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Linear Quadrati
 Control of Plane Poiseuille Flow - the Transient BehaviourJ.M
Kernan�y J. F. Whidbornez G. Papadakisx(May 2, 2007)This paper des
ribes the design of optimal linear quadrati
 
ontrollers for single wavenumber-pair periodi
 2-D disturban
es in planePoiseuille 
ow, and subsequent veri�
ation using a �nite-volume full Navier-Stokes solver, at both linear and non-linear levels of initial
onditions sele
ted to produ
e the largest linear transient energy growth. For linear magnitude initial 
onditions, open and 
losed-loop�nite-volume solver results agree well with a linear simulation. Transient energy growth is an important performan
e measure in 
uid
ow problems. The 
ontrollers redu
ed the transient energy growth, and the non-linear e�e
ts are generally seen to keep energy levelsbelow the s
aled linear values, although they did 
ause instability in one simulation. Comparatively large lo
al quantities of transpiration
uid are required. The modes responsible for the transient energy growth are identi�ed. Modes are shown not to be
ome signi�
antlymore orthogonal by the appli
ation of 
ontrol. The synthesis of state estimators is shown to require higher levels of dis
retisation thanthe synthesis of state-feedba
k 
ontrollers. A simple tuning of the estimator weights is presented with improved 
onvergen
e over uniformweights from zero initial estimates.Keywords: Flow 
ontrol, simulation, optimal linear quadrati
 
ontrol, full Navier-Stokes solver.
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2 Linear Quadrati
 Control of Plane Poiseuille FlowNomen
latureGreek Symbols� := streamwise(x) wave number, 
y
les per 2� distan
e� := spanwise(z) wave number, 
y
les per 2� distan
e�(t) := syn
hroni
 transient energy bound at time t�Error(t) := syn
hroni
 error energy bound at time t� := eigenvalue in syn
hroni
 transient energy bound eigensystem�(x; y; z; t) := wall-normal vorti
ity perturbation~�(�; �; y; t) 2 C := � Fourier 
oeÆ
ient at wavenumber pair �; �� := dia
hroni
 transient energy bound�Error := dia
hroni
 error energy bound�Est := estimated energy bound�i 2 C := ith eigenvalue� 2 CM�M := diagonal eigenvalue matrix� := mole
ular or kinemati
 vis
osity� := 
uid density�i(A) := ith singular value of A��(A) := spe
tral norm or largest singular value of A� 2 RM := modal amplitude ve
tor, [
0; : : : ; 
M ℄T�0 := initial �, at time t = 0	 := matrix of right eigenve
tors i := ith right eigenve
tor! 2 C := frequen
y
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kernan, J.F. Whidborne and G. Papadakis 3Roman SymbolsA 2 RM�M := system matrixB 2 RM�P := input matrixC 2 RQ�M := output matrixan 2 C := multiplying 
o-eÆ
ient for nth Chebyshev polynomial
i := amplitude of mode iE(t) := transient energy, XTQX, at time tEEst(t) := estimated transient energy, X̂TQX̂, at time tEError(t) := error energy �X� X̂�T Q�X� X̂�, at time tE0 := E of worst open-loop perturbation of max v = 0:0001, at t = 0:= 2:26� 10�9Epair;bound := upper bound on mode pair energy growthh := 
hannel wall separationI := identity matrix| := p�1K 2 RP�M := state feedba
k gain matrixL 2 RP�M := estimator gain matrixN := highest Chebyshev polynomial degree used, �nal 
ollo
ation point indexP := pressurePb := steady base 
ow pressurep := pressure perturbationQ 2 RM�M := state variable weighting (energy) matrixR 2 RP�P := 
ontrol weighting matrixR := Reynolds numberr := 
ontrol weight multipliers := measurement noise weight multiplierT
p 2 RM�M := invertible matrix for 
onversion between state variables and ~v; ~�,ex
ludes next-to-wall velo
ities and wall vorti
itiest := timex; y; z := streamwise, wall-normal and spanwise 
o-ordinates~U = (U; V;W ) := 
ow velo
ity ve
tor~Ub = (Ub; Vb;Wb) := steady base 
ow velo
ityU
l := Ub at 
entreline~u = (u; v; w) := velo
ity perturbation ve
tor~u; ~v; ~w 2 C := u; v; w Fourier 
oeÆ
ients at wavenumber pair �; �U 2 RM := 
ontrol ve
torV 2 RQ�Q := measurement noise power spe
tral densityW 2 RM�M := pro
ess noise power spe
tral densityX 2 RM := state variable ve
torX̂ 2 RM := state estimates ve
torXError 2 RM := estimate error ve
tor, X� X̂XWorst 2 RM := X(t = 0) whi
h generates �XError;Worst 2 RM := XError(t = 0) whi
h generates �ErrorX
p 2 RM := X transformed to ~v; ~� values at 
ollo
ation points~X 2 RM := state variables transformed to Q1=2X, thus E = ~XT ~XY 2 RQ := measurement ve
toryn := y at nth Chebyshev-Gauss-Lobatto 
ollo
ation point
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4 Linear Quadrati
 Control of Plane Poiseuille Flow1 Introdu
tionLaminar 
ow is 
hara
terised by a smooth 
ow-�eld in whi
h adja
ent layers of 
uid undergo shear.Turbulent 
ow is 
hara
terised by an unsteady 
ow-�eld in whi
h 
u
tuations of widely varying lengthand time s
ales 
ause large amounts of mixing between adja
ent layers of 
uid, in a self sustaining pro
ess.The transition of laminar 
uid 
ow into turbulent 
ow results in large in
reases in 
uid drag, and theprevention of transition would lead to substantial savings in the energy required to sustain the 
ow. Thepro
ess of transition from laminar to turbulent 
ow is thought to begin with the rapid growth of smalldisturban
es in laminar 
ow.Plane Poiseuille or 
hannel 
ow, the unidire
tional 
ow between in�nite parallel planes, is a simple
ow that is prone to transition. Experiments show that this 
ow undergoes transition to turbulen
e forReynolds number as low as 1000, for example as shown by Carlson et al. (1982).Fluid 
ow-�eld velo
ity and pressure, and wall shear stresses, 
an be measured. The 
ow 
an be in
uen
edby the manipulation of the 
onditions on its boundaries, su
h as the inje
tion and su
tion of 
uid at thewalls, known as wall transpiration. This opens up the possibility of the 
ontrol of the evolution of transitionby the feedba
k 
ontrol of 
ow measurements to suitable wall a
tuators. The governing Navier-Stokes and
ontinuity equations 
an be used to develop plant models for the synthesis of 
ontrollers. Linear plantmodels are often based on spe
tral analysis of the linearized Navier-Stokes equations, e.g. as performed byBaramov et al. (2001), Bewley and Liu (1998), and Joshi et al. (1999).Experiments to dete
t transition, even in su
h a simple 
ow, are diÆ
ult and expensive to perform,but 
omputational 
uid dynami
s (CFD) has progressed to the stage where it 
an be used to simulatethe performan
e of 
ontrollers. Baramov et al. (2001) used spe
ialised �nite-di�eren
e full Navier-Stokessolvers, and the widely 
ited work of Bewley et al. (2001) employed hybrid spe
tral �nite-di�eren
e fullNavier-Stokes solvers. However little use has been made of �nite-volume CFD 
odes other than that byBalogh et al. (2000) testing low speed global Lyapunov stabilization, although their use is widespread inother �elds, for example see Yeoh et al. (2004).Although plane Poiseuille 
ow undergoes transition to turbulen
e for Reynolds number as low as 1000,it is known to be linearly stable at Reynolds numbers below approximately 5772, as 
al
ulated by Orszag(1971). The o

