h.

The local convergence results related to the proposed
adaptive nonlinear identification algorithm are summar-
ized in the following theorem.

Theorem 1: Consider the algorithm described in table 1.
Assume that

1. u(k) is a bounded, zero-mean, stationary stochastic
signal persistently exciting of order M.
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2. The true process is described by a Wiener-CPWL

model except for a measurement noise r(k), which is a

stationary stochastic process not correlated with input

u(k).
3. y(k) is such that the probability density function ( pdf ),

hv(v), of v(k|h*) fulfills hv(v)� �>0 in at least one

partition of the PWL function.

Then, the proposed algorithm is locally convergent to a

stationary point h*.

Proof: For the proof we rewrite equation (19) as

Pðh�Þ ¼E
,,T ,BT

B,T
BBT

" #
¼E

0 ,BT

B,T BBT

" #
þE

,,T 0

0 0

" #
,

ð20Þ

where the first term on the left-hand side of equation

(20) is positive definite by construction, i.e.,

E
0 ,BT

B,T BBT

� �
� 0: ð21Þ

Because the entries of , and L from two orthogonal

bases we have

E ½,,T
� > 0 ð22Þ

and

E ½BBT� > 0: ð23Þ

By invoking Lemma 5.1 in Wigren (1990), we can

conclude that P(h*) is positive definite. œ

The conditions of Theorem 1 are usual assumption for

this kind of results: all the dynamics of the model should

be excited, the system should be perfectly by the model

and the pdf needs to be non-zero in at least one non-zero
interval in each piecewise interval of the PWL function.

With respect to the third condition, it expresses
the fact that we need energy in each interval where the
static non-linearity should be adapted (Wigren 2003).
Moreover, the signal energy could be concentrated in
the intervals where a high accuracy of the identified
model is required. Because the PWL description is
continuous in the adjacent intervals (due to the
continuity of the PWL functions (Julián et al. 1999),
once the value at the extreme of an interval is fixed, it
is the same as the value of the adjacent interval), it is
possible to relax the energy condition to be concentrated
in every second interval (Wigren 2003).

3. Controller design

In the context of adaptive control, the essential idea is
to identify a process and, based on the obtained model,
adjust the controller parameters to improve the closed-
loop performance. For tuning the control parameters
any classical strategy could be used, like minimum
ITAE, retain constant loop gain, Ziegler–Nichols,
Cohen–Coon, internal model control, etc. (Ogunnaike
and Ray 1994). In our application, we use a direct
synthesis approach, which was modified to be applicable
to a Wiener model.

3.1 Controller design for known process parameters

In order to design the controller, we will follow the
principle of the non-linear regulator as presented by
Wigren (1990). Consider the closed-loop system of
figure 2. The process is assumed to be represented by
a Wiener model with a non-linear gain N(�) that is
invertible. We can use the inverse of this block to extract
the nonlinearities outside the closed loop. In this way, a
linear controller K should be designed to compensate the
behaviour of the linear dynamic block of the process
model.

In our case, the inverse of the non-linearity is obtained
directly from the identification process. To design the

N1(.) K
Wiener
system

N1(.)

yr e u y

Figure 2. The closed-loop scheme for a known Wiener

model.

Table 1. The proposed adaptive non-linear identification

algorithm.

Parameters

M¼ number of h coefficients
N¼ number of c coefficients
�¼ step size

Data
u(k) input signal at time k
y(k) output signal at time k

Initialization

h(0)¼ 0
cð0Þ ¼ ½�1 1 0 . . . 0 �1 �T

For each k

hðkÞ ¼ ½c0, . . . , cN, h1, . . . , hM�
T

�ðkÞ ¼ ½�0½yðkÞ�, . . . ,�N½yðkÞ�, �L1½uðkÞ�, . . . , � LM½uðkÞ��T

�ðkÞ ¼ hTðkÞ�ðkÞ � L0½uðkÞ�

hðkþ 1Þ ¼ hðkÞ þ ��ðkÞ�ðkÞ
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linear controller, we adopt the direct synthesis approach
(Ogunnaike and Ray 1994), applied to the Laguerre
model of equation (4). The controller specification is to
obtain a closed-loop pole in ac without offset when the
set point is changed in the form of steps. If the discrete
transfer function of the linear model is called H(z) and
H�1(z) is stable and causal, then the controller can be
defined as

KðzÞ ¼
ac

z� 1

1

HðzÞ
: ð24Þ

A similar approach for the control of pH neutralization
was presented in Kalafakis et al. (2005a) under the name
of Linearizing control. In that paper, the linear
controller is also designed by the direct synthesis
method, but in the state variable form. An approach
to the adaptive control was also proposed employing
a feedforward approach for the on-line updating of the
non-linear block.

3.2 Adaptive controller

Let us now consider the problem of controlling the
process when the parameters of the Wiener model are
unknown and varying along the operation. We can use
the adaptive identification algorithm of x 2 to obtain the
parameters of the model and use them to adapt the
controller coefficients.
The complete adaptive scheme is shown in figure 3.

