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Xiao He, Zidong Wang and Donghua Zhou†

Abstract

In this paper, a new robust H∞ filter design problem is studied for a class of networked systems with multiple

state-delays. Two kinds of incomplete measurements, namely, measurements with random delays and measurements

with stochastic missing phenomenon, are simultaneously considered. Such incomplete measurements are induced by the

limited bandwidth of communication networks, and are modeled as a linear function of a certain set of indicator functions

that depend on the same stochastic variable. Attention is focused on the analysis and design problems of a full-order

robust H∞ filter such that, for all admissible parameter uncertainties and all possible incomplete measurements, the

filtering error dynamics is exponentially mean-square stable and a prescribed H∞ attenuation level is guaranteed. Some

recently reported methodologies, such as delay-dependent and parameter-dependent stability analysis approaches, are

employed to obtain less conservative results. Sufficient conditions, which are dependent on the occurrence probability of

both the random sensor delay and missing measurement, are established for the existence of the desired filters in terms

of certain linear matrix inequalities (LMIs). When these LMIs are feasible, the explicit expression of the desired filter

can also be characterized. Finally, numerical examples are given to illustrate the effectiveness and applicability of the

proposed design method.
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I. Introduction

The past few years have witnessed rapid developments in network technologies. As a result, the feedback

control loop for more and more control systems is based on a network. This kind of control systems are called

networked control systems (NCSs) [3, 30]. In networked systems, serial communication networks are used to

exchange information (reference input, plant output, control input, etc.) among control system components

(sensors, controller, actuators, etc.). Networked systems have many advantages, such as low cost, reduced

weight and power requirements, simple installation and maintenance, and high reliability. Therefore, increas-

ing attention has been paid to the study of networked systems [3,14,15,21,30]. It should be pointed out that,

in NCSs, since the signals are transmitted over the communication network of limited bandwidth, network-

induced delays and data dropout are always inevitable, which makes the analysis and design of networked

systems complicated. Conventional control theories with many ideal assumptions, such as synchronized con-

trol and non-delayed sensing and actuation, must be re-evaluated before they can be applied to networked

systems.
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It has now been well known that the existence of time delays is commonly encountered in many dynamic

systems, and time delay has become an important source of instability and performance degradation [9,16,17].

Up to now, many researchers have studied the stability and controller design problems for networked systems

in the presence of network-induced delays [10, 27, 28]. In [12], by introducing buffers at the controller nodes

and actuator nodes and making the buffers longer than the worst-case delay, the networked-induced delays

have been made time-invariant. In [30], the stability of the NCSs has been analyzed by a hybrid system

approach when the network-induced delay is deterministic. Since network delays are usually random and

time-varying by nature, recently, the network-induced delays have been modeled in various probabilistic ways.

For example, in [15], time delays have been assumed to be varying in a random fashion and have statistically

mutually independent transfer-to-transfer probability distribution. In [29], network-induced delays have been

modeled as two Markov chains, and the resulting closed-loop systems are jump linear systems with two modes.

In [20], the random communication delays have been considered as white in nature with known probability

distributions. It should be pointed out that the binary random delay has gained particular research interests

because of its simplicity and practicality in describing network-induced delays [26], where the binary switching

sequence is viewed as a Bernoulli distributed white sequence taking on values of 0 and 1, see [23,25].

Another problem in networked systems is the data missing (dropout) phenomenon [11]. When there is a

network connecting the sensor and the controller or filter in a system, the measurement missing phenomenon

should be taken into consideration. So far, there are generally three approaches to describe the missing

measurement or data dropout. The first approach is to describe the data missing as a binary switching

sequence that is specified by a conditional probability distribution in measurement equation, and the binary

switching sequence is viewed as a Bernoulli distributed white sequence taking on values of 0 and 1 [24].

The second approach is to use a discrete-time linear system with Markovian jumping parameter to represent

random packet-loss model for the network [19]. The third method is to replace the missing data by zeros and

then construct an incompleteness matrix in the measurement [18].

Most of the aforementioned references have dealt with the stability or stabilization problems when the

effects of network-induced delay and/or data dropouts being taken into account, see [10,10,11,21,28–30] and

the references therein. On the other hand, as a branch of state estimation, the H∞ filtering problem has

gained persistent attention even since it was first introduced in late 80’s [4]. Furthermore, recognizing that

modeling errors are inevitable and time delays are commonly encountered in a variety of dynamical systems,

up to now, many researchers have investigated the robust H∞ filtering problems for systems with various

parameter uncertainties and/or delays [5–8, 16] by means of the linear matrix inequality (LMI) as well as

Riccati-like equation approaches. Even though, little work has been done on the filtering problem for NCSs.

Recently, H∞ filter problem has been studied with the data missing or measurement delay [23,24]. So far, to

the best of the authors’ knowledge, the H∞ filtering problems for NCSs with simultaneous data missing and

measurement delays have not been fully investigated and very few corresponding results have been available

in the literature, which motivates the present study.

In this paper, we are concerned with the design problem of robust H∞ filters for a class of networked systems.

Fig. 1 illustrates a typical diagram for the information flows of networked filtering, where multiple sensors send

data to the filter over a common network. For simplicity, we will only deal with the single sensor case, but

we declare that the extension to multiple sensor case is not difficult. The observed data is transmitted over

communication network. We consider both the network-induced delays and the data missing phenomenon in

the measurement equation. The system has multiple state-delays and the uncertain parameters are assumed
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to reside in a convex polytope. Indicator functions are employed to provide a unified representation to describe

stochastic data missing and random measurement delays, which is simple yet efficient. A sufficient condition

for the existence of a feasible solution to the problem is derived, which guarantees that the filtering error

system is exponentially mean-square stable and a prescribed H∞ attenuation level is achieved, for all possible

missing measurements, all possible measurement delays and all admissible parameter uncertainties. A novel

Lyapunov functional is proposed to provide delay-probability-dependent stability criteria, and slack matri-

ces are introduced to make Lyapunov matrices depend on uncertain parameters. These two manipulations

significantly reduce the possible conservatism caused in the filter design. An LMI approach is developed to

design the expected filters, and the filter parameters are then determined. Numerical examples are provided

to demonstrate the usefulness of the present methods.

Fig. 1. Filtering for networked systems.

The contribution of this paper can be summarized as follows: (i) a new unified representation describing

data missing and measurement delays simultaneously is proposed, which is simple yet efficient; (ii) robust H∞

filtering for a class of networked systems with multiple state-delays is considered; (iii) some recently appeared

results are incorporated to obtain parameter-dependent and delay-probability-dependent filter design results,

which are less conservative than traditional ones. The remainder of this paper is organized as follows. In the

next section, the robust H∞ filtering problem for a class of NCSs with multiple state-delays is formulated, and

a new representation describing data missing and measurement delays simultaneously is provided. In Section

III, the robust H∞ filter analysis result is proposed, and the robust H∞ filter design problem is dealt with in

Section IV. Numerical examples are given in Section V and some concluding remarks are provided in Section

VI.

