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A e CM*xM
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oi(A)
o(A)
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X0
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streamwise(x) wave number, cycles per 27 distance
spanwise(z) wave number, cycles per 2w distance
synchronic transient energy bound at time ¢
synchronic error energy bound at time ¢

eigenvalue in synchronic transient energy bound eigensystem
wall-normal vorticity perturbation

1 Fourier coefficient at wavenumber pair «, 3
diachronic transient energy bound

diachronic error energy bound

estimated energy bound

ith eigenvalue

diagonal eigenvalue matrix

molecular or kinematic viscosity

fluid density

ith singular value of A

spectral norm or largest singular value of A

modal amplitude vector, [co, ... ,CM]T
initial y, at time ¢ = 0
matrix of right eigenvectors
ith right eigenvector
frequency
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Roman Symbols

Ac RMXM
Bc RMXP
C ¢ RY*M
an € C

Ci

E(t)
Epa(t)

EError (t)
Ey

Epair,bound

h

I

J

K e RPXM
Le RPXM

XError € RM
XWorst € RM

M
XError,Worst eR

X € RM
X e RM
Y € R¥
Un
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system matrix

input matrix

output matrix

multiplying co-efficient for n*”* Chebyshev polynomial
amplitude of mode ¢

transient energy, X7 QX, at time ¢

estimated transient energy, XTQX, at time ¢

error energy (X — X)T Q (X — X), at time ¢

E of worst open-loop perturbation of maxwv = 0.0001, at £ =0
2.26 x 107°

upper bound on mode pair energy growth

channel wall separation

identity matrix

V-1

state feedback gain matrix

estimator gain matrix

highest Chebyshev polynomial degree used, final collocation point index
pressure

steady base flow pressure

pressure perturbation

state variable weighting (energy) matrix

control weighting matrix

Reynolds number

control weight multiplier

measurement noise weight multiplier

invertible matrix for conversion between state variables and v, 17,
excludes next-to-wall velocities and wall vorticities
time

streamwise, wall-normal and spanwise co-ordinates
flow velocity vector

steady base flow velocity

U, at centreline

velocity perturbation vector

u, v, w Fourier coefficients at wavenumber pair «, 3
control vector

measurement noise power spectral density

process noise power spectral density

state variable vector

state estimates vector

estimate error vector, X — X

X(t = 0) which generates 6

X grror(t = 0) which generates O,y

X transformed to v, 7 values at collocation points
state variables transformed to Ql/ 2X, thus E = XTX
measurement vector

y at n'» Chebyshev-Gauss-Lobatto collocation point
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4 Linear Quadratic Control of Plane Poiseuille Flow

1 Introduction

Laminar flow is characterised by a smooth flow-field in which adjacent layers of fluid undergo shear.
Turbulent flow is characterised by an unsteady flow-field in which fluctuations of widely varying length
and time scales cause large amounts of mixing between adjacent layers of fluid, in a self sustaining process.
The transition of laminar fluid flow into turbulent flow results in large increases in fluid drag, and the
prevention of transition would lead to substantial savings in the energy required to sustain the flow. The
process of transition from laminar to turbulent flow is thought to begin with the rapid growth of small
disturbances in laminar flow.

Plane Poiseuille or channel flow, the unidirectional flow between infinite parallel planes, is a simple
flow that is prone to transition. Experiments show that this flow undergoes transition to turbulence for
Reynolds number as low as 1000, for example as shown by Carlson et al. (1982).

Fluid flow-field velocity and pressure, and wall shear stresses, can be measured. The flow can be influenced
by the manipulation of the conditions on its boundaries, such as the injection and suction of fluid at the
walls, known as wall transpiration. This opens up the possibility of the control of the evolution of transition
by the feedback control of flow measurements to suitable wall actuators. The governing Navier-Stokes and
continuity equations can be used to develop plant models for the synthesis of controllers. Linear plant
models are often based on spectral analysis of the linearized Navier-Stokes equations, e.g. as performed by
Baramov et al. (2001), Bewley and Liu (1998), and Joshi et al. (1999).

Experiments to detect transition, even in such a simple flow, are difficult and expensive to perform,
but computational fluid dynamics (CFD) has progressed to the stage where it can be used to simulate
the performance of controllers. Baramov et al. (2001) used specialised finite-difference full Navier-Stokes
solvers, and the widely cited work of Bewley et al. (2001) employed hybrid spectral finite-difference full
Navier-Stokes solvers. However little use has been made of finite-volume CFD codes other than that by
Balogh et al. (2000) testing low speed global Lyapunov stabilization, although their use is widespread in
other fields, for example see Yeoh et al. (2004).

Although plane Poiseuille flow undergoes transition to turbulence for Reynolds number as low as 1000,
it is known to be linearly stable at Reynolds numbers below approximately 5772, as calculated by Orszag
(1971). The occurrence of transition in the linearly stable regime is thought to be due to large transient
energy growth causing non-linear effects. Transient energy growth is the amplification of the kinetic energy
contained in an initial perturbation. Trefethen et al. (1993) note that the large transient energy growth
is itself due to non-normality of the system eigenvectors. Hinrichsen et al. (2002) have investigated state
feedback stabilization with guaranteed transient bounds and Whidborne et al. (2005) have derived con-
trollers which minimise maximum transient energy growth. Although non-normal behaviour is the cause
of the transient growth, little is known regarding the pairs of modes involved.

This paper describes the synthesis of optimal linear quadratic controllers using a state-space model of
plane Poiseuille flow. This work is not the first to use linear quadratic control for plane Poiseuille flow.
Joshi et al. (1999) described the application of linear system theory to a stream function formulation of
linearised plane Poiseuille flow, limited to streamwise/wall-normal disturbances. The paper by Bewley and
Liu (1998) is seminal, and to some extent, the work described here is motivated by their results from
investigations of control of a spectral linear velocity /vorticity model at a single wavenumber pair using an
interpolating basis for wall-normal behaviour.

Here, in contrast to the approach of Bewley and Liu, the state-space model employs a polynomial wall-
normal basis derived by McKernan (2006), which, using a rigorous application of the boundary conditions,
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produces a system free of spurious eigenmodes, and leads to control via rate of change of wall-normal
transpiration velocity. Furthermore, the transient energy matrix is rigorously derived, and tuned process
noise covariance matrices are investigated. In addition, the controllers synthesized are subsequently tested
in a full model of the flow, namely a finite-volume non-linear Navier-Stokes solver. Thus the controllers are
tested using a well tried non-linear algorithm which is completely independent of the development model.

Like Bewley and Liu, a single wavenumber pair is controlled, and the pair selected represents streamwise
vortices, which lead to the largest transient energy growth. These perturbations are streamwise constant,
which allows the subsequent finite volume simulations to be two-dimensional.

