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Abstract

This paper proposes a linear dynamic anti-windup strategy for the alleviation of performance and stability
problems in systems which are linear apart from saturating sensors. Unlike anti-windup compensation for
systems subject to actuator saturation, there is no agreed architecture for applying anti-windup to systems
with sensor saturation and therefore attention is devoted to the discussion of various candidate configurations
which can be interpreted as a particular choice of a static nonlinear map. The main results of the paper
give existence conditions for compensators which yield global exponential stability and finite L2 gain of the
overall nonlinear closed-loop system. The existence conditions are different to those which have appeared
hitherto in the literature.

Keywords: Anti-windup, L2 gain, sensor saturation.

1 Introduction

The stability and performance problems associated with actuator saturation are well known to control engineers
and have been responsible for a broad, sustained study in this area by the research community. Over the last
twenty years, numerous results have been obtained, stemming from the fundamental theory established by [4,
21, 15, 6, 17] and other authors, to the recent anti-windup based design techniques of [16, 28, 3, 20, 25, 8, 7, 9,
30, 29]. Although much research remains to be completed, the engineer now at least has tools to enable him/her
to cope - to some extent - with actuator saturation. The references [27] and [23] contain good selections of
state-of-the-art research articles.

The study of systems in which saturation of the sensor is the chief concern is less developed, with only a few
papers devoted to this topic [22, 14, 11, 13, 2, 10]. This frugal treatment in the literature is perhaps due to the less
frequent occurrence of sensor saturation, although, as it too introduces a nonlinearity into largely linear control
loops, it is easy to see that it poses similar performance and stability issues. Sensor saturation is normally found
in applications where cost prohibits the use of sensors with adequate range, leading to sensor saturation for large
reference/disturbance inputs. Alternatively sensor saturation can model the situation where only the sign of the
output is known. In this case, the sign function can be modelled by a saturation function with a steep gradient.

There are few prior results on systematic treatment of sensor saturation. Early work was pioneered by [11]
where the observability properties of such systems were studied and [13] where a specific controller design
strategy was presented. More recent work ([14]) suggests a low-gain control strategy. One interesting feature
in [14] was that the existence of a (one-step) controller ensuring global stability of the (nonlinear) closed-loop
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system was ensured if the open-loop linear plant contained no invariant zeros in the open right half complex
plane. This contrasts to the actuator saturation literature where a necessary and sufficient condition for the
global stabilisation of systems with actuator saturation is that the open-loop plant must contain no poles in the
open-right-half complex plane. However, it transpires that the condition on the invariant zeros given in [14],
while sufficient for the control strategy advocated there, is not necessary in general. A further result appears
in [2] where the Circle Criterion is used to design H∞ controllers for linear systems with sensor nonlinearities.
Finally, some work on sensor saturation also appeared in [10], where a dynamic saturated linear control law was
proposed.

A naive appraisal of the sensor saturation problem suggests that it is similar to the actuator saturation problem
with the plant and the controller interchanged. In fact this is not the case ([14, 22, 19]); one of the crucial
differences between the two problems is the availability of the “un-saturated” signal. In the actuator saturation
case, knowledge of both the output produced by the linear controller and the saturated version of this (i.e. the
signals either side of the saturation block) is assumed. In the case of sensor saturation, it is not realistic to assume
that the actual plant output is known; only the saturated version of this is known (otherwise there would be no
problem!). This is problematic for the two-stage (anti-windup) approach taken here, and hence an observer is
used to overcome this difficulty.

If the study of systems subject to sensor saturation is under-developed, the study of anti-windup compensation for
this class of systems is less developed still. To the best of the authors’ knowledge, the only literature discussing
this approach are the papers [19, 22, 26]. The first of these papers considers so-called “state constrained” systems
which can be interepreted as sensor-saturated systems when the plant direct feedthrough term is absent. [19]
seems to be the first paper which proposes a systematic anti-windup design for the sensor saturation problem
and the results given in that paper hint at some of the results given here. However, the work of [19] does
not discuss the relative merits of different sensor saturation anti-windup architectures and only gives a single
(albeit explicit) construction of an anti-windup compensator. Furthermore, the authors of this paper consider
so-called total stability and, in essence, only prove that the closed-loop system trajectories are bounded, rather
than exponentially stable. We shall discuss aspects of [19] as the paper progresses.

