This article was downloaded by: [University of Southampton]

On: 15 September 2008

Access details: Access Details: [subscription number 773565843]
Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

e International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

International Multi-machine operations modelled and controlled as switched linear repetitive
Journal of processes
Jacek Bochniak ?; Krzysztof Galkowski ?; Eric Rogers °
C.Ont’rﬂl 2 |nstitute of Control and Computation Engineering, University of Zielona Géra, Poland  School of Electronics

and Computer Science, University of Southampton, UK

Online Publication Date: 01 October 2008

)

©
g
r

To cite this Article Bochniak, Jacek, Galkowski, Krzysztof and Rogers, Eric(2008)'Multi-machine operations modelled and controlled as
switched linear repetitive processes',International Journal of Control,81:10,1549 — 1567

To link to this Article: DOI; 10.1080/00207170701694277
URL: http://dx.doi.org/10.1080/00207170701694277

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://ww.informworld. confterns-and-conditions-of-access. pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |oan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207170701694277
http://www.informaworld.com/terms-and-conditions-of-access.pdf

15:11 15 Septenber 2008

[University of Southanpton] At:

Downl oaded By:

International Journal of Control
Vol. 81, No. 10, October 2008, 1549-1567

Taylor &Francis
Taylor & Francis Group

Multi-machine operations modelled and controlled as switched linear repetitive processes

Jacek Bochniak?®, Krzysztof Galkowski** and Eric Rogersb

“Institute of Control and Computation Engineering, University of Zielona Géra, Poland: ®School of Electronics and
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Many industrial processes involve the processing of a single workpiece by successively passing it through a
sequence of machines. The most common example is metal rolling where the metal strip of finite length is shaped
by passing it through different sets of rolls and the output from one forms the input to the next and so on. In this
paper, we develop a new approach to the analysis and overall control of such systems by first modelling them as a
linear repetitive process with switched dynamics. The end result is control law design algorithms which can

be implemented using LMI based computations.

Keywords: repetitive dynamics; multi-machine dynamics; control law design

1. Introduction

The unique characteristic of a repetitive process (also
termed a multipass process in the early literature) can be
illustrated by considering machining operations where
the material or workpiece involved is processed by a series
of sweeps, or passes, of the processing tool. Assuming the
pass length o < 400 to be constant, the output vector, or
pass profile, yi(p), p=0,1,...,a—1, (p being the
independent spatial or temporal variable), generated on
pass k acts as a forcing function on, and hence contributes
to, the dynamics of the new pass profile y,(p),
p=0,1,...,a—1, k=0, 1,.... This, in turn, leads to
the unique control problem in that the output sequence of
pass profiles generated can contain oscillations that
increase in amplitude in the pass-to-pass direction, i.e.
in the collection of pass profile vectors {y;} .

Industrial examples include long-wall coal-cutting
and metal rolling, see the original papers cited in, for
example, Rogers, Galkowski and Owens (2007) for
further details. A number of so-called algorithmic
examples also exist where adopting a repetitive process
setting for analysis has clear advantages over alter-
native approaches to systems related analysis. These
include iterative learning control schemes, e.g., Moore,
Chen and Bahl (2005) and iterative solution algorithms
for dynamic non-linear optimal control problems

based on the maximum principle, e.g., Roberts
(2002). In the case of iterative learning control for
the linear dynamics case, the stability theory for
differential (and discrete) linear repetitive processes
is one method which can be used to undertake a
stability/convergence analysis of a powerful class of
such algorithms and thereby produce vital design
information concerning the trade-offs required
between convergence and transient performance, see,
e.g., Owens, Amann, Rogers and French (2000).

In many practical applications, the material or
workpiece involved is of finite length (or thickness) and
is processed (or operated on) by a sequence of
operations each of which has its own dynamics.
Examples here include metal rolling or operations
using multiple operation robot arms. In the case of the
former, a common requirement is that a metal strip of
finite length is shaped by passing it through different
sets of rolls where the output from one forms the input
to the next and so on. More generally, a number of
successive operations may be carried out under one
regime (or dynamics) and then the dynamics change,
or switch, to allow further processing to take place.
This paper shows how such dynamics can be modelled
as a discrete linear repetitive process with switching in
the pass-to-pass direction. Then we develop new results
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on stability and control law design and give an
illustrative numerical example.

Throughout this paper, the null matrix and the
identity matrix with the required dimensions are
denoted by 0 and /7, respectively. Moreover, M > 0
(M < 0) denotes a real symmetric positive (negative)
definite matrix. In the next section we introduce the
required background results.

2. Background

Repetitive processes can exhibit many forms of
dynamics but here the interest in so-called discrete
linear repetitive processes where the dynamics along
any pass are governed by a matrix difference equation.
Moreover, the boundary conditions, i.e., the initial
pass profile and the initial conditions, at the start of
each new pass are of critical importance. The simplest
possible model over p=0,1,...,a—1, k>01is

{xﬂmp+n=uuﬂmm+BwHUﬂ+Bwum O

Vi1 (p) = Cxp1(p) + Dugy1(p) + Doyi(p)

where on pass k xi(p) € R" is the state vector,
w(p) € R is the control vector and y,(p) € R” is the
pass profile (or output) vector. The boundary condi-
tions of interest here are of the form

Xk41(0) =diyr and  yo(p) = flp), (2

where d;,; € R" has known constant entries and
f(p) € R" is known function p. Note, however, that
other forms for x;,1(0) arise and the structure of these
alone can destroy stability — see Rogers et al. (2007)
for a detailed treatment of this aspect.

Note also that these processes share many joint
features with the so-called spatially interconnected
systems, which have already found numerous impor-
tant physical applications; see, for example, D’Andrea
and Dullerud (2003) and references therein. This arises
from the fact that some of the state-space models in
this area can be rewritten as a discrete linear repetitive
process state-space model (or its differential
equivalent).

