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This paper defines a class of system information—affine information—that includes both
the dynamic residuals and some types of auxiliary information that can be used in system
parameter estimation as special cases. The types of information that can be cast under the
affine information format give rise to quadratic functions that measure the extent to which

a model fits such information, and that can be aggregated in a single weighted quadratic
cost functional. This allows the definition of a multiobjective methodology for parameter
estimation in non-linear system identification, which allows taking into account any type of

affine information. The results are presented in terms of a set of efficient solutions of the multi-
objective estimation problem—such a solution set is more meaningful than a single model.
Since any affine information leads to a convex (quadratic) functional, the whole set of efficient

solutions is exactly accessible via the minimization of the quadratic functional with different
weightings, via a least-squares minimization (a non-iterative, computationally inexpensive
procedure). The decision stage, in which a single model is chosen from the Pareto-set, becomes

well-defined with a single global solution. Residual variance, fixed point location, static func-
tion and static gain are shown to fit in the class of affine information. A buck DC-DC conver-
ter is used as example.

1. Introduction

Black-box identification uses input and output data,

usually acquired from dynamical tests, as the only

source of information about the system (Söderström

and Stoica 1989). In such a framework, other features

of the system are not directly considered, as for instance,

static gain, number and location of fixed points

(equilibria) and the static function. Those neglected

features could play a substantial role in the construction

of a suitable model if they were taken into account

to some extent (Eskinat et al. 1993, Tulleken 1993,

Johansen 1996, 2000, Pearson and Pottmann 2000).
Any information about the system, besides the measured

data, is called a priori knowledge (Sjöberg et al. 1995) or
auxiliary information (Eskinat et al. 1993). Gray-box

identification techniques employ such kind of informa-
tion for the purpose of model building.

This paper is concerned with the use of auxiliary

information in parameter estimation. By auxiliary infor-

mation it is meant information apart from the set of

dynamical data. Classical estimation algorithms perform

a particular kind of optimization, which minimizes the

sum of squared one-step-ahead prediction errors, n.

Such algorithms minimize the quadratic functional

knk22, using a least-squares (LS) algorithm. Auxiliary

information can be taken into account in two basic*Corresponding author. Email: taka@mat.ufmg.br
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 ways: either defining a composite cost function as

a weighted sum of the original objective plus new

objectives related to the auxiliary information, or using

the auxiliary information not to build objectives, but

to define constraints that will represent this knowledge

(Johansen 1996; Aguirre and Corrêa 2002). It should

be noticed that, in the preceding formulations for

using auxiliary information, either defining constrained

problems or weighted augmented objective functions,

the resulting optimization problem usually becomes a

generic problem of minimization of a non-linear func-

tion: the numeric solution is obtained from iterative

non-linear optimization tools. This is fundamentally

different from the classical minimization of the squared

prediction errors only, via least-squares procedure,

because: (i) while the generic non-linear optimization

algorithms can find local solutions, the LS procedure

leads to the (analytical) global optimum; and (ii) the

generic non-linear optimization is necessarily iterative,

while the LS procedure is non-iterative, what results

in some orders of magnitude of difference in terms of

computational effort.
Johansen (1996) presented a rather general study of

how to formulate model estimation procedures with
auxiliary information as optimization problems.
Johansen defined the optimization problem with the
objective function given by a weighted sum of the
squared dynamic error plus penalty terms that account
for non-smoothness of the model, mismatch of the
model and a default model (a non-linear model
that does not have polynomial NARX structure),
and violation of some soft constraints (for instance,
deviation from known linear models that are valid on
some operating conditions). The optimization problem
could have also some hard constraints, associated, for
instance, to open-loop model stability. After defining
this general problem, Johansen presented a ‘‘taxonomy’’
of the possible types of optimization problems:
(i) quadratic criterion (in the model parameters)
and no constraints; (ii) quadratic criterion and linear
finite-dimensional constraints; (iii) non-quadratic criter-
ion and no constraints; (iv) non-quadratic criterion and
finite-dimensional constraints; (v) any criterion and
infinite-dimensional constraints. Each problem class
can be solved with a different class of optimization
methods. In addition, Johansen noticed that the class
(i) of problems would be computationally the
easiest one, since such problems could be solved by
non-iterative algebraic methods.
This paper further studies the class (i) of

problems that can be solved by non-iterative
least-squares methods (problems with quadratic-in-the-
parameter criterion and no hard constraints). It is

pointed out here that the class of system information

(called here the system affine information) that gives

rise to errors that are affine in the model parameters

presents the property that the ‘2-norm of such errors

become quadratic functions that measure the extent

to which a model fits such information. This kind of

information, therefore, is the basic building block for

problems of type (i) as defined in Johansen (1996).