The latter two papers, [22] and [26] are the basis for the work presented here. These papers establish conditions
for both local stability, and global stability and L2 gain, respectively, but use architectures which, as we shall
show later, are probably not the best for the sensor saturation problem as they introduce another unnecessary
nonlinearity into the system. Furthermore, in [26] a small oversight led to some slightly weaker results being
reported.

The paper is organised as follows. The next section is devoted to the study of potential architectures for sys-
tems subject to sensor saturation. The subsequent section establishes necessary and sufficient conditions for the
existence of a particular type of “anti-windup” compensator which yields global quadratic stability and finite
L2 gain. Following this, a discussion of these conditions is given. Section 5 applies the synthesis conditions
established in this paper to a simple example and finally conclusions are offered in Section 6.

Notation used in the paper is standard. The induced L2 norm, or finite L2 gain, of an operator H is denoted
‖H ‖i,2 := sup06=x∈L2

‖H x‖2
‖x‖2

where ‖x‖2 =
√∫ ∞

0 ‖x‖2dt is the L2 norm of the vector x(t) and ‖x‖ is its Euclidean
norm. The H∞ norm for a linear operator P is defined as ‖P‖∞ := supω σ̄ [P( jω)] where σ̄(.) denotes the
maximum singular value and P( jω) is the frequency response matrix associated with the linear operator P.
Equivalently, the H∞ norm may be defined as ‖P‖∞ = ‖P‖i,2. We denote the space of all positive definite
symmetric l × l matrices as R

l×l
+ and the subspace of these which are diagonal as D

l×l
+ . As normal, I and 0

represent the identity and null matrices of appropriate dimensions, respectively. The orthogonal complement of
a matrix G ∈ R

n×m with n > m and rank(G) = m is denoted G⊥ ∈ R
(n−m)×m where the columns of G⊥ span the

null-space of G′.
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Figure 1: System with sensor saturation

2 Anti-windup compensation for systems with sensor saturation

2.1 System description

Consider Figure 1 where a system with sensor saturation is depicted. The plant G(s) and the controller K(s) are
described by the following state-space equations

G(s) ∼

{
ẋp = Apxp +Bpu+Bpdd
y = Cpxp

(1)

K(s) ∼

{
ẋc = Acxc +Bcym +Bcrr
u = Ccxc +Dcym +Dcrr

(2)

where xp ∈ R
np is the plant state, xc ∈ R

nc is the controller state, d ∈ R
nd is the disturbance, r ∈ R

nr is the
reference, u ∈ R

m is the manipulated plant input, y ∈ R
q is the output of the plant (used for feedback purposes)

and sat(y) =: ym ∈ R
q is the output of the sensor.

To simplify the presentation, the plant is assumed strictly proper. The saturation and deadzone functions are
defined as normal as

sat(y) = y−Dz(y) (3)

sat(y) =






sat1(y1)
...

satq(yq)




 , Dz(y) =






Dz1(y1)
...

Dzq(yq)




 (4)

where sati(yi) = sign(yi)min(|yi|, ȳi) ∀i and Dzi(yi) = sign(yi)max(0, |yi| − ȳi) ∀i. The positive scalars ȳi >
0 ∀i ∈ {1, . . . ,q}, represent the saturation levels. It is convenient to introduce the set

Y := [−ȳ1, ȳ1]× . . .× [−ȳq, ȳq] (5)

If the vector y(t) resides within this set, we can expect linear behaviour, that is

sat(y) = y ∀y ∈ Y , Dz(y) = 0 ∀y ∈ Y , (6)

Assume first that sat(y) ≡ y (that is Y = R
q). Then, defining the interconnection of G(s) and K(s) through

equations (1) and (7) as [G,K]nom (a state-space realisation of this is given in the appendix), i.e. the nominal
linear closed-loop, we make the assumption

Assumption 1 [G,K]nom is asymptotically stable and well-posed.