In this work, we are interested in a generalisation of
the case when an example completes a pass and then

Ay
By Cy

=)
I

| Bo.:Do,c-1--.DnnCy

By —1Dy,r—2...DxC1 By, —1Dy,r—2...Do3C
Bo,:Do,r1...Dp3Cs

before the start of the next pass the process dynamics
switch to a model with the same structure but different
state-space matrices. In particular, we consider the case
of processes described by

Xip1(p+ 1) = Aaxip1(p) + By (p)
+Bo, 1+11(p)
Yir1(p) = Criaxis1(p) + Diyrury1(p)
+Do,1+1y1(p) 3)
A1+ = Aip1, - Biyiyr = By,
Bo, 14140 = Bo, 141

Crpi4r = Cir1s Digiyr = Dig,

Do, 11141 = Do, 141

overp=0,1,...,a—1,/=0,1,...,where 7 is a known
positive integer and the boundary conditions are of the
form (2).

The matrices which define the state-space models
here are said to be t-periodic and we are considering a
discrete linear repetitive process with multiple switched
dynamics in the pass-to-pass direction. Also it is clear
that there are many more possibilities for switched
dynamics in these processes but as shown later in this
paper it is this form which is of use in the repetitive
process based analysis of metal rolling operations.

For analysis purposes, the process model (3) can be
transformed into the non-switched “‘equivalent lifted
process” described by

{nﬂw+n=lmmm+&%4m+%n@>
Yir1(p) = CXii1(p) + 5Uk+1(l)) + Do Yi(p),

4)
where p=0,1,...,a—1,k=0,1,...,and
Xekt1(p) Uiy 1(p)
Xek2(P) Uri42(P)
X (p) = . o Ukni(p) =
xrk+t(p) “r/H—r(p)

Yi(p) =yu(p),  Yig1(p) = YVeks(p)

and
0 0 0 1
Ay 0 0
Ay 0
BO,rCr—l Ar_

6=[D0,7:D0,1:71-~~D02C1 Do,:Do -1 ...D3Cy +++ Do .Croy C:]
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. Do = Do Do r1...Do

>
(=]
I

and ® and TI the “lifted augmented process and input
matrices’ respectively.

The analysis in this paper will make extensive use of
the Schur’s complement formula and the following
results (Bachelier, Bernussou, de Oliveira and Geromel
1999).

B, 0 0 0
Bo» Dy B, .- 0 0
B=
By,:—1Do,r—2 ... D2Dy By r—1Do r—2...Dp3Dy - B,y 0
| Bo.Dor1...DpD; By Doy i...DosD; Bo.D:y B,
D =[Do Do ri...D2Di Do Do i ...Do3Ds Do,:Dr—i D]

with boundary conditions

Xk+1(0) iy

Yek42(0) drfey2 ‘
Xie41(0) = : = Nt Yo(p) = f(p).

xtk+r(o) drk+t

In this paper, we make no further reference to the
boundary conditions (except for specifying them in the
numerical example given later).

In order to simplify notation, we introduce the
following for (3) and (4)

A; By B; .
d; = , I, = ,for i=1,2,...,t
Ci Dy D;

®)

|4 Bo| [_|8 (6)
C D, D

respectively. Here the matrices ®; and IT; are termed

and

the “periodic augmented process and input matrices”

[ w LG, L G, L ,G.
¢!’ -G, -a7 L2G, 0

GTT—lﬂ-£1 Gf_l[LfT =G — GrT—l "—3—1Gr72

Gl 0 GILL, ~Gr2 =G,

G’ 0 0 0
G’ 0 0 0
e 0 0 0

Lemma 1: Let W,V be given symmetric matrices with
V > 0. Suppose also that L is a given matrix. Then

W+ LVLT <0

holds if, and only if,

w LG
GTLT V—-G-GT <0, M

where G is a non-singular matrix.

Lemma 2: Let W,V with V>0, and L%, U, for
i=2,....1,j=1,2 be given matrices. Then

W+ £vel <o (8)
with

L=00+ L+ 0L+ L+
+ (Lo + L)L, - L) L)LS

holds if
LiG; LG, LG,
0 0 0
0 0 0
0 0 0
<0, (9
-G -Gl 136G, 0
GIy" -G, - GT LG,
0 Gl" v-G, 67 |

where G;, i=1,2,...,1t, are non-singular matrices.
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Proof: The matrix £ can be rewritten as
£ =1 + 105 + LiLGLS + LiLGLE0S + - -
+0L 22,4, -
=L+LQ
and hence (8) as
W+ LVL = W+ (L +LiV(L+110)"
=[1 |]_1]F|: Ii|<(), (10)
T L
where
E= L+ L0 + LI + L2020 -
+0 22,
Q=007 --13
W+ £vL? L'G, + LVQT
. [Gflir+ QULT QVQT -G, - GJ

and the matrix G, is non-singular. If T' < 0 then (8)
holds. Hence we can write

w LG, cl ..
+1 - |V[£" @T] <o,
G"n!" -G,-ar Q

where

L L L] L L)
B0 B S el [ER Rl [EERS Rl (FETE
Q 0 0 0 0

I]_l
ol SRR

|]_1
o e
_ L.
= El + [ I]i;l :|Ql
with

- 1LY L L L
L) = 1 + 2 I]_2—|— 3 I]_Z[L2+ 4 [L2|]_2|]_2
1 |:0 :| |:0 2 0 352 0 47352
[Ll
U 6—2 |]_§_2[|_3_3 .. I].%

Q=12 L2, 1]

Consequently (11) can be rewritten in an analogous
form to (10) as

!

_ ' i Lo\
Wi + (£1 + 1]91>W<ﬁ1 + [ 1i|91)
N L;
L, !
=|1 5 I - - <0, (12)
I]_‘L' I]‘r—l I]‘r

where
Y LG,
W, =
| G —G,—GT
_ »
W, + L, VL] [ ; :|G,1+£1\/§21T
[L‘[
r =
L1 _
G{_l[ ;] + VL] QVQl —G, —GL,
L L

and G,_; is non-singular. If Ty < 0, then (12) holds.
Hence we can write

L,
W 5 G B
[Lr £1
L | iz an)
- 1
o [5] ouet
<0, (13)
where
: L; L;
£y 2 212
=101+ 0 |L+] 0 |LL
Q
0 0 0
L, L,

