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A continuous time non-minimal state-space (NMSS) representation is shown to be explicitly

related to the underlying minimal state-space observer/state feedback design method and,

moreover, the corresponding state feedback gains are explicitly related. This result provides a

starting point for NMSS methods in the continuous-time domain. Numerical examples are

given which illustrate the underlying relationship.

1. Introduction

The state-space approach to control system design

(see, for example, the textbooks of Kwakernaak and

Sivan (1972) and Kailath (1980)) has a long history. In

essence, a minimal state-space model of a system is used

to design an output feedback controller with two parts:

an observer which estimates the current system state and

a (non-dynamic) state-feedback which gives the control

signal in terms of the current state estimate. Both

observer and state-feedback can be designed in a

number of ways, including pole-placement and linear-

quadratic optimization.
An alternative approach, introduced by Young et al.

(1987) uses a particular non-minimal state-space

(NMSS) representation which has the property that

the state can be directly measured thus avoiding the use

of an observer. The NMSS approach has been shown to

give an observer-free implementation of model-based

predictive control by Wang and Young (2006). Related

NMSS approaches have been used by Jiang et al. (1996),

Daams and Polderman (2002) and Hoagg and Bernstein

(2004). Although much of this work has been in the

discrete-time domain, both delta-operator (Young et al.

1991, 1998, Chotai et al. 1998) and continuous-time

versions (Taylor et al. 1998) exist. The NMSS approach

has been successfully applied to diverse practical

problems (Ghavipanjeh et al. 2001, Quanten et al.

2003, Taylor and Shaban 2006).
The state-variable filter (SVF) concept has long been

used in continuous-time system identification (Young

1965, 1966, 1981) and in this context corresponds to a

NMSS representation. Moreover, continuous-time

self-tuning control (Gawthrop 1982, 1987a,b) is based

on the concept of an emulator (Gawthrop et al. 1996)

which uses the SVF and thus is also another form of

non-minimal state representation.
Taylor et al. (2000) give the relationship between the

NMSS and conventional minimal state-space represen-

tation in the discrete-time case. The purpose of this

paper is to investigate the same relationship, but in the

continuous-time domain. This is not a trivial rewrite of

the discrete-time result as, unlike the discrete-time case,

filters are required to avoid pure derivatives. In

particular, we show that conventional minimal-state

observer/state feedback control for SISO systems is

equivalent to a special case of the continuous-time

NMSS of Taylor et al. (1998).
The outline of the paper follows. Section 2 provides

some preliminary background and notation. Section 3

derives the NMSS representation from any minimal

state-space representation using a sequence of state

transformations. Section 4 considers state-feedback

control and derives an explicit formula for the NMSS
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feedback gain vector in terms of the corresponding

minimal-state feedback vector. Section 5 gives two

numerical examples to illustrate the approach.

Section 6 draws some conclusions and suggests future

directions.

2. Preliminaries

This paper considers nth order SISO LTI systems with a

transfer-function representation:

y ¼
bðsÞ

aðsÞ
uþ

cðsÞ

aðsÞ
� ð1Þ

where y is the system output, u the control input and � a
disturbance. The polynomials a(s)� c(s) are of the form

aðsÞ ¼ sn þ
Xn
k¼1

aks
n�k ð2Þ

bðsÞ ¼
Xn
k¼1

bks
n�k ð3Þ

cðsÞ ¼ sn þ
Xn
k¼1

cks
n�k ð4Þ

and it is assumed that a(s) and b(s) are coprime. In

terms of these parameters, it is convenient to define

the n-dimensional row vectors

a ¼ a1 a2 � � � an �
�

ð5Þ

b ¼ b1 b2 � � � bn �
�

ð6Þ

c ¼ c1 c2 � � � cn �
�

ð7Þ

f ¼ f1 f2 � � � fn �
�

¼ c� a: ð8Þ

There are two interpretations of the disturbance �.
Firstly, it can be regarded as white noise and thus (1)

represents a standard stochastic setup and, in particular

c(s) is part of the noise model. Secondly, c(s) is chosen as

an NMSS design parameter (called T(s) in Taylor et al.