urren
e of transition in the linearly stable regime is thought to be due to large transientenergy growth 
ausing non-linear e�e
ts. Transient energy growth is the ampli�
ation of the kineti
 energy
ontained in an initial perturbation. Trefethen et al. (1993) note that the large transient energy growthis itself due to non-normality of the system eigenve
tors. Hinri
hsen et al. (2002) have investigated statefeedba
k stabilization with guaranteed transient bounds and Whidborne et al. (2005) have derived 
on-trollers whi
h minimise maximum transient energy growth. Although non-normal behaviour is the 
auseof the transient growth, little is known regarding the pairs of modes involved.This paper des
ribes the synthesis of optimal linear quadrati
 
ontrollers using a state-spa
e model ofplane Poiseuille 
ow. This work is not the �rst to use linear quadrati
 
ontrol for plane Poiseuille 
ow.Joshi et al. (1999) des
ribed the appli
ation of linear system theory to a stream fun
tion formulation oflinearised plane Poiseuille 
ow, limited to streamwise/wall-normal disturban
es. The paper by Bewley andLiu (1998) is seminal, and to some extent, the work des
ribed here is motivated by their results frominvestigations of 
ontrol of a spe
tral linear velo
ity/vorti
ity model at a single wavenumber pair using aninterpolating basis for wall-normal behaviour.Here, in 
ontrast to the approa
h of Bewley and Liu, the state-spa
e model employs a polynomial wall-normal basis derived by M
Kernan (2006), whi
h, using a rigorous appli
ation of the boundary 
onditions,
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es a system free of spurious eigenmodes, and leads to 
ontrol via rate of 
hange of wall-normaltranspiration velo
ity. Furthermore, the transient energy matrix is rigorously derived, and tuned pro
essnoise 
ovarian
e matri
es are investigated. In addition, the 
ontrollers synthesized are subsequently testedin a full model of the 
ow, namely a �nite-volume non-linear Navier-Stokes solver. Thus the 
ontrollers aretested using a well tried non-linear algorithm whi
h is 
ompletely independent of the development model.Like Bewley and Liu, a single wavenumber pair is 
ontrolled, and the pair sele
ted represents streamwisevorti
es, whi
h lead to the largest transient energy growth. These perturbations are streamwise 
onstant,whi
h allows the subsequent �nite volume simulations to be two-dimensional.Se
tion 2 and 3 brie
y introdu
e plane Poiseuille 
ow and the linear plant model. For a full derivationof the model see M
Kernan (2006). Se
tion 4 des
ribes the synthesis of optimal state feedba
k 
ontrollersand optimal state estimators. The 
ontrollers are linear quadrati
 regulators (LQR), whi
h are optimalin the sense of minimising a quadrati
 
ost fun
tional of the weighted state variables and 
ontrol inputs.The estimators are linear quadrati
 estimators (LQE), whi
h are optimal in the sense of minimisingthe expe
tation of the state estimation errors, given weighting matri
es whi
h represent the pro
ess andmeasurement noise 
ovarian
es. The se
tion also des
ribes the sele
tion of appropriate weighting matri
es.Se
tion 5 des
ribes the linear and non-linear simulations undertaken on the open- and 
losed-loop sys-tems. The open-loop (OL) systems 
omprise the plant model with LQE state estimator and the 
losed-loop systems 
omprise the plant model with state feedba
k LQR 
ontrol, and with output feedba
k linearquadrati
 Gaussian (LQG) 
ontrol, the latter formed by employing both the LQE estimator and LQR
ontroller. The se
tion states the derivation of the worst initial 
onditions and the 
onditions for minimumtransient energy growth, and derives plant modal and non-modal energy terms and an upper bound onmode pair energy growth.Finally se
tion 7 draws 
on
lusions regarding the 
ontroller and estimator synthesis, and the 
ontrollerand estimator performan
e in the linear and non-linear simulations.2 Plane Poiseuille Flow ControlIn
ompressible 
uid 
ow is des
ribed by the Navier-Stokes and 
ontinuity equations. The Navier-Stokesequations (1) form a set of three 
oupled, non-linear, partial di�erential equations representing 
onservationof momentum, and the 
ontinuity equation is an additional 
onstraint representing the 
onservation of mass(2);- _~U + �~U � r� ~U = �1�rP + ��r2~U (1)r � ~U = 0 (2)where ~U; P; �; � are velo
ity, pressure, density and vis
osity respe
tively.Laminar Poiseuille 
ow has a paraboli
 streamwise velo
ity pro�le, with no slip o

urring at the boundingparallel planes. It undergoes transition to turbulen
e when small disturban
es ~u = (u; v; w); p about thesteady base pro�le, ~Ub = �(1� y2)U
l; 0; 0� ; Pb, grow spatially and temporally to form a self-sustainingturbulent 
ow. If the equations for the perturbations are made non-dimensional by dividing length s
alesby the 
hannel half height h, velo
ities by the base 
ow 
entreline velo
ity U
l, and pressures by �U2
l,
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 Control of Plane Poiseuille Flowthey be
ome _~u+ �~Ub � r� ~u + (~u � r) ~u+ (~u � r) ~Ub= �rp+ 1Rr2~u (3)r � ~u = 0 (4)where R is the dimensionless Reynolds number �U
lh=�.The no-slip wall boundary 
onditions in plane Poiseuille 
ow are repla
ed by pres
ribed wall transpirationvelo
ities when boundary 
ontrol is implemented, (u(y = �1) = 0; v(y = �1) 6= 0; w(y = �1) = 0).In this paper, disturban
es ~u whi
h vary in the wall-normal (y) and spanwise (z) dire
tions are investi-gated, with no variation in the streamwise dire
tion (x). This paper also approximates the in�nite extentof the 
ow by a periodi
 representation, su
h that the 
ow disturban
es may only grow in time, but notin spa
e.3 Linear Plant ModelBoundary 
ontrol of the linearized Navier-Stokes equations in a 
hannel, assuming periodi
 behaviour atstreamwise (x) and spanwise (z) wavenumbers � and � respe
tively, may be 
ast in state-spa
e form as_X = AX+BUY = CX (5)where the states X are wall-normal velo
ity ~v and vorti
ity ~� (�u=�z � �w=�x) perturbation Chebyshevseries 
oeÆ
ients a in the wall-normal dire
tion (y), plus the upper and lower wall velo
ities ~vu and ~vlrespe
tively X = 0BBB�av;n=0;:::;N�4a�;n=0;:::;N�2~vu~vl 1CCCA (5A)where N is the dis
retisation parameter (for further details see M
Kernan, 2006, p36). The measurementsY are shear stresses on the upper and lower walls, and the inputs U are rates of 
hange of transpirationvelo
ity on the upper and lower walls. Sin
e these are rates of 
hange, the system 
ontains two integrators,ea
h with an eigenve
tor representing steady state transpiration from a wall. This situation arises sin
e, forthis linearised 
ow model, steady transpiration at a set velo
ity merely superimposes a velo
ity 
ow �eldon the existing perturbation. Only by varying the transpiration velo
ity does the existing perturbation
ow �eld 
hange dynami
ally.The 
oeÆ
ients of the Chebyshev series, shear measurements and transpiration velo
ity are 
omplexsin
e they 
onvey the spatial phase of the wavenumber pair perturbations, but the state-spa
e system ishere made real-valued by de
omposing them into their real- and imaginary-valued parts (Hinri
hsen andPrit
hard, 2005, p720). The test 
ase 
onsidered here is � = 0; � = 2:044; R = 5000. This test 
ase isstable but has the largest dia
hroni
 transient energy bound, i.e. the largest linear transient energy growth
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kernan, J.F. Whidborne and G. Papadakis 7over all unit initial 
onditions, time and �; �, and represents the very earliest stages of the transitionto turbulen
e. Modelling turbulen
e itself would involve using many more degrees of freedom. For a fullderivation of the model see M
Kernan (2006).4 Controller Synthesis4.1 Optimal State Feedba
kThe standard LQR 
ontrol problem states that given the open-loop system or `plant', (5), the feedba
k
ontrol signal that minimizes;- Z 10 �X(t)TQX(t) +U(t)TRU(t)� dt (6)is given by U = �KX where K = R�1BTP and P = PT � 0 is the solution of the algebrai
 Ri