L 0 0
L,
Sl O | S S &
L,
L,
=Lo4+| 0 |9
I]_2
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with and the matrix G,_» is non-singular. If I'; < 0 then (14)
0 | | | holds and we can write
B Ly L, L L, - | -
Lo=]0|+]|0 |[L+]| 0 [LBL3+]| 0 [LiL3L3 L.
0 0 0 0 W 0 |G
[Ll ; |]_$71
™~ T
Foot |0 (1212, 02 L,
Gi,| 0 —Gry =G,
Gy =12 12 .12, _ Le i
We can now rewrite (13) as + |:€2 :|\/[22T s'zzT] <0. (15)
L L,7 0\ ’
T—2 T2 : : .
- - - - We can clearly continue this procedure until
Wo + | Lo+ 0 |2 |V| L+ 0 | . T
12 12 e k2
rl—l —1 0 0
I]_f_z [ I ] W, o+ | Lo+ S_Zr—Z V| Lo+ Qr—z
=117 0 |z W <0, (14) 0 0
[L2 -2 —1 |]_2 |]_2
—1 3 3
where ”—é
| Loy I . r ! 0
Wi L o B i VO E
Wz = T ! 2
L, L3
T T— _ T
Gr—l |]_2 G- Gr—l (16)
- | - where
_ _ [L‘L' 2 _ _ - 0
W, + L,VLT 0 |Gera+LoVQI L
L7, 0
r,= ; _ . _ )
”—i—z Lon= b Q= |]_2
GZ—z 0 +§22\/E2T 5_22\/5_2; -G — GrT_z 0
L L _ L0
and
w LG, L, )
G —g,—gr| | 2 |o L
0 Gr72
T 1
L 2 L3
TNy .
G| 0 ~Gra = Gl 02
W, , = L, L
"
0
GT| -G; — GT
0
L L; i
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_ i ;
0
W, o+ L, oVL, DG+ L aVaT,
0
|]_2
I, = ) [L; ., |53
0
GI| ¢ | +QaVLL, Q.VQl,-G,—GT
0
L L1 _

where G, and G; are non-singular. If I';_, < 0 then
(16) holds and we can write

'ﬂ_é'
0
W _, G
0
e
R
L,
0
G2T : —Gz—GZT
0
L LL5 i
Lo v[zT, Qf 0 17
+ 5-2 5 [‘Cr—2 Qr—2:|< . ( )

Application of Lemma 1 to (17) now yields (9) where
G is non-singular and the proof is complete. ]

3. Stability

The stability theory for linear repetitive processes
consists of two separate concepts, termed asymptotic
stability and stability along the pass respectively
(Rogers et al. 2007). In effect, both of these are a
form of bounded input bounded output stability of the
pass profile sequence (recall the unique control
problem for these processes) where asymptotic stability
demands this property over the finite and constant pass
length and as a consequence that the sequence of pass
profiles converge to a steady or so-called limit profile
as k— oo. In the case of processes described by (4) (or
(1)) the limit profile is described by a standard (or 1D)
discrete linear systems state-space model. The fact that
the pass length is finite, however, could mean that this
limit profile is unstable, i.e. all eigenvalues of the
state matrix do not lie in the open unit circle in the

complex plane. (Over a finite duration even a unstable
1D linear system can only produce a bounded output.)

Stability along the pass prevents this undesirable
situation from arising by demanding the bounded
input bounded output property uniformly, i.e. for each
possible value of the pass length.

A necessary and sufficient condition for stability
along the pass of processes described by (4) is as
follows (see, for example, Galkowski, Rogers, Xu,
Lam and Owens (2002) for a derivation of this
condition and related analysis/ideas).

Theorem 1: A discrete linear repetitive process
described by (4) (or (1)) is stable along the pass if, and
only if,

11— 21;4\ —21§0
det .
—22C 1—22D0

A:|7£0 inD, (18

where D :={(z1,22) : |z1] < 1,|z| < 1}.

This condition can be reduced to a set which can be
tested by applying well known 1D discrete linear
systems tests but these have not provided a suitable
basis on which to proceed to control law design.
A more practical alternative is to use a Lyapunov
approach which can be computed using numerically
efficient linear matrix inequality (LMI) methods
(Boyd, Feron, El Ghaoui and Balakrishnan 1994) but
at the possible cost of conservativeness due to the use
of a sufficient but not necessary condition for stability
along the pass. Next we give two new stability results
which can be computed using LMIs and then form the
basis for control law design with a formula for
computing the matrix in such a law.

The following result is based on the theory of 1D
periodic systems (Farges, Peaucelle and Arzelier 2005).

Theorem 2: A discrete linear repetitive process
described by (3) is stable along the pass if, for
i=1,2,...,1,
e there exist matrices X; > 0 such that
DX ® — Xip1 <0, Xy = X1, (19)
where X;=diag(X;, X»;) and @, is given in (5),
® or, there exist matrices X; > 0 such that
B PP (20)
<V, 1= Aq.
A/,CD[T —X,- T+

Proof: Stability along the pass does not depend on
the current pass input terms and with these deleted we
can write the process state-space model in the form

[x1+1(p+ 1)} _ [A,+1 By, 141 } [XZH(P)} 1)
Yir1(p) Cr1 Doy yi(p)
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over p=0,1,...,a—1,/=0,1,..., or
Exr1(p+ 1), yir1(p) = @raé(xpa(p), yi(p),  (22)

where ®,, .= ®,,; and

X(p+1)
Expi(p+ 1), y1(p) = |:’C1+l P i|,
yis1(p)
Xrp1(p)
Exi1(p),vi(p) = )
yi(p)

Consider now the following candidate Lyapunov
function expressed in terms of (22)

V(Zap) = Vl(lap) + V2(l:p)
= X/ (P)P1x1:1(p) + ¥] (P)P2, 1113 p)

for some P;>0 and P,,y; >0, and associated
increment

is that there exist matrices P; > 0 such that, for all
i=1,2,...,1,

®IPi ®;— P <0, P.y=P, (25)

where P;=diag(P;, P)).

Simple algebraic operations applied to this
last condition plus setting X;=P;! now
establishes (20). ]

The following is an alternative result in terms of the
lifted process model.

Theorem 3: A discrete linear repetitive process with
dynamics which can be written in the form (4) is stable
along the pass if

e there exists matrix X > 0 such that
X7 - X <0, (26)

where X =diag(X;, X») and o is given in (6),

AV(l,p) = AVi(L,p) + AVl p), (23) e or, there exist matrices X >0, V and Z
[ X AlG, Az A7 Az AV T
7zt —z-z" Az 0 0 0
VAW LAY Ly Ay A Y LV A 0 0
ZTAlT, 0 7zttt —z-77 0 0 <0 27)
AV 0 0 0 -z-7" A3V
| VT4 0 0 0 VTAT X —v—vT ]

where

AVI(Lp) = x[ 1 (p+ DPixpi(p+ 1) = X[ (P)P1x121(p)
AV (L p) = v (PP, 21 () — Y] (PP, 1113 p).