(1998)) and thus � is the corresponding disturbance

signal with no particular stochastic interpretation. The

latter approach is more pragmatic and is discussed by

Taylor et al. (1998), Gawthrop et al. (1996) and

Gawthrop (1987a).
Defining

ŷ ¼ y� � ð9Þ

equation (1) can be rewritten as

ŷ ¼
bðsÞ

aðsÞ
uþ

fðsÞ

aðsÞ
�: ð10Þ

Equation (10) can be further rewritten as

cðsÞ

aðsÞ
ŷ ¼

bðsÞ

aðsÞ
uþ

fðsÞ

aðsÞ
y, ð11Þ

where

fðsÞ ¼ cðsÞ � aðsÞ: ð12Þ

Combining (9) and (11) gives

ŷ ¼
bðsÞ

cðsÞ
uþ

fðsÞ

cðsÞ
y

y ¼ ŷþ �:

8<
: ð13Þ

Equation (13) is an alternative way of writing (1); in the

particular case that � is white noise, it is related to

the innovations (Kailath 1970) representation of the

system (1).
In fact, it is possible to rewrite the representation (13)

in state-variable filter (SVF) form as

x̂sy ¼

sn�1

sn�2

� � �

1

2
6664

3
7775yf ð14Þ

x̂su ¼

sn�1

sn�2

� � �

1

2
664

3
775uf, ð15Þ

where

yf ¼
1

cðsÞ
y ð16Þ

uf ¼
1

cðsÞ
u: ð17Þ

That is x̂sy contains filtered derivatives of y and x̂su
contains filtered derivatives of u where the filter is

defined by c(s). Equations (14) and (15) correspond to

the standard state-variable filter (SVF) and together, the

2n SVF states form the NMSS representation. In

particular, (13) can be rewritten as

ŷ ¼ fx̂sy þ bx̂su: ð18Þ

Continuous-time non-minimal state-space design 1691
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Equation (1) has many minimal state-space representa-

tions of the form

dx

dt
ðtÞ ¼ AxðtÞ þ BuðtÞ þ B��

yðtÞ ¼ CxðtÞ þ �

xð0Þ ¼ x0;

8>><
>>:

ð19Þ

where the state x has dimension n and x0 is the

initial state.
The standard state observer (Kwakernaak and Sivan

1972, Kailath 1980, Goodwin et al. 2001) for such a

system is

dx̂

dt
ðtÞ ¼ Ax̂ðtÞ þ BuðtÞ þ L yðtÞ � ŷðtÞ½ �

ŷðtÞ ¼ Cx̂ðtÞ

x̂ð0Þ ¼ x̂0,

8>>><
>>>:

ð20Þ

where L is the observer gain. L determines the observer

poles (the eigenvalues of A – LC) and can be chosen in a

number of ways including pole-placement and LQG

optimization (Kwakernaak and Sivan 1972, Kailath

1980, Goodwin et al. 2001).

3. The NMSS representation

The NMSS representation is constructively derived from

the minimum-state representation in three stages.

(i) The state of the system in minimal-state-space form

(19) is transformed into observer canonical form

and, using superposition, split into two separate

states (x 3.1).
(ii) Each of the new states is separately transformed

into controller canonical form and seen to be

equivalent to the two SVFs of (14) and (15) (x 3.2).
(iii) The two states are combined in to a single 2n

dimensional non-minimal state which is shown to

arise from the system equations of Taylor et al.

(1998) (x 3.3).

3.1 Observer canonical form

Following Kailath (1980, x 2.1), consider the system (19)

in observer canonical form

dxo
dt

ðtÞ ¼ AoxoðtÞ þ BouðtÞ þ Bo��

yðtÞ ¼ CoxoðtÞ þ �

xoð0Þ ¼ xo0

8>>>><
>>>>:

ð21Þ

where

Ao ¼

j I

�aT j ..
.

j z

2
664

3
775 ð22Þ

¼

�a1 j 1 0 � � � 0

�a2 j 0 1 � � � 0

..