The dotted lines denote the parameter information flow
from the identification scheme to the compensator. In
this formulation, in order to ensure the persistence of
excitation, it may be necessary to add a random signal
to the manipulated variable.
This formulation presents some theoretical limita-

tions. Below we consider some ‘‘practical’’ remarks with
respect to this scheme.

. The adaptation algorithm for identification (x 2) is
based on open-loop data. This is not the case in the
present use. Moreover, the presence of measurement
noise could make the process input to be correlated
with the output in such a way that the first hypothesis
of Theorem 1 is not fulfilled in practice. (A possible
solution to this fact is to consider in the adaptive
algorithm concepts related to closed-loop identifica-
tion for Wiener models (Chou and Verhaegen 1999,
Bloemen et al. 2001). This problem is currently under
investigation.) However, extensive computer simula-
tions verify that the controller integral action filters
the measurement noise, which reduces the correlation
effects of the measurement noise on the control action.

. The time constants of the processes (identification
and control) are different. The identification should
perform well even when changes of the operation

point and the controller happen at any sample time.
Then, there is a practical decorrelation of both
problems (identification and control) as is discussed
in the paper. This fact is confirmed by simulation
results.

. The conditions on the identification algorithm in an
adaptive control scheme need to be modified. In
particular, since the control loop will act to maintain
the operative point at the set point, the identification
algorithm will act to adapt the model on a limited part
of the whole operative region. This will obviously
relax the conditions for the persistent excitation of
Theorem 1.

. Regarding the on-line change of the controller
parameters from the implementation point of view,
the tuning of these parameters should be robust
enough to ensure stability. This is reasonable due to
the different time constants mentioned above.

In the next section, this scheme is applied to the control
of a pH neutralization reactor.

4. Example: pH neutralization

4.1 Process description

A chemical process with a strong non-linearity was
selected. The example considers a neutralization reac-
tion between a strong acid (HA) and a strong base
(BOH) in the presence of a buffer agent (BX), as
described by Galán (2000). The neutralization takes
place in a continuously stirred tank reactor (CSTR) with
a constant volume V.

It is well known that the control of pH processes
is particularly difficult (Norquay et al. 1999, Biagiola
et al. 2004, Åkesson et al. 2005). The main reason is the
strong non-linearity involved. The slope of the titration
curve of the chemical system can vary several orders of
magnitude over a modest range of pH values, causing
the overall process gain to change accordingly.
The regions of high and low slope on the titration
curve correspond to conditions of high and low gain
for a pH control loop, respectively.

N1(.) K Wiener system N1(.)
yr e u y

Identification

ch

Figure 3. The control adaptation scheme.
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In the continuous pH neutralization reactor, an acidic

solution with a time-varying volumetric flow qA(t) of

a composition x1i(t) is neutralized using an alkaline

solution with volumetric flow qB(t) of known composi-

tion made up of base x2i and buffer agent x3i. Due to

the high reaction rates of the acid-base neutralization,

chemical equilibrium conditions are instantaneously

achieved. Moreover, assuming that the acid, the base

and the buffer are strong enough, the total dissociation

of the three compounds takes place.
The process dynamics model can be obtained by

considering the electroneutrality condition (which is

always preserved) and through mass balances of

equivalent chemical species (known as chemical invar-

iants) that were introduced by Gustafsson and Waller

(1983). For this specific case, under the previous

assumptions, the dynamic behaviour of the process can

be described considering the following state variables:

x1 ¼ ½A�� ð25Þ

x2 ¼ ½Bþ� ð26Þ

x3 ¼ ½X��: ð27Þ

Therefore, the mathematical model of the process can

be written in the following way (Galán 2000):

_x1 ¼
1

�
ðx1i � x1Þ �

1

V
x1qB ð28Þ

_x2 ¼ �
1

�
x2 þ

1

V
ðx2i � x2ÞqB ð29Þ

_x3 ¼ �
1

�
x3 þ

1

V
ðx3i � x3ÞqB ð30Þ

Fðx, �Þ � � þ x2 þ x3 � x1 � Kw=�

� x3=½1þ ðKx�=KwÞ� ¼ 0, ð31Þ

where �¼ 10�pH and �¼V/qA. Kw and Kx are the

dissociation constants of the buffer and the water,

respectively. The parameters of the system represented

by equations (28)–(31) are addressed in table 2.

Equation (31) was derived by McAvoy (1972), and

takes the standard form of the widely used implicit

expression which connects the pH value with the states

of the process.
Noted that the pH neutralization process does not

follow a specific Wiener model. However, under certain

reasonable assumptions, it can be adequately repre-

sented by a Wiener model structure (Kalafatis et al.

2005a, b). For example, this is the case if the flow rate

of the control reagent is much smaller that the feed flow
rate. Moreover, the representation of the pH process has
proven very convenient for the development of various
pH identification and control strategies.