As pointed out by Johansen (1996), the resulting

objective function, composed as a weighted sum of

several such quadratic functionals, can be minimized

via the LS procedure, in this way recovering both the

features of non-iterative computation and guaranteed

global solution.
Johansen (1996) noticed that additional work

was needed in order to develop ways of coding prior

information into the model by means of objectives

and/or constraints. It is believed that the present paper

contributes in such a direction by showing that residual

variance, fixed point location, static function and

static gain fit into the class of affine information.

This was not realized in previous related works

(Johansen 1996, Aguirre and Corrêa 2002).
This paper further exploits the idea presented in

Johansen (2000) and Nepomuceno et al. (2003), of defin-

ing the problem of parameter estimation with auxiliary

information as a multiobjective optimization problem.

Johansen (2000) has proposed the multi-objective identi-

fication in the context of linear FIR models, using a

progressive decision-making scheme (Chankong and

Haimes 1983), in which the trade-off between all objec-

tives is examined at each step, progressively leading

to the final model. This procedure can be considered a

further step after Johansen (1996), since in that work

the main difficulty was exactly to define a procedure

for finding the suitable weighting factors for the different

auxiliary informations. Nepomuceno et al. (2003) have

posed the problem of parameter estimation of NARX

models in another multiobjective optimization setting:

an a posteriori decision scheme (Chankong and

Haimes 1983) has been used, by defining two sub-pro-

blems: first, find a set of samples of the non-dominated

solutions (or the Pareto-set solutions); after, choose a

final solution from this set, using some decision criter-

ion. The work (Nepomuceno et al. 2003), however, has

performed this task with two objectives only: the time-

series fitting error and the fixed-point fitting error.
The approach that has been sketched in Nepomuceno

et al. (2003) is further developed here: the Pareto-set

is estimated for an arbitrary number of objectives

originated from affine information sets. The reasoning

behind the proposed approach is: (i) since any affine

information leads to a convex (quadratic) functional,

2 E. G. Nepomuceno et al.
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 the whole set of efficient solutions is exactly accessible via
the minimization of the weighted quadratic functional
(Chankong and Haimes 1983), through a least squares
minimization (notice that this is not true for functionals
composed by weighted sums of generic non-linear, possi-
bly non-convex, functions, as would be the case in
Johansen (2000)); (ii) since the least squares procedure
has low computational cost, it seems reasonable to
perform a large number of model estimations in order
to find a representative sample of the Pareto-set (this
would not be practical in the context of models
estimated via iterative optimization procedures); (iii)
once the Pareto-set samples become available, a decision
procedure takes place, picking up a single model from
this set. It should be noticed that the Pareto-optimal set
is more meaningful than a single model, and can reveal
the relationship among the several data sets that are
employed as auxiliary information.
The computational framework proposed in this

paper, which yields the Pareto-set, seems to be very
welcome in the context of gray-box modeling which
can easily turn out to be very computationally demand-
ing and require from the user a sophisticated tuning
stage (Johansen 1996). Johansen (1996) discussed five
types of auxiliary information. This paper discusses
other two types plus steady-state data (also considered
by Johansen, which is used in a different way in this
paper). Moreover, one of the great challenges is how
to code prior information in the form of constraints
or criteria penalty terms on the model parameters.
Coding the auxiliary information for the class of
system affine information is one of the contributions
of this paper.
This paper is organized as follows: x 2 provides a

general view of multiobjective estimation; in x 3, the
class of affine information is defined, a single-step LS
algorithm that yields the set of efficient solutions is
provided, and the decision stage is discussed; x 4 shows
that fixed points (equilibria) location, static function
and static gain of NARX polynomials (Leontaritis
and Billings 1985) can be cast in the framework of
affine information. Consequently, such type of auxiliary
information can be effectively used during parameter
estimation. An example is given in x 5 and the main
conclusions of the paper appear in x 6.