.
j ..

. ..
. ..

. ..
.

�an�1 j 0 0 � � � 1

�an j 0 0 � � � 0

2
66666664

3
77777775

ð23Þ

Bo ¼ bT ¼

b1

b2

..

.

bn

2
66664

3
77775 ð24Þ

Bo� ¼ fT ¼

f1

f2

..

.

fn

2
66664

3
77775 ð25Þ

Co ¼ o ð26Þ

and I is the (n� 1)� (n� 1) unit matrix, z is the (n� 1)
dimensional zero row vector and o is the the
n-dimensional row vector

o ¼ 1 j z �
�

¼ 1 0 � � � 0 �:
�

ð27Þ

The initial condition xo is given by

xo ¼ T ox, ð28Þ

where the transformation matrix To is given by

T o ¼ CoC
�1

ð29Þ

where the two n� n controllability matrices Co and C are
given by

Co ¼ Bo j AoBo j � � � j An�1
o Bo

� �
ð30Þ

C ¼ B j AB j � � � j An�1B
� �

: ð31Þ

It is a standard result (Kwakernaak and Sivan 1972,
Kailath 1980), based on the special structure of (21),
that the corresponding state observer, with initial state
x̂o0 and poles corresponding to the roots of c(s) can be
written as

dx̂o
dt

ðtÞ ¼ !ox̂oðtÞ þ BouðtÞ þ fTyðtÞ

ŷðtÞ ¼ Cox̂oðtÞ

x̂oð0Þ ¼ x̂o0,

8>>><
>>>:

ð32Þ

1692 P. J. Gawthrop et al.
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where

!o ¼ Ao � fTCo ð33Þ

¼

j I

�cT j ..
.

j z

2
664

3
775 ð34Þ

¼

�c1 j 1 0 � � � 0

�c2 j 0 1 � � � 0

..

.
j ..

. ..
. ..

. ..
.

�cn�1 j 0 0 � � � 1

�cn j 0 0 � � � 0

2
66666664

3
77777775

ð35Þ

and the initial state x̂o0 is chosen to correspond to x̂0
by choosing

x̂o0 ¼ T ox̂0: ð36Þ

Using superposition (the initial state has been assigned

to x̂oy, it could equally well have been assigned to x̂ou),

(32) can be rewritten in non-minimal state-space form as

dx̂oy
dt

ðtÞ ¼ !ox̂oyðtÞ þ fTyðtÞ

ŷoyðtÞ ¼ Cox̂oyðtÞ

x̂oyð0Þ ¼ x̂o0

8>>><
>>>:

ð37Þ

dx̂ou
dt

ðtÞ ¼ !ox̂ouðtÞ þ BouðtÞ

ŷouðtÞ ¼ Cox̂ouðtÞ

x̂ouð0Þ ¼ 0,

8>>><
>>>:

ð38Þ

where 0 is the n dimensional zero column vector and the

non-minimal state is the 2n-dimensional column vector

x̂on ¼
x̂oy
x̂ou

� �
: ð39Þ

It is clear that (with correct initial conditions)

x̂o ¼ x̂oy þ x̂ou ð40Þ

ŷo ¼ ŷoy þ ŷou: ð41Þ

Equations (37) and (38) have no particular interest in

themselves; but form the basis for a NMSS in controller

form in the next section.

3.2 Controller canonical form

Following Kailath (1980), the dual of the observer

canonical form is the controller canonical form.