Notation. The notations used throughout the paper are fairly standard. R
n and R

n×m denote, respectively,

the n dimensional Euclidean space and the set of all n × m real matrices. P > 0 (respectively, P < 0) means

that P is real symmetric and positive definite (respectively, negative definite). The subscript “T” denotes the

matrix transpose. Pr{·} represents the occurrence probability of the event “·”, and when x and y are both

stochastic variables, E{x} and E{x|y} stand for the expectation of x and the expectation of x conditional on

y, respectively. I{⋄} stands for the indicator function, i.e., I{⋄} = 1 if and only if ⋄ is true, otherwise, I{⋄} = 0.

l2[0,∞) is the space of all square-summable vector functions over [0,∞), and ‖x‖ is the standard l2 norm of

x, i.e., ‖x‖ = (xT x)1/2, and Z
+ stands for the set of nonnegative integers. In symmetric block matrices, we

use “∗” to represent a term that is induced by symmetry, and diag{· · · } stands for a block-diagonal matrix.
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The notation diagq{⋆} is employed to stand for diag{⋆ · · · ⋆
︸ ︷︷ ︸

q

}, Matrices, if their dimensions are not explicitly

stated, are assumed to be compatible for algebraic operations and, sometimes, the arguments of a function

will be omitted in the analysis when no confusion can arise.

II. Problem Formulation and Preliminaries

Consider the following class of uncertain discrete-time linear system with multiple delays in the state:







xk+1 = A0xk +
∑q

j=1 Ajxk−dj
+ Bwk,

zk = H0xk +
∑q

j=1 Hjxk−dj
+ Ewk,

xk = ϕk, k = −dq,−dq + 1, . . . , 0,

(1)

where xk ∈ R
n is the state vector; zk ∈ R

m is the signal to be estimated; wk ∈ R
s is the disturbance noise

belonging to l2[0, ∞); dj ∈ Z
+ (j = 1, . . . , q) are known constant time delays. Without losing generality, we

assume that d1 < d2 < . . . < dq for simplicity. ϕk is a given real initial sequence on [−dq, 0].

The measurements, which may contain random communication delays and stochastic data missing, are

described by

yk = I{τk=0}C0xk +

q
∑

j=1

I{τk=dj}Cjxk−dj
+ Dwk, (2)

where yk ∈ R
l is the measured output vector and wk is defined in (1). I{τk=0} and I{τk=dj} are the indicator

functions with E{I{τk=0}} = Pr{τk = 0} = p0 and E{I{τk=dj}} = Pr{τk = dj} = pj, where pj (0 ≤ j ≤ q) are

known positive scalars and
∑q

j=0 pj ≤ 1. τk is a stochastic variable used to determine, at time k, how large

the occurred delay could be and the possibility of data missing. Similar to [23,24,26], we assume the sequence

of τk is mutually independent.

Assumption 1: All the delays, which including the state delays in (1) and the random communication delays

in (2), are assumed to be finite and have an upper bound.

Remark 1: Assumption 1 is natural since, 1) for state-delays, there are always bounds in real systems; 2)

for network-induced delays, the network will drop the data that fail to arrive the filter in a finite time [30],

which, in this paper, can be considered as the measurement missing.

Remark 2: Note that the filter node of the networked system is supposed to be time-driven. This means

that the filter starts the calculation periodically at the sampling time of the system, so the network-induced

delays can be regarded as integers. The delays described in (1) and those in (2) are essentially different.

The former are the inherent state-delays in the system, and are not affected by the communication channel,

while the latter are the network-induced random delay via a communication channel and are dependent on

the network load [14,15]. Since these two kinds of delays may belong to different subsets of the set of natural

numbers, by defining {dj} (j = 1, 2, . . . , q) as the union of the two subsets and selecting some of Aj or Cj

(j = 1, 2, . . . , q) as 0 properly, we can always assume that these two kinds of delays take values from the same

set.

Remark 3: The measurement described in (2) is new, which can be regarded as a substantial extension of

the delayed sensor model in [23]. The main advantage of the proposed description (2) is that it can provide

a unified representation to account for both the random communication delays and stochastic data missing.

Specifically, if
∑q

j=0 pj < 1, we can confirm that the measurements arrive at a certain time with a probability
∑q

j=0 pj irrespective of the existence of communication delays, and the measurements are missing with the

probability 1 −
∑q

j=0 pj. If
∑q

j=0 pj = 1, there will be no missing phenomenon. Furthermore, (2) can also
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easily describe the delays longer than 1, which is hard to be considered using the measurement mode in [23].

Our results cover the measurement mode in [23] by imposing p0 + p1 = 1, and pj = 0, ∀2 ≤ j ≤ q.

The system matrices have appropriate dimensions and are assumed to be uncertain but belong to a known

convex compact set of a polytopic type, i.e.,

Ω := (A0, . . . , Aq, B,C0, . . . , Cq,D,H0, . . . ,Hq, E, ) ∈ R, (3)

where R is a given convex polyhedral domain described by v vertices:

R :=

{

Ω(λ)|Ω(λ) =

v∑

i=1

λiΩi;

v∑

i=1

λi = 1, λi ≥ 0

}

, (4)

and Ωi := (A0i, . . . , Aqi, Bi, C0i, . . . , Cqi,Di,H0i, . . . ,Hqi, Ei) denotes the ith vertex of the polytope.

Consider a full-order filter of the form
{

x̂k+1=Gx̂k + Kyk,

ẑk=Lx̂k,
(5)

where x̂k is the filter state vector, ẑk is an estimation for zk, and G, K, L are filter parameters to be determined.

By defining

ηk =

[

xk

x̂k

]

, z̃k = zk − ẑk, (6)

we have the filtering error system as follows:

{

ηk+1 = Ã0ηk + (I{τk=0} − p0)Ā0ηk +
∑q

j=1 ÃjZηk−dj
+
∑q

j=1 (I{τk=dj} − pj)ĀjZηk−dj
+ B̃wk,

z̃k = C̃0ηk +
∑q

j=1 C̃jZηk−dj
+ D̃wk,

(7)

where

Ã0 :=

[

A0 0

p0KC0 G

]

, Ā0 :=

[

0 0

KC0 0

]

, Ãj :=

[

Aj

pjKCj

]

, (8)

Āj :=

[

0

KCj

]

, B̃ :=

[

B

KD

]

, C̃0 :=
[

H0 −L
]
, (9)

C̃j := Hj, D̃ := E, Z :=
[

I 0
]
. (10)

Considering the existence of the stochastic variables τk, we introduce the definition of stochastic stability

in the mean-square sense for the filtering error system.

Definition 1: [22] The filtering error system (7) is said to be exponentially mean-square stable if, with

wk = 0, for any initial conditions, there exist constants α > 0 and κ ∈ (0, 1) such that

E
{
‖ηk‖2

}
6 ακk sup

−dq≤i≤0
E
{
‖ηi‖2}, k ∈ Z

+. (11)

Assumption 2: The system (1) is assumed to be exponentially mean-square stable for the whole uncertain

domain (4).

Remark 4: Assumption 2 is a prerequisite for the filtering error system (7) to be exponentially mean-square

stable. Since the filter (5) can’t affect the state of the original system and xk is one part of ηk, so the

exponentially mean-square stable of xk is a necessary condition of the exponentially mean-square stable of ηk.
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With Definition 1, we aim to design the filter of the form (5) for the system (1) such that for all admissible

parameter uncertainties and all possible sensor delays as well as data missing, the filtering error system (7)

satisfies the following requirements (R1) and (R2) simultaneously:

(R1) The filtering error system (7) is exponentially mean-square stable.

(R2) Under the zero-initial condition, the filtering error z̃k satisfies

∞∑

k=0

E
{
‖z̃k‖2

}
6 γ2

∞∑

k=0

E
{
‖wk‖2

}
(12)

for all nonzero wk, where γ > 0 is a prescribed scalar.

III. Robust H∞ Filtering Analysis

In this section, we shall discuss the robust H∞ performance analysis result for the filtering error system (7)

with parameter-dependent and delay-probability-dependent approach, in the light of which, the filter design

problem can be dealt with in the next section. The following Lemma will be useful in deriving our main

results in the sequel.