Then by direct application of results in Rogers et al.
(2007) we have that stability along the pass holds if

AV(,p) < 0. (24)

Routine analysis now shows this last condition can be
replaced by

ET e () i) (P Pria® iyt — Prat )E(x141(p). yi(p)) < 0
or, equivalently,
@ Proo®i — Pryt <0,

where P =diag(Py, P2sr1) 1s a t-periodic matrix.
Hence a sufficient condition for stability along the pass

where X is defined in the condition above and

/I(]), A'f:,for i=2,...,t,j=1,2, such that
O = A+ (AL + (AL + (Ah+ -
+ (A + A A7) A7 ) A7) A3) A

= AV + A3+ AAAZ A3 + ALATASAS + -

+ A A2 - 434S (28)
and are given by
4, 0 -~ 0 0 B |
0 4 --- 0 0 0
A) = ,
0 0 A, 0
0 0 0 4, 0
| 0 0 0 ¢ 0 |
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gy
Il

By

oS O

o o o O

o o o O

0 0
0 0
0 0
By.—1 0
0 By, -
0 DO, T
0 0 0
0 0 0
C..p 0 0
0 0 0
0 0 Do
0 0
0 0
0 0
BO, —1 0
0 By .
0 Dy, ;
0 0 0
Dori 00
0 0 0
0 0 0
0 0
0 0
0 0
0 0
BO, —1 0
0 By, -
0 Do, .

J. Bochniak et al.

0 0

0 Bp
0 0

0 0

0 0

0 0 |
0 o]

S O O O |

0 0 0 0 0 O
0 0 0 0 0 O
0 Dos 0 0 0 O
Iii: )
0 0 Do.-1 0 0 O
o 0 .- 0 0 0 O
o0 - 0 0 0 0]
0 0 0 O 0 0 07
00 0 0 0 0 0
00 0 0 0 00
) 00 0 O 0 0 0
Ay =
0 0 0 Bys 0 0 0
00 0 O By 0 0
LO 0 0 O Dy. 0 0
0 0 O 0 0 0 07
0 0 0 0 0 0 0
00 0 0 0 0 0
) 0 0 Dy 0 0 0 0
A%: , elc
0 0 0 Dop.-1 0 0 O
o0 0 .- 0 0 0 0
o0 o0 - 0 0 0 0]

(Note that if t>4 then the matrices with subscript
4+, for i=0,1,...,and each superscript j=1,2 are
obtained from those with subscript (3 + i) and superscript
j by replacing the first non-zero row with a zero row.)

Proof: With the current pass input terms deleted,
write the process dynamics in the form

Xii(p+1) A By |[ Xer1(p)
|: k+1 _ |4 Ao k+1 (29)
Yir1(p) C D Yi(p)
overp=0,1,...,a—1,k=0,1,...,or more compactly

EXi(p+ 1), Yesr(p) = @ EXi(p), Yi(p), (30)



15:11 15 Septenber 2008

Downl oaded By: [University of Southanpton] At:

International Journal of Control 1557

where
Xiri(p+1)
EXir1(p+ 1), Yii(p) = [ k1 (p ]
Yir1(p)
X
EXi1(p)s Yi(p) = [ "*‘(P)}
Y/c(p)

Proceeding as in the proof of the previous theorem
now shows that stability along the pass holds if

®TPd - P <0,

where P =diag(P;, P»). Simple algebraic manipulations
on this last condition and setting X =P~ gives (26).
Factorising ® into the form (28) and applying Lemma
2 leads to (27). ]

These last conditions can be computed in a numeri-
cally reliable and efficient manner.

4. Stabilisation

In this section we consider the design of control laws
to stabilise an example which is unstable along the
pass. In particular, we consider a control law of the
form

ure1(p) = K™ xi1(p) + K5 v p)
K]1+1+1,’ — K]1+l,

K/2+1+T — K12+1 (31)
with /=0, 1,..., or, equivalently, in lifted form,
Up1(p) = Ki X1 (p) + K2 Yi(p) (32)

with k=0, 1, ..., where

K

K3(Cy + D K})

K5~ ' (Do,c—2+ D2 K57%)...(Dozy + D2 K3)(C1 + D1 K})

| KY(Do,c—1 + D1 K57")...(Do2 + D2 K3)(Cy + D1 K})
0

K

K5 (Do,r—2+ D2 K57%)...(Do3 + D3 K3)(Ca + D2 K7)

K5(Do,r—1 + D1 K37")...(Do3 + D3 K3)(C2 + Do K})

0 07

0 0

K 0
KE(CT—I + Dt*leil) K} -

K

K3(Do1 + D1 K})

s
I

Ky (Do, r—2 + D;2K5 %) ... (D1 + D1 K})

| K3(Do,c—1 + D1 K37 ... (Do + D1K}) |

Suppose now that this control law is applied to (3) or
(4) respectively. Then the resulting stabilised processes
are described by

x(p + 1) = (A1 + B Ky xi (p)
+ (Bo, 141 + B 1 K5 ) i p)

. (33)
Yir(p) = (C1+1 + D1+1K1Jr )x1+1(P)
+ (Do, 141 + D K5 yi(p)
and
Xiw1(p+ 1) = (A + BK)X1(p)
+(By + BK>) Yi(p)
PO (34)
Yir1(p) = (C+ DK)Xi1(p)
+ (Do + DK) Yi(p)
respectively. Also introduce the notation
CI)Z»’MW - |:Ai,ncw BO, i, new ] _ (Di + HiKi,
Ci, new DO, i, new
for i=1,2,...,1, (35

where @; and I1; are again given by (5), K' = [K| K} ],
and

~ Avew Bowew | =~ ~n
q)m)w _ |: Aneu Onew i| — 3+ HK, (36)
Cnew D Onew

where ® and T are again given by (6) and
K=[K K]
Theorem 4:  Suppose that a control law of the form (31)

is applied to a discrete linear repetitive process described
by (3). Then the resulting process is stable along the pass
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if there exist matrices X;> 0 and L; such that, for
i=1,2,...,1,

—Xit1 @.X; + I1;L; 0. X %
< > T = >
X0 + L7117 —X; e
(37)

where X;=diag(X, X»;) and the matrices ®; TI1; are
again given by (5).