2. Affine information and multiobjective formulation

Definition 1 (Affine Information): Consider the param-
eter vector �̂ 2 <n, a vector v 2 <p and a matrix
G 2 <p�n. Both v and G are assumed to be accessible.
Moreover, suppose Gĥ constitutes an estimate of v,

such that v ¼ Gĥþ �, where � 2 <p is an error vector.
Then ½v,G� is said to be an affine information pair
of the system.

Consider the NARX model described by the
following equation:

yðkÞ ¼ F‘
yðk� 1Þ, . . . , yðk� nyÞ,

uðk� dÞ, . . . , uðk� d� nu þ 1Þ

� �
þ eðkÞ, ð1Þ

where ny, nu and ne are the maximum lags considered for
the output y(k), input u(k) and noise e(k), respectively,
and d is the delay. In this paper the non-linear function
F‘½�� is taken to be a polynomial with degree ‘ 2 Zþ.
Because F‘½�� is linear in the parameters, (1) can be
expressed as follows:

yðkÞ ¼  Tðk� 1Þĥþ �ðkÞ, ð2Þ

where  ðk� 1Þ contains linear and non-linear combina-
tions of output, input, and noise terms up to and
including time k� 1.

Example 1: Taking (2) over a set of data yields

y ¼ �ĥþ n: ð3Þ

According to the definition above, ½y,�� is an affine
information pair, where y 2 <N, � 2 <N�n, � ¼ n and
p¼N. In x 3, other types of affine information will be
discussed.

The vector ĥ is usually estimated by minimizing
convex functionals of the form

JðĥÞ ¼k�k22¼ ðv� G�̂ÞTðv� G�̂Þ

JLSðĥÞ ¼k n k22¼ ðy���̂ÞTðy���̂Þ,

)
ð4Þ

where the last functional is minimized by the least-
squares estimator. In a multiobjective approach, the
problem is to minimize

Jð�̂Þ ¼ J1ð�̂Þ . . . Jmð�̂Þ
� �T

, ð6Þ

where Jð�Þ : <n �<m. The outcome is a set of solutions—
called the Pareto-set—that describes the trade-off
among these objectives, namely the minimization of
each cost function. In this paper, the cost functions
J2ð�̂Þ . . . Jmð�̂Þ take into account auxiliary information
about the system.

In general, there is not a unique solution (model) that
simultaneously minimizes all the different cost functions
Ji ( � ). Rather, several solutions (models) are found with
the property that the improvement of any objective

Multiobjective parameter estimation for non-linear systems 3
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 necessarily implies the loss in some other objective.
These are the efficient solutions or the Pareto-set solu-
tions. Any parameter vector which is an efficient
solution will be referred to as a Pareto-model.
(Because the model structure is assumed to be known
when it comes to parameter estimation, there is a one-
to-one correspondence between each parameter vector
on the Pareto-set and a model. Thus, Pareto-models
are ‘‘best’’ in the sense that there is no ordering among
them, and that there is always some Pareto-model that
is better than any non-efficient solution, when compared
in all optimization objectives. In the case of all func-
tionals Ji being convex (notice that this is not true if
any functional Ji is not convex), the Pareto-set can be
found by defining (Chankong and Haimes 1983)

W ¼ wjw 2 <m,wj � 0 and
Xm
j¼1

wj ¼ 1

( )
ð6Þ

and solving the convex optimization problem

�̂� ¼ argmin
�̂
hw,Jð�̂Þi: ð7Þ

For each vector w, which defines a particular
combination of weights to the various cost functions
involved, a solution �̂� belonging to the Pareto-set �̂�

is found. The entire Pareto-set is associated to the set
of all realizations of w 2 W.
An effective single-step computational strategy for

solving the multiobjective problem (7) by means of an
LS formulation is provided by the following theorem
that is stated without proof.