As with the anti-windup literature on actuator saturation, we assume that K(s) has been designed to ensure good
behaviour in the absence of sensor saturation, and K(s) may have been designed in ignorance of this saturation.
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Figure 2: System with sensor saturation and “anti-windup” compensation

When sat(y) 6= y (when Y ⊂ R
q), the interconnection depicted in the Figure 1 may exhibit undesirable perfor-

mance and stability properties due to the nonlinearity present in the loop. To overcome the problem of sensor
saturation, we would like to use an “anti-windup” like strategy where the system behaves nominally provid-
ing sensor saturation is not encountered, but, when sensor saturation is encountered, an additional compensator
becomes active to limit performance degradation and to retain stability. Unlike actuator saturation where it is
straightforward to implement this type of anti-windup strategy, the sensor saturation case is more problematic
because we only know the saturated version of the output ym(t) = sat(y(t)) and do not know the actual “unsat-
urated” output, y(t). Thus it appears difficult to duplicate the anti-windup strategy used in actuator saturation
problems, for systems with sensor saturation problems. In this paper we explore some possible strategies which
follow a similar philosophy.

Consider the system depicted in Figure 2, where again the nominal plant, with saturated sensor, and nominal
controller are shown. The controller now has the state-space realisation

K(s) ∼

{
ẋc = Acxc +Bcym +Bcrr + v1
u = Ccxc +Dcym +Dcrr + v2

(7)

where v1 ∈ R
nc and v2 ∈ R

m are signals produced by the anti-windup compensator; during linear operation these
signals are identically zero. The anti-windup compensator, Λ(s), which becomes active when the signal yAW 6= 0,
is also shown. When yAW 6= 0, the signals v1 and v2 become non-zero and, if Λ(s) is designed appropriately,
should enable stability and performance to be retained despite sensor saturation. Accompanying the anti-windup
compensator is an observer, Ĝ(s) which is tasked with estimating the unsaturated output y(t) as closely as
possible. The observer is driven by the nominal control signal, u(t), as normal, and also an “output injection”
û ∈ R

q. Both the anti-windup compensator, Λ(s) and the observer, Ĝ(s) are driven by the static nonlinearity
Γ : R

q ×R
q 7→ R

q ×R
q which is defined as

[
û

yAW

]

= Γ
([

sat(y)
ŷ

])

(8)

The map Γ(.) is central to the architecture of the sensor saturation anti-windup problem. Roughly speaking,
the role of Γ(.) is to generate suitable signals û (for driving the observer) and yAW (for driving the anti-windup
compensator) from the saturated output ym = sat(y) and the estimated output ŷ. It is essential to have some other
means of generating yAW as y itself is not available. The goal of Γ(.) therefore is to generate a suitable signal yAW
such that yAW is reasonably close to y− sat(y), so that the AW compensator is only active when saturation of the
sensors occur (yAW ≈ y− sat(y)).

The architecture in Figure 2 is a generalisation of that used in [22] and [26]. The presence of the observer is
crucial as we do not know the “unsaturated” output, y, and instead have to drive the anti-windup compensator
with a signal, yAW generated from an estimate, ŷ and ym = sat(y). However, the signals yAW and û can be



d

u
G(s)

G(s)
^

r
K(s)

ym _

+

+ _

+

+

v v1 2

y~

y

ŷ
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Figure 3: System with sensor saturation and “anti-windup” compensation

generated in different ways, effectively leading to different architectures for the sensor saturation problem. In
the next subsection we discuss various candidates for Γ and comment on their suitability.

Similar to [12, 8], we assign our anti-windup compensator the state-space realisation

Λ(s) ∼







ẋaw = Λ1xaw +Λ2yAW[
v1
v2

]

=

[
Λ31
Λ32

]

xaw +

[
Λ41
Λ42

]

yAW
(9)

and the observer has state-space equations

Ĝ(s) ∼
{ ˙̂x = Apx̂+Bpu+Lû

ŷ = Cpx̂
(10)

We make the following standard assumption to ensure the existence of an appropriate observer gain, L.

Assumption 2 The pair (Cp,Ap) is detectable. Equivalently there exists a matrix L such that Ap + LCp is Hur-
witz.

The goal of this paper is to use an appropriate static nonlinear map Γ(.) to establish conditions for the existence
of an anti-windup compensator Λ(s) to ensure that the nonlinear closed-loop behaves in some desirable way.
The performance output is defined as

z = Cpzxp =: C2,nomxnom (11)

where C2,nom is defined in the appendix and xnom = [x′p x′c]
′. The focus of the paper is then to consider the

following problem.

Problem 1 Given a nonlinear static operator Γ(.), find existence conditions for a compensator Λ(s), defined by
equation (9) such that

1. The closed-loop system in Figure 2 (equivalently, that defined by equations (1), (7), (8), (9) and (10)) is
globally quadratically (and thus exponentially) stable when w = 0.