If this condition holds, then the control law matrices
are given by

K =[K K)|=LX". (38)

Proof: Interpreting Theorem 2 in terms of the
controlled process state-space model gives stability
along the pass if there exist matrices X; > 0 such that,
foralli=1,2,...,1,

_XVI-H qu, newA/i
X o7 —X;

i, new

i|<0, XH_]:X].

where X;=diag(X;, X»;) and ®;,,, is given by (35).
Setting

D pen Xi = O X; + TLK'X; = &, X; + T1,L;

now gives (37) with the control law matrices given
by (38) and the proof is complete. O

This last result can introduce conservatism since the
matrices X; have a prescribed block-diagonal structure
with a constant matrix in each diagonal entry.
Introduction of additional variables may lead to a
less conservative condition and we have the following
result.

Theorem 5:  Suppose that a control law of the form (31)
is applied to a discrete linear repetitive process which can
be written in the form (3). Then the resulting process
is stable along the pass if there exist matrices X; > 0,
non-singular matrices G; and matrices L; such that,

fori=1,2,...,1,

—Xit1 @,G; + I1;L;
<0, X=X,
Grel'+r'm!’ x,-G,—Gr
(39)

where X;=diag(X, X)) and the matrices ®,11; are
again given in (6).

If this condition holds, then the control law matrices
are given by

K =[K K] =LG;! (40)

Proof: Interpreting Theorem 2 in terms of the
controlled process state-space model gives stability

along the pass if there exist matrices X; > 0 and G, such
that, forall i=1,2,..., 1,

_Xi+l q)i, newGi
GTol =~ X;—G;—GT

i, new

} < 09 XT+1 - Xla
where X;=diag(X,, X»;) and ®,,., is given by (35).
Setting

®; yewGi = ©,G; + ILK'G; = ©,G; + 1L,

now gives (39) with the control law matrices given by
(35) and the proof is complete. ]

In the case of the lifted model, first note that with the
control law applied we can write

Dy = D + (D) + (Pr + (Pyg + - --
H(DPre—6 + PoryPor_3)Porr_s - - )Ps)P3)  (41)
where
®=d+1K, N=TK,,
=4, +311_21, 5322/124-5’21_22, R 21‘13+B31_21,
Dy = Ay +B4I_22, oy @3 =Ao 3+ Bzr—ﬂ%z
with & and TI given by (6) and

Kboo .o 0 0 KT
0 K2 -~ 0 0 0
1_2]: s
0 0 K=" 0 0
L0 0 0 K 0
K3 0 0 0]
0 K3 0 0
KL=|0 0 K 0
L0 0 0 K
0 0 -~ 0 0 0
Ci 0 -~ 0 0 Dy
A4,=0 G 0 0 0 |
L0 0 Ceei 00
~0 0 0 0
Dy 0 0 0
B =|0 D 0 0
L0 0 D,y 0
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0 0 0 00

0 0 0 00

0 0 O 0 00

B,=]0 0 Ds 0 0 0

0 0 -+ D 0 O

L0 0 0 .- 0 0 0
etc....

(Note if t>4 the matrices with indices (44 2i) and
(542i), for i=0, 1,...can be obtained from those for
(2 +2i) by replacing the first non-zero row with a zero
row and the last non-zero row with zero row,
respectively.)

Now we have the following result.

Theorem 6:  Suppose that a control law of the form (32)
is applied to a discrete linear repetitive process whose
state-space model can be written in the form (4). Then
the resulting process is stable along the pass if there
exists a matrix X > 0, non-singular matrices V, Z, and
matrices L, N, such that

—x iz 0 0
__T T = __T _ — —- —_
Z 11 —/ -7 Dy, 4 ”Z Dy, 72
0o Z'el , -Z-7" &,z
o Zzer, zZ'or , -z-7

0 Z'er 0 0
0 Z'er 0 0
Vet yler 0 0

+
&)1[_7: /Il +E11_:, ézé:z‘]zé—l—ézﬁ,
7 + é3£, &342 = 1‘1424‘ B4]_<7, AU

By, 3Z = Ay 3Z + Byy 3N

and
X = diag(X1, Xo), ¥V =diag(V1, Vas ..., Ve, Verr)
7 =diag(Z1. 21, Zs. ... Z+_)).

]_V: diag(NlaNlaNz)"'aNT—l)

L, 0 o 0 Loy
i 0 L, 0 0
L=

L0 0 - L. 0

If this condition holds, then the control law matrices are
given by

Ki=LV', K=NZ (43)
Proof: Using Theorem 3, stability along the pass

of (34) requires the existence of a matrix
X =diag(X;, X») > 0 such that

6ne1‘ﬂX6T - X <0. (44)

new

Also factorising 5,76“. into the form (41) yields

B0 YOI, — X = (& + [IQ) X(® + 11Q) —X

I b
qr <0

=[7 ojr
0 0 v
WA &, 7 &,V
0 0 0
0 0 0
<0, (42)
—Z-7" %z 0
7'er —Z2-7"
0 Vel x-v-—7" ]
where

Q=0+ (P24 (Ps+- -
+ (Por—6 + Por—aPor—3) Pors - - )5)5)5)3,
L [ —X+0xdT  Z4 cB__)(s'zT__T}
z '+ Qxe” QxQ'-z-2z
and 7 is a non-symmetric non-singular matrix. If
I' < 0 then (44) holds. Hence, we can write

—X iz o
+
&

:|X[d_>T Q' <0



15:11 15 Septenber 2008

Downl oaded By: [University of Southanpton] At:

International Journal of Control 1561

where

IR

0 o
+ Dy 3P0, 5 P53
Drry

Applying Lemma 2 to this last inequality yields (42)
with control law matrices given by (43) and the proofis
complete. L]

Note that, in comparison to the previous results in
this section, this last result uses only one LMI but of
higher dimensions.