atiequation ATP+PA�PBR�1BTP+Q = 0 (7)where Q and R are weighting matri
es. The 
losed-loop state feedba
k LQR system is_X = (A�BK)XY = CX (8)The state feedba
k 
ontrollerK is the optimal for all initial 
onditions (Skogestad and Postlethwaite, 1996,p354).In most problems the weighting matri
es are tuned by hand. However, for a 
uid system this is notpra
ti
al be
ause of the large number of state variables. Furthermore, it is useful to employ a weightingmatrix Q that is de�ned independently of the 
hosen state-spa
e basis sin
e then there is freedom toalter either. It is also helpful if the weights are de�ned independently of the level of dis
retisation, in orderto make interpretation of results easier, as re
ommended by Lauga and Bewley (2004). Bewley and Liu(1998) suggests that a natural 
hoi
e for the matrix Q is su
h that XTQX represents the dis
retized formof the transient energy E, E = 1V Zvol=V �~uT~u2 dvol (9)where E has dimensions energy per unit volume, and ~u is the perturbation velo
ity ve
tor. This 
hoi
eof Q is independent of the de�nition of the state variables, is independent (in the limiting 
ase) of thedis
retisation N , and also means that the LQR problem (6) minimises E in some sense. This evaluationof the transient energy requires that the state variables remain physi
ally meaningful, and thus modelredu
tion is not possible.Matrix Q e�e
tively performs quadrature on the wall-normal velo
ity ~v, velo
ity derivative�~v=�y and vorti
ity ~� values at the 
ollo
ation (dis
retisation) points a
ross the 
hannel. Thestate variables and thus the energy matrix employed in this paper are based on a polynomialChebyshev form with the 
hannel wall and next-to-wall Navier-Stokes equations omitted,
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 Control of Plane Poiseuille Flowand the highest order Chebyshev series 
oeÆ
ients a (5A) dis
arded, as required duringthe appli
ation of the boundary 
onditions, as des
ribed in M
Kernan (2006). The velo
ityderivatives are obtained via well-behaved algebrai
 di�erentiation of the Chebyshev series.The polynomial form is amenable to the 
oeÆ
ient dis
arding des
ribed above, due to thespe
tral de
ay of the 
oeÆ
ients, and analyti
al and numeri
al tests validate the expressionused here for Q on distributions of velo
ity and vorti
ity whi
h ful�ll the open- and 
losed-loop boundary 
onditions.The state variables and energy matrix derived by Bewley and Liu (1998, p312) are basedon an interpolating Chebyshev form with the 
hannel wall values omitted. Quadrature onvelo
ity and vorti
ity values in the open-loop 
ase when the wall values are zero is appro-priate, and a small approximation in their 
ontribution to the transient energy o

urs whenthe wall-velo
ity is non-zero in the 
losed-loop 
ase, as some energy very 
lose to the wallis negle
ted. However, omitting the 
hannel wall values in the 
losed-loop 
ase, when thewall velo
ity values are not zero, leads to the interpolating form assuming zero wall values,and this produ
es well-known high order interpolation os
illation (Press et al., 1986, p77)and in parti
ular large and ina

urate derivatives at 
ollo
ation points as subsequently usedby quadrature of the velo
ity derivative in the 
al
ulation of the transient energy. For thisreason no meaningful 
omparison 
an be made with Bewley's 
losed-loop results.Regarding 
ontrol weightings, we set R = r2I, thus allowing variation of 
ontrol magnitude, whilemaintaining equivalent real and imaginary 
ontrol e�e
t on both walls.4.2 Optimal EstimationThe standard LQE 
ontrol problem assumes that the system has disturban
e and measurement noise inputpro
esses wd and wn respe
tively _X = AX+BU+ wdY = CX+ wn (10)and that the noise inputs are un
orrelated, zero-mean, Gaussian sto
hasti
 pro
esses with 
onstant powerspe
tral density matri
es V andW (Skogestad and Postlethwaite, 1996). Thus wd and wn are white noisepro
esses with 
ovarian
es;-E �wTd wd	 =WÆ(t � �); E �wTnwn	 = VÆ(t� �); E �wTd wn	 = 0; E �wTnwd	 = 0 (11)where E is the expe
tation operator . The theory states that for an LQE state estimator_̂X = AX̂+BU+ L�Y�CX̂� (12)where X̂ are the estimated state variables, the optimal estimator gain L that minimizes;-E �hX̂�XiT hX̂�Xi� (13)
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kernan, J.F. Whidborne and G. Papadakis 9is given by L = PCTV�1 where P = PT � 0 is the solution of the algebrai
 Ri

ati equationPAT +AP�PCTV�1CP+W = 0 (14)The statisti
al properties of the noise inputs on the present system are unknown, and so the matri
es Vand W 
an be treated as tuning parameters, in order to a
hieve an estimator of a

eptable performan
e.Reasonable tuning assumptions 
an be made if the system state variables X are transformed from velo
ityand vorti
ity Chebyshev 
oeÆ
ients into velo
ity and vorti
ity values ~v(yk) and ~�(yk) respe
tively at the
ollo
ation points yk = 
os �k=NX
p =  ~v(yk;k=0;2;:::;N�2;N)~�(yk;k=1:::N�1) ! (14A)by means of the transformation T
p (M
Kernan, 2006, p36). The system be
omes;-_X
p = T
pAT�1
p X
p +T
pBU+ wdY = CT�1
p X
p + wn (15)Bewley and Liu (1998, p314) assumed that the pro
ess noise power spe
tral density W is a unit matrix,and estimators synthesized using this assumption will be referred to as `uniform' estimators.However, being in the state spa
e of velo
ity and vorti
ity values at 
ollo
ation points allows the 
ovari-an
e between these physi
ally meaningful values to be set as a fun
tion of the lo
ations of the 
ollo
ationpoints. Here the 
ovarian
e between pairs of variables is set asW = "�(1� y2k1)(1� y2k2)�k1;k2=0;2;:::;N�2;N 00 �(1� y2k1)(1� y2k2)�k1;k2=1:::N�1 # (16)where yk1; yk2 are the lo
ations of pairs of state variables k1 and k2 in 
ollo
ation point value formX
p. This 
hoi
e implies that the 
ovarian
e between velo
ity state variables at lo
ations yk1 and yk2is (1 � y2k1)(1 � y2k2), and similarly between vorti
ity state variables. Estimators synthesized using thisassumption will hen
eforth be referred to as `tuned' estimators.For tuned estimators, when k1 = k2, W represents the varian
e of the noise on a single state variable,whi
h therefore varies as (1 � y2k1)2. Thus disturban
es on a single state variable have a higher standarddeviation (the positive square root of varian
e) at the 
entreline (y = 0), than near the walls (y = �1).These varian
es are 
ompatible with velo
ity disturban
es near the 
entreline being more variable thanthose near the walls and similarly for vorti
ity disturban
es. At the walls, the velo
ities are set reasonablya