Lemma 1: [13] Assume that a ∈ R
na, b ∈ R

nb and N ∈ R
na×nb . Then, for any matrices X ∈ R

na×na ,

Y ∈ R
na×nb , and Z ∈ R

nb×nb satisfying [

X Y

Y T Z

]

≥ 0,

the following holds:

−2aT Nb ≤
[

a

b

]T [

X Y − N

Y T − NT Z

][

a

b

]

. (13)

Lemma 2: Let {τk, k ≥ 0} be a random sequence taking value in the finite set {0, d1, d2, . . . , dq, dlost}.
Suppose that, for any k, the distribution law of τk is given as Pr{τk = 0} = p0, Pr{τk = dj} = pj (1 ≤ j ≤ q),

and Pr{τk = dlost} = 1 −∑q
j=0 pj. Then, for any 0 ≤ i ≤ q and 0 ≤ j ≤ q, we have

E

{

(I{τk=di} − pi)(I{τk=dj} − pj)
}

=

{

pi(1 − pi), i = j

−pipj , i 6= j
(14)

Proof: It can be calculated that

E

{

(I{τk=di} − pi)(I{τk=dj} − pj)
}

= E

{

I{τk=di}I{τk=dj} − I{τk=di}pj − piI{τk=dj} + pipj

}

= E

{

I{τk=di}I{τk=dj}

}

− pipj − pipj + pipj

= E

{

I{τk=di}I{τk=dj}

}

− pipj (15)

Since E

{

I{τk=di}I{τk=dj}

}

= pi = pj (i = j) and E

{

I{τk=di}I{τk=dj}

}

= 0 (i 6= j), the expression (14) follows

directly.

For the easy exposition of our results, we first consider the case when no uncertainties appear in the system

parameters, i.e., Ω ∈ R is arbitrary but fixed. The following theorem gives an H∞ performance analysis

condition for the filtering error system (7).

Theorem 1: Consider system (1) and assume that Ω ∈ R is arbitrary but fixed. Given a full order filter of

the form (5) and a prescribed H∞ attenuation level γ > 0. If there exist matrices 0 < P T = P ∈ R
2n×2n,
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0 < QT
j = Qj ∈ R

n×n, 0 < XT
j = Xj ∈ R

2n×2n, Yj ∈ R
2n×n, 0 < ZT

j = Zj ∈ R
n×n, 0 < RT

j = Rj ∈ R
s×s,

Sj ∈ R
s×n, 0 < T T

j = Tj ∈ R
n×n (j = 1, . . . , q) such that the following LMIs



















−I 0 0 0 C̃0 C̃d D̃ 0

∗ −Pd 0 0 0 ρdPdÂd 0 0

∗ ∗ −P 0 ρ0PĀ0 0 0 0

∗ ∗ ∗ −P PÃ0 PÃd PB̃ 0

∗ ∗ ∗ ∗ −P + Ψ −Yd
∑q

j=1 ZTST
j (Ã0 − I)T ZTΠ

∗ ∗ ∗ ∗ ∗ −Qd −ST
d ÃT

d ZTΠ

∗ ∗ ∗ ∗ ∗ ∗ ∑q
j=1 djRj − γ2I B̃TZT Π

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Π



















< 0 (16)

[

Xj Yj

∗ Zj

]

≥ 0,

[

Rj Sj

∗ Tj

]

≥ 0, ∀j = 1, . . . , q (17)

hold, where

Ψ :=

q
∑

j=1

(djXj + ZT Y T
j + YjZ + ZT QjZ),

Π :=

q
∑

j=1

dj(Zj + Tj), Ãd :=
[
Ã1 · · · Ãq

]
,

C̃d :=
[
C̃1 · · · C̃q

]
, ρj :=

√
pj (0 ≤ j ≤ q),

ρd := diag{ρ1, · · · , ρq}, Pd := diagq{P},
Qd := diag{Q1, · · · , Qq}, Âd := diag{Ā1, · · · , Āq},
Yd :=

[
Y1 · · · Yq

]
, Sd :=

[
S1 · · · Sq

]
,

then the filtering error system (7) is exponentially mean-square stable with the prescribed H∞ attenuation

level bound γ given in (12).

Proof: From system (7), it is easy to see that

ηk−dj
= ηk −

k−1∑

m=k−dj

(ηm+1 − ηm) = ηk −
k−1∑

m=k−dj

ξm (18)

where

ξm := ηm+1 − ηm = (Ã0 − I)ηm + (I{τk=0} − p0)Ā0ηm +

q
∑

j=1

ÃjZηm−dj

+

q
∑

j=1

(I{τk=dj} − pj)ĀjZηm−dj
+ B̃wm (19)
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By substituting (18) into (7), we can obtain

ηk+1 =

[

Ã0 +

q
∑

i=1

ÃiZ

]

ηk −
q
∑

j=1

k−1∑

m=k−dj

ÃjZξm

+
[
(I{τk=0} − p0)Ā0 +

q
∑

j=1

(I{τk=dj} − pj)ĀjZ
]
ηk

−
q
∑

j=1

k−1∑

m=k−dj

(I{τk=dj} − pj)ĀjZξm + B̃wk. (20)

Let Θk :=
[
ηT

k , ηT
k−1, · · · , ηT

0

]T
where ηk is defined in (6). Consider the following Lyapunov functional:

Vk(Θk) = V1k(Θk) + V2k(Θk) + V3k(Θk) + V4k(Θk) (21)

where

V1k(Θk) = ηT
k Pηk,

V2k(Θk) =

q
∑

j=1

k−1∑

i=k−dj

ηT
i ZT QjZηi,

V3k(Θk) =

q
∑

j=1

−1∑

i=−dj

k−1∑

m=k+i

ξT
mZTZjZξm,

V4k(Θk) =

q
∑

j=1

−1∑

i=−dj

k−1∑

m=k+i

ξT
mZTTjZξm,

with P > 0 and Qj > 0, Zj > 0, Tj > 0 (j = 1, . . . , q) satisfying (17) and Z being defined in (10).

Defining

∆Vk := E {Vk+1(Θk+1)|Θk} − Vk(Θk),
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the difference of the Lyapunov functional with wk = 0 can be calculated from (20) as follows:

∆V1k = ηT
k

[

(Ã0 +

q
∑

i=1

ÃiZ)T P (Ã0 +

q
∑

i=1

ÃiZ) − P

]

ηk

+ E

{

ηT
k



(I{τk=0} − p0)Ā0 +

q
∑

j=1

(I{τk=dj} − pj)ĀjZ





T

P

×



(I{τk=0} − p0)Ā0 +

q
∑

j=1

(I{τk=dj} − pj)ĀjZ



 ηk

}

+





q
∑

j=1

k−1∑

m=k−dj

ÃjZξm





T

P





q
∑

j=1

k−1∑

m=k−dj

ÃjZξm





+ E











q
∑

j=1

k−1∑

m=k−dj

(I{τk=dj} − pj)ĀjZξm





T

P





q
∑

j=1

k−1∑

m=k−dj

(I{τk=dj} − pj)ĀjZξm











− 2

q
∑

j=1

k−1∑

m=k−dj

ηT
k (Ã0 +

q
∑

i=1

ÃiZ)T PÃjZξm

− 2E

{
[ q
∑

j=1

k−1∑

m=k−dj

(I{τk=dj} − pj)ĀjZξm

]T
P

×
[

(I{τk=0} − p0)Ā0 +

q
∑

i=1

(I{τk=di} − pi)ĀiZ
]

ηk

}

From Lemma 1, we can obtain:

−2ηT
k

(

Ã0 +

q
∑

i=1

ÃiZ

)T

PÃjZξm

≤ ηT
k Xjηk + 2ξT

mZTY T
j ηk

− 2ξT
mZT ÃT

j P

(

Ã0 +

q
∑

i=1

ÃiZ

)

ηk + ξT
mZT ZjZξm (22)

with 0 < XT
j = Xj ∈ R

2n×2n, Yj ∈ R
2n×n, 0 < ZT

j = Zj ∈ R
n×n satisfying (17).
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According to Lemma 2, it follows from tedious but straightforward manipulations that

∆V1k ≤ ηT
k

(

ÃT
0 PÃ0 − P + p0Ā

T
0 PĀ0

)

ηk +





q
∑

j=1

ÃjZηk−dj





T

P





q
∑

j=1

ÃjZηk−dj





+

q
∑

j=1

pj

(
ĀjZηk−dj

)T
P
(
ĀjZηk−dj

)
+

q
∑

j=1

djη
T
k Xjηk + 2

q
∑

j=1

ηT
k ZT Y T

j ηk

−2

q
∑

j=1

ηT
k YjZηk−dj

+ 2





q
∑

j=1

ÃjZηk−dj





T

PÃ0ηk +

q
∑

j=1

k−1∑

i=k−dj

ξT
i ZTZjZξi

−



p0Ā0ηk +

q
∑

j=1

pjĀjZηk−dj





T

P



p0Ā0ηk +

q
∑

j=1

pjĀjZηk−dj





(23)

In addition, we have

∆V2k =

q
∑

j=1

ηT
k ZT QjZηk −

q
∑

j=1

ηT
k−dj

ZTQjZηk−dj
(24)

∆V3k =

q
∑

j=1

−1∑

i=−dj

[
ξT
k ZT ZjZξk − ξT

k+iZ
T ZjZξk+i

]

=

q
∑

j=1

djξ
T
k ZTZjZξk −

q
∑

j=1

k−1∑

i=k−dj

ξT
i ZTZjZξi (25)

∆V4k =

q
∑

j=1

djξ
T
k ZTTjZξk −

q
∑

j=1

k−1∑

i=k−dj

ξT
i ZTTjZξi (26)

Then, we obtain from (23)-(26) and (19) that:

∆Vk = ∆V1k + ∆V2k + ∆V3k + ∆V4k

≤ ζT
k

[

M1 M2

∗ M3

]

ζk (27)

where

ζk := [ηT
k ηT

k−d1
ZT · · · ηT

k−dq
ZT ]T

M1 := ÃT
0 PÃ0 + ρ2

0Ā
T
0 PĀ0 − P + Ψ + (Ã0 − I)T ZTΠZ(Ã0 − I)

M2 := −Yd + ÃT
0 PÃd + (Ã0 − I)T ZTΠZÃd

M3 := ÃT
d PÃd + ρ2

dÂ
T
d PdÂd − Qd + ÃT

d ZT ΠZÃd (28)

By the Schur Complement [2], LMI (16) implies ∆Vk(Θk) < 0 for all nonzero ζk, so we can always find a

positive scalar ϑ > 0 such that [

M1 M2

∗ M3

]

<

[

−ϑI 0

0 0

]

(29)

and subsequently

E {Vk+1(Θk+1)|Θk} − Vk(Θk) < −ϑ‖ηk‖2. (30)
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Furthermore, from Lemma 1 of [22], we can confirm that the filtering error system (7) is exponentially

mean-square stable.

Next, for any nonzero wk, it follows from (7) and (21) that

E {Vk+1(Θk+1)|Θk} − Vk(Θk) + E
{
z̃T
k z̃k

}
− γ2

E
{
wT

k wk

}
≤ χT

k






Ω1 Ω2 Ω3

∗ Ω4 Ω5

∗ ∗ Ω6




χk (31)

where

χk := [ηT
k ηT

k−d1
ZT · · · ηT

k−dq
ZT wT

k ]T

Ω1 := ÃT
0 PÃ0 + ρ2

0Ā
T
0 PĀ0 − P + Ψ + (Ã0 − I)T ZTΠZ(Ã0 − I) + C̃T

0 C̃0

Ω2 := −Yd + ÃT
0 PÃd + (Ã0 − I)T ZT ΠZÃd + C̃T

0 C̃d

Ω3 := C̃T
0 D̃ + ÃT

0 PB̃ +

q
∑

j=1

ZT ST
j + (Ã0 − I)T ZTΠZB̃

Ω4 := ÃT
d PÃd + ρ2

dÂ
T
d PdÂd − Qd + ÃT

d ZTΠZÃd + C̃T
d C̃d

Ω5 := C̃T
d D̃ − ST

d + ÃT
d PB̃ + ÃT

d ZT ΠZB̃

Ω6 := D̃T D̃ + B̃T PB̃ +

q
∑

j=1

djRj + B̃TZT ΠZB̃ − γ2I (32)

Again, using Schur complement [2], it can be observed from (16) and (31) that for any χk and wk that are

not all zero,

E {Vk+1(Θk+1)|Θk} − Vk(Θk) + E
{
z̃T
k z̃k

}
− γ2

E
{
wT

k wk

}
< 0 (33)

Now, summing up (33) from 0 to ∞ with respect to k yields

∞∑

k=0

{
‖z̃k‖2

}
< γ2

∞∑

k=0

{
‖wk‖2

}
+ E {V0} − E {V∞} (34)

Since the system (7) is exponentially mean-square stable, it is straightforward to see that (12) holds under

the zero initial condition. This concludes the proof.

Remark 5: Theorem 1 provides an efficient way for filtering analysis for fixed parameter systems, and this

can be easily extended to the polytopic uncertain systems with the concept of quadratic stability. That is, for

all admissible uncertain parameters, there exits a fixed Lyapunov functional for all vertices of the polytope,

which is also called parameter-independent approach. This will, however, inevitably introduce overdesign.

Recently, many robust H∞ filtering results using parameter-dependent approach have been reported in the

literature [5,13], most of which can provide a decoupling between the system matrices and the positive definite

matrices. In the following, we give the parameter-dependent results for filtering problem of polytopic uncertain

systems.

Corollary 1: Consider system (1) with fixed and known parameters and a given filter of the form (5). For

a prescribed H∞ attenuation level γ > 0, if there exist matrices 0 < P T = P ∈ R
2n×2n, M ∈ R

2n×2n,

0 < QT
j = Qj ∈ R

n×n, N ∈ R
n×n, 0 < XT

j = Xj ∈ R
2n×2n, Yj ∈ R

2n×n, 0 < ZT
j = Zj ∈ R

n×n,
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0 < RT
j = Rj ∈ R

s×s, Sj ∈ R
s×n, 0 < T T

j = Tj ∈ R
n×n (j = 1, . . . , q) such that (17) and the following LMI



















−I 0 0 0 C̃0 C̃d D̃ 0

∗ ∆d 0 0 0 ρdM
T
d Âd 0 0

∗ ∗ ∆ 0 ρ0M
T Ā0 0 0 0

∗ ∗ ∗ ∆ MT Ã0 MT Ãd MT B̃ 0

∗ ∗ ∗ ∗ −P + Ψ −Yd
∑q

j=1 ZTST
j (Ã0 − I)T ZTN

∗ ∗ ∗ ∗ ∗ −Qd −ST
d ÃT

d ZTN

∗ ∗ ∗ ∗ ∗ ∗ ∑q
j=1 djRj − γ2I B̃TZT N

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π − NT − N



















< 0 (35)

hold, where Ψ, Π, Ãd, C̃d, ρj, 0 ≤ j ≤ q, ρd, Pd, Qd, Âd, Yd and Sd are the same as defined in Theorem 1, and

Md := diagq{M}, ∆ := P − MT − M , ∆d := diagq{∆}, then the filtering error system (7) is exponentially

mean-square stable and satisfies the prescribed H∞ attenuation level given in (12).