Section 2 and 3 briefly introduce plane Poiseuille flow and the linear plant model. For a full derivation
of the model see McKernan (2006). Section 4 describes the synthesis of optimal state feedback controllers
and optimal state estimators. The controllers are linear quadratic regulators (LQR), which are optimal
in the sense of minimising a quadratic cost functional of the weighted state variables and control inputs.
The estimators are linear quadratic estimators (LQE), which are optimal in the sense of minimising
the expectation of the state estimation errors, given weighting matrices which represent the process and
measurement noise covariances. The section also describes the selection of appropriate weighting matrices.

Section 5 describes the linear and non-linear simulations undertaken on the open- and closed-loop sys-
tems. The open-loop (OL) systems comprise the plant model with LQE state estimator and the closed-
loop systems comprise the plant model with state feedback LQR control, and with output feedback linear
quadratic Gaussian (LQG) control, the latter formed by employing both the LQE estimator and LQR
controller. The section states the derivation of the worst initial conditions and the conditions for minimum
transient energy growth, and derives plant modal and non-modal energy terms and an upper bound on
mode pair energy growth.

Finally section 7 draws conclusions regarding the controller and estimator synthesis, and the controller

and estimator performance in the linear and non-linear simulations.

2 Plane Poiseuille Flow Control

Incompressible fluid flow is described by the Navier-Stokes and continuity equations. The Navier-Stokes
equations (1) form a set of three coupled, non-linear, partial differential equations representing conservation

of momentum, and the continuity equation is an additional constraint representing the conservation of mass

(2);-

0+ (ﬁ-v)ﬁ:—lwuﬁv?ﬁ (1)

V-U=0 (2)

where ﬁ, P, p, 1 are velocity, pressure, density and viscosity respectively.

Laminar Poiseuille flow has a parabolic streamwise velocity profile, with no slip occurring at the bounding
parallel planes. It undergoes transition to turbulence when small disturbances @ = (u, v, w),p about the
steady base profile, ﬁb = ((1 — Uy, 0,0) , Py, grow spatially and temporally to form a self-sustaining
turbulent flow. If the equations for the perturbations are made non-dimensional by dividing length scales
by the channel half height h, velocities by the base flow centreline velocity U, and pressures by pUCQl,
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they become

= -Vp+ =V3 (3)
V-i=0 (4)

where R is the dimensionless Reynolds number pU.h/p.

The no-slip wall boundary conditions in plane Poiseuille flow are replaced by prescribed wall transpiration
velocities when boundary control is implemented, (u(y = +1) = 0,v(y = +1) # 0, w(y = £1) = 0).

In this paper, disturbances # which vary in the wall-normal (y) and spanwise (z) directions are investi-
gated, with no variation in the streamwise direction (x). This paper also approximates the infinite extent
of the flow by a periodic representation, such that the flow disturbances may only grow in time, but not

in space.

3 Linear Plant Model

Boundary control of the linearized Navier-Stokes equations in a channel, assuming periodic behaviour at

streamwise (z) and spanwise (z) wavenumbers « and [ respectively, may be cast in state-space form as

X =AX +BU
Y = CX (5)

where the states X are wall-normal velocity ¢ and vorticity 7 (Ou/0z — Ow/0dz) perturbation Chebyshev
series coefficients a in the wall-normal direction (y), plus the upper and lower wall velocities v, and ¥

respectively

Gy,n=0,...,.N—4
an,n=0,...,N—2
X — mn Na 3 (5A)
Uy,

Uy

where N is the discretisation parameter (for further details see McKernan, 2006, p36). The measurements
Y are shear stresses on the upper and lower walls, and the inputs U are rates of change of transpiration
velocity on the upper and lower walls. Since these are rates of change, the system contains two integrators,
each with an eigenvector representing steady state transpiration from a wall. This situation arises since, for
this linearised flow model, steady transpiration at a set velocity merely superimposes a velocity flow field
on the existing perturbation. Only by varying the transpiration velocity does the existing perturbation
flow field change dynamically.

The coefficients of the Chebyshev series, shear measurements and transpiration velocity are complex
since they convey the spatial phase of the wavenumber pair perturbations, but the state-space system is
here made real-valued by decomposing them into their real- and imaginary-valued parts (Hinrichsen and
Pritchard, 2005, p720). The test case considered here is « = 0,8 = 2.044, R = 5000. This test case is
stable but has the largest diachronic transient energy bound, i.e. the largest linear transient energy growth



May 2, 2007

17:26 International Journal of Control ijc

J. Mckernan, J.F. Whidborne and G. Papadakis 7

over all unit initial conditions, time and «, 3, and represents the very earliest stages of the transition
to turbulence. Modelling turbulence itself would involve using many more degrees of freedom. For a full
derivation of the model see McKernan (2006).

4 Controller Synthesis

4.1 Optimal State Feedback

The standard LQR control problem states that given the open-loop system or ‘plant’, (5), the feedback

control signal that minimizes;-

/ﬂXX@FQX@y+U@FRU@»ﬁ (6)
0

is given by U = —KX where K = R !BTP and P = P” > 0 is the solution of the algebraic Riccati

equation
ATP+PA-PBR 'B"P+Q =0 (7)
where Q and R are weighting matrices. The closed-loop state feedback LQR system is

X = (A-BK)X
Y =CX (8)

The state feedback controller K is the optimal for all initial conditions (Skogestad and Postlethwaite, 1996,
p354).

In most problems the weighting matrices are tuned by hand. However, for a fluid system this is not
practical because of the large number of state variables. Furthermore, it is useful to employ a weighting
matrix Q that is defined independently of the chosen state-space basis since then there is freedom to
alter either. It is also helpful if the weights are defined independently of the level of discretisation, in order
to make interpretation of results easier, as recommended by Lauga and Bewley (2004). Bewley and Liu
(1998) suggests that a natural choice for the matrix Q is such that X7 QX represents the discretized form
of the transient energy F,

=T —
E = %/wl:v p% dvol 9)
where FE has dimensions energy per unit volume, and # is the perturbation velocity vector. This choice
of Q is independent of the definition of the state variables, is independent (in the limiting case) of the
discretisation N, and also means that the LQR problem (6) minimises E in some sense. This evaluation
of the transient energy requires that the state variables remain physically meaningful, and thus model
reduction is not possible.

Matrix Q effectively performs quadrature on the wall-normal velocity v, velocity derivative
0v/0y and vorticity 7 values at the collocation (discretisation) points across the channel. The
state variables and thus the energy matrix employed in this paper are based on a polynomial
Chebyshev form with the channel wall and next-to-wall Navier-Stokes equations omitted,
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and the highest order Chebyshev series coefficients a (5A) discarded, as required during
the application of the boundary conditions, as described in McKernan (2006). The velocity
derivatives are obtained via well-behaved algebraic differentiation of the Chebyshev series.
The polynomial form is amenable to the coefficient discarding described above, due to the
spectral decay of the coefficients, and analytical and numerical tests validate the expression
used here for Q on distributions of velocity and vorticity which fulfill the open- and closed-
loop boundary conditions.