urately by the 
ontroller, so they are given small varian
e (10�3).When k1 6= k2, W represents the 
ovarian
e of a pair of state variables. Pairs 
lose to the walls havelow 
ovarian
es, whereas pairs 
lose to the 
entreline (y = 0) have high 
ovarian
es. Pairs where one statevariable is near a wall, and the other near the 
entreline have 
ovarian
es in between. These 
ovarian
esare 
ompatible with velo
ity disturban
es near the 
entreline being physi
ally larger than those near thewalls and similarly for vorti
ity disturban
es. The 
ovarian
e between velo
ity and vorti
ity state variablesis set to zero. These 
ovarian
es vary smoothly over the 
ollo
ation point state variables, and many othersu
h distributions are possible e.g. those proposed by H�p�ner et al. (2005).By the symmetry and independen
e of the measurements (upper and lower wall, real and imaginary
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 Control of Plane Poiseuille FlowFourier 
omponents of shear stress), it is reasonable to assume that the measurement noise 
ovarian
e isV = sI, where s is a positive tuning parameter, whi
h s
ales the measurement noise against the pro
essnoise.An estimator L designed in terms of these velo
ity and vorti
ity state variables, may be transformedba
k for use on the untransformed state variables as T�1
p L.4.3 Closed-Loop LQG Output Feedba
k SystemThe 
ombined plant, LQR 
ontroller and LQE estimator may be 
ombined into an LQG output feedba
ksystem, with dynami
s " _X_̂X# = " A �BKLC A�BK� LC#" X̂X#+ " I 00 L#"!d!n # (17)where the estimate and state dynami
s are not independent but are intentionally 
oupled. If the systemis re
ast in terms of estimator error XError = X� X̂ they be
ome" _X_X� _̂X# = "A�BK BK0 A� LC#" XX� X̂#+ "I 0I �L#"!d!n # (18)and thus the estimator error dynami
s are independent of the state dynami
s, as predi
ted by the separationtheorem (Skogestad and Postlethwaite, 1996, p353).5 Simulations5.1 Initial ConditionsPlant Worst Initial Conditions. The maximum transient energy that a stable system a
hieves over alltime from all possible initial 
onditions with unit energy is here termed the dia
hroni
 1 transient energybound. In 
ow 
ontrol this is a measure whi
h is often 
onsidered in 
onne
tion with non-linear e�e
tstriggering transition to turbulen
e. Here, the initial 
onditions whi
h generate the dia
hroni
 transientenergy bound are 
al
ulated, as performed by Bewley and Liu (1998) following Butler and Farrell (1992).Following these derivations, the transient energyE(t) = XT (t)QX(t) (19)is de�ned as measure of how far the state is from the equilibrium point, sin
e it 
onsiders all the statevariables (in a weighted sum of squares sense). The largest possible value at time t after starting from unitinitial transient energy but otherwise unknown state variables X(0)�(t) = maxE(0)=1E(t) (20)1dia
hroni
: From the Greek dia through, 
hronos time, from linguisti
s (Sykes, 1976)
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kernan, J.F. Whidborne and G. Papadakis 11is here termed the syn
hroni
 2 transient energy bound . The dia
hroni
 transient energy bound � is de�nedas the largest syn
hroni
 transient energy bound possible over all time� = maxt>=0 �(t) (21)This may be determined as follows. If the system is diagonalizable, the state variables evolve with time tas X(t) = 	e�t�0 (22)where � is a diagonal matrix of the eigenvalues, 	 is the right eigenve
tor matrix, and �0 is a ve
tor ofunknown initial modal amplitudes.Thus �(t) = max�T0 	TQ	�0=1�T0 e�T t	TQ	e�t�0 (23)and �(t) is given by a solution of�=��0 ��T0 e�T t	TQ	e�t�0 � � �XT (0)QX(0) � 1�� = 0 (24)by the method of Lagrange multipliers, where � is the multiplier of the 
onstraint equation. After di�er-entiation by �0�e�T t	TQ	e�t�0 + ��T0 e�T t	TQ	e�t�T�� � �	TQ	�0 + ��T0	TQ	�T� = 0 (25)Noting Q is symmetri
, the �nal form is a generalised eigenproblem with eigenve
tor �i and eigenvalue �ie�T t	TQ	e�t�0;i = �i	TQ	�0;i (26)Premultiplying by �T0;i, it is evident that �(t) = maxi �i. The initial state variables whi
h generate thissyn
hroni
 transient energy bound are given by Xworst = 	�0;i.The syn
hroni
 transient energy bound may also be 
ast as the square of the spe
tral norm of the statetransition matrix eAt, e.g. Lim and Kim (2004) and Whidborne et al. (2004),�(t) = ��2 �eAt� (27)where A = Q1=2AQ�1=2. This form requires full matrix exponential evaluations, whi
h, as Moler and VanLoan (2003) point out, may be unreliable, whereas in (26) � is diagonal, and the terms of the exponentialmatrix may be evaluated as s
alars.For a stable system the dia
hroni
 transient energy bound � of �(t) over all time t, 
an be found by a sear
hte
hnique. Hen
eforth the asso
iated initial 
onditions are referred to as the \worst" initial 
onditions. Forthe open-loop system worst initial 
onditions, � and 	 are the eigenvalues and eigenve
tors of the systemmatrix A. To prevent the involvement of the steady-state transpiration modes, the system matrix must be2syn
hroni
: From the Greek syn alike, 
hronos time, from linguisti
s (Sykes, 1976)
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ontrol by wall-normal velo
ity, rather than by its time derivative. For the statefeedba
k system, � and 	 are the eigenvalues and eigenve
tors of the 
losed-loop system matrix (A-BK).Estimator Energy. In a similar manner to the transient energy (19), the estimated transient energy maybe de�ned EEst(t) = X̂T (t)QX̂(t) (28)as measure of the energy that the estimates X̂ represent. The growth of the estimates is related to thegrowth of the states they attempt to reprodu
e (17), and this measure of estimator performan
e is used inthe presentation of simulation results. Proximity of plant energy and estimated energy does not guaranteethat their states are also 
lose.The error energy may be de�ned EError(t) = XTError(t)QXError(t) (29)as a measure of how far the estimates X̂, are from the a
tual state variables X, where XError = X� X̂.The growth of the estimator errors XError and thus of EError is independent of the growth of the statesthe estimator attempts to reprodu
e (18). This measure of estimator performan
e is used in the tuning ofestimator weights.Estimator Zero Initial Conditions. The estimated energy bound, �Est, is de�ned as the largest errorenergy, EError, during a simulation of the system from the worst plant initial 
onditions XWorst, and zeroestimator initial 
onditions, X̂(0) = 0, that is XError(0) = XWorst(0).Estimator Worst Initial Conditions. The largest possible value of error energy, EError, at time t, afterstarting from unit initial error energy but with otherwise unknown estimator error X(0)Error, is given bythe syn
hroni
 error energy bound �Error(t) = maxEError(0)=1EError(t) (30)The Dia
hroni
 Error Energy Bound �Error is de�ned as the largest syn
hroni
 error energy bound growthpossible over all time �Error = maxt�0 �Error(t) (31)The syn
hroni
 error energy bound may be determined from the generalised eigenproblem with eigenve
tor�i and eigenvalue �i e�T t	TQ	e�t�0;i = �i	TQ	�0;i (32)where 	 and � are the right eigenve
tors and eigenvalues respe
tively of the estimator system matrixA � LC. The syn
hroni
 error energy bound �Error is maxi �i and the initial estimator errors whi
hgenerate this are given by XError;Worst = 	�0;i.The dia
hroni
 error energy bound �Error may be determined by a similar sear
h of �Error over time tothat used for the dia
hroni
 transient energy bound �.
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 Energy Density in a System Transformed su
h thatQ = I . If the state variables X are transformed to ~X su
h that E(t) = ~XT ~X then ~X = Q1=2X and thestate-spa
e form (5) be
omes _~X = Q1=2AQ�1=2 ~X+BUY = CQ�1=2 ~X (33)Substituting the expression for the evolution of state variables (22) into the expression for perturbationenergy (19) produ
es E(t) = ~�T0 e�T t	T	e�t ~�0 (34)where 	 is the matrix of right normalised eigenve
tors  i of Q1=2AQ�1=2, and � is a diagonal matrix
ontaining the eigenvalues �i, whi
h are all assumed stable. If these eigenve
tors are orthogonal, i.e.	T	 = I, then E(t) = ~�T0 e(�T+�)t ~�0 (35)whi
h de
ays monotoni
ally for all �0, as the eigenvalues � are stable, and thus the dia
hroni
 transientenergy bound � is unity as shown by Whidborne et al. (2004). If the eigenmodes are not orthogonal	T	 = 0BBBB� 1 ( 1 �  2) ( 1 �  3) : : :( 2 �  1) 1 ( 2 �  3) : : :( 3 �  1) ( 3 �  2) 1 : : :... ... ... . . .1CCCCA (36)where ( i �  j) =  Ti  j. The energy 
an then be represented as per M
Kernan et al. (2005)E(t) = NXi=1 
Ti 
ie(�Ti +�i)t + NXi=1 N;j 6=iXj=1 
Ti 
j( i �  j)e(�Ti +�j)t (37)where (
0; : : : ; 
N )T = ~�0. The terms of the �rst summation of (37)NXi=1 
Ti 
ie(�Ti +�i)t (38)are the modal terms. They are positive for all 
i and de
ay monotoni
ally, and 
annot lead to any energyin
rease. The terms of the se
ond summationNXi=1 N;j 6=iXj=1 
Ti 
j( i �  j)e(�Ti +�j)t (39)are non-modal. They de
ay in magnitude, at di�erent rates to the �rst summation, and 
an lead to energyin
rease when either