Dualizing the two equations (37) and (38) of the

NMSS observer separately gives

dx̂cy
dt

ðtÞ ¼ !cx̂cyðtÞ þ BcyðtÞ

ŷcyðtÞ ¼ fx̂cyðtÞ

x̂cyð0Þ ¼ x̂c0

8>>>><
>>>>:

ð42Þ

dx̂cu
dt

ðtÞ ¼ !cx̂cuðtÞ þ BcuðtÞ

ŷcuðtÞ ¼ bx̂cuðtÞ

x̂cuð0Þ ¼ 0

8>>><
>>>:

ð43Þ

ŷcðtÞ ¼ ŷcyðtÞ þ ŷcuðtÞ, ð44Þ

where

!c ¼ !T
o ð45Þ

¼

�c

� � � � � � � � �

I j zT

2
64

3
75 ð46Þ

¼

�c1 �c2 � � � �cn�1 �cn

� � � � � � � � � � � � � � �

1 0 � � � 0 0

0 1 � � � 0 0

� � � � � � � � � � � � � � �

0 0 � � � 0 0

0 0 � � � 1 0

2
666666666664

3
777777777775

ð47Þ

Bc ¼ CT
o ¼ oT ¼

1

0

� � �

0

2
6664

3
7775: ð48Þ

Equations (42) and (43) are the state-space realizations

of the SVF equations (14) and (15) respectively.
Once again, following Kailath (1980), the states in

(42) and (43) can be expressed as linear transformations

of the states of (37) and (38) respectively as

x̂cy ¼ T yx̂oy ð49Þ

x̂cu ¼ T ux̂ou, ð50Þ

where the transformation matrices Ty and Tu are

respectively given by

T y ¼ CcCoy
�1

ð51Þ

T u ¼ CcCou
�1, ð52Þ

Continuous-time non-minimal state-space design 1693
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where the three n� n controllability matrices Cc–Cou are

given by

Cc ¼ oT j !co
T j � � � j !n�1

c oT
� �

ð53Þ

Coy ¼ fT j !of
T j � � � j !n�1

o fT
� �

ð54Þ

Cou ¼ bT j !ob
T j � � � j !n�1

o bT
� �

: ð55Þ

In particular, the initial state x̂c0 can be written as

x̂c0 ¼ T yx̂o0: ð56Þ

Equations (42) and (43) are an alternative NMSS

representation and the corresponding state is

X ¼
x̂cy

x̂cu

� �
: ð57Þ

Unlike the state of (37) and (38), the state X is

independent of system parameters.

Theorem 1: The NMSS state X of (57) is related to the

minimal state x of (19) by

X ¼
T y

T u

� �
T o x: ð58Þ

Proof: Equation (58) follows from (28), (49)

and (50). œ

3.3 Non-minimal state-space representation

Equations (42) and (43) give a non-minimal state-space

representation of the the system (19). However, due to

the presence of the system output y on the right-hand

side of (42), these equations cannot be directly used for

conventional state feedback design. However, y ¼ ŷc can

be eliminated from the right-hand side of (42) using (44)

to give

dx̂cy

dt
ðtÞ ¼ !cx̂cyðtÞ þ oT fx̂cyðtÞ þ bx̂cuðtÞ

� �
þ oT�ðtÞ ð59Þ

¼ Acx̂cyðtÞ þ oTbx̂cuðtÞ þ oT�ðtÞ: ð60Þ

Combining (59) and (43) gives

dX

dt
ðtÞ ¼ FXðtÞ þ guðtÞ þOT�ðtÞ

yðtÞ ¼ hXðtÞ þ �ðtÞ

Xð0Þ ¼ x̂cn0 ¼
x̂cy0

0

� �

8>>>>><
>>>>>:

ð61Þ

where

F ¼
Ac oTb

0 !c

� �
ð62Þ

¼

�a1 �a2 � � � �an�1 �an b1 b2 � � � bn�1 bn

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

1 0 � � � 0 0 0 0 � � � 0 0

0 1 � � � 0 0 0 0 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 � � � 0 0 0 0 � � � 0 0

0 0 � � � 1 0 0 0 � � � 0 0

0 0 � � � 0 0 �c1 �c2 � � � �cn�1 �cn

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 � � � 0 0 1 0 � � � 0 0

0 0 � � � 0 0 0 1 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 � � � 0 0 0 0 � � � 0 0

0 0 � � � 0 0 0 0 � � � 1 0

2
66666666666666666666666666664

3
77777777777777777777777777775

ð63Þ

g ¼

0

z

o

2
64

3
75 ¼

0

..