Proof: We only need to show that (35) leads to (16). From (35), we have MT +M−P > 0, MT
d +Md−Pd >

0 and NT +N −Π > 0. Noting that P , Pd and Π are positive definite, we can confirm that M , Md and N are

nonsingular [5]. From (M−P )T P−1(M−P ) ≥ 0, (Md−Pd)
T P−1

d (Md−Pd) ≥ 0 and (N−Π)T Π−1(N−Π) ≥ 0,

we obtain MT P−1M ≥ M +MT −P , MT
d P−1

d Md ≥ Md +MT
d −Pd and NT Π−1N ≥ N +NT −Π, respectively.

Together with (35), we arrive at



















−I 0 0 0 C̃0 C̃d D̃ 0

∗ ∆̃d 0 0 0 ρdM
T
d Âd 0 0

∗ ∗ ∆̃ 0 ρ0M
T Ā0 0 0 0

∗ ∗ ∗ ∆̃ MT Ã0 MT Ãd MT B̃ 0

∗ ∗ ∗ ∗ −P + Ψ −Yd
∑q

j=1 ZTST
j (Ã0 − I)T ZTN

∗ ∗ ∗ ∗ ∗ −Qd −ST
d ÃT

d ZTN

∗ ∗ ∗ ∗ ∗ ∗ ∑q
j=1 djRj − γ2I B̃TZT N

∗ ∗ ∗ ∗ ∗ ∗ ∗ −NT Π−1N



















< 0 (36)

where ∆̃ := −MT P−1M and ∆̃d := MT
d P−1

d Md.

Performing the congruence transformation to (36) by diag{I,M−1
d Pd,M

−1P,M−1P, I, I, I,N−1Π}, we ob-

tain (16), and the proof is completed.

By introducing new additional matrices M and N , which are not constrained to be symmetric or positive

definite, LMI (35) contains no product term between the system matrices and the positive definite matrices.

Therefore, Corollary 1 can be directly extended to polytopic uncertain system to obtain a robust H∞ filtering

performance analysis result with the idea of parameter-dependent approach. In other words, for each vertex,

an individual Lyapunov function will be used, which will certainly provide a less conservative result.

Corollary 2: Consider system (1) with uncertain parameters satisfying (3). For a given full-order filter of

the form (5) and a prescribed H∞ attenuation level γ > 0, if there exist matrices 0 < P T
i = Pi ∈ R

2n×2n,

0 < QT
ji = Qji ∈ R

n×n, 0 < XT
ji = Xji ∈ R

2n×2n, Yji ∈ R
2n×n, 0 < ZT

ji = Zji ∈ R
n×n, 0 < RT

ji = Rji ∈ R
s×s,

Sji ∈ R
s×n, 0 < T T

ji = Tji ∈ R
n×n, j = 1, . . . , q, i = 1, . . . , v, and M ∈ R

2n×2n, N ∈ R
n×n such that for all
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i = 1, . . . , v, the following LMIs hold:



















−I 0 0 0 C̃0i C̃di D̃i 0

∗ Γdi 0 0 0 ρdM
T
d Âdi 0 0

∗ ∗ Γi 0 ρ0M
T Ā0i 0 0 0

∗ ∗ ∗ Γi MT Ã0i MT Ãdi MT B̃i 0

∗ ∗ ∗ ∗ −Pi + Ψi −Ydi
∑q

j=1 ZT ST
ji (Ã0i − I)T ZTN

∗ ∗ ∗ ∗ ∗ −Qdi −ST
di ÃT

diZ
T N

∗ ∗ ∗ ∗ ∗ ∗ ∑q
j=1 djRji − γ2I B̃T

i ZT N

∗ ∗ ∗ ∗ ∗ ∗ ∗ Πi − NT − N



















< 0 (37)

[

Xji Yji

∗ Zji

]

≥ 0,

[

Rji Sji

∗ Tji

]

≥ 0, ∀j = 1, . . . , q (38)

where Γi := Pi − MT − M , Γdi := Pdi − MT
d − Md, Ψi :=

∑q
j=1 (djXji + ZTY T

ji + YjiZ + ZT QjiZ), Πi :=
∑q

j=1 dj(Zji + Tji), Ãdi :=
[
Ã1i · · · Ãqi

]
, C̃di :=

[
C̃1i · · · C̃qi

]
, ρi :=

√
pi, 0 ≤ j ≤ q. ρd := diag{ρ1 · · · ρq},

Pdi := diagq{Pi}, Qdi := diag{Q1i · · · Qqi}, Âdi := diag{Ã1i · · · Ãqi}, Ydi :=
[
Y1i · · · Yqi

]
, Sdi :=

[
S1i · · · Sqi

]
, then the filtering error system (7) is robust exponentially mean-square stable and satisfies

the prescribed H∞ attenuation level given in (12).

Proof: For any system with parameters satisfying (3), one can always find coefficients λi (i = 1, . . . , v),

such that Ω =
∑v

i=1 λiΩi,
∑v

i=1 λi = 1, λi ≥ 0. If (37) holds for all i = 1, . . . , v, we consider the convex

combination of inequalities (37) and then obtain



















−I 0 0 0 C̃0 C̃d D̃ 0

∗ Γ̃d(λ) 0 0 0 ρdM
T
d Âd 0 0

∗ ∗ Γ̃(λ) 0 ρ0M
T Ā0 0 0 0

∗ ∗ ∗ Γ̃(λ) MT Ã0 MT Ãd MT B̃ 0

∗ ∗ ∗ ∗ Γ̃55(λ) −Yd(λ) Γ̃57(λ) Γ̃58

∗ ∗ ∗ ∗ ∗ −Qd(λ) −Sd(λ)T ÃT
d ZT N

∗ ∗ ∗ ∗ ∗ ∗ Γ̃77(λ) B̃T ZTN

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̃88



















< 0 (39)

where Γ̃(λ) := P (λ)−MT−M , Γ̃d(λ) := Pd(λ)−MT
d −Md, Γ̃55(λ) := −P (λ)+Ψ(λ), Γ̃57(λ) :=

∑q
j=1 ZT Sj(λ)T ,

Γ̃58 := (Ã0 − I)T ZTN , Γ̃77(λ) :=
∑q

j=1 djRj(λ) − γ2I, Γ̃88(λ) := Π(λ) − NT − N .

Similarly, we get

[

Xj(λ) Yj(λ)

∗ Zj(λ)

]

≥ 0,

[

Rj(λ) Sj(λ)

∗ Tj(λ)

]

≥ 0, ∀j = 1, . . . , q (40)

where P (λ) =
∑v

i=1 λiPi, Q(λ) =
∑v

i=1 λiQi, X(λ) =
∑v

i=1 λiXi, Y (λ) =
∑v

i=1 λiYi, Z(λ) =
∑v

i=1 λiZi,

R(λ) =
∑v

i=1 λiRi, S(λ) =
∑v

i=1 λiSi, T (λ) =
∑v

i=1 λiTi are parameter-dependent Lyapunov matrices. So we

can conclude from Theorem 1 that the filtering error system (7) is exponentially mean-square stable and the

filtering error z̃k satisfies (12), and the proof is completed.