The state variables and energy matrix derived by Bewley and Liu (1998, p312) are based
on an interpolating Chebyshev form with the channel wall values omitted. Quadrature on
velocity and vorticity values in the open-loop case when the wall values are zero is appro-
priate, and a small approximation in their contribution to the transient energy occurs when
the wall-velocity is non-zero in the closed-loop case, as some energy very close to the wall
is neglected. However, omitting the channel wall values in the closed-loop case, when the
wall velocity values are not zero, leads to the interpolating form assuming zero wall values,
and this produces well-known high order interpolation oscillation (Press et al., 1986, p77)
and in particular large and inaccurate derivatives at collocation points as subsequently used
by quadrature of the velocity derivative in the calculation of the transient energy. For this
reason no meaningful comparison can be made with Bewley’s closed-loop results.

Regarding control weightings, we set R = r2I, thus allowing variation of control magnitude, while

maintaining equivalent real and imaginary control effect on both walls.

4.2 Optimal Estimation

The standard LQE control problem assumes that the system has disturbance and measurement noise input

processes wy and w, respectively

X = AX + BU + wy
Y = CX +w, (10)

and that the noise inputs are uncorrelated, zero-mean, Gaussian stochastic processes with constant power
spectral density matrices V and W (Skogestad and Postlethwaite, 1996). Thus w,; and w, are white noise

processes with covariances;-
E{wiwg} = Wé(t — 1), E{wlw,} = Vit —7), E{wiw,} =0, E{wlw;} =0 (11)
where E is the expectation operator . The theory states that for an LQE state estimator

X:AX+BU+L(Y—CX) (12)

where X are the estimated state variables, the optimal estimator gain L that minimizes;-

m{[x-x] [x-x]} (13)
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is given by L = PCTV ! where P = PT > 0 is the solution of the algebraic Riccati equation
PAT + AP -PC'VTICP+W =0 (14)

The statistical properties of the noise inputs on the present system are unknown, and so the matrices V
and W can be treated as tuning parameters, in order to achieve an estimator of acceptable performance.
Reasonable tuning assumptions can be made if the system state variables X are transformed from velocity
and vorticity Chebyshev coefficients into velocity and vorticity values o(yx) and 7(yy) respectively at the
collocation points yj, = cos mk/N

X,, = U(?{k,k:O,Z,...,NfZ,N) (14A)
7Yk k=1..N-1)

by means of the transformation T, (McKernan, 2006, p36). The system becomes;-

Xep = Top AT, X + Te,BU + g
Y = CT,' X, + wy (15)

Bewley and Liu (1998, p314) assumed that the process noise power spectral density W' is a unit matrix,
and estimators synthesized using this assumption will be referred to as ‘uniform’ estimators.

However, being in the state space of velocity and vorticity values at collocation points allows the covari-
ance between these physically meaningful values to be set as a function of the locations of the collocation
points. Here the covariance between pairs of variables is set as

2 2
(L =92 ) = ¥ j1 ko2, N 2N 0

W =
0 (1= i) (1 - yl%Q)]kl,kQ:l...N—l

(16)

where yp1,yr2 are the locations of pairs of state variables k1 and k2 in collocation point value form
Xcp. This choice implies that the covariance between velocity state variables at locations yj; and ygo
is (1 —y2,)(1 — y,), and similarly between vorticity state variables. Estimators synthesized using this
assumption will henceforth be referred to as ‘tuned’ estimators.

For tuned estimators, when k1 = k2, W represents the variance of the noise on a single state variable,
which therefore varies as (1 — y7,)?. Thus disturbances on a single state variable have a higher standard
deviation (the positive square root of variance) at the centreline (y = 0), than near the walls (y = £1).
These variances are compatible with velocity disturbances near the centreline being more variable than
those near the walls and similarly for vorticity disturbances. At the walls, the velocities are set reasonably
accurately by the controller, so they are given small variance (1073).

When k1 # k2, W represents the covariance of a pair of state variables. Pairs close to the walls have
low covariances, whereas pairs close to the centreline (y = 0) have high covariances. Pairs where one state
variable is near a wall, and the other near the centreline have covariances in between. These covariances
are compatible with velocity disturbances near the centreline being physically larger than those near the
walls and similarly for vorticity disturbances. The covariance between velocity and vorticity state variables
is set to zero. These covariances vary smoothly over the collocation point state variables, and many other
such distributions are possible e.g. those proposed by Heepfiner et al. (2005).

By the symmetry and independence of the measurements (upper and lower wall, real and imaginary
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Fourier components of shear stress), it is reasonable to assume that the measurement noise covariance is
V = s, where s is a positive tuning parameter, which scales the measurement noise against the process
noise.

An estimator L designed in terms of these velocity and vorticity state variables, may be transformed
back for use on the untransformed state variables as Tc_plL.

4.3 Closed-Loop LQG Output Feedback System

The combined plant, LQR controller and LQE estimator may be combined into an LQG output feedback

system, with dynamics
X X 10
| = S| T+ wd (17)
X X OL | |wy,

where the estimate and state dynamics are not independent but are intentionally coupled. If the system
is recast in terms of estimator error Xgppor = X — X they become

X X IO
. L= - |+ wd (18)
X-X X-X I-L||w,
and thus the estimator error dynamics are independent of the state dynamics, as predicted by the separation
theorem (Skogestad and Postlethwaite, 1996, p353).

A —-BK
LCA-BK-LC

A -BK BK
0 A -LC

5 Simulations

5.1 Initial Conditions

Plant Worst Initial Conditions. The maximum transient energy that a stable system achieves over all

time from all possible initial conditions with unit energy is here termed the diachronic ' transient energy

bound. In flow control this is a measure which is often considered in connection with non-linear effects

triggering transition to turbulence. Here, the initial conditions which generate the diachronic transient

energy bound are calculated, as performed by Bewley and Liu (1998) following Butler and Farrell (1992).
Following these derivations, the transient energy

E(t) = X" ()QX(1) (19)

is defined as measure of how far the state is from the equilibrium point, since it considers all the state
variables (in a weighted sum of squares sense). The largest possible value at time ¢ after starting from unit
initial transient energy but otherwise unknown state variables X(0)

e(t) = E%E)u:(l E(t) (20)

ldiachronic: From the Greek dia through, chronos time, from linguistics (Sykes, 1976)
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is here termed the synchronic ? transient energy bound . The diachronic transient energy bound 6 is defined
as the largest synchronic transient energy bound possible over all time

0= t 21

max e(t) (21)
This may be determined as follows. If the system is diagonalizable, the state variables evolve with time ¢
as