.

0

1

0

..

.

0

2
6666666666664

3
7777777777775

ð64Þ

and O ¼ o 0
� �

and h ¼ f b
� �

:

1694 P. J. Gawthrop et al.
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Equation (61) corresponds to Taylor et al. (1998, (3)

and (4)). It is a non-minimal system state representation
of (1) which has the important property that the state X
is directly measurable.

4. State-feedback control

The control signal um using standard state feedback with
minimal realization is

umðtÞ ¼ �kx̂ðtÞ, ð65Þ

where k is the 1� n state-feedback matrix and x̂ the state

estimate generated from observer (20). The correspond-
ing NMSS feedback control signal un is

unðtÞ ¼ �KXðtÞ, ð66Þ

where K is the 1� 2n state-feedback matrix and X the

NMSS state (57).
The following theorem gives the conditions under

which um (65) and un (66) are the same.

Theorem 2: If the NMSS feedback gain vector is

given by

K ¼ kT o
�1

T y
�1

T u
�1

h i
ð67Þ

and the initial NMSS state is

Xð0Þ ¼ X0 ¼
T yT ox̂0

0

� �
, ð68Þ

where the transformation matrices Ty, Tu and To are

given by equations (51), (52) and (29) respectively, then
um¼ un.

Proof: Using the results of x 3, (68) ensures that

X¼
x̂cy

x̂cu

� �
¼

T yx̂oy

T ux̂ou

� �
¼

T yT ox̂

T uT ox̂

� �
¼

T y

T u

� �
T o x̂: ð69Þ

Moreover (67), (49), (50) and (28) imply that:

KX ¼ kT o
�1

T y
�1
T u

�1
h i

X

¼ kT o
�1

T y
�1

T u
�1

h i
T y T u

� �
T ox ¼ kx: ð70Þ

œ

5. Examples

The main results of this paper are illustrated by
applying LQ control to two example systems. In each

case, the minimal-state-feedback vector k is
obtained from the minimization of the standard infinite

horizon LQ regulation cost function with output
weighting:

Jm ¼

Z 1

t¼0

y2ðtÞ þ lu2ðtÞdt ¼
Z 1

t¼0

xðtÞTCTCxðtÞ þ lu2ðtÞdt

ð71Þ

and the NMSS state-feedback vector Klq from the
minimization of

Jn ¼

Z 1

t¼0

XTðtÞhThXðtÞ þ lu2ðtÞdt ð72Þ

As the two cost functions are the same, it must be true
that Klq ¼ K where K is obtained from k and (67).

5.1 Example 1: Simple integrator

Consider the simple integrator written in the form
of (1) with

aðsÞ ¼ s ð73Þ

bðsÞ ¼ 1 ð74Þ

cðsÞ ¼ sþ 1: ð75Þ

The state-space representation is in the form of (19) with

A ¼ 0; B ¼ 1; C ¼ 1: ð76Þ

In this case, the transformation matrices of (29), (49),
and (50) become:

T o ¼ T y ¼ T u ¼ 1: ð77Þ

It follows from Theorem 2 that

K ¼ k k
� �

: ð78Þ

The minimal-state LQ optimization (71) was solved with
the control weight l¼ 0.01 to give the optimum gain
k¼ 10. The NMSS LQ optimization (72) was solved
with the same weight and gave K¼ [10 10] thus
confirming (78).

The closed-loop pole for the minimal state-
feedback controller (eigenvalue of A�Bk) is
s¼�10, the closed-loop poles for the NMSS state-
feedback controller (eigenvalues of F� gK) are at
s¼�10, s¼�1; the first corresponds to the minimal
state-feedback controller, the latter to the root of
c(s)¼ 0.