4.2 Wiener model

A Wiener model describing this process has been
presented for several control applications using qB
(manipulated variable) to control the pH (controlled
variable), see, e.g., Lussón et al. (2003a), and Biagiola
and Figueroa (2004). However, when perturbations are
present in the process (qA(t) and x1i(t)), a single Wiener
model cannot provide an adequate representation of the
plant, because the parameters of the linear and non-
linear block can vary significantly (Biagiola et al. 2005).

The chosen parameters for our model are a third-
order Laguerre basis with a pole at a¼ 0.7 to represent
the linear dynamic model, i.e. M¼ 2. To represent the
inverse of the non-linear gain, the domain of the pH,
the range [3, 9.5], is divided in 10 regions, i.e. N¼ 11.
The adaptation step size is �¼ 0.015, and was chosen
to satisfy the bound in equation (12).

4.3 Linear compensator

In this particular application, the linear controller takes
the form

where the closed-loop pole is fixed at ac¼ 0.8. In the

adaptive adjustment of this controller, it is important to

check the stability at every iteration. If a pole is outside

the unit circle, it should be replaced by its stable

reciprocal.

4.4 Simulation results

In this section the results of the proposed adaptive

controller are presented, and the performance is

Table 2. Neutralization parameters.

Parameter Value

x1i 0.0012molHCL/l

x2i 0.0020molNaOH/l
x3i 0.0025molNaHCO3/l
Kx 10�7mol/l

Kw 10�14mol2/l2

qA 1 l/m
V 2.5 l

KðzÞ ¼
acðz

3 � 3az2 þ 3a2z� a3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ðð1� ah2 þ a2h3Þz2 þ ðh2 � 2ah3 þ a2 � 2aÞzþ ðh3 � ah2 þ a2ÞÞðz� 1Þ

, ð32Þ
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compared with that of the model reference adaptive
technique proposed by Pajunen (1992).
Figure 4 shows the performance of both controllers

for a single set point change from pH1¼ 7.7182 to
pH2¼ 9.7182 at t¼ 2mm. From this plot it is clear that
both the controllers present similar time responses,
but the proposed control strategy shows a faster
convergence to the set point.
Next simulations involve a set point change from

pH1¼ 7.7182 to pH2¼ 9.7182 at t2¼ 50min and to
pH3¼ 5.7182 at t3¼ 200min. In all simulations white
noise with uniform amplitude distribution in the range
� 0.05 is considered.
Figure 5 illustrates the pH behaviour of the con-

trollers when no perturbations are applied to the
process. This plot also includes the difference between
the pH and the reference signal. The performance of
both the controllers is seen to be acceptable. Moreover,
at t¼ 220min the proposed Laguerre-SCPWL Wiener
adaptive controller a small overshot, while
Pajunen’s scheme does not show this behaviour. These
results are in accordance with the fact that the process
under these conditions is perfectly described by a Wiener
model.
The simulations are reproduced, considering that

perturbations are applied in qA (which is increased
from 1 to 1.2 at t¼ 72min and then reduced to 0.8 at
t¼ 226min) and in x1i (which increases 10 percent from
the original value at t¼ 126min and is then reduced
20 percent at t¼ 276min).
Figure 6 illustrates the pH behaviour of the con-

trollers and the difference between the pH value and

the reference signal. It is clear that the performance of
the proposed Laguerre–SCPWL Wiener adaptive
controller is better than that of the one proposed
by Pajunen (1992). Note the effect of the perturbations
(the pH value is moved from the set point when a
perturbation appears). In our method the effects of these
perturbations are completely suppressed. For Pajunen’s
scheme, an offset is present for a long time. In this case,
the process cannot be adequately described by a Wiener
model.
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10
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Figure 4. Controlled variable pH¼� log10 � for a single set
point change.
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Figure 5. Controlled variable pH¼� log10 � without
perturbations (top), and difference from reference signal

(bottom).
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Figure 6. Controlled variable pH¼� log10 � with perturba-
tions (top), and difference from reference signal (bottom).
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An interesting point is to compare the number of

the parameters involved in both approaches. While

the identification of the Laguerre-CPWL involves 13
parameters, Pajunen’s approach involves 23 parameters.

This is because the model reference adaptive technique

cannot take advantage of the Wiener structure of the
model.
Figures 7 and 8 show the pH behaviour of the

controllers and the difference between the pH and the
reference signal closed-loop response for several values

of step size in the identification algorithm (figure 7) and

closed-loop pole (figure 8). These results verify the
robustness of the algorithm with respect to design

parameters.

5. Conclusions

The problem of on-line identification and adaptive

control of a Wiener type non-linear system is studied.

The linear and non-linear parts are modeled using
a Laguerre and piecewise linear basis functions, respec-

tively. An LMS based adaptive identification algorithm

is presented. The information of the identified model is
used to adjust on-line the parameters of a controller,

designed for the specific structure of the model. The

complete scheme is successfully applied to a simulation
of a pH neutralization reactor subject to several

perturbations.
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