X (t) = ey (22)

where A is a diagonal matrix of the eigenvalues, ¥ is the right eigenvector matrix, and yg is a vector of
unknown initial modal amplitudes.
Thus

e(t) = max  xg et UTQUeMy, (23)
Xg‘I’TQ‘I’XOZI

and €(t) is given by a solution of
0/0xo (XN BT QUeNy, — ¢ (XT(0)QX(0) ~ 1)) =0 (24)

by the method of Lagrange multipliers, where { is the multiplier of the constraint equation. After differ-
entiation by xg

T T T
(eA TQUeMyg + (XUTeA t\I/TQ\I/eAt) ) —¢ (\I/TQ\I/XO + (XOT\IITQ\I/)T> —0 (25)
Noting Q is symmetric, the final form is a generalised eigenproblem with eigenvector y; and eigenvalue (;
AUTQUEM X, = GIT QX0 (26)

Premultiplying by Xaia it is evident that €(t) = max; ;. The initial state variables which generate this
synchronic transient energy bound are given by Xy,orst = Uxo,;-

The synchronic transient energy bound may also be cast as the square of the spectral norm of the state
transition matrix e, e.g. Lim and Kim (2004) and Whidborne et al. (2004),

e(t) = 52 (M) (27)

where A = Ql/ 2AQ71/ 2. This form requires full matrix exponential evaluations, which, as Moler and Van
Loan (2003) point out, may be unreliable, whereas in (26) A is diagonal, and the terms of the exponential
matrix may be evaluated as scalars.

For a stable system the diachronic transient energy bound 6 of €(£) over all time ¢, can be found by a search
technique. Henceforth the associated initial conditions are referred to as the “worst” initial conditions. For
the open-loop system worst initial conditions, A and ¥ are the eigenvalues and eigenvectors of the system
matrix A. To prevent the involvement of the steady-state transpiration modes, the system matrix must be

2synchronic: From the Greek syn alike, chronos time, from linguistics (Sykes, 1976)
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taken from a form with control by wall-normal velocity, rather than by its time derivative. For the state
feedback system, A and U are the eigenvalues and eigenvectors of the closed-loop system matrix (A-BK).

Estimator Energy. In a similar manner to the transient energy (19), the estimated transient energy may
be defined

Epa(t) = X' (HQX (1) (28)

as measure of the energy that the estimates X represent. The growth of the estimates is related to the
growth of the states they attempt to reproduce (17), and this measure of estimator performance is used in
the presentation of simulation results. Proximity of plant energy and estimated energy does not guarantee
that their states are also close.

The error energy may be defined

Egrror (t) = Xgrmr (t) QXError (t) (29)

as a measure of how far the estimates X, are from the actual state variables X, where X gppor = X — X.
The growth of the estimator errors X gyror and thus of Fg..or is independent of the growth of the states
the estimator attempts to reproduce (18). This measure of estimator performance is used in the tuning of
estimator weights.

Estimator Zero Initial Conditions. The estimated energy bound, Ogg, is defined as the largest error
energy, Epyror, during a simulation of the system from the worst plant initial conditions Xyy,,st, and zero
estimator initial conditions, X(0) = 0, that is X grror(0) = Xiworst (0).

Estimator Worst Initial Conditions. The largest possible value of error energy, Ep,ror, at time ¢, after
starting from unit initial error energy but with otherwise unknown estimator error X(0) gyror, is given by
the synchronic error energy bound

€Error (t) = EETI:?&%):I Egrror (t) (30)
The Diachronic Error Energy Bound g,y is defined as the largest synchronic error energy bound growth
possible over all time

OBrror = I?ZaOX €Error (t) (31)

The synchronic error energy bound may be determined from the generalised eigenproblem with eigenvector
x; and eigenvalue (;

eATt\IfTQ\IfeAth,i =G QU (32)

where W and A are the right eigenvectors and eigenvalues respectively of the estimator system matrix
A — LC. The synchronic error energy bound €g,ro is max; (; and the initial estimator errors which
generate this are given by Xgrrorworst = ¥X0,:-

The diachronic error energy bound 0g,.., may be determined by a similar search of €g,or Over time to
that used for the diachronic transient energy bound 6.
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Modal and Non-Modal Components of Kinetic Energy Density in a System Transformed such that
~ ~ T ~ ~

Q = I . If the state variables X are transformed to X such that E(t) = X X then X = Q'/?X and the

state-space form (5) becomes

X = Q!2AQ"'/2X + BU
Y =CcQ'/’X (33)

Substituting the expression for the evolution of state variables (22) into the expression for perturbation
energy (19) produces

BE(t) = x4 Mt uTweMy, (34)

—-1/2

where U is the matrix of right normalised eigenvectors ; of Ql/ 2AQ , and A is a diagonal matrix

containing the eigenvalues );, which are all assumed stable. If these eigenvectors are orthogonal, i.e.
T =1, then

B(t) = xg M +ig, (35)

which decays monotonically for all yg, as the eigenvalues A are stable, and thus the diachronic transient
energy bound @ is unity as shown by Whidborne et al. (2004). If the eigenmodes are not orthogonal

L (1 th2) (41 -93) ...
(o -1pr) 1 (o -1b3) ...

Ty —
= (V3 -91) (P3-42) 1

(36)

where (1; - 1;) = ¢I'1;. The energy can then be represented as per McKernan et al. (2005)

N N,j#i

N
:Zcfcie(A?+A t+z Z CTC] 'l/)z 'z,b]) A +Aj)t (37)
1=1

i=1 j=1

where (cg, ...,cn)T = Xo. The terms of the first summation of (37)

N

D et (38)

are the modal terms. They are positive for all ¢; and decay monotonically, and cannot lead to any energy

increase. The terms of the second summation

N,j#i

N
Z CTC] z,bl z,b] )\ +)\j)t (39)

i=1 j=

—_

are non-modal. They decay in magnitude, at different rates to the first summation, and can lead to energy

increase when either
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i) they are negative, that is if ¢l ¢;(1; - 1) is negative. The second term in (37) provides an upper bound
Epairpound = max(0, —R(c! ¢;(1); - 1)) on the energy growth possible from ordered mode pair 4, 5.

ii) they oscillate, that is if S(A7 + Aj) # 0. The second term in (37) provides an upper bound E,qr pound =
‘cchj(i/)i . 1/)9-)‘ on the energy growth possible from ordered mode pair 7, j.

Of course, all dissimilar-mode pairs in the system may contribute to the aggregate energy growth, or
reduce energy growth by simply decaying, as all the individual modes do, and, in the absence of repeated
eigenvalues, all at different time constants.

It is noteworthy that if the system eigenvectors cannot be made accurately orthogonal by the introduction
of control, selecting instead a system with the lowest dot products (¢; - 1;) will not necessarily lead to the
lowest diachronic transient energy bound due to the presence of the other factors ClTCj and e AL in
(37), and since, for the bound, ¢; are selected to maximise the transient energy growth, within the overall
constraint E(0) = (cg,...,cn) " (coy---,en) = 1.