2. The map from w to z is finite L2 gain stable with gain γ > 0.
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Figure 4: Region for which û = 0 - architecture 1

2.2 Architecture 1: two nonlinearities, non-zero measure

Perhaps the most intuitive architecture for the sensor saturation problem was proposed in [22] in which the anti-
windup compensator is driven by the difference between an estimate of the output and a saturated version of
this, and the observer is driven by the difference between the saturated output and the estimated saturated output.
This is equivalent to Γ(.) being defined as

[
û

yAW

]

= Γ
([

sat(y)
ŷ

])

=

[
sat(ŷ)− sat(y)

ŷ− sat(ŷ)

]

(12)

Thus the observer is driven by the difference between two saturated signals and the anti-windup compensator
is driven by the “deadzoned” version of the estimated output, ŷ. This architecture was used in [22] in order
to obtain local results and also in [26] for establishing global existence conditions. The architecture is shown
explicitly in Figure 3. While this architecture can be seen as intuitive, there are some philosophical issues with
its use. In particular it is of interest to discover the conditions under which the output injection vector û = 0. In
linear system observers, this would correspond to the case when there is perfect reproduction of the estimated
output, i.e. ŷ = y. However for our case, we can see that û = 0 under non-unique conditions, namely when
sat(y) = sat(ŷ), which occurs when

(i) ŷi ≥ ȳi, yi ≥ ȳi
(ii) ŷi ≤−ȳi, yi ≤−ȳi
(iii) ŷi = yi






⇒ ûi = 0 ∀i ∈ {1,2, . . . ,q} (13)

When y and ŷ are scalar, such conditions can be seen graphically and the hatched regions in Figure 4 show the
value of [ŷ′ y′]′ for which û = 0, but ŷ 6= y. Note that unlike the linear case, the set

Yobs,1 =

{[
y
ŷ

]

∈ R
2q : û = sat(ŷ)− sat(y) = 0

}

(14)

does not have a measure of zero. Effectively this means that the output injection û is zero even though ŷ 6= y and
is relaying “false” information to the observer, Ĝ(s).

Another compelling reason for considering other architectures than that shown in Figure 3 is that there are more
restrictive technical conditions on the existence of a globally stabilising anti-windup compensator: in [26] it was
established that a necessary∗ condition was that the linear open-loop must be asymptotically stable. This is not
possible when the linear controller contains integral modes, and thus such an architecture would be of less use
in tracking problems. Indeed this was a major motivating factor in seeking alternative architectures.

∗In that paper, they are also claimed to be sufficient, but this is, in fact, not the case.
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Figure 5: System with sensor saturation and “anti-windup” compensation

2.3 Architecture 2: two nonlinearities, zero measure

The philosophical problem of û = 0 when ŷ 6= y can be remedied easily by driving the anti-windup compensator
with the same signal as in architecture 1, but by altering slightly the signal which drives the observer. Thus for
this architecture, we choose Γ(.) as

[
û

yAW

]

= Γ
([

sat(y)
ŷ

])

=

[
ŷ− sat(y)
ŷ− sat(ŷ)

]

(15)

The anti-windup architecture is shown explicitly in Figure 5. In this case, we find that û = 0 in the following
cases

(i) ŷi = ȳi, yi ≥ ȳi
(ii) ŷi = −ȳi, yi ≤−ȳi
(iii) ŷi = yi






⇒ ûi = 0 ∀i ∈ {1,2, . . . ,q} (16)

Thus, we see that output injection term, û, is zero only when y = ŷ or in the special case when ŷ is exactly equal
to its upper (lower) saturation limit and y is operating in its upper (lower) saturation region. Again, assuming ŷ
and y are scalars we can examine the set

Yobs,2 =

{[
y
ŷ

]

∈ R
2q : û = ŷ− sat(y) = 0

}

(17)

graphically and deduce that this set has measure zero - see Figure 6, where the dotted line marks the region
where û = 0 and ŷ 6= y.