May 2, 2007 17:26 International Journal of Control ij
14 Linear Quadrati
 Control of Plane Poiseuille Flowi) they are negative, that is if 
Ti 
j( i �  j) is negative. The se
ond term in (37) provides an upper boundEpair;bound = max(0;�<(
Ti 
j( i �  j))) on the energy growth possible from ordered mode pair i; j.ii) they os
illate, that is if =(�Ti +�j) 6= 0. The se
ond term in (37) provides an upper bound Epair;bound =��
Ti 
j( i �  j)�� on the energy growth possible from ordered mode pair i; j.Of 
ourse, all dissimilar-mode pairs in the system may 
ontribute to the aggregate energy growth, orredu
e energy growth by simply de
aying, as all the individual modes do, and, in the absen
e of repeatedeigenvalues, all at di�erent time 
onstants.It is noteworthy that if the system eigenve
tors 
annot be made a

urately orthogonal by the introdu
tionof 
ontrol, sele
ting instead a system with the lowest dot produ
ts ( i � j) will not ne
essarily lead to thelowest dia
hroni
 transient energy bound due to the presen
e of the other fa
tors 
Ti 
j and e(�Ti +�j)t in(37), and sin
e, for the bound, 
i are sele
ted to maximise the transient energy growth, within the overall
onstraint E(0) = (
0; : : : ; 
N )T (
0; : : : ; 
N ) = 1.Di�erentiating (38) the modal energy growth rate terms areNXi=1 
Ti 
i ��Ti + �i� e(�Ti +�i)t (40)whi
h have an upper bound of zero, whereas the non-modal growth rate terms areNXi=1 N;j 6=iXj=1 
Ti 
j( i �  j) ��Ti + �j� e(�Ti +�j)t (41)whi
h are not bounded above by zero.Modal and Non-Modal Components of Kineti
 Energy Density in a System with Q 6= I . If the statevariables X are not transformed, then substituting the expression for the evolution of state variables (22)into the expression for perturbation energy (19) produ
esE(t) = �0T e�T t	TQ	e�t�0 (42)where 	 is the matrix of right normalised eigenve
tors  i of A, and � is a diagonal matrix 
ontainingthe eigenvalues �i, whi
h are all assumed stable. The 
ondition whi
h guarantees modal and thereforemonotoni
 de
ay is 	TQ	 = diag(d1; : : : ; dN ); di > 08i, sin
e thenE(t) = �0T e�T tdiag(d1; : : : ; dN )e�t�0= NXi=1 
Ti e�Ti tdie�it
i (43)whi
h de
ays monotoni
ally for all �0. This may be interpreted as 	TQ	 not 
oupling any modes by beingdiagonal and thus preventing non-modal behaviour, and also being positive de�nite, and thus ensuringmodal energy de
ay rather than growth.
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e model is 
oded in MatlabTM, and 
ontrollers and estimators synthesized for a range ofweighting parameters. Final 
ontrollers and estimators are sele
ted on the grounds of lowest energy bounds.Detailed linear simulations are performed for the open-loop, state feedba
k and output feedba
k systems,from the worst initial 
onditions, using the Matlab fun
tion lsim.A �nite-volume 
omputational 
uid dynami
s (CFD) Navier-Stokes solver is used for the non-linearsimulations. This solver makes no assumption of spe
tral behaviour, solves the full non-linear Navier-Stokes equations, and is 
ompletely independent of the spe
tral 
ode used for the 
ontroller synthesisand linear simulations. See (M
Kernan, 2006) for details of the solver 
ode, and of the modi�
ationsrequired, together with des
riptions of the meshes, 
uid properties, and boundary 
onditions, and of theimplementation of the 
ontroller into the 
ode.6 Results and Dis
ussionThis se
tion des
ribes the results of 
ontroller and estimator synthesis, and linear and non-linear simula-tions of the open-loop, state feedba
k and output feedba
k systems from the worst initial 
onditions. Awall-normal dis
retisation of N = 100 is used, to ensure 
onvergen
e with N , ex
ept where the issue of
onvergen
e itself is investigated. As the wall-normal dis
retisation method is based on Chebyshev series it
onverges exponentially (Boyd, 2001, p46). Sin
e the rate of 
onvergen
e is so fast, su

essful 
onvergen
eis assessed by graphi
al inspe
tion.6.1 Controller synthesisLQR 
ontrollers are synthesized for a range of 
ontrol weights r = 21 : : : 214, by solving the algebrai
Ri

ati equation (ARE) (7) with R = r2I, for dis
retisation N = 100. The Matlab Release 11 fun
tions
are (
alled via lqr) and aresolv, with both eigen and s
hur options are used, to investigate whi
hperforms best on su
h a large system. The Matlab fun
tion aresolv option eigen, produ
es the lowestrelative residuals i.e. the Frobenius norm of the residual divided by that of the solution kri
(P)kF = kPkF .These residuals are less than 10�9, and are of a

eptably small magnitude. The fun
tion reports that theproblem is well posed, implying no parti
ular problems solving the equation for su
h a large system, atleast for this system and range of weights, although numeri
al problems arise outside this range. Otherlibrary routines, su
h as Sli
ot sl
ares (Benner et al., 1999; Van Hu�el et al., 2004), and newer te
hniques,su
h those derived by Morris and Navas
a (2005), may be able to extend the range of weights.The variation of dia
hroni
 transient energy bound with 
ontrol weight r is shown in �gure 1. Severaldis
retisations N are shown, and 
onvergen
e with N is relatively fast and has o

urred by N = 30. The
ontinued 
onvergen
e at high N again demonstrates the existen
e of few problems solving this parti
ularsystem when N is very large. The range of weights is appropriate for 
ontroller synthesis, sin
e it 
overs
onvergen
e at low r, where the 
ontrol e�ort is large and the energy is small. As the 
ontrol weight rises,the 
ontrol e�ort falls, and thus the energy bound rises. The variation here is monotoni
, but need notbe if very high 
ontrol (very low weight) itself in
reases transient energy, as investigated by M
Kernan etal. (2005). A value of r = 128 was sele
ted for subsequent simulations, as this produ
es almost the lowestdia
hroni
 transient energy bound, without being unne
essarily small, whi
h would lead to unne
essarilylarge 
ontrol e�ort. Low dia
hroni
 transient energy bound implies low transient energy over all unit
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onditions and all time, thus redu
ing the possibility of non-linear behaviour and transitionto turbulen
e.6.2 Estimator synthesisLQE estimators are synthesized for a range of measurement noise weights s, by solving the algebrai
Ri

ati equation (ARE) (14) with V = sI, using the Matlab fun
tions 
are (
alled via lqe) and aresolv,with both eigen and s
hur options, for N = 100. The Matlab fun
tion aresolv option eigen generallyprodu
es the lowest relative residuals, less than 10�7 for the tuned estimator, and the fun
tion reportsthat the problem is well posed. The residuals are of a