Differentiating (38) the modal energy growth rate terms are

cchi ()\ZT + )\i) e HAt (40)
i=1
which have an upper bound of zero, whereas the non-modal growth rate terms are

N,j#i
> dlei(hi- ) (AT + ) NP (41)

i=1 j=

—

which are not bounded above by zero.

Modal and Non-Modal Components of Kinetic Energy Density in a System with Q # I . If the state
variables X are not transformed, then substituting the expression for the evolution of state variables (22)

into the expression for perturbation energy (19) produces
E(t) = xo" e 0T QUeMyy (42)

where U is the matrix of right normalised eigenvectors 1; of A, and A is a diagonal matrix containing
the eigenvalues A;, which are all assumed stable. The condition which guarantees modal and therefore
monotonic decay is U7 QU = diag(dy,...,dy),d; > 0Vi, since then

E(t) = XUTeATtdiag(dl, . ,dN)eAtXU
N
= Z c;fre)‘iTtdie)"'tci (43)
i=1
which decays monotonically for all xo. This may be interpreted as ¥7 QU not coupling any modes by being

diagonal and thus preventing non-modal behaviour, and also being positive definite, and thus ensuring
modal energy decay rather than growth.
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5.2  Simulations

The state-space model is coded in Matlab™, and controllers and estimators synthesized for a range of
weighting parameters. Final controllers and estimators are selected on the grounds of lowest energy bounds.
Detailed linear simulations are performed for the open-loop, state feedback and output feedback systems,
from the worst initial conditions, using the Matlab function 1sim.

A finite-volume computational fluid dynamics (CFD) Navier-Stokes solver is used for the non-linear
simulations. This solver makes no assumption of spectral behaviour, solves the full non-linear Navier-
Stokes equations, and is completely independent of the spectral code used for the controller synthesis
and linear simulations. See (McKernan, 2006) for details of the solver code, and of the modifications
required, together with descriptions of the meshes, fluid properties, and boundary conditions, and of the
implementation of the controller into the code.

6 Results and Discussion

This section describes the results of controller and estimator synthesis, and linear and non-linear simula-
tions of the open-loop, state feedback and output feedback systems from the worst initial conditions. A
wall-normal discretisation of N = 100 is used, to ensure convergence with N, except where the issue of
convergence itself is investigated. As the wall-normal discretisation method is based on Chebyshev series it
converges exponentially (Boyd, 2001, p46). Since the rate of convergence is so fast, successful convergence
is assessed by graphical inspection.

6.1 Controller synthesis

LQR controllers are synthesized for a range of control weights r = 2'...2'" by solving the algebraic
Riccati equation (ARE) (7) with R = 721, for discretisation N = 100. The Matlab Release 11 functions
care (called via 1qr) and aresolv, with both eigen and schur options are used, to investigate which
performs best on such a large system. The Matlab function aresolv option eigen, produces the lowest
relative residuals i.e. the Frobenius norm of the residual divided by that of the solution ||ric(P)||z / [|P|| -
These residuals are less than 10, and are of acceptably small magnitude. The function reports that the
problem is well posed, implying no particular problems solving the equation for such a large system, at
least for this system and range of weights, although numerical problems arise outside this range. Other
library routines, such as Slicot slcares (Benner et al., 1999; Van Huffel et al., 2004), and newer techniques,
such those derived by Morris and Navasca (2005), may be able to extend the range of weights.

The variation of diachronic transient energy bound with control weight r is shown in figure 1. Several
discretisations IV are shown, and convergence with IV is relatively fast and has occurred by N = 30. The
continued convergence at high N again demonstrates the existence of few problems solving this particular
system when N is very large. The range of weights is appropriate for controller synthesis, since it covers
convergence at low r, where the control effort is large and the energy is small. As the control weight rises,
the control effort falls, and thus the energy bound rises. The variation here is monotonic, but need not
be if very high control (very low weight) itself increases transient energy, as investigated by McKernan et
al. (2005). A value of r = 128 was selected for subsequent simulations, as this produces almost the lowest
diachronic transient energy bound, without being unnecessarily small, which would lead to unnecessarily
large control effort. Low diachronic transient energy bound implies low transient energy over all unit
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energy initial conditions and all time, thus reducing the possibility of non-linear behaviour and transition
to turbulence.

6.2 Estimator synthesis

LQE estimators are synthesized for a range of measurement noise weights s, by solving the algebraic
Riccati equation (ARE) (14) with V = sI, using the Matlab functions care (called via 1ge) and aresolv,
with both eigen and schur options, for N = 100. The Matlab function aresolv option eigen generally
produces the lowest relative residuals, less than 10~7 for the tuned estimator, and the function reports
that the problem is well posed. The residuals are of acceptably small magnitude, but not as small as those
found during the synthesis of controllers.

Good estimator performance requires that the estimator poles be faster (real part more negative) than
the plant poles. However, the current plant has a large number of poles, the faster ones of which are not
known accurately, and it is not feasible to make the slowest estimator poles faster than these.

Convergence of Estimated Energy Bound g, with N is relatively slow, as compared to that of the
controller, and does not occur until N = 70, which is consistent with the behaviour of the wall eigenvector
gradients used for observation as found by McKernan (2006).

The worst estimator initial error conditions Xgrror,worst are found to be very exacting, since they
lead to growth of diachronic error energy bound Og,or of comparable magnitude to the plant diachronic
transient energy bound. Since the estimators are stable and their states converge upon the plant states,
it is difficult to see how such estimator initial conditions could occur. In contrast, zero estimates X=0
are to be expected upon initialisation of the estimators, implying initial errors equal to the plant initial
conditions, X grror = Xiworst-

Furthermore, for the LQG controller, both plant and estimator initial conditions need to be selected. It
is not clear how to select the relative magnitudes of the initial plant energy and estimator error energy,
since the plant energy is a physical quantity which leads to transition, whereas the estimator error energy
is not. Again, zero initial estimates are a reasonable assumption to make.

Accordingly, zero initial estimates are selected in preference to the worst estimator initial error conditions
for further simulations in the present work. Plots of estimated energy bound and slowest estimator pole
(McKernan, 2006) favour the use of the tuned estimator over the uniform estimator, at low measurement
noise. A weight of s = 276 ~ 0.0156 is selected for further work, as this produces close to the lowest
estimated energy bound.

6.3 Initial Conditions

Synchronic Transient Energy Bound € vs Time. Figure 2 shows open-loop synchronic transient energy
bound, €(t), against time. As the eigenvalues in the test case are real and stable, the only mechanism for
growth is non-modal, and this is confirmed by the non-linear nature of the logarithmic plot. The graph
of the synchronic transient energy bound against time is convex, and so there are no root bracketing
problems. A golden section search (Press et al., 1986, p277) produces a maximum at 4896.94 at t = 379.16
and thus 0 = 4896.94. This value compares well with 8 = 4897 at ¢ = 379 as reported by Butler and Farrell
(1992, p1647). A bisection search (Press et al., 1986, p246) based on the criteria X7 AX = 0, as described
by Whidborne et al. (2004) proves inaccurate in this case.