Remark 6: Corollary 2 provides a delay-probability-dependent and parameter-dependent robust H∞ per-

formance criterion for the filtering error system (7). if we impose Xji = 0, Yji = 0, Zji = 0, Rji = 0, Sji = 0,

Tji = 0, (37) implies corresponding result which is not dependent on the size of the delays dj > 0, j = 1, . . . , q.
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IV. Robust H∞ Filter Design

In the previous section, robust H∞ filter analysis problems have been studied. In Corollary 2, there exist

products of unknown matrices M and N with filter parameters G, K, L, so they cannot directly be used

for filter design with the existing LMI toolbox. In this section, we shall focus on the robust H∞ filter

design problems for a class of state-delay networked systems with missing and delay measurements by using

parameter-dependent and delay-probability-dependent approaches.

Theorem 2: Consider system (1) with uncertain parameters Ω ∈ R and let γ > 0 be a given H∞ attenuation

level. Then, an admissible full-order robust H∞ filter of the form (5) exists if there exist matrices V ∈ R
n×n,

F ∈ R
n×n, U ∈ R

n×n, N ∈ R
n×n, Ḡ ∈ R

n×n, K̄ ∈ R
n×l, L̄ ∈ R

m×n, and 0 < P̄ T
1i = P̄1i ∈ R

n×n,

P̄2i ∈ R
n×n, 0 < P̄ T

3i = P̄3i ∈ R
n×n, 0 < QT

ji = Qji ∈ R
n×n, 0 < X̄T

1ji = X̄1ji ∈ R
n×n, X̄2ji ∈ R

n×n,

0 < X̄T
3ji = X̄3ji ∈ R

n×n, Ȳ1ji ∈ R
n×n, Ȳ2ji ∈ R

n×n, 0 < ZT
ji = Zji ∈ R

n×n, 0 < RT
ji = Rji ∈ R

s×s, Sji ∈ R
s×n,

0 < T T
ji = Tji ∈ R

n×n (j = 1, . . . , q, i = 1, . . . , v) such that for all i = 1, . . . , v, the following LMIs


















−I 0 0 0 Ῡ15i Hdi Ei 0

∗ Ῡ22i 0 0 0 Ῡ26i 0 0

∗ ∗ Ῡ33i 0 Ῡ35i 0 0 0

∗ ∗ ∗ Ῡ44i Ῡ45i Ῡ46i Ῡ47i 0

∗ ∗ ∗ ∗ Ῡ55i Ῡ56i Ῡ57i Ῡ58i

∗ ∗ ∗ ∗ ∗ −Qdi −ST
di AT

diN

∗ ∗ ∗ ∗ ∗ ∗ Ῡ77i BT
i N

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ῡ88i



















< 0 (41)






[

X̄1ji X̄2ji

∗ X̄3ji

] [

Ȳ1ji

Ȳ2ji

]

∗ Zji




 ≥ 0,

[

Rji Sji

∗ Tji

]

≥ 0, ∀j = 1, . . . , q (42)

[

P̄1i P̄2i

∗ P̄3i

]

> 0 (43)

hold, where

Ῡ15i :=
[

H0i H0i − L̄
]

,

Ῡ22i :=

[

P̄1di − V T
d − Vd P̄2di − Fd − V T

d − Ud

∗ P̄3di − Fd − F T
d

]

,

Ῡ26i :=

[

ρdK̄dĈdi

0

]

,

Ῡ33i := Ῡ44i :=

[

P̄1i − V T − V P̄2i − F − V T − U

∗ P̄3i − F − F T

]

,

Ῡ35i :=

[

ρ0K̄C0i ρ0K̄C0i

0 0

]

,

Ῡ45i :=

[

V T A0i + p0K̄C0i V T A0i + p0K̄C0i + Ḡ

F T A0i F T A0i

]

,

Ῡ46i :=

[

V T Adi + K̄Cdipd

F T Adi

]

,



SUBMITTED 15

Ῡ47i :=

[

V T Bi + K̄Di

F T Bi

]

,

Ῡ55i :=

[

−P̄1i + Φ̄1i −P̄2i + Φ̄2i

∗ −P̄3i + Φ̄3i

]

,

Ῡ56i :=

[

−Ȳ1di

−Ȳ2di

]

,

Ῡ57i :=

[ ∑q
j=1 ST

ji
∑q

j=1 ST
ji

]

,

Ῡ58i :=

[

AT
0iN − N

AT
0iN − N

]

,

Ῡ77i :=

q
∑

j=1

djRji − γ2I,

Ῡ88i := Πi − NT − N,

and pd := diag{p1, · · · , pq}, ρj :=
√

pj (0 ≤ j ≤ q), ρd := diag{ρ1, · · · , ρq}, P̄1di := diagq{P̄1i}, P̄2di := diagq{P̄2i},
P̄3di := diagq{P̄3i}, Vd := diagq{V }, Fd := diagq{F}, Ud := diagq{U}, K̄d := diagq{K̄}, Ȳ1di :=

[
Ȳ11i . . . Ȳ1qi

]
,

Ȳ2di :=
[
Ȳ21i . . . Ȳ2qi

]
, Φ̄1i :=

∑q

j=1
(djX̄1ji + Ȳ1ji + Ȳ T

1ji + Qji), Φ̄2i :=
∑q

j=1
(djX̄2ji + Ȳ1ji + Ȳ T

2ji + Qji), Φ̄3i :=
∑q

j=1
(djX̄3ji + Ȳ2ji + Ȳ T

2ji + Qji), Hdi := [H1i . . .Hqi], Ĉdi := diag{C1i, . . . , Cqi}, Adi :=
[
A1i . . . Aqi

]
, Cdi :=

[
C1i . . . Cqi

]
.

Moreover, if (39)-(43) are true, the desired filter parameters can be given by

G = U−1Ḡ, K = U−1K̄, L = L̄. (44)

Proof: Corollary 2 provides a sufficient condition for the filtering error system (7) to be exponentially

mean-square stable and also achieve the H∞-norm constraint (12). Our goal here is to derive the expression

of the filter parameters from (5). From (37), for all i = 1, . . . , v, we have M + MT −Pi > 0. Considering that

Pi is positive definite, it can be further confirmed that M is nonsingular [5]. We partition M , M−1, and Pi

as follows:

M =

[

M11 M12

M21 M22

]

, M−1 =

[

S11 S12

S21 S22

]

, Pi =

[

P1i P2i

∗ P3i

]

, (45)

where the partitioning of the above three matrices is compatible with that of Ã0 defined in (8).

Introduce the following matrices:

T1 =

[

M11 I

M21 0

]

, T2 =

[

I S11

0 S21

]

, (46)

which imply that M−1T1 = T2 and MT2 = T1. Define T2d := diagq{T2}, and let P̂i :=

[

P̂1i P̂2i

∗ P̂3i

]

=

T T
2 PiT2, X̂ji :=

[

X̂1ji X̂2ji

∗ X̂3ji

]

= T T
2 XjiT2, Ŷji :=

[

Ŷ1ji

Ŷ2ji

]

= T T
2 Yji. Then, performing congruence
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transformation to (37) by diag{I, T2d, T2, T2, T2, I, I, I}, we can obtain



















−I 0 0 0 Υ̂15i Υ̂16i Ei 0

∗ Υ̂22i 0 0 0 Υ̂26i 0 0

∗ ∗ Υ̂33i 0 Υ̂35i 0 0 0

∗ ∗ ∗ Υ̂44i Υ̂45i Υ̂46i Υ̂47i 0

∗ ∗ ∗ ∗ Υ̂55i Υ̂56i Υ̂57i Υ̂58i

∗ ∗ ∗ ∗ ∗ −Qdi −ST
di AT

diN

∗ ∗ ∗ ∗ ∗ ∗ Υ̂77i BT
i N

∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ̂88i



















< 0 (47)

where

Υ̂15i :=
[

H0i H0iS11 − LS21

]