Theorem 1: Let ½vi,Gi� with i ¼ 1, . . . ,m be m affine
information pairs related to a system, where vi 2 <pi and
Gi 2 <pi�n. Assume that at least one of the matrices Gi

is full column rank. Let M be a given model structure
which is linear in the parameter vector �̂ 2 <n: Then the
m affine information pairs can be simultaneously taken
into account while estimating the parameters of model
M, by solving

�̂� ¼ argmin
�̂

Xm
i¼1

wiðvi � Gi�̂Þ
T
ðvi � Gi�̂Þ, ð8Þ

with w ¼ ½w1 . . .wm �
T
2 W. The unique solution of (8) is

given by

�̂� ¼
Xm
i¼1

wiG
T
i Gi

" #�1 Xm
i¼1

wiG
T
i vi

" #
: ð9Þ

Example 2: If the only information available is the
usual input/output data (stored in the affine information
pair ½y,��), then m¼ 1, w1¼ 1, ½v,G� ¼ ½y,�� and
Theorem 1 reduces to the conventional (mono-objective)
LS solution. The full rank assumption on � can be inter-
preted as the usual requirement that the system
dynamics has been ‘‘fully excited’’ by the input signal.
Therefore, this information, being employed jointly
with any other affine information for parameter estima-
tion, satisfies the assumption of Theorem 1 that at least
one of the matrices Gi is full column rank. On the other
hand, there are situations in which � is approximately
rank-deficient. In such cases, the parameter estimation
by the conventional approach would be difficult or
impossible. By using auxiliary information, such rank
deficiency could be avoided, and the estimation problem
could become numerically well-behaved.

2.1 The decision stage

The Pareto-models are the outcome of the multiobjec-
tive optimization problem. It is believed that such a set
of models, which combines different sources of informa-
tion with different weights, is in itself a rich picture
of the system. The whole set of Pareto-models gives a
much better and wider view of the system in so far
as it takes into account auxiliary information.
Nevertheless, in a particular application, a single
model might be required. In that case, in order to
choose one Pareto-model the following general
procedures can be followed, depending on the kind of
decision information that is available.

In this way, the final model(s) will somehow include
information of several sources, namely from all the
cost functions used in the multiobjective optimization
procedure (parameter estimation) and from the decision
stage (model selection). Because the decision stage is
bound to be strongly application-dependent, below
only some general concepts are given. It is stressed
that this stage is also an interesting feature of the present
procedure, not included in previous methods.

2.1.1 Qualitative information decision. In most of the
applications of model identification, the final judgement
of the end user is the definitive criterion that must be
fulfilled by any identified model, in order to be accepted.
This judgement is based on the joint analysis of several
data, like frequency response, similarity with the real
process under specific conditions, qualitative behaviour
(for instance: Poincaré maps), and so forth. These data
are filtered by the user ‘‘expert’’ evaluation that tries
to take into account the effect of each model feature

4 E. G. Nepomuceno et al.
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 in its intended use. This kind of ‘‘expert’’ information
processing is unlikely to be mapped into an explicit
mathematical model, and must be extracted through
a human-machine interactive procedure.
The systematic procedure for performing such interac-

tion (the decision-making) is based on the hypothesis
that there is a utility function underlying the user’s
preferences, that must be quasi-concave, in order
to define a well-posed problem (Chankong and
Haimes 1983). In conjunction with the fact that the
multiobjective criterion functions are all convex in the
context of affine information, this allows to state that
a well-defined solution set exists, and can be found
via some simple decision procedures. Chankong and
Haimes (1983) describe some of such procedures, that
involve queries that ask for binary comparisons (the
user is asked to compare two candidate solutions, quan-
tifying the extent to which one is preferred in relation to
the other one) between Pareto points, leading to a single
preferred solution. The procedure is structured in order
to minimize the number of queries, while leading to the
global solution.

2.1.2 Quantitative information decision. There are also
some instances of quantitative information that can
be used for the purpose of decision. These are of two
natures. (i) Test data, that has been kept apart from
the estimation data, can be used in the decision stage.
For instance, it is possible to search for the model
inside the Pareto-set that minimizes the sum of squared
residuals of the model in relation to some time series
data that has not been used in the estimation stage.
This procedure can be useful for the purpose of avoiding
overfitting of estimation data. (ii) It has been
shown in Nepomuceno et al. (2003) that the weighting
parameter (in that case, in the context of a bi-objective
formulation) could be used to find models with
different dynamic behaviours, resembling a ‘‘bifurcation
parameter’’.