As shown from (27), the synchronic transient energy bound can be expressed as the square of the spectral
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norm of the state transition matrix. Now the Frobenius norm squared provides a upper bound on the square
of the spectral norm, and 1/ min (I,m) times the Frobenius norm squared provides a lower bound, where
the matrices are [ by m (Skogestad and Postlethwaite, 1996, p520). Figure 2 also shows the Frobenius
norm of the state transition matrix and it can be seen that the synchronic transient energy bound €(t)
lies within the correct bounds. The corresponding plots for the LQR controlled systems are qualitatively
similar to figure 2.

Investigation of Open-Loop and Closed-Loop Diachronic Transient Energy Bound 6. Investigations of
the modes which lead to maximum open-loop diachronic transient energy bound are performed. For the
remainder of this subsection, the state variables employed are transformed to X, as defined in section 5.1
such that E = XX, and the eigenvectors are expressed in the same state variables, and normalised to unit
magnitude, unless stated otherwise. Eigenvectors are in order of increasing eigenvalue stability.

Figure 3 shows a bar chart of the dot product between pairs of modes from 1 to 25. The main diagonal
has unit magnitude, due to the normalisation chosen. The next highest dot products are on the adjacent
diagonals, corresponding to mode pairs comprising consecutive mode pairs. The dot products of consecutive
open-loop X modes, together with the vorticity 7 eigenvectors (the velocity eigenvectors are much smaller in
magnitude) appear in figure 4. It can be seen that a high dot product corresponds to vorticity eigenvectors
of similar shape (within reflection), which is to be expected since similar mode shapes imply similar state
variable vectors, and thus high dot products.

Figure 5 shows the same plot for the LQR system, for which the diachronic transient energy bound is
reduced. It can be seen that in general the modes have comparable dot-products as in the open-loop figure 4
and thus remain as non-normal or non-orthogonal as in the open-loop case. The diachronic transient energy
bound is known to be minimised to a value of unity when the modes are made precisely orthogonal but
when precise orthogonality is not achieved, as here, the effect of increasing orthogonality may not produce
the lowest energy, as shown in section 5.1, and thus the absence of a distinct reduction of non-normality
is not surprising. It is suggested that the LQR controller directly affecting the modal orthogonality is
unlikely, contrary to observations by Bewley and Liu (1998, p343).

The open-loop upper bounds on mode pair energy growth Ej,qr pound, calculated using the expressions
derived in section 5.1, from the worst initial conditions, are presented in figure 6. As would be expected, the
chart is symmetrical. Few mode pairs appear to have a significant potential for transient energy growth,
with the exception of pair 4,5.

Figure 7 shows the upper bounds on mode pair energy growth after the application of LQR control,
from the worst initial conditions. More mode pairs have a significant potential for transient energy growth,
those with the largest potential being 1,5 and 1,4. These significant pairs are not consecutive modes, unlike
the open loop significant pair 4,5. The largest upper bound of all the pairs has fallen from approximately
2.5 x 10° to 3 x 103, due to the application of LQR control.

6.4 Linear Simulations
The results of linear simulations on the open- and closed-loop systems are investigated in detail in this

section.

Open-Loop Linear Simulation. Five different plant discretisations, N = 10,20, 30, 40, 50, are simulated
and the results are presented in figure 8, of open-loop transient energy against time. The results are
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converged at N = 20 and above, showing that a low discretisation of N = 20 is adequate to simulate
the open-loop case. Since the diachronic transient energy bound is maximised over time, and larger than
one, the transient energy starts at a minimum. Here the transient energy reaches the diachronic transient
energy bound value of 4896.94 at time 379.5, close to the predicted value of 4896.94 at time 379.16 from
section 6.3, before decaying to zero. The small discrepancy is caused by the linear simulation results being
provided at discrete timesteps. Calculations using (37) show that mode pair (4,5) provides substantial
growth of transient energy as predicted in figure 6 (McKernan, 2006, p151).

LQR State Feedback Linear Simulation. As the o initial conditions are symmetrical about the centreline,
the control signal at the lower wall f)(y = —1) is identical to that at the upper wall. However, as the sense
of the upper and lower wall boundaries are reversed, transpiration suction at the upper wall, o(y = 1) > 0,
corresponds to blowing at the lower wall. Figure 9 shows the LQR control signal at the upper wall 6(y =1)
against time.

Figure 10 displays the time integral of the LQR control signal at the upper wall, namely the Fourier
coeflicient of the upper wall velocity, which has real and imaginary components to allow variations in both
the magnitude and spatial phase of the transpiration. For the test case considered here, the upper wall
transpiration velocity is imaginary, i.e. in phase with the disturbance velocity but out of phase with the
vorticity which is assumed real (McKernan, 2006, p43). The coefficient magnitude peaks at approximately
1.75, i.e. 1.75 times the base flow centreline velocity. However, this figure is for a unit initial transient
energy. The kinetic energy density of the base flow is 1/15 ~ 0.0667. For an initial perturbation energy of
10% of the base flow energy, the upper wall velocity would peak at around 1.75 x +/0.00667, approximately
0.14, and for a perturbation energy of 1% of base flow, the velocity would peak at approximately 0.045
times the base flow centreline velocity. This represents the transpiration at reasonable velocity.

The double time integral of the LQR control signal at the upper wall, namely the Fourier coefficient of
the upper wall fluid quantity transpired, versus time is displayed in figure 11. Although the net amount
of fluid transpired is zero since the distribution is sinusoidal, this coefficient represents the magnitude of
the sinusoidal distribution. The coefficient magnitude peaks at around 515, i.e. 515 times the channel half
height, for a unit energy initial perturbation. For an initial perturbation energy 1% of that of the base
flow, the quantity would peak at approximately 13.3 times the channel half height. This represents the
transpiration of a comparatively large amount of fluid, requiring a large associated reservoir or distribution
system. The final coefficient is not zero, representing a permanent transport of transpiration fluid within
each spatial period, and thus any reservoirs do not return to their initial level, but instead fluid has been
permanently moved between them.

Figure 12 presents the LQR transient energy against time. The controller is able to limit the transient
energy to 848.80, which is consistent with the value of 848.81 from figure 1, as compared to the open-loop
value of 4896.94. Thus the controller effectively limits the growth of the worst case disturbance. Three
different discretisations N are shown, and convergence has occurred for even the lowest N = 30.