eptably small magnitude, but not as small as thosefound during the synthesis of 
ontrollers.Good estimator performan
e requires that the estimator poles be faster (real part more negative) thanthe plant poles. However, the 
urrent plant has a large number of poles, the faster ones of whi
h are notknown a

urately, and it is not feasible to make the slowest estimator poles faster than these.Convergen
e of Estimated Energy Bound �Est with N is relatively slow, as 
ompared to that of the
ontroller, and does not o

ur until N = 70, whi
h is 
onsistent with the behaviour of the wall eigenve
torgradients used for observation as found by M
Kernan (2006).The worst estimator initial error 
onditions XError;Worst are found to be very exa
ting, sin
e theylead to growth of dia
hroni
 error energy bound �Error of 
omparable magnitude to the plant dia
hroni
transient energy bound. Sin
e the estimators are stable and their states 
onverge upon the plant states,it is diÆ
ult to see how su
h estimator initial 
onditions 
ould o

ur. In 
ontrast, zero estimates X̂ = 0are to be expe
ted upon initialisation of the estimators, implying initial errors equal to the plant initial
onditions, XError = XWorst.Furthermore, for the LQG 
ontroller, both plant and estimator initial 
onditions need to be sele
ted. Itis not 
lear how to sele
t the relative magnitudes of the initial plant energy and estimator error energy,sin
e the plant energy is a physi
al quantity whi
h leads to transition, whereas the estimator error energyis not. Again, zero initial estimates are a reasonable assumption to make.A

ordingly, zero initial estimates are sele
ted in preferen
e to the worst estimator initial error 
onditionsfor further simulations in the present work. Plots of estimated energy bound and slowest estimator pole(M
Kernan, 2006) favour the use of the tuned estimator over the uniform estimator, at low measurementnoise. A weight of s = 2�6 � 0:0156 is sele
ted for further work, as this produ
es 
lose to the lowestestimated energy bound.6.3 Initial ConditionsSyn
hroni
 Transient Energy Bound � vs Time. Figure 2 shows open-loop syn
hroni
 transient energybound, �(t), against time. As the eigenvalues in the test 
ase are real and stable, the only me
hanism forgrowth is non-modal, and this is 
on�rmed by the non-linear nature of the logarithmi
 plot. The graphof the syn
hroni
 transient energy bound against time is 
onvex, and so there are no root bra
ketingproblems. A golden se
tion sear
h (Press et al., 1986, p277) produ
es a maximum at 4896:94 at t = 379:16and thus � = 4896:94. This value 
ompares well with � = 4897 at t = 379 as reported by Butler and Farrell(1992, p1647). A bise
tion sear
h (Press et al., 1986, p246) based on the 
riteria XTAX = 0, as des
ribedby Whidborne et al. (2004) proves ina

urate in this 
ase.As shown from (27), the syn
hroni
 transient energy bound 
an be expressed as the square of the spe
tral
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tral norm, and 1=min (l;m) times the Frobenius norm squared provides a lower bound, wherethe matri
es are l by m (Skogestad and Postlethwaite, 1996, p520). Figure 2 also shows the Frobeniusnorm of the state transition matrix and it 
an be seen that the syn
hroni
 transient energy bound �(t)lies within the 
orre
t bounds. The 
orresponding plots for the LQR 
ontrolled systems are qualitativelysimilar to �gure 2.Investigation of Open-Loop and Closed-Loop Dia
hroni
 Transient Energy Bound �. Investigations ofthe modes whi
h lead to maximum open-loop dia
hroni
 transient energy bound are performed. For theremainder of this subse
tion, the state variables employed are transformed to ~X, as de�ned in se
tion 5.1su
h that E = ~X ~X, and the eigenve
tors are expressed in the same state variables, and normalised to unitmagnitude, unless stated otherwise. Eigenve
tors are in order of in
reasing eigenvalue stability.Figure 3 shows a bar 
hart of the dot produ
t between pairs of modes from 1 to 25. The main diagonalhas unit magnitude, due to the normalisation 
hosen. The next highest dot produ
ts are on the adja
entdiagonals, 
orresponding to mode pairs 
omprising 
onse
utive mode pairs. The dot produ
ts of 
onse
utiveopen-loop ~Xmodes, together with the vorti
ity ~� eigenve
tors (the velo
ity eigenve
tors are mu
h smaller inmagnitude) appear in �gure 4. It 
an be seen that a high dot produ
t 
orresponds to vorti
ity eigenve
torsof similar shape (within re
e
tion), whi
h is to be expe
ted sin
e similar mode shapes imply similar statevariable ve
tors, and thus high dot produ
ts.Figure 5 shows the same plot for the LQR system, for whi
h the dia
hroni
 transient energy bound isredu
ed. It 
an be seen that in general the modes have 
omparable dot-produ
ts as in the open-loop �gure 4and thus remain as non-normal or non-orthogonal as in the open-loop 
ase. The dia
hroni
 transient energybound is known to be minimised to a value of unity when the modes are made pre
isely orthogonal butwhen pre
ise orthogonality is not a
hieved, as here, the e�e
t of in
reasing orthogonality may not produ
ethe lowest energy, as shown in se
tion 5.1, and thus the absen
e of a distin
t redu
tion of non-normalityis not surprising. It is suggested that the LQR 
ontroller dire
tly a�e
ting the modal orthogonality isunlikely, 
ontrary to observations by Bewley and Liu (1998, p343).The open-loop upper bounds on mode pair energy growth Epair;bound, 
al
ulated using the expressionsderived in se
tion 5.1, from the worst initial 
onditions, are presented in �gure 6. As would be expe
ted, the
hart is symmetri
al. Few mode pairs appear to have a signi�
ant potential for transient energy growth,with the ex
eption of pair 4,5.Figure 7 shows the upper bounds on mode pair energy growth after the appli
ation of LQR 
ontrol,from the worst initial 
onditions. More mode pairs have a signi�
ant potential for transient energy growth,those with the largest potential being 1,5 and 1,4. These signi�
ant pairs are not 
onse
utive modes, unlikethe open loop signi�
ant pair 4,5. The largest upper bound of all the pairs has fallen from approximately2:5� 105 to 3� 103, due to the appli
ation of LQR 
ontrol.6.4 Linear SimulationsThe results of linear simulations on the open- and 
losed-loop systems are investigated in detail in thisse
tion.Open-Loop Linear Simulation. Five di�erent plant dis
retisations, N = 10; 20; 30; 40; 50, are simulatedand the results are presented in �gure 8, of open-loop transient energy against time. The results are
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onverged at N = 20 and above, showing that a low dis
retisation of N = 20 is adequate to simulatethe open-loop 
ase. Sin
e the dia
hroni
 transient energy bound is maximised over time, and larger thanone, the transient energy starts at a minimum. Here the transient energy rea
hes the dia
hroni
 transientenergy bound value of 4896:94 at time 379:5, 
lose to the predi
ted value of 4896:94 at time 379:16 fromse
tion 6.3, before de
aying to zero. The small dis
repan
y is 
aused by the linear simulation results beingprovided at dis
rete timesteps. Cal
ulations using (37) show that mode pair (4; 5) provides substantialgrowth of transient energy as predi
ted in �gure 6 (M
Kernan, 2006, p151).LQR State Feedba
k Linear Simulation. As the ~v initial 
onditions are symmetri
al about the 
entreline,the 
ontrol signal at the lower wall _~v(y = �1) is identi
al to that at the upper wall. However, as the senseof the upper and lower wall boundaries are reversed, transpiration su
tion at the upper wall, ~v(y = 1) > 0,
orresponds to blowing at the lower wall. Figure 9 shows the LQR 
ontrol signal at the upper wall _~v(y = 1)against time.Figure 10 displays the time integral of the LQR 
ontrol signal at the upper wall, namely the Fourier
oeÆ
ient of the upper wall velo
ity, whi
h has real and imaginary 
omponents to allow variations in boththe magnitude and spatial phase of the transpiration. For the test 
ase 
onsidered here, the upper walltranspiration velo
ity is imaginary, i.e. in phase with the disturban
e velo
ity but out of phase with thevorti
ity whi
h is assumed real (M
Kernan, 2006, p43). The 
oeÆ
ient magnitude peaks at approximately1.75, i.e. 1.75 times the base 
ow 
entreline velo
ity. However, this �gure is for a unit initial transientenergy. The kineti
 energy density of the base 
ow is 1=15 � 0:0667. For an initial perturbation energy of10% of the base 
ow energy, the upper wall velo
ity would peak at around 1:75�p0:00667, approximately0:14, and for a perturbation energy of 1% of base 
ow, the velo
ity would peak at approximately 0:045times the base 
ow 
entreline velo
ity. This represents the transpiration at reasonable velo
ity.The double time integral of the LQR 
ontrol signal at the upper wall, namely the Fourier 
oeÆ
ient ofthe upper wall 
uid quantity transpired, versus time is displayed in �gure 11. Although the net amountof 
uid transpired is zero sin
e the distribution is sinusoidal, this 
oeÆ
ient represents the magnitude ofthe sinusoidal distribution. The 
oeÆ
ient magnitude peaks at around 515, i.e. 515 times the 
hannel halfheight, for a unit energy initial perturbation. For an initial perturbation energy 1% of that of the base
ow, the quantity would peak at approximately 13:3 times the 
hannel half height. This represents thetranspiration of a 
omparatively large amount of 
uid, requiring a large asso
iated reservoir or distributionsystem. The �nal 
oeÆ
ient is not zero, representing a permanent transport of transpiration 
uid withinea
h spatial period, and thus any reservoirs do not return to their initial level, but instead 
uid has beenpermanently moved between them.Figure 12 presents the LQR transient energy against time. The 
ontroller is able to limit the transientenergy to 848:80, whi
h is 
onsistent with the value of 848:81 from �gure 1, as 
ompared to the open-loopvalue of 4896:94. Thus the 
ontroller e�e
tively limits the growth of the worst 
ase disturban
e. Threedi�erent dis
retisations N are shown, and 
onvergen
e has o