3. Auxiliary information as affine information

It will be shown that fixed points, static function and
static gain are instances of affine information that can
be used in parameter estimation (see Theorem 1).

3.1 Fixed points

The deterministic part of a polynomial NARX model
can be expanded as the summation of terms with degrees
of non-linearity in the range 1�m�‘. Each m th-order

term is multiplied by a coefficient cp,m�pðn1, . . . , nmÞ as
follows:

yðkÞ ¼
X‘
m¼0

Xm
p¼0

Xny, nu
n1, nm

cp,m�pðn1, . . . , nmÞ

�
Yp
i¼1

yðk� niÞ
Ym

i¼pþ1

uðk� niÞ, ð10Þ

where

Xny, nu
n1, nm

�
Xny
n1¼1

� � �
Xnu
nm¼1

and the upper limit is ny if the summation refers to factor
in yðk� niÞ or nu for factors in uðk� niÞ.

Considering a locally asymptotically stable model in
steady-state excited by a constant input, equation (10)
can be written as

yðkÞ ¼
Xny, nu
n1, nm

cp,m�pðn1, . . . , nmÞ
X‘
m¼0

yðk� 1Þpuðk� 1Þm�p,

ð11Þ

and the following definition can be presented.

Definition 2 (Cluster coefficients): In equation (11),Pny, nu
n1, nm

cp,m�pðn1, . . . , nmÞ are the coefficients of the term
clusters �ypum�p , which contain terms of the form
yðk� iÞpuðk� jÞm�p for m ¼ 0, . . . , ‘ and p ¼ 0, . . . ,m.
Such coefficients are called cluster coefficients and are
represented by capital sigmas:

P
ypum�p (Aguirre and

Billings 1995).
The fixed points of NAR(X) polynomial models with

degree of non-linearity ‘ in the output are the solutions
of

�y‘ �y
‘ þ � � � þ�y2 �y

2 þ ð�y � 1Þ �yþ�0 ¼ 0, ð12Þ

where the known constants �0, �yi , i ¼ 1, . . . , ‘ are
the model cluster coefficients (Aguirre and Mendes
1996). Fixed points are defined for deterministic auton-
omous models, hence the X part of the model will not
have any effect on the results of x 3.1. The computation
of the cluster coefficients of a model with fixed points
½ �y1, �y2, . . . , �y‘�, is performed by equating the terms with
same degree of non-linearity in

�
Y‘
i¼1

ð �y� �yiÞ ¼ �y‘ �y
‘ þ � � � þ�y2 �y

2 þ ð�y � 1Þ �yþ�0

ð13Þ

Multiobjective parameter estimation for non-linear systems 5
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 in which � ¼ �y‘ . Consider the set � of cluster
coefficients

� ¼ �y‘ , . . . ,�y2 , ð�y � 1Þ,�0

� �T
: ð14Þ

Because (12) or (13) times a constant will yield the same
set of fixed points, some kind of normalization should
be used to avoid a large variance in the estimated
parameters. Let

�LS ¼ �LSy‘ , . . . ,�LSy2 , ð�LSy � 1Þ,�LS0

� �T
ð15Þ

be the cluster coefficients of a model with parameters
estimated by standard LS. Hence the normalized set
of cluster coefficients is

~r ¼
k �LS k

k � k
½�y‘ , . . . ,�y2 , ð�y � 1Þ,�0�

T

¼ ½�‘, . . . , �2, ð�1 � 1Þ, �0�
T

r ¼ ½�‘, . . . , �2, �1, �0�
T,

9>>>=
>>>;

ð16Þ

where k � k is the Euclidean norm.
Now suppose a specific set of fixed points, P, is given

and it is desired that the set, P̂, of fixed points of a model
to be identified should approximate P in some sense.
This can be achieved minimizing the following cost
function (Nepomunceno et al. 2003)

JFPð�̂Þ ¼ ðr� r̂ÞTðr� r̂Þ ¼ ðr� SĥÞTðr� SĥÞ, ð17Þ

in which S 2 <‘þ1�n is a constant matrix, that maps
parameters to the cluster coefficients, that is r̂ ¼ Sĥ.
Therefore, ½r,S� is an affine information pair.