The LQR controller minimises the time integral of the transient energy plus weighted control effort, from
all initial conditions, rather than the diachronic transient energy bound itself, although the diachronic
transient energy bound has been reduced from 4896.94 to 848.80 as a consequence. Calculations using (37)
show that mode pairs (1,4) and (1,5) provide substantial growth of transient energy as predicted in figure
6 (McKernan, 2006, p158).
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Open-Loop LQE State Estimation Linear Simulation. LQE estimated transient energy against time is
presented in figure 13. The tuned estimator converges on the plant energy much faster than the uniform
estimator. Figure 14 shows LQE transient energy against time, for the tuned estimator, for several dis-
cretisations NV. It is evident that the behaviour of the estimator is not fully converged below approximately
N = 50.

LQG Output Feedback Linear Simulation. Figure 15 shows the LQG transient energy and estimated
transient energy against time. The controller is able to produce an diachronic transient energy bound of
approximately 934.00, only slightly larger than the LQR state feedback value of 848.80.

6.5 Summary of Diachronic Transient Energy Bound 6 Results

As a check, table 1 exhibits a summary of the diachronic transient energy bound values of the open-loop
and LQR state feedback systems, from both the diachronic transient energy bound eigensystem (26), and
the linear simulation from the worst initial conditions. The small discrepancies are thought to be due to
numerical inaccuracies, amongst which are the discrete time steps used in the linear simulations.

Table 2 shows a summary of the diachronic transient energy bound values from the open-loop and
feedback systems, and also includes the estimated energy bound achieved by the LQE estimator on the
open-loop and LQG systems, from zero initial estimates.

6.6 Choice of Discretisation N for Controller in Non-Linear Sitmulations

The non-linear simulations require significantly more computing time than the linear ones, in the order of
days rather than minutes, on a Pentium 4™ personal computer. It is appropriate to consider the choice
of discretisation for the controllers to be applied to the non-linear models. Since no controller reduction
is employed, this equates to the discretisation of the spectral model used for the controller synthesis. The
issue of discretisation of the non-linear model itself is considered by McKernan (2006).

For the LQR controller synthesis to converge N = 30 is sufficient (section 6.1), and for the LQE estimator
synthesis N = 70 is sufficient (section 6.2). The linear simulations require N = 30 for the LQR system
and N = 50 for the LQE system (section 6.4). The more exacting requirement of LQE is thought to be
related to the convergence of the wall gradients and observability.

For the observability and wall gradients to have converged for the first 20 modes, approximately N = 100
is required according to McKernan (2006). The need for fine discretisation at the wall is well known within
the fluid dynamics community. Accordingly, controllers synthesized using a spectral model using N = 100

are used within the non-linear simulations.

6.7 Non Linear Simulations

A linear controller synthesized using a linearisation of a non-linear model will be able to stabilise the full
model given initial conditions near the linearisation equilibrium point, and provided the trajectories do
not stray far from the equilibrium point. However, if large transients take trajectories far away from the
equilibrium point, non-linear effects may predominate and the system may not be stable.

This section explores the performance of the controllers on a non-linear model of the plant, from small
and large initial perturbations. The non-linear simulations presented here cannot become fully turbulent
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as they are not three-dimensional, but they are capable of accurately modeling the initial evolution of
instabilities.

Small Perturbation Results. For the small perturbation simulations, the open-loop initial maximum o is
10~4U,;. This value corresponds to an initial transient energy of Ey (2.26 x 10~?), and has been shown
by McKernan (2006, p166) to induce less than 1% non-linearity (as defined by the ratio of non-linear
convection (- V)i to base flow convection (ﬁb : V) @ in the Navier-Stokes equations (3) ) in a region
that covers more than 90% of the flow field area. Closed-loop worst initial conditions of equal transient
energy to the corresponding open-loop case are used.

Results from non-linear finite-volume CFD simulations from small perturbation initial conditions are
generally close to those from the spectral linear simulations, despite the fact that the finite-volume and
spectral simulation codes have been independently developed. The only exception is the behaviour of the
estimator in the LQG output feedback simulations, which shows a small discrepancy, although the plant
energies agree well.

These small perturbation non-linear simulations show agreement between peak transient energy as com-
puted from the states by F = X7 QX and as calculated by direct integration over the mesh using (9)
to within 0.3% for the LQR system. This result shows that the calculation of the states is substantially
correct, and also that the energy matrix Q is correctly formulated.

Large Perturbation Results. For the large perturbation simulations, the initial transient energy is 10* Ej,
corresponding to an open-loop initial maximum @ of approximately 10~2U,.

Open-Loop Non-Linear Simulation. The open-loop transient energy time history, from this larger initial
perturbation, for both linear and non-linear simulations, is displayed in figure 16. The linear and non-
linear simulations agree initially for a period of non-normal growth up to time approximately 50 units.
Thereafter the linear simulation increases to complete the non-normal growth to transient energy of 0.111,
corresponding to an diachronic transient energy bound of 4896.94, and thence continue with decay, but the
non-linear simulation reaches a saturated state with peak transient energy of 0.0240 at time approximately
124.5 units, and thereafter decays. The decay continues beyond ¢ = 1500 (not shown), at approximately
the same rate as at ¢ = 1000. Although non-linear simulation soon deviates from the linear results, the
earliest growth appears to be at a rate identical to that of the linear system non-modal phase.

Regarding estimation, figure 16 also shows the open-loop estimated transient energy against time. In
this case, the performance of the linear estimator on the non-linear plant model is poor, as it overshoots
the plant energy.

LQR State Feedback Non-Linear Simulation. Figure 17 presents the closed-loop LQR. transient energy
versus time, from this larger initial perturbation, for both linear and non-linear simulations. The controller
reduces the transient energy, and the difference between the linear and non-linear simulation is somewhat
reduced, as compared to the open-loop case. The controller has reduced the open-loop non-linear peak
transient energy from 0.024 to 0.0093, a reduction of approximately 61% which is not nearly such a great
reduction as that in linear simulation where the diachronic transient energy bound falls approximately
83%. The peak nonlinear LQR transient energy of 0.0093 is approximately half the linear value of 0.019.
The controller is acheiving a lower energy density on the non-linear simulation, as energy levels are in
general lower in the non-linear simulation. The wall transpiration velocities required in the non-linear

simulation are comparable with those in the linear one.
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The large perturbation CFD simulation for the LQR system showed poor agreement
between the peak transient energy as computed from the states using X' QX from (19)
and as calculated by direct integration over the mesh using (9). The peak transient energy
as computed from the states under estimates that from direct integration by 44%. This is
thought to be due to disturbances at wave number pairs other than o, being present at
peak F in the non-linear magnitude CFD simulation.