urred for even the lowest N = 30.The LQR 
ontroller minimises the time integral of the transient energy plus weighted 
ontrol e�ort, fromall initial 
onditions, rather than the dia
hroni
 transient energy bound itself, although the dia
hroni
transient energy bound has been redu
ed from 4896:94 to 848:80 as a 
onsequen
e. Cal
ulations using (37)show that mode pairs (1; 4) and (1; 5) provide substantial growth of transient energy as predi
ted in �gure6 (M
Kernan, 2006, p158).
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kernan, J.F. Whidborne and G. Papadakis 19Open-Loop LQE State Estimation Linear Simulation. LQE estimated transient energy against time ispresented in �gure 13. The tuned estimator 
onverges on the plant energy mu
h faster than the uniformestimator. Figure 14 shows LQE transient energy against time, for the tuned estimator, for several dis-
retisations N . It is evident that the behaviour of the estimator is not fully 
onverged below approximatelyN = 50.LQG Output Feedba
k Linear Simulation. Figure 15 shows the LQG transient energy and estimatedtransient energy against time. The 
ontroller is able to produ
e an dia
hroni
 transient energy bound ofapproximately 934:00, only slightly larger than the LQR state feedba
k value of 848:80.6.5 Summary of Dia
hroni
 Transient Energy Bound � ResultsAs a 
he
k, table 1 exhibits a summary of the dia
hroni
 transient energy bound values of the open-loopand LQR state feedba
k systems, from both the dia
hroni
 transient energy bound eigensystem (26), andthe linear simulation from the worst initial 
onditions. The small dis
repan
ies are thought to be due tonumeri
al ina

ura
ies, amongst whi
h are the dis
rete time steps used in the linear simulations.Table 2 shows a summary of the dia
hroni
 transient energy bound values from the open-loop andfeedba
k systems, and also in
ludes the estimated energy bound a
hieved by the LQE estimator on theopen-loop and LQG systems, from zero initial estimates.6.6 Choi
e of Dis
retisation N for Controller in Non-Linear SimulationsThe non-linear simulations require signi�
antly more 
omputing time than the linear ones, in the order ofdays rather than minutes, on a Pentium 4TM personal 
omputer. It is appropriate to 
onsider the 
hoi
eof dis
retisation for the 
ontrollers to be applied to the non-linear models. Sin
e no 
ontroller redu
tionis employed, this equates to the dis
retisation of the spe
tral model used for the 
ontroller synthesis. Theissue of dis
retisation of the non-linear model itself is 
onsidered by M
Kernan (2006).For the LQR 
ontroller synthesis to 
onverge N = 30 is suÆ
ient (se
tion 6.1), and for the LQE estimatorsynthesis N = 70 is suÆ
ient (se
tion 6.2). The linear simulations require N = 30 for the LQR systemand N = 50 for the LQE system (se
tion 6.4). The more exa
ting requirement of LQE is thought to berelated to the 
onvergen
e of the wall gradients and observability.For the observability and wall gradients to have 
onverged for the �rst 20 modes, approximately N = 100is required a

ording to M
Kernan (2006). The need for �ne dis
retisation at the wall is well known withinthe 
uid dynami
s 
ommunity. A

ordingly, 
ontrollers synthesized using a spe
tral model using N = 100are used within the non-linear simulations.6.7 Non Linear SimulationsA linear 
ontroller synthesized using a linearisation of a non-linear model will be able to stabilise the fullmodel given initial 
onditions near the linearisation equilibrium point, and provided the traje
tories donot stray far from the equilibrium point. However, if large transients take traje
tories far away from theequilibrium point, non-linear e�e
ts may predominate and the system may not be stable.This se
tion explores the performan
e of the 
ontrollers on a non-linear model of the plant, from smalland large initial perturbations. The non-linear simulations presented here 
annot be
ome fully turbulent
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 Control of Plane Poiseuille Flowas they are not three-dimensional, but they are 
apable of a