Example 3: Suppose it is desired to obtain a model
that will simultaneously provide a good fit to a given
set of data and approximate a given set of fixed
points. The parameters of such a model can be estimated
minimizing a linear combination of JLS (4) and JFP (17).
According to Theorem 1, the required solution is

�̂� ¼ ½w1�
t�þ w2S

tS��1
½w1�

tyþ w2S
tr�: ð18Þ

Varying w1 and w2 such that w1,w2 � 0
and w1 þ w2 ¼ 1, it is possible to obtain the entire
Pareto-set. For ½w1,w2� ¼ ½1, 0�, equation (18) yields
the standard LS solution and for ½w1,w2� ¼ ½0, 1�,
conversely, equation (18) yields the solution that takes
into account exclusively the location of fixed points.
Clearly, such solutions are the extreme points of the
Pareto-set. In between such extreme solutions there
are infinite Pareto-models that incorporate the system
information available in the vectors y and r.

For instance, the solution obtained for
½w1,w2� ¼ ½0:5, 0:5� would be the result of giving the
same weight to both information sources.

3.2 Static function

The static or steady-state behaviour of an asymptotically
stable system can be obtained by fixing the input to a
constant value �u in which case the output will achieve
the steady-state �y. For a general system �u and �y are
related by �y ¼ fð �y, �uÞ, where f( � ) is the static function.
Hammerstein models are special cases for which
�y ¼ fð �uÞ. For a general NARX polynomial model, due
to linearity in the parameters, the following expression
holds

�yi ¼ fð �yi, �uiÞ ¼ qTi Rh, ð19Þ

qTi ¼ 1 �yi, �y
2
i . . . �y

‘
i �ui, �u

2
i . . . �u

‘
i Fyu

� �
, ð20Þ

Rh¼ �0 �y,�y2 . . .�y‘ �u,�u2 . . .�y‘ F�

� �T
, ð21Þ

where Fyu stands for all non-linear monomials in
the model that involve y(k) and u(k), ‘ is the largest
non-linearity in the model and need not be the same
for input and output terms. F� stands for all the cluster
coefficients corresponding to all the term clusters in
Fyu and R is a constant matrix of ones and zeros that
maps the parameter vector to the cluster coefficients.
Thus, given a NARX polynomial model with estimated
parameter vector �̂, a full picture of the static function
can be described in matrix form as �̂y ¼ QR�̂, where
Q ¼ q1 . . . qnsf

� �
, in which nsf different steady-state

points ð �ui, �yiÞ were considered. Now suppose that nsf
different steady-state operating points ð �ui, �yiÞ are speci-
fied and it is desired that the estimated model should
approximate such a static function. This can be achieved
by minimizing the following cost function

JSFð�̂Þ ¼ ð�y� �̂yÞTð�y� �̂yÞ¼ ð�y�QR�̂ÞTð�y�QR�̂Þ: ð22Þ

Clearly, ½�y,QR� is an affine information pair.

Example 4: Consider the following model (Aguirre
et al. 2000)

yðkÞ ¼ �̂1yðk�1Þ þ �̂2yðk�2Þ þ �̂3 þ �̂4uðk�1Þ3

þ �̂5yðk�3Þ þ �̂6uðk�1Þ2uðk�3Þ þ �̂7uðk�3Þ3

þ �̂8uðk�1Þuðk�3Þ þ �̂9uðk�1Þuðk�3Þ2: ð23Þ

Assume the static function f( � ) of the system is known
or is measured at nsf points. Suppose that model (23)

6 E. G. Nepomuceno et al.
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 is to be fit to a set of dynamical data ½uðkÞ, yðkÞ�Nk¼1 and

should simultaneously approximate the system static
function, represented by the nsf pairs ð �ui, �yiÞ. Applying

Theorem 1, using JLS (4) and JSF (4), the parameter

vector can be estimated by

�̂ ¼ ½w1�
T�þ w2ðQRÞTðQRÞ��1

½w1�
Tyþ w2ðQRÞT �y�,

for any values of w1 and w2 such that w1,w2 � 0
and w1 þ w2 ¼ 1. It is instructive to notice that in this

example qTi ¼ 1 �yi �u2i �u3i
� �

and

R ¼

0 0 1 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 1 0 1 1 0 1

2
66666664

3
77777775
:

3.3 Static gain

Consider now that, in addition to the information about
the location of some points of the system static curve,

the information about the static gain at the same

points is also available. This means that triples
ð �ui, �yi, �giÞ are available, with

�gi ¼
d �y

d �u

����
ð �ui, �yiÞ

: ð24Þ

The equation �y ¼ fð �y, �uÞ implicitly defines �y as a function
of �u. Taking the derivative of such function leads to

d �y

d �u
¼ �

@½fð �y, �uÞ � �y�

@ �u

@½fð �y, �uÞ � �y�

@ �y

� ��1

: ð25Þ

Rearranging this equation and instantiating the
variables for the available triples ð �ui, �yi, �giÞ leads to

�gi
@f

@ �y

����
ð �yi, �uiÞ

� �gi ¼ �
@f

@ �u

����
ð �yi, �uiÞ

: ð26Þ

From equation (19) comes

@f

@ �y
¼
@q

@ �y

T

Rh, and
@f

@ �u
¼
@q

@ �u

T

Rh: ð27Þ

Considering equation (20), define matrices �i and �i as

�i ¼
4 @q

@ �y

����
ð �ui, �yiÞ

¼ 0 1 2 �yi . . . ‘ �y‘�1
i 0 0 . . . 0

@Fyu

@ �y

� �T
,

�i ¼
4 @q

@ �u

����
ð �ui, �yiÞ

¼ 0 0 0 . . . 0 1 2 �ui . . . ‘ �u‘�1
i

@Fyu

@ �u

� �T
:

Finally, from equations (26) and (27), comes

�gi�
T
i þ�T

i

� 	
Rh ¼ �gi: ð28Þ

Considering that nsg triples ð �ui, �yi, �giÞ are available,
equation (28) can be expressed as HR� ¼ �g, where

H ¼

�g1�
T
1 þ�T

1

�g2�
T
2 þ�T

2

..

.

�gnsg�
T
nsg

þ�T
nsg

2
66666664

3
77777775
: ð29Þ

Therefore, a static gain cost functional can be written as

JSG ¼ ð�g�HR�̂ÞTð�g�HR�̂Þ, ð30Þ

where ½�g,HR� is an affine information.
One should notice that higher order derivatives of the

static function could give rise to other affine information
pairs using the same procedure that was employed here.
However, these higher-order measurements are more
difficult to obtain in practice.

Example 5: The steady-state relation between output
y(k) and input u(k) of model (23) can be written as

�y ¼ �0 þ�y �yþ�u2 �u
2 þ�u3 �u

3: ð31Þ

The cluster coefficients of model (23) are
�u3 ¼ �4 þ �6 þ �7 þ �9; �u2 ¼ �8; �y ¼ �1 þ �2 þ �5 and
�0 ¼ �3. Using (28) yields ð �gi 0 1 0 0½ �

T
þ

0 0 2 �ui 3 �u2i
� �T

ÞRh ¼ �gi and

�̂� ¼ w1�
T�þ w2ðHRÞTðHRÞ

� ��1
w1�

Tyþ w2ðHRÞT �g
� �

is obtained applying Theorem 1, with JLS and JSG.

4. Results

An example is considered, of a pilot buck dc-dc conver-
ter. The affine information pair to be used is ½�y,QR�

Multiobjective parameter estimation for non-linear systems 7
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and ½�g,HR�. Because this paper concerns parameter esti-
mation, the relevant problem of structure selection is
assumed to have been previously tackled by some ade-
quate method (Billings et al. 1989, Piroddi and Spinelli
2003). It should be noticed, however, that the model
structure should be ‘‘consistent’’ with the type of
information to be used. In the words of Definition 1,
G�̂ should be an estimate of v.
The main goal of this example is to estimate the

parameters of a dc-dc pilot converter based on a
MOSFET IRF840 using three sources of information:
dynamical data (measured), static function and static
gain (known a priori from the theory of power electro-
nics). The model with parameter estimated this way is
best, from an overall point of view.
The duty cycle is defined by D ¼ Ton=T and its com-

plement is D0 ¼ Toff=T, where T is the operation cycle.
The load voltage Vo relates to the source voltage Vd

as Vo ¼ DVd ¼ ð1�D0ÞVd. This converter satisfies
D0 ¼ ð �u� 1Þ=3 and therefore the static function of this
system is known from theory to be