LQG Output Feedback Non-Linear Simulation. Figure 18 shows the LQG transient energy versus time.
The linear controller is unable to stabilize the non-linear plant model at this level of initial disturbance.
Since the LQR controller is able to stabilise the test case at this energy level, the deficiency appears to
be in the estimator, and indeed its behaviour is poor, as its estimated energy overshoots the plant energy
around time 120, and diverges erratically from time 720 onwards. Since an implicit method is employed, to
avoid stiffness problems, the estimator integration scheme is guaranteed to be stable, and thus integration
instability is not the cause of this erratic behaviour.

Results from a smaller initial disturbance corresponding to an open-loop worst initial condition with
Vmaz = 7.5 X 1073U,, i.e. energy of 5625E, are presented in figure 19. The linear controller is able to
stabilize the non-linear plant model at this smaller level of initial disturbance, approximately half that of
the level which could not be stabilised. This time the estimated energy overshoots but does not diverge.
The transient energy is limited to 0.01, as compared to the open-loop plant which reaches approximately
0.04 (not shown).

6.8 Summary of Stmulation Results

Table 3 show a summary of the linear and non-linear simulation results. At the perturbation sizes used
here, non-linear effects reduce the energy of large perturbation simulations below the level of scaled small
perturbation results, with the exception the LQG unstable large perturbation simulation.

7 Conclusions

This paper has described the synthesis and validation of output and state feedback optimal controllers for
plane Poiseuille flow, and has investigated aspects of the transient energy growth of the controlled and
uncontrolled systems.

Tuned process noise weights for the optimal estimator were chosen to reflect the possible size variations
in disturbances across the channel, as an alternative to uniform weights and proved better at following the
plant worst case initial conditions from zero initial estimates. Estimation required finer model wall-normal
discretisation than state feedback control required.

Regarding feedback control, although the sinusoidal transpiration was guaranteed to have a zero net flux
over whole streamwise or spanwise periods, and thus also over any time span, its magnitude was such that
at any particular point the transpiration of comparatively large quantities of fluid were required. Controller
implementation schemes mooted e.g. by (Ho and Tai, 1998) envisage the use of microelectrical machines
(MEMs) based on small reservoirs, but these schemes would appear unable to provide the quantities of
fluid required for optimal control of the test case based on early transition considered here.

Non-linear simulations on linear sized perturbations reproduced the linear simulation results . The
overall agreement between the linear spectral results and the independent finite volume results at low
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levels of disturbance provides good evidence that both are correct under these conditions. A non-linear
simulation of the open-loop plant from a large (non-linear sized, vy,q, = 10*2Ud) worst initial perturbation
showed that the flow saturates but appears stable. Although the simulation soon deviates from the linear
results, initially they both grow at the non-normal rate of the linear simulations.

A non-linear simulation of the plant with LQR state feedback from a large worst initial perturbation
again saturates but remain stable. The state feedback reduces the peak transient energy below open-loop
values. Thus the linear and non-linear results are closer than the open-loop results. The LQG controller
is unable to stabilise the non-linear plant at this level of initial perturbation. The estimator initially
behaves well, but overshoots and diverges, leading the controller to destabilise the plant. From an initial
perturbation of half this energy level, the estimator energy again overshoots the plant, but it does not
diverge, and the controlled plant keeps the transient energy well below the open-loop value.

This study has not investigated the effects of uncertainty such as modelling errors, plant disturbances
and measurement noise, on closed-loop performance. Although LQG control contains a specific model for
disturbances and noise, this model does not adequately address their uncertainty (Zhou et al., 1996, p214).
Further study would require investigation of controller robustness to modelling uncertainty as performed
by Bewley and Liu (1998) and Baramov et al. (2004).
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Table 1.

Table 2.

Table 3.
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Tables

Open-Loop and LQR Diachronic Transient Energy Bound 6 by Eigensystem Calculation (26) and Linear Simulation

Eigensystem Calculation (26)

Linear Simulation

OL

Time

LQR

OL

Time

Time

LQR  Time

4896.94 379.16

848.81

187.03 | 4896.94 379.5

848.80 187.5

Diachronic Transient Energy Bound 6 for All Open- and Closed-Loop Systems, by Linear Simulation

OL# |LQRO | OL LQE 0y | LQG 0 | LQE 0g, in LQG
4896.94 | 848.80 4235.73 937.00 729.30
Transient Energy E from Non-linear Simulations from Small and Large Initial Disturbances (* indicates unstable.)
System max, E(t=0) max;<g00 B max; <600 Fest
o(t = 0)
OL/ 104 Ey 1.10 x 107°@¢t = 378.6 | 9.16 x 10 °@t = 383.2
LQE | 7.5x 1072 | 5625E | 1.20 x 1072@Qt = 161.2 | 3.15 x 1072Qt = 204.9
1072 10°Ey | 2.40 x 107%2@¢t = 124.5 | 4.77 x 10~%@Qt = 170.4
LQR E 1.90 x 10~ %@t = 187.0 -
10°Ey | 9.51 x 1073@t = 89.7 -
LQG Ey 2.12 x 107 %@t = 196.3 | 1.79 x 10~ %@t = 227.7
5625F, | 7.49 x 1073@t = 173.8 | 9.96 x 10~2@t = 238.2
10°Ey | 3.12 x 1072@t = 600* | 2.30 x 10~2@t = 481.3
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Figure 1. LQR Diachronic Transient Energy Bound 6 vs Control Weight r, for Different Discretisations N
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Figure 2. Open-Loop Synchronic Transient Energy Bound € vs t, N = 100
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Figure 5. LQR: Upper Plot - Vorticity Eigenvectors, Lower Plot - Dot Product of Consecutive X Eigenvectors, N = 100
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Figure 6. Open-Loop Upper Bound on Mode Pair Energy Growth F,uir pound, N = 100
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Figure 9. LQR Upper Wall Control U(1) vs ¢, from initial conditions Xorst scaled to E =1, N = 100
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Figure 10. LQR Wall Velocity Coefficient, o(y = 1) vs ¢, from initial conditions Xworst scaled to E =1, N = 100
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Figure 11. LQR Fluid Depth Transpired on Upper Wall vs ¢, from initial conditions Xorst scaled to E =1, N = 100

1000

9001

800

700f
6001
W 500(
400
300(
200( AW 1
100 ]

0 500 1000 1500

Figure 12. LQR Transient Energy E vs t, for Various Discretisations N, from initial conditions Xyrst scaled to E =1
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Figure 14. LQE Transient Energy E vs t, for Several Discretisations N, from initial conditions X0rst scaled to £ =1
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Figure 15. LQG E vs t, from initial conditions X,orst scaled to E =1, N = 100
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Figure 16. Open-Loop Transient Energy E vs Time ¢, from initial conditions Xyyops; scaled to Energy 10*Eq
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Figure 17. LQR Transient Energy F vs Time ¢, from initial conditions Xy oyt scaled to Energy 10%Fq
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Figure 19. LQG Transient Energy E vs Time ¢, from initial conditions Xyy,,s¢ scaled to Energy 5625FEq
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