, Υ̂16i :=
[

H1i · · · Hqi

]

, Υ̂22i := diagq{Υ̂33i},

Υ̂26i := diag

{[

ρ1M
T
21KC1i

0

]

, · · · ,

[

ρqM
T
21KCqi

0

]}

,

Υ̂33i = Υ̂44i :=

[

P̂1i − MT
11 − M11 P̂2i − I − MT

11S11 − MT
21S21

∗ P̂3i − S11 − ST
11

]

,

Υ̂35i :=

[

ρ0M
T
21KC0i ρ0M

T
21KC0iS11

0 0

]

,

Υ̂45i :=

[

MT
11A0i + p0M

T
21KC0i MT

11A0iS11 + p0M
T
21KC0iS11 + MT

21GS21

A0i A0iS11

]

,

Υ̂46i :=

[

MT
11Adi + MT

21KCdipd

Adi

]

, Υ̂47i :=

[

MT
11Bi + MT

21KDi

Bi

]

,

Υ̂55i :=

[

−P̂1i + Φ̂1i −P̂2i + Φ̂2i

∗ −P̂3i + Φ̂3i

]

, Υ̂56i :=

[

−Ŷ1di

−Ŷ2di

]

, Υ̂57i :=

[ ∑q
j=1 ST

ji
∑q

j=1 ST
11S

T
ji

]

,

Υ̂58i :=

[

(A0i − I)T N

ST
11(A0i − I)T N

]

, Υ̂77i :=

q
∑

j=1

djRji − γ2I, Υ̂88i := Πi − NT − N,

Ŷ1di :=
[
Ŷ11i . . . Ŷ1qi

]
, Ŷ2di :=

[
Ŷ21i . . . Ŷ2qi

]
,

Φ̂1i :=
∑q

j=1
(djX̂1ji + Ŷ1ji + Ŷ T

1ji + Qji),

Φ̂2i :=
∑q

j=1
(djX̂2ji + Ŷ1jiS11 + Ŷ T

2ji + QjiS11),

Φ̂3i :=
∑q

j=1
(djX̂3ji + Ŷ2jiS11 + ST

11Ŷ
T
2ji + ST

11QjiS11).

Define a new matrix Λ ∈ R
2qn×2qn with its entries being Λαβ, (2α−1)β = Λ(α+q)β, 2αβ = 1 for all 1 ≤ α ≤ q

and 1 ≤ β ≤ n, and other entries being all zero. Once again, performing congruence transformation to (47)



SUBMITTED 17

by diag{I, Λ, I, I, I, I, I, I}, it can be inferred that (47) is equivalent to the following:


















−I 0 0 0 Υ̂15i Υ̂16i Ei 0

∗ Υ̃22i 0 0 0 Υ̃26i 0 0

∗ ∗ Υ̂33i 0 Υ̂35i 0 0 0

∗ ∗ ∗ Υ̂44i Υ̂45i Υ̂46i Υ̂47i 0

∗ ∗ ∗ ∗ Υ̂55i Υ̂56i Υ̂57i Υ̂58i

∗ ∗ ∗ ∗ ∗ −Qdi −ST
di AT

diN

∗ ∗ ∗ ∗ ∗ ∗ Υ̂77i BT
i N

∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ̂88i



















< 0 (48)

where

Υ̃22i :=

[

diagq{P̂1i − MT
11 − M11} diagq{P̂2i − I − MT

11S11 − MT
21S21}

∗ diagq{P̂3i − S11 − ST
11}

]

,

Υ̃26i :=

[

ρdM
T
21dKdĈdi

0

]

, M21d := diagq{M21}, Kd := diagq{K}.

Furthermore, we let P̄i :=

[

P̄1i P̄2i

∗ P̄3i

]

=

[

I 0

0 S−1
11

]T[

P̂1i P̂2i

∗ P̂3i

][

I 0

0 S−1
11

]

, and for all 1 ≤ j ≤ q,

X̄ji :=

[

X̄1ji X̄2ji

∗ X̄3ji

]

=

[

I 0

0 S−1
11

]T

X̂ji

[

I 0

0 S−1
11

]

, Ȳji :=

[

Ȳ1ji

Ȳ2ji

]

=

[

I 0

0 S−1
11

]T

Ŷji. Performing

congruence transformations to (48) by diag{I,diagq{I},diagq{S−1
11 }, I, S−1

11 , I, S−1
11 , I, S−1

11 , I, I, I} and defining

the following matrix variables:

V = M11, F = S−1, U = MT
21S21S

−1
11 , Ḡ = MT

21GS21S
−1
11 , K̄ = MT

21K, L̄ = LS21S
−1
11 (49)

we can easily derive the result (39) in Theorem 2.

After similar manipulations, we can also get (42) and (43). Noting that every step in our derivation is an

equivalent transformation, it then follows from Corollary 2 that (39)-(43) are sufficient conditions guaranteeing

that the system (7) is exponentially mean-square stable and the H∞ norm constraint (12) is achieved.

Furthermore, we know from (39) that V , F , U are all nonsingular matrices, so we can always find square

and nonsingular matrices M21 and S21 satisfying UF−1 = MT
21S21 [22]. Therefore, it results from (49) that:

G0 = M−T
21 ḠF−1S−1

21 , K0 = M−T
21 K̄ L0 = L̄F−1S−1

21 (50)

By substituting the parameters in (50) into the transfer function of the filter and considering the relationship

U = MT
21S21F , we obtain

T (z) = L̄F−1S−1
21 (zI − M−T

21 ḠF−1S−1
21 )−1M−T

21 K̄ = L̄(zI − U−1Ḡ)−1U−1K̄, (51)

which means that the desired filter parameters can also be given by (44). This ends the proof.

Remark 7: By introducing slack matrices, Theorem 2 provides a parameter dependent H∞ filter design

result. When we impose on the inequalities (39) the following additional constraints

P̄1i = V > 0, P̄2i = F > 0, P̄3i = F, Qij = Qj , X̄1ji = X̄1j ,

X̄2ji = X̄2j , X̄3ji = X̄3j , Ȳ1ji = Ȳ1j, Ȳ2ji = Ȳ2j, Zji = Zj ,

Rji = Rj , Sji = Sj, Tji = Tj , ∀i = 1, . . . , v, ∀j = 1, . . . , q, N = Π, and U = F − V, (52)
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the corresponding (more conservative) result using a single Lyapunov matrix over the whole parameter un-

certainty is given. We can observe from such a simplification process that the extra degree of freedom greatly

reduces the conservatism in the filter design.

Remark 8: Compared with the result in [16], we have changed the Lyapunov functional (21) to include

more entries, which are relative to the size of delays as well as the probability of the stochastic variable

τk. Consequently, Theorem 2 provided a delay-probability-dependent approach to robust H∞ filter design

problem. If we set the corresponding entries to be zero, i.e.,

Xj = 0, Yj = 0, Zj = 0, Rj = 0, Sj = 0, Tj = 0, ∀j = 1, . . . , q, (53)

LMI (39) reduces to be a delay-independent result. This also shows that Theorem 2 is powerful in the sense

that it provides sufficient conditions for both the delay-probability-dependent and the delay-independent cases.

The comparison between the filter designs aforementioned two methods is given in the next section.

Remark 9: In Theorem 2, there are no products of unknown matrix M with filter parameters G, K and L,

so the full-order robust H∞ filter can be obtained from the solution of convex optimization problems in terms

of linear matrix inequalities, which can be solved via efficient interior-point algorithms [2].