5. Control for tracking and disturbance rejection

Often the design requirement will be to achieve a limit
profile which has acceptable along the pass dynamics.
Clearly this requires stability along the pass which
guarantees the existence of a limit profile in the form of
a stable 1D discrete linear system. Any extra transient
response characteristics can then be assessed using 1D
tools (e.g. damping ratio and undamped natural
frequency in the classical second order lag case).
Here we consider control law design for this general
requirement in the presence of additive disturbances on
both the state and pass profile vectors. Related work
for the non-switching case can be found in, for
example, Sulikowski (2005).

The process state-space model is now assumed to be

xi1(p+ 1) = Apxip1(p) + By (p)
+Bo, +131(p) + B, r1wir1(p)
Yi+1(p) = Criaxi1(p) + Disrur(p)
+Do. 14131(P) + D1 11wi1(p)
(45)
A1+ = Aix1s - Bigr4r = Biya,
Bo, 1140 = Bo,i+1, Bir140 = Bi s,

Ciii4r = Ciy1, D1y = Diya,

Do, iy140 = Do, i+1, D1, 1147 = D1,141

over p=0,1,...,a—1, [=0, 1,... Here we also
assume that the disturbance signals
Wir14<(p)=wi1(p) only depend on the along the
pass dynamics. Moreover, we do not require the lifted
model representation.

In terms of control law design, the simplest way
only involves one variation to the analysis of the
previous section. Suppose therefore that stability along
the pass holds and hence the limit profile exists.

Suppose also that y,[p) denotes the desired limit
profile signal and denote t successive vectors by the
notation {x1.(p), Xox(p), ..., xz(p)} and in the limit as
k — oo by

xloo(p)r x2oo(p)’ ey xtoo(p)

Next, define the so-called “incremental vectors”, for
[=0,1,...as

Xir1(p) = x151(p) — Xcoo( P)
U 1(p) = U1 (p) — Ucoo( p)
J1(p) = yi(p) = Yref D)

where ¢=14mod(/,7) and mod(-, ) denotes the
division modulo 7, or equivalently, for k=0,1,...,

Xek+1(p) Xek1(P) — X1o00(P)
N Xekt2(P) Xe42(P) — X200(P)
Xier1(p) = . =

)%r/\drr(p) xrk+r(p) - xroo(p)

= Xir1(p) — Xoo(p)

Ueks1(P) gk 1(P) — Uio(P)
R ﬁrk+2(p) urk+2(p) - u2oo(p)
U1(p) = ) =

ﬁTkJrr(p) Ugkyr(P) — Uroo(P)

= Uk11(p) — Ux(p)

?k-k—l(p) = j;rk-l-r(p) = ytk+r(p) - yrqf(p)
= Yier1(P) = Yrer( D)
The vectors u;o(p) for i=1,2,...,t will be defined
below.

At this stage we can introduce the so-called
“incremental model”

X1(p+ 1) = A1 X1 (p) + Brait (p)
+Bo,1+171(p)
Vir1(p) = CrpiXi1(p) + Dipatig (p)
+Do,1+171(p)
(46)
Aifi4e = A1, Bipi4c = By,
By, 1414: = Bo, 141

Cryi4r = Cir1, Dip1yr = Dy,

Do, 11140 = Do, 141
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over p=0,1,...,a—1,/=0, 1,... This model has the
same structure as (3) but the influence of the
disturbance term has been completely decoupled.
Moreover, it has the same stability along the
pass properties as (3) and (4). Also stability along
the pass here means that lim;. 7 1(p) =0 and

lim/ o0 Xr41(p) = 0. Hence lim. o yir1(p) =i p)
and the design objectives have been achieved (stability

along the pass and the required limit profile) under the
control law

i1 (p) = K1 %141(p) + K5 5i(p)
K/1+1+T — KII-H, (47)
K/2+1+r — I{é-‘rl

or, in terms of the original variables,

1 () = teoo(P) + K5 (x141(P) — Xoo(P))
+ K5 (yi(p) = yref( D)) (48)

Equivalently for k=0,1,...,

6. Application to multi-roll metal rolling

Previous results on the application of repetitive process
theory to metal rolling processes can be found in,
for example, Galkowski, Rogers, Paszke and Owens
(2003). We consider a multi-roll system consisting of
three separate pairs of rolls which are controlled by
separate input signals, i.e., different rolling forces. The
deformation of the workpiece takes place between
these pairs of rolls with parallel axes revolving in
opposite directions. The metal strip is to be rolled to a
pre-specified thickness (also termed the gauge or
shape) by passing it through a series of rolls for
successive reductions. The case of more than three sets
of rolls follows as a natural generalisation.

In practice, a number of models of this process
can be developed depending on the assumptions made
about the underlying dynamics and the particular
mode of operation under consideration. The particu-
lar task is to develop a simplified (but practically
feasible) model relating the gauge on the passes
through the rolls. The current pass is denoted by

Uger1(P) U1oo(P) + K} (xekt1( ) — X100(P)) + K3 (yek(P) — rer(P))
Ugir2( ) 200(P) + K3 (xXek2(P) — X200(P)) + K3 (yeks1(P) — Yref( D))

_ (49)
Urk+:(P) Uroo(P) + K (Xk+2(P) — Xroo(P)) + Ké(yrk+r71(p) - J/re/(P))

At this stage, it is a necessity to know sequences
Xiso(p+ 1) and Uiso( D), for i=1,2,...,1,
p=0,1,...,a—1 (which are not explicitly present
in (48)) in order to apply the control. The remaining
sequences, i.e. w{p), for i=1,2,...,7, and also
VreAp) are assumed to be known. These can be
obtained using

Xico(p + 1) = (A4; — BiD; ' C))Xino(p)
+ (Boi + BiD; (I — Do) yref( p)
+ (Bii — B:D; ' Dy;)wi( p) (50)
tino(p) = D' ((I = Doi)yref(p)
— CiXioo( p) — D1iwi(p))

assuming the matrices D; for i=1,2,...,7, are
non-singular. If not then replace the inverse by the
pseudo-inverse.

Application of the control law (48) (or equivalently
(49)) to (45) now yields a process which is stable along
the pass and the sequence of pass profiles y;.(p)
produced converge to the required limit profile y,./ p)
as [— oo. The corresponding control law matrices K¢,
K, for i=1,2,...,7 are computed by applying
Theorem 5 or 6 to (40).