5.2 Example 2: Third-order system

Consider the third-order integrated oscillator written in
the form of (1) with

aðsÞ ¼ s3 þ s ¼ sðsþ jÞðs� jÞ ð79Þ

Continuous-time non-minimal state-space design 1695
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bðsÞ ¼ 1 ð80Þ

cðsÞ ¼ s3 þ 3s2 þ 3sþ 1 ¼ ðsþ 1Þ3: ð81Þ

The particular state-space representation

A ¼

0 �1 0

1 0 0

0 1 0

2
64

3
75; B ¼

1

0

0

2
64

3
75; C ¼ 0 0 1

� �

ð82Þ

was chosen. In this case, the transformation matrices of
(29), (49), and (50) become

T o ¼

0 0 1
0 1 0
1 0 1

2
4

3
5 ð83Þ

T y ¼

0:25 0:25 �0:25

0:25 �0:25 �0:25

�0:25 �0:25 1:25

2
64

3
75 ð84Þ

T u ¼

6 �3 1
�3 1 0
1 0 0

2
4

3
5: ð85Þ

The minimal-state LQ optimization (71) was solved with
the control weight l¼ 0.01 to give the optimum gain

k ¼ 4 8 10
� �

ð86Þ

It follows from Theorem 2 that

K ¼ 38 �4 10 4 20 42
� �

: ð87Þ

The NMSS LQ optimization (72) was solved with the
same weight to give a value of K identical to (87).
The closed-loop poles for the minimal state-feedback

controller (eigenvalue of A�Bk) are s¼�2, s¼�1� 2j,
there are six closed-loop poles for the NMSS state-
feedback controller (eigenvalues of F� gK), three
corresponding to the minimal state-feedback controller
and three at s¼�1 corresponding to the roots of
c(s)¼ 0.

6. Conclusion

The paper has shown that a particular continuous-time
non-minimal state-space (NMSS) representation can be
explicitly expressed in terms of a minimal state-space
representation and thus, in this sense, the NMSS and
minimal-state representations are equivalent.
The practical implication of this result is that, in the

circumstances considered in this paper, the choice
of implementation is a matter of convenience rather

than performance. An example of this is self-tuning
control where the NMSS is required for linear-in-the-
parameters system identification.

There are, however, NMSS representations not
considered in this paper. One example involves the
case where the sn term does not appear in (4) so that the
degree of c(s) is n� 1 rather than n. This case is easily
handled in the NMSS setup and yields controller with a
direct link from y to u. On the other hand, the minimal
state-space approach is more complicated and requires
the construction of a reduced-order observer. It is an
open question as to whether the resulting controllers are
again equivalent. This question,and those relating to
other versions of NMSS, are the subject of ongoing
research.

Acknowledgements

Peter Gawthrop and Peter Young gratefully acknowl-
edge the support of RMIT University though the
Professorial Fund and the Royal Academy of
Engineering though the International Travel Grant
Scheme. An anonymous referee suggested significant
changes to improve the clarity of the paper.

References

A. Chotai, P.C. Young, P.G. McKenna and W. Tych, ‘‘Proportional-
integral-plus (PIP) design for delta operator systems: Part 2, MIMO
systems’’, Int. J. Contr., 70, pp. 149–168, 1998.

J. Daams and J.W. Polderman, ‘‘Almost optimal adaptive LQ control:
SISO case’’, Math. Contr. Sig. Syst. (MCSS), 15, pp. 71–100, 2002.

P.J. Gawthrop, ‘‘A continuous-time approach to discrete-time self-
tuning control’’, Opt. Contr. Appl. Meth., 3, pp. 399–414, 1982.

P.J. Gawthrop, Continuous-time Self-tuning Control. Vol 1: Design
Lechworth, England: Research Studies Press, Engineering control
series, 1987a.

P.J. Gawthrop, ‘‘Robust stability of a continuous-time self-tuning
controller’’, Int. J. Adapt. Contr. Sig. Proc., 1, pp. 31–48, 1987b.

P.J. Gawthrop, R.W. Jones and D.G. Sbarbaro, ‘‘Emulator-
based control and internal model control: complementary
approaches to robust control design’’, Automatica, 32,
pp. 1223–1227, 1996.