Note that (39)-(43) are LMIs over both the matrix variables and the prescribed scalar γ2. This implies

that the scalar γ2 can be included as one of the optimization variables for LMIs (39)-(43), which makes it

possible to obtain the minimum noise attenuation level bound. Then, the minimum guaranteed cost of robust

full-order H∞ filter can be readily found by solving the following convex optimization problems:

Problem 1 : The sub-optimal robust H∞ filtering problem for networked systems with multiple state-delays

using the parameter-dependent and delay-probability-dependent approach can be brought forward as follows

min
V, F,U,N, Ḡ, K̄, L̄, P̄1i > 0, P̄2i > 0, P̄3i > 0, Qji > 0, X̄1ji > 0,

X̄2ji, X̄3ji > 0, Ȳ1ji, Ȳ2ji, Zji > 0, Rji > 0, Sji, Tji > 0,∀i = 1, . . . , v

γ2, s.t. (39) − (43). (54)

Problem 2 : The sub-optimal robust H∞ filtering problem for networked systems with multiple state-delays

using the parameter-independent and delay-probability-dependent approach can be described as follows

min
V, F,U,N, Ḡ, K̄, L̄, P̄1i > 0, P̄2i > 0, P̄3i > 0, Qji > 0, X̄1ji > 0,

X̄2ji, X̄3ji > 0, Ȳ1ji, Ȳ2ji, Zji > 0, Rji > 0, Sji, Tji > 0,∀i = 1, . . . , v

γ2, s.t. (39) − (43) and (52). (55)

Problem 3 : The sub-optimal robust H∞ filtering problem for networked systems with multiple state-delays

using the parameter-dependent and delay-independent approach can be stated as follows

min
V, F,U,N, Ḡ, K̄, L̄, P̄1i > 0, P̄2i > 0, P̄3i > 0, Qji > 0, X̄1ji > 0,

X̄2ji, X̄3ji > 0, Ȳ1ji, Ȳ2ji, Zji > 0, Rji > 0, Sji, Tji > 0,∀i = 1, . . . , v

γ2, s.t. (39) − (43) and (53). (56)

Problem 4 : The sub-optimal robust H∞ filtering problem for networked systems with multiple state-delays

using the parameter-independent and delay-independent approach can be represented as follows

min
V, F,U,N, Ḡ, K̄, L̄, P̄1i > 0, P̄2i > 0, P̄3i > 0, Qji > 0, X̄1ji > 0,

X̄2ji, X̄3ji > 0, Ȳ1ji, Ȳ2ji, Zji > 0, Rji > 0, Sji, Tji > 0,∀i = 1, . . . , v

γ2, s.t. (39)− (43), (52) and (53). (57)
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For the four problems mentioned above, the parameters of the sub-optimal filters can be determined by

(49), and the sub-optimal H∞ attenuation levels are given by γ∗ =
√

γ2
opt, where γ2

opt are the sub-optimal

solutions of the corresponding convex optimization problems.

V. A Numerical Example

Consider the system (1) with the following matrices borrowed from [5] with some modifications:

A0 =

[

0 0.3

−0.2 θ

]

, A1 =

[

0 0

0.1 0

]

, A2 =

[

0 0.1

0 0.1

]

, B =

[

0

1

]

,

H0 = [ 1 2 ], H1 = [ 0 0 ], H2 = [ 0 0 ], E = 0,

C0 =

[

1 0

0 1

]

, C1 =

[

1 0

0 1

]

, C2 =

[

1 0

0 1

]

, D =

[

0.01

0.01

]

,

where θ is an uncertain real parameter satisfying 0.2 ≤ θ ≤ 0.4. In addition, the constant delays are assumed

to be d1 = 1 and d2 = 2.

Case 1: Let p0 = 0.6, p1 = 0.2 and p2 = 0.1. In other words, the measurements can be ideally transmitted

over the network with probability 0.6, one-step measurement delay can occur with probability 0.2, two-step

measurement delay can occur with probability 0.1, and the measurements are missing with probability 0.1.

With the prescribed parameters, Problem 1 can be solved by using the Matlab LMI toolbox [2]. As a result,

the minimum noise attenuation level bound is γopt = 3.2086, and the parameters of the robust H∞ filter are

given by

G =

[

−0.0461 0.1991

−0.0848 0.0511

]

, K =

[

0.0359 0.1523

0.0912 0.4262

]

, L =
[

1.0044 1.9988
]

.

The time-domain simulation of the above filter is shown in Fig. 2∼Fig. 3. Here, the disturbance noise is

taken as

wk = exp(−k/30) × nk,

where, at time k, nk is a random variable of uniform distribution on [−1, 1]. The uncertain parameter θ is

randomly set to be θ = 0.3192. The dashed line in Fig. 2 is zk and its estimation ẑk is given by the solid line.

In Fig. 3, the plot of actual disturbance attenuation level γk versus time k is provided, from which we can see

that γk is always less than the worst case disturbance attenuation level γ2.

Case 2: In this case, we will show how the probabilities in the measurement equation affect the H∞

performance of the filtering process, and the advantages of the parameter-dependent and the delay-probability-

dependent approaches. To this end, for simplicity, we fix p1 = p2 = 0.1 and let p0 vary from 0 to 0.8 with

the interval 0.1. We solve Problems 1∼4 by using Matlab LMI toolbox and show the relationship of p0 versus

γopt in Fig. 4.

In Fig. 4, the solid line stands for the result from parameter-dependent and delay-probability-dependent

approach (PdDPd); the dotted line stands for the result from parameter-independent and delay-probability-

dependent way (PiDPd); the dash-dotted line stands for the parameter-dependent and delay-independent

method (PdDi); and the dashed line stands for the parameter-independent and delay-independent result

(PiDi). From Fig. 4, we can intuitively obtain the following two relations. One is the relation between H∞

performance of the filtering process and the measurement missing probability, that is, a better performance can

be achieved with less measurements missing. Another relation we can get from Fig. 4 is that for all possible
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Fig. 3. The actual disturbance attenuation level γk versus time k.

measurements, the parameter-dependent and delay-probability-dependent approaches can achieve the best

H∞ performance in the four approaches, while the parameter independent and delay independent algorithms

correspond to the worst result. This clearly demonstrates the less conservatism of the parameter-dependent

and delay-probability-dependent approaches.

Case 3: In this case, we discuss the conservatism of the delay-probability-dependent and delay-independent

approaches. Again, we let p0 = 0.6, p1 = 0.2 and p2 = 0.1, and for simplicity, we impose that d1 = d2 = d, and

d varies from 1 to 10. Simulation results are shown in Fig. 5, which indicates that in the case of a small delay,
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the delay-probability-dependent result (PdDPd) is observably less conservative than the delay-independent

one (PdDPi), whereas the conservatism of these two approaches are about at the same level in the case of a

large delay.
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Fig. 5. d1 = d2 = d versus the sub-optimal H∞ performance γopt.

VI. Conclusions

The problem of robust H∞ filtering for a class of networked systems with multiple state delays has been

considered in this paper. A unified representation simultaneously describing data missing and measurement
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delay has been proposed. A parameter-dependent and delay-probability-dependent approach has been used

to get a less conservative result. The robust H∞ filter has been designed in terms of feasible LMIs, which

guarantees the exponentially mean-square stability of the filtering error system as well as a prescribed H∞

performance requirement for all possible observations and all admissible parameter uncertainties. Sub-optimal

filter design problems are also provided by optimizing the H∞ filtering performances. Moreover, our method

can be extended to deal with the corresponding robust H∞ control problem of networked systems.
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