Remark 1: Although Architecture 2 seems a better choice from a philosophical perspective, it makes remarkably
little difference to the anti-windup existence conditions whether Architecture 1 or 2 is chosen. Reference [26]
uses the first architecture to derive conditions which ensure the existence of a compensator achieving global
stability and finite L2 gain, but if a similar derivation to this is carried out using Architecture 2, the resulting
existence conditions are essentially the same. �

2.4 Architecture 3: one nonlinearity, zero measure

Architectures 1 and 2 are probably the most intuitive architectures for the sensor saturation problem as they
follow exactly the same rationale as the actuator saturation problem: the anti-windup compensator is driven by
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Figure 7: System with sensor saturation and “anti-windup” compensation

the difference between a signal and its saturated version, i.e. a “deadzoned” version of the signal. As y itself
is not available, this signal was chosen as ŷ in the previous architectures, making yAW = ŷ− sat(ŷ). However,
note that these architectures introduce an extra saturation nonlinearity into the problem in order to generate
ŷ. It transpires that this extra nonlinearity makes existence conditions fairly complex (see [26]). Instead of
introducing an extra nonlinearity, it appears more prudent to use the following signals to drive the observer and
the anti-windup compensator. Thus Γ(.) is chosen as

[
û

yAW

]

= Γ
([

sat(y)
ŷ

])

=

[
ŷ− sat(y)
ŷ− sat(y)

]

(18)

Thus both observer and anti-windup compensator are driven by the difference between the estimated output
and the saturated version of this. Note that only one nonlinearity, sat(y) appears in the architecture. This has
the philosophical advantages of Architecture 2, discussed earlier, but it also prevents the addition of the extra
saturation nonlinearity, sat(ŷ) which complicates the establishment of the stability and L2 gain conditions. This
architecture is shown graphically in Figure 7.

Remark 2: In the anti-windup literature, it is customary to ensure that the anti-windup compensator is inactive
unless actuator saturation occurs. This was formalised in [24] as requiring v1 = 0,v2 = 0 for all control signals
which did not violate the saturation bounds, which can be interpreted as those signals not straying outside a
certain set. In the sensor saturation case, this is equivalent to requiring

y(t) ∈ Y ∀t ≥ 0 ⇒ v1 = 0,v2 = 0 ∀t ≥ 0 (19)

However, as our anti-windup compensator is driven by yAW which is generated by the static nonlinear map Γ(.),
and we know that yAW 6= y− sat(y), it may be the case that y(t) ∈ Y when ŷ(t) /∈ Y (and vice versa) due to the



error between the actual output and estimated output. Thus, our anti-windup compensator, Λ(s), could be active
unnecessarily or inactive when necessary. Assuming our observer is sufficiently fast and accurate, this is not
thought to be a problem. �

Remark 3: The anti-windup architecture used in [19] is almost the same as Architecture 3, with one additional
assumption: Ĝ(s) has no observer gain (L ≡ 0) making Ĝ(s) just a copy of G(s). In addition to simplifying
the problem, such a choice is attractive because, as will be seen later, it removes one of the matrix inequality
constraints. The downside is that the “observer” output and the actual output could converge slowly. �

3 Main results

The goal of this paper is to derive conditions which ensure existence of a globally exponentially stabilising anti-
windup compensator which provides a finite L2 gain bound from exogenous input, w to performance output, z.
The existence conditions obtained are generally a function of the architecture of the AW compensator. In [26],
the foregoing existence conditions were investigated using Architecture 1. For the reasons given in the previous
section, concentration is hereafter focused on Architecture 3, in which only one nonlinearity (the physical sensor
saturation) is present.

3.1 State-space manipulations

The main result is easier to state when some basic state-space manipulations have been carried out. As we
consider Architecture 3 (Figure 7) we assume that û = yAW = ŷ− sat(y) ∈ R

q. For convenience we define the
following vector valued signals:

ỹ = y− sat(y) ∈ R
q (20)

ε = x̂p − xp ∈ R
np (21)

Using these definitions it follows that

ŷ− sat(y) = ŷ− y+ ỹ = Cpε + ỹ (22)

where ỹ = Dz(y). It then follows that a state-space realisation of the system (1), (7), (9) and (10) is

Σ ∼







˙̃x = Ãx̃+ B̃1w+ B̃2ỹ
y = C̃1x̃
z = C̃2x̃

(23)

where x̃ := [x′p x′c x′aw ε ′]′ ∈ R
2np+nc+naw represents the concatenated state of the system, w = [r′ d′]′ ∈ R

nw

represents the exogenous inputs, and expressions for the tilded matrices can be found in the appendix. These
matrices can be split to reveal a matrix of anti-windup compensator matrices (as in [5, 8]:

Ã = Ao + B̄ΛC̄ B̃2 = Bo + B