Vo ¼ �y ¼
4Vd

3
�
Vd

3
�u, ð32Þ

where u(k) is the command voltage that determines
the duty cycle. The auxiliary information about the

static function can be obtained by equation (32) varying

values for �u within 1 < �u < 4. The dynamic data was

obtained by means of a pseudo random signal

(PRBS) (Aguirre et al. 2000). The model structure

for this system was obtained using the error

reduction ratio (ERR) criterion (Billings et al. 1989)

and is the one considered in Example 4, see

structure (23).
Information about static function (22) and static gain

(30), together with the usual input/output data (4), have

been used as sources of affine information to estimate

the parameters of the model (23). The composite cost

function is

�ðĥÞ ¼ w1JLSðĥÞ þ w2JSFðĥÞ þ w3JSGðĥÞ: ð33Þ

Each solution (model) in figure 1 has one or two cost
function values smaller than any other solution, see

table 1 for details. A simple way to choose a single

‘‘best’’ solution, would require defining a criterion such

as the solution the minimal Euclidean norm k � k2.

With kJð�̂Þ�k2 ¼ 18:14, the best model is found

using w1 ¼ 0:25, w2 ¼ 0:25 and w3 ¼ 0:50, which

can be interpreted as a ‘‘best compromise’’ among the

objectives.
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Figure 1. Pareto-set solutions for (33).

8 E. G. Nepomuceno et al.
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5. Conclusion

This work has proposed the definition of affine informa-
tion. The well-known one-step-ahead prediction error
that is usually employed in standard identification pro-
blems has been shown to be a special case of
such information. It was shown that a multiobjective
parameter estimation problem, based on a set of affine
information pairs, leads to a convex multiobjective opti-
mization problem. An LS-type non-iterative scheme for
finding the Pareto-set solutions for this generic problem
has also been proposed in this work. The results hold
for any linear-in-the-parameter model structure.
The extension to models with MA (moving average)
terms is direct because all the constraints discussed in
the paper only act on the NARX part of the models.
Three instances of auxiliary information for NARX

polynomial models were developed and illustrated,
namely fixed-points location, static function and steady
state gain. These were shown to fit in the definition of
affine information. The main ideas of the paper were
illustrated using a pilot buck dc-dc converter. For this
converter, the static function is known from the
theory and therefore it qualifies as high quality auxiliary
information. In fact, the use of such information
significantly improves the steady-state performance of
the identified models especially when such information
is, for some reason, blurred in the dynamical data.
The use of three objectives simultaneously

enhances flexibility so that it becomes easier to find
a more appropriate model for a specific application.
In this case, the static gain increases the quality of
the model.
It is believed that an important contribution of this

paper is the proposition of a general methodology
for dealing with a broad class of auxiliary information,
employing a formulation that is an extension of the
long-standing standard least squares estimator.

Besides, such a methodology yields not a single model,

but rather a set of Pareto-models that convey much

information about the system overall behaviour.

Future research should consider the interpretation of
the Pareto-set and the definition of other affine informa-

tion pairs not only for polynomial NARX models

but also for other linear-in-the-parameter model

representations.
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Table 1. Performance of Pareto-models for the pilot buck
dc-dc converter.

w1 w2 w3 JðĥÞLS JðĥÞSF JðĥÞSG kJðĥÞ�k2

0.98 0.01 0.01 2.19 0.63 56.23 56.27
0.70 0.10 0.20 3.03 5.64 27.89 28.62
0.50 0.30 0.20 3.70 3.02 28.09 28.50

0.35 0.15 0.50 7.81 12.08 11.94 18.69
0.25 0.25 0.50 14.21 5.95 9.59 18.14
0.01 0.98 0.01 26.43 2.35 44.82 52.08

0.15 0.35 0.50 29.83 17.56 19.91 39.93
0.01 0.01 0.98 129.65 23.48 11.26 132.24
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