V3ras(t), and the three previous passes by i (1),
V3re1(t) and y3(f) respectively. The other process
variables and physical constants are defined as
follows. FM,3k+l(t)’ FM’3[(+2(Z‘) and FM,3k+3(l) are the
forces developed by the motors, Fj3ii1(f), Fyspa2(t)
and Fj 3,13(¢) are the forces developed by the springs,
M, M, and M5 are the lumped masses of the roll-gap
adjusting mechanisms, A;;, 41> and A3 are the
stiffnesses of the adjustment mechanism springs, A,
is the hardness of the metal strip.

Note that this problem is an extension of results in,
for example, Bochniak et al. (2006) where only one
switch occurred. Here we consider two switches to
illustrate the application of the results in this paper
with the note that generalisation to more than this
number is routine.

With reference to Figure 1, the forces developed by
the motors are given by

Fyr3i41(8) = Fy 3541 (2) + M1 Z341 (1)
Fag3i42() = Fy 3i10(8) + MaZypq0(1) (51)

Fyr3i043(0) = Fy 3543(1) + M3Z3143(1)
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l Fumake1(®)

1 Fumaksa()

My — ]
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oo
Z3je1(0)

.
Zags2(t)

Figure 1. Multi-roll rolling machine operation.

and forces developed by the springs are

Fy 3c1(0) = 201 (2341 (1) + y3c41(0))
Fy 3c12(0) = Zaa(2342(0) + y3e42(0)) (52)
Fy 3c43(0) = Za3(23643(0) + y3k43(0)).

Each of these last forces is also applied to the metal
strip by the corresponding rolls and hence

Fy 3k01(0) = A2 (y3(0) = yars1 (1))
Fy 3k42(0) = 22 (3641 (1) — yars2(0) (53)
Fy 3543(0) = 22 (3k42(0) — yarsa(D)).
Hence we can write the overall process model in the
form of the following three differential-difference
equations
Vaks1(8) + ao1yar+1(2) + b ¥ax(0) + bory3i()
= co1us41(1)
Vak42(1) + ao2yan+2(1) + b2 axs1(1) + bo2y3rs1(1)
= coattzk42(1)
Vak43(0) + ao3yan+3(0) + b3 Vaxa(?) + bo3yarsa(r)
= co3tzk+3(1)

(54)
over0<tr<a, k=0,1,..., where, fori=1,2,3,
__ Mk A
T MG+ 7)) T it
=ik At
T MO+ ) T MG+ )

ao;
bo;

and
uzkr1(1) = Fag3i41(0),  wsi2(8) = Fag 3i42(2),
uz3() = Fag 3543(0).

To complete this process description, we specify the
boundary conditions, i.e.

73:(0),  731(0),  y3r41(0),  ¥3k41(0),  yars2(0),
P314+2(0), ¥3643(0), ¥3143(0)

and initial pass profile yo(?).

The state-space model for the complete operation
can now be written as

X3k41(0) = A1 X3k 41(2) + Beruziey1(2) + Beorys(?)
Vak41() = Caxzpy1(2) + Deruzg41(2) + Deor ()
X3k42(0) = AaX3k42(8) + Beauzk42(1) + Beooysk+1(2)
Vak+2(1) = Coaxzp2(1) + Deatizp2(1) + Deoayaw+1(1)
X3k43(0) = A3 X3k43(1) + Besuz43(2) + Beosysk+2(1)

Var43(t) = Ceaxzeq3(t) + Dauzpsa(t) + Doz ysiga(t)
(55)

over 0<t<a, k=0,1,...,where fori=1, 2, 3,

Aci = 5 B(ri = 5
—ap; 0 Coi

B—[ 0 ]C—[IO]D—O
c0i — —b()[-{-ao,'bz,‘ 5 ci = 5 ci — Y,

Do = —by; (56)
with
[ Va1 (1) + b yse(0)
X1 (D) = | _ ,
| V3k+1(8) + b21y3i(2)
[ V3k42(0) + b yies1(2)
X3p2(D) = | ,
| Vak+2(0) + b22Y3k1(0)
[ yar3(0) + bo3yaesa(?)
X33 (D) = | ,
| V3k43(8) + b23ysria(t)

and boundary conditions

X3k41(0) = dakr1, X3542(0) = dspa,
x3443(0) = d3ky3  and  yo(1) = A1)

where the vectors dsj 1, dsiynr and dz;43 have known
constant entries and f{(f) is a known function of .
Applying the backward Euler discretisation method
with sampling period 7 in the along the pass direction
converts (55) to the following model of the form (3)
with =3
X3k1(p + 1) = A1x341(p) + Brusi1(p) + Bor yai(p)
V3k+1(p) = C1X3141(p) + D1utsi41(p) + Doryac(p)
Xae+2(p+1) = A2x3142(p) + Bauzi2(p) + Booyse+1(p)
Vak+2(p) = Caxsp2(p) + Dousr2(p) + Do2ysk+1(p)

X3p3(p + 1) = A3x3143(p) + B3uzi3(p) + Boz yak+2(p)

V3i43(p) = C3x3143(p) + D3uzi3(p) + Doz y3i+2(p)
(57)
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x 1073

PASS PROFILE yg,,5 (p) [M]

Along the pass direction

Pass to pass direction

Figure 2. Reductions in the pass profile after each of the three pairs of rolls.

. Usk42(p — 1)
over p=0,1,...,a—1,k=0,1,...and for i=1,2,3 x :|: :|
sk2(P) T Hvsea(p — 1) — vspsa(p — 2)}
1 1 r vsk43(p — 1)
Ai=(I—AgT) " = . _ [ }
(T | —aoT 1 3= | 1 a(p - 1) — vsees(p — 2)]
) T with
B= ABT = s [ }
o ! Uskr1(p) = Yarr1(p) + ba1yse(p),
B — 4o (Thoitaibn)T r Usk42(P) = yar2(p) + booyae1(p),
O AR T T T 1 Usk+3(P) = yars3(p) + ba3yars2(p)
Co— Cod 1 [1 T] with partial boundary conditions
i=Chidi =775
L+ anT? X3k+1(0) = dagr1, X3x42(0) = das2,
D= CoAB.T+ D — coi T X3k43(0) = dakr3  and  yo(p) = f(p)
cl ci cl 1 +a Tyz ) o
o ) To completely specify the boundary conditions we
Do = CoiA;Beoi T + Dy = —byi — boi T’ must obtain values for y(—1) and y/(—2), where these
' 1+ apT° terms arise from the discretisation method used.
and state vectors Here, it is required that the initial state vectors
v1(=1)
vsir1(p — 1) xi+1(0) = |:
X3k1(p) = T v (=1 — v (=2)} I
) |:T_]{U3k+1(17_ 1)—U3k+1(17—2)}:| { }