F. Ghavipanjeh, C.J. Taylor, P.C. Young and A. Chotai, ‘‘Data-based
modelling and proportional integral plus (PIP) control of nitrate in
an activated sludge benchmark’’, Water Sci. Technol., 44, pp. 87–94,
2001.

G. Goodwin, S. Graebe and M. Salgado, Control System Design,
Englewood Cliffs, NJ: Prentice Hall, 2001.

J. Hoagg and D. Bernstein, ‘‘Robust stabilization of discrete-time
systems’’, in Proceedings of the IEEE Conference on Decision and
Control, Vol. 3, Atlantis, Bahamas, 2004, pp. 2346–2351.

Y. Jiang, T. Hesketh and D. Clements, ‘‘Non-minimal state-space
realisation in Hinf control design’’, in Proceedings of the 35th
IEEE Conference on Decision and Control, Vol. 1, Kobe, Japan,
1996, pp. 231–236.

T. Kailath, ‘‘The innovations approach to Detection and Estimation
Theory’’, Proc. IEEE, 58, pp. 680–695, 1970.

T. Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, 1980.
H. Kwakernaak and R. Sivan, Linear Optimal Control Systems,

New York: Wiley, 1972.

1696 P. J. Gawthrop et al.



D
ow

nl
oa

de
d 

B
y:

 [I
ng

en
ta

 C
on

te
nt

 D
is

tri
bu

tio
n 

Ta
nd

F 
tit

le
s]

 A
t: 

04
:4

4 
28

 M
ay

 2
00

8 

S. Quanten, P. McKenna, van A. Brecht, van A. Hirtum, P.C. Young,
K. Janssens and D. Berckmans, ‘‘Model-based PIP control of the
spatial temperature distribution in cars’’, Int. J. Contr., 76,
pp. 1628–1634, 2003.

C.J. Taylor and E.M. Shaban, ‘‘Multivariable proportional-integral-
plus (PIP) control of the Alstom nonlinear gasifier simulation’’,
Control Theory and Applications, 153, pp. 277–285, 2006.

C. Taylor, A. Chotai and P. Young, ‘‘Continuous-time proportional-
integral derivative-plus (PIP) control with filtering polynomials’’,
in Proceedings of the UKACC conference ‘‘Control ’98’’, Swansea,
UK, 1998, pp. 1391–1396.

C.J. Taylor, A. Chotai and P.C. Young, ‘‘State space control system
design based on non-minimal state-variable feedback: further
generalization and unification results’’, Int. J. Contr., 73,
pp. 1329–1345, 2000.

L. Wang and P.C. Young, ‘‘An improved structure for model
predictive control using non-minimal state space realisation’’,
J. Proc. Contr., 16, pp. 355–371, 2006.

P.C. Young, ‘‘The Determination of the parameters of a dynamic
process’’, Radio Electr. Eng., 29, pp. 345–361, 1965.

P.C. Young, ‘‘Process parameter estimation and self-adaptive
control’’, in Theory of Self-adaptive Systems, P.H. Hammond,
Ed., New York: Plenum Press, 1966.

P.C. Young, ‘‘Parameter estimation for continuous-time models – a
survey’’, Automatica, 17, pp. 23–39, 1981.

P.C. Young, A. Chotai and W. Tych, ‘‘Identification, estimation
and control of continuous-time systems described by
delta operator models’’, in Identification of Continuous-time
Systems, N. Sinha and G. Rao, Eds, Dordrecht: Kluwer, 1991,
pp. 363–418.

P.C. Young, M. Behzadi, C. Wang and A. Chotai, ‘‘Direct digital and
adaptive control by input-output state variable feedback pole
assignment’’, Int. J. Contr., 46, pp. 1867–1881, 1987.

P.C. Young, A. Chotai, P.G. McKenna and W. Tych, ‘‘Proportional-
integral-plus (PIP) design for delta operator systems: Part 1, SISO
systems’’, Int. J. Contr., 70, pp. 123–147, 1998.

Continuous-time non-minimal state-space design 1697