urately modeling the initial evolution ofinstabilities.Small Perturbation Results. For the small perturbation simulations, the open-loop initial maximum ~v is10�4U
l. This value 
orresponds to an initial transient energy of E0 (2:26 � 10�9), and has been shownby M
Kernan (2006, p166) to indu
e less than 1% non-linearity (as de�ned by the ratio of non-linear
onve
tion (~u � r) ~u to base 
ow 
onve
tion �~Ub � r� ~u in the Navier-Stokes equations (3) ) in a regionthat 
overs more than 90% of the 
ow �eld area. Closed-loop worst initial 
onditions of equal transientenergy to the 
orresponding open-loop 
ase are used.Results from non-linear �nite-volume CFD simulations from small perturbation initial 
onditions aregenerally 
lose to those from the spe
tral linear simulations, despite the fa
t that the �nite-volume andspe
tral simulation 
odes have been independently developed. The only ex
eption is the behaviour of theestimator in the LQG output feedba
k simulations, whi
h shows a small dis
repan
y, although the plantenergies agree well.These small perturbation non-linear simulations show agreement between peak transient energy as 
om-puted from the states by E = XTQX and as 
al
ulated by dire
t integration over the mesh using (9)to within 0:3% for the LQR system. This result shows that the 
al
ulation of the states is substantially
orre
t, and also that the energy matrix Q is 
orre
tly formulated.Large Perturbation Results. For the large perturbation simulations, the initial transient energy is 104E0,
orresponding to an open-loop initial maximum ~v of approximately 10�2U
l.Open-Loop Non-Linear Simulation. The open-loop transient energy time history, from this larger initialperturbation, for both linear and non-linear simulations, is displayed in �gure 16. The linear and non-linear simulations agree initially for a period of non-normal growth up to time approximately 50 units.Thereafter the linear simulation in
reases to 
omplete the non-normal growth to transient energy of 0:111,
orresponding to an dia
hroni
 transient energy bound of 4896:94, and then
e 
ontinue with de
ay, but thenon-linear simulation rea
hes a saturated state with peak transient energy of 0:0240 at time approximately124:5 units, and thereafter de
ays. The de
ay 
ontinues beyond t = 1500 (not shown), at approximatelythe same rate as at t = 1000. Although non-linear simulation soon deviates from the linear results, theearliest growth appears to be at a rate identi
al to that of the linear system non-modal phase.Regarding estimation, �gure 16 also shows the open-loop estimated transient energy against time. Inthis 
ase, the performan
e of the linear estimator on the non-linear plant model is poor, as it overshootsthe plant energy.LQR State Feedba
k Non-Linear Simulation. Figure 17 presents the 
losed-loop LQR transient energyversus time, from this larger initial perturbation, for both linear and non-linear simulations. The 
ontrollerredu
es the transient energy, and the di�eren
e between the linear and non-linear simulation is somewhatredu
ed, as 
ompared to the open-loop 
ase. The 
ontroller has redu
ed the open-loop non-linear peaktransient energy from 0:024 to 0:0093, a redu
tion of approximately 61% whi
h is not nearly su
h a greatredu
tion as that in linear simulation where the dia
hroni
 transient energy bound falls approximately83%. The peak nonlinear LQR transient energy of 0:0093 is approximately half the linear value of 0:019.The 
ontroller is a
heiving a lower energy density on the non-linear simulation, as energy levels are ingeneral lower in the non-linear simulation. The wall transpiration velo
ities required in the non-linearsimulation are 
omparable with those in the linear one.
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kernan, J.F. Whidborne and G. Papadakis 21The large perturbation CFD simulation for the LQR system showed poor agreementbetween the peak transient energy as 
omputed from the states using XTQX from (19)and as 
al
ulated by dire
t integration over the mesh using (9). The peak transient energyas 
omputed from the states under estimates that from dire
t integration by 44%. This isthought to be due to disturban
es at wave number pairs other than �; � being present atpeak E in the non-linear magnitude CFD simulation.LQG Output Feedba
k Non-Linear Simulation. Figure 18 shows the LQG transient energy versus time.The linear 
ontroller is unable to stabilize the non-linear plant model at this level of initial disturban
e.Sin
e the LQR 
ontroller is able to stabilise the test 
ase at this energy level, the de�
ien
y appears tobe in the estimator, and indeed its behaviour is poor, as its estimated energy overshoots the plant energyaround time 120, and diverges errati
ally from time 720 onwards. Sin
e an impli
it method is employed, toavoid sti�ness problems, the estimator integration s
heme is guaranteed to be stable, and thus integrationinstability is not the 
ause of this errati
 behaviour.Results from a smaller initial disturban
e 
orresponding to an open-loop worst initial 
ondition withvmax = 7:5 � 10�3U
l, i.e. energy of 5625E0 are presented in �gure 19. The linear 
ontroller is able tostabilize the non-linear plant model at this smaller level of initial disturban
e, approximately half that ofthe level whi
h 
ould not be stabilised. This time the estimated energy overshoots but does not diverge.The transient energy is limited to 0:01, as 
ompared to the open-loop plant whi
h rea
hes approximately0:04 (not shown).6.8 Summary of Simulation ResultsTable 3 show a summary of the linear and non-linear simulation results. At the perturbation sizes usedhere, non-linear e�e
ts redu
e the energy of large perturbation simulations below the level of s
aled smallperturbation results, with the ex
eption the LQG unstable large perturbation simulation.7 Con
lusionsThis paper has des
ribed the synthesis and validation of output and state feedba
k optimal 
ontrollers forplane Poiseuille 
ow, and has investigated aspe
ts of the transient energy growth of the 
ontrolled andun
ontrolled systems.Tuned pro
ess noise weights for the optimal estimator were 
hosen to re
e
t the possible size variationsin disturban
es a
ross the 
hannel, as an alternative to uniform weights and proved better at following theplant worst 
ase initial 
onditions from zero initial estimates. Estimation required �ner model wall-normaldis
retisation than state feedba
k 
ontrol required.Regarding feedba
k 
ontrol, although the sinusoidal transpiration was guaranteed to have a zero net 
uxover whole streamwise or spanwise periods, and thus also over any time span, its magnitude was su
h thatat any parti
ular point the transpiration of 
omparatively large quantities of 
uid were required. Controllerimplementation s
hemes mooted e.g. by (Ho and Tai, 1998) envisage the use of mi
roele
tri
al ma
hines(MEMs) based on small reservoirs, but these s
hemes would appear unable to provide the quantities of
uid required for optimal 
ontrol of the test 
ase based on early transition 
onsidered here.Non-linear simulations on linear sized perturbations reprodu
ed the linear simulation results . Theoverall agreement between the linear spe
tral results and the independent �nite volume results at low
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24 TablesTable 1. Open-Loop and LQR Dia
hroni
 Transient Energy Bound � by Eigensystem Cal
ulation (26) and Linear SimulationEigensystem Cal
ulation (26) Linear SimulationOL Time LQR Time OL Time LQR Time4896.94 379.16 848.81 187.03 4896.94 379.5 848.80 187.5Table 2. Dia
hroni
 Transient Energy Bound � for All Open- and Closed-Loop Systems, by Linear SimulationOL � LQR � OL LQE �Est LQG � LQE �Est in LQG4896.94 848.80 4235.73 937.00 729.30Table 3. Transient Energy E from Non-linear Simulations from Small and Large Initial Disturban
es (� indi
ates unstable.)System maxy E(t = 0) maxt<600 E maxt<600Eest~v(t = 0)OL/ 10�4 E0 1:10 � 10�5�t = 378:6 9:16 � 10�6�t = 383:2LQE 7:5� 10�3 5625E0 1:20 � 10�2�t = 161:2 3:15 � 10�2�t = 204:910�2 104E0 2:40 � 10�2�t = 124:5 4:77 � 10�2�t = 170:4LQR E0 1:90 � 10�6�t = 187:0 -104E0 9:51� 10�3�t = 89:7 -LQG E0 2:12 � 10�6�t = 196:3 1:79 � 10�6�t = 227:75625E0 7:49 � 10�3�t = 173:8 9:96 � 10�3�t = 238:2104E0 3:12 � 10�2�t = 600� 2:30 � 10�2�t = 481:3
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Figure 3. Open-Loop Bar Chart of Mode Pair Dot Produ
ts, N = 100
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Figure 7. LQR Upper Bound on Mode Pair Energy Growth Epair;bound, N = 100

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

t

E

N=10
N=20
N=30
N=40
N=50

Figure 8. Open-Loop Transient Energy E vs t, for Various Dis
retisations N , from initial 
onditions Xworst s
aled to E = 1



May 2, 2007 17:26 International Journal of Control ij
 Figures 29

0 500 1000 1500
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

t

 
∂v

(y
=

1
)/

∂t
  

∼

ℜ
ℑ

Figure 9. LQR Upper Wall Control U(1) vs t, from initial 
onditions Xworst s
aled to E = 1, N = 100

0 500 1000 1500
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

 
v
(y

=
1
)

∼

ℜ
ℑ

Figure 10. LQR Wall Velo
ity CoeÆ
ient, ~v(y = 1) vs t, from initial 
onditions Xworst s
aled to E = 1, N = 100



May 2, 2007 17:26 International Journal of Control ij
30 Figures

0 500 1000 1500
−600

−500

−400

−300

−200

−100

0

t

 ∫v
(y

=
1
)d

t
 ∼

ℜ
ℑ
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Figure 15. LQG E vs t, from initial 
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aled to E = 1, N = 100
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aled to Energy 104E0
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Figure 18. LQG Transient Energy E vs Time t, from initial 
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aled to Energy 104E0
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Figure 19. LQG Transient Energy E vs Time t, from initial 
onditions XWorst s
aled to Energy 5625E0