over [=0,1,...,
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with

v 1(—=1) =y (=1) + bacyi(—1),
U1(—2) = yi1(=2) + bacyi(=2),

where ¢ =1+ mod(/,7), must be consistent with the
dynamics of process. They can not be taken to be
arbitrary (or zero) because they are dependent on
y(—1)and y(—2) and y,(—1) and y,(—2). Ill-chosen
values of the initial state vectors could result in highly
undesirable behaviour, such as the control vectors
u;41(p), having negative entries at the beginning
of each pass. This is inadmissible for the case of the
multi-roll metal rolling process considered here.
To prevent this, the following procedure can be used
to obtain x;,(0), for /=0,1, ...

Step 1: Assume that we know all the matrices of
state-space model (3) or, in general, (45).
together with the disturbance signals wi(p),
wa(p),...,wp). Now, assume that the
initial state vectors x;,1(0) are arbitrary and
calculate the control law matrices using (48)
or equivalently (49), and simulate process
with these arbitrary initial conditions.
Choose the appropriate number of passes
B=wt, where @ 1is a positive integer,
necessary to achieve the control objectives
independent of what form of control law is
used.

Step 2: Determine the vectors x;o(0) and u,;,.(0), for
i=1,2,...,t, where

Xioo(0) = Xpg—r4i(0)
and u,,,(0) is then computed using (50).

Step 3: Compute the control vectors u,,(0), using
(48) or equivalently (49), for p=0 on the
each pass, over /=0,1,...,8—1, i.e.

UO) =[u1(0) wa(0) u3(0) -~ up(0)]

and recover from simulating the process
response, or direct calculations, the following:

xi0) x2(0) x30) - x4(0)
X(0) =

) o) wm) o xp)
YO =[300) | 30 12000 - ys0)].

Step 4: Check if the entries in U(0) are acceptable,
i.e., none of them are negative. If yes, the
initial state vectors are acceptable, if no take
the second vector row from X(0) as the new
update of the state initial vectors and repeat
the procedure.

As a numerical example, we consider the following
parameter values

/11] = 40N/m, /112 = 60N/m, 113 = 80N/m,
Jo =100N/m, M, =10kg, M>=20kg,

Sampling with sampling period T'=0.1 seconds gives
the following discrete model state-space matrices

A1 By B
Cy Do Dy
Ay By B
Cy Dy D
As Bos B;
| C3 Do Ds |

r 972.2222  97.2222 | 7.9365 | —0.27787
=277.7778 972.2222| 79.3651 | —=2.7778

972.2222  97.2222 | 722.2222| —0.2778

981.5951 98.1595 | 6.9018 | —0.1840
=107%| —184.0491 981.5951| 69.0184 | —1.8405

981.5951  98.1595 | 631.9018| —0.1840

985.4015 98.5401 | 6.4882 | —0.1460
—145.9854 985.4015| 64.8824 | —1.4599

L 985.4015  98.5401 | 562.0438| —0.1460
(58)

The stabilisation condition of Theorem 5 holds and the
control law matrices are

K| =[442.0971 350.0000], K} = 53.9684
K} =[725.1304 5333333], K3 = 71.0827
K} =[952.0547 675.0000], K3 = 89.6064.

The stabilisation condition of Theorem 6 also holds
and the control law matrices are

K} =[7353100 346.3186],
K} =[983.5134 530.7128],
K} =[1338.3637 670.3836],

K} = 87.1643
K3 = 64.4260
K3 = 174.4187.
The overall controlled process is stable along the pass
without oscillations and disturbances, as shown in

Figure 2 with initial pass profile yo(p)=2mm over
p=0,1,...,100 and with the estimated (by applying
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CONTROL [N]

20 0
Pass to pass direction

Figure 3. The control input u/p) and the error Ay(p) =y..Ap) — yip).

Along the pass direction

the procedure given above, which for this example
requires 4 steps to be completed) state initial vectors
X41(0) for /=0,1,...,20:

[x10) x200) -+ x2(0)]

10-3 0.240 0365  0.421 0.276  0.373
B -0.074 -0.017 —-0.037 —-0.014 —0.003

ERROR [m]

100

40

20
20 0 Along the pass direction
Pass to pass direction

place with only one set of rolls. Then the
mode of operation where the workpiece involved is
returned to the input side before the next pass is not the

0.440 0.284 0375 0.443
—0.007 —0.002 0 —0.001

0.285 0.375 0.444 0.286 0.375 0.444 0.286 0.375 0.444 0.286 0.375 0.444

0 0 0 0 0

The required pass profile is y,.( p) =1 mm and the
disturbances are randomly selected.

Finally, the control u,(p) and error Ay,(p)
= Vrer(p) — yi(p) signals are shown in Figure 3.

7. Conclusions

This paper has developed new results on control law
design for discrete linear repetitive process in the
presence of switching in the pass-to-pass direction,
which can be computed in a numerically reliable and
efficient manner using linear matrix inequality meth-
ods. Such models naturally arise in modelling multi-
machine operations and an example of this has been
given here. The control law design results developed
consider two aspects: stability and tracking/perfor-
mance where the sequence of pass profiles produced
are required to converge to a specified limit profile
despite the presence of disturbances.

The switching problems addressed in this paper
have many possible areas for further development. One
of these is to model and control so-called bi-directional
processes. For example, suppose metal rolling is taking

0 0 0 0 0 0 0 :|

most efficient. The alternative is to successively process
the workpiece by passing it through on one pass from
left-to-right and on the next from right-to-left (or vice
versa). (It is also possible to envisage cases where it is
required to complete a number of passes in one
direction and then a different number in the opposite
direction.) A switching setting is definitely one way this
could be treated (whereas alternative currently avail-
able repetitive process theory only allows uni-direc-
tional operations). This idea is the subject of on-going
research (together with in depth development/exten-
sion of the results given here) and outcome from this
work will be reported in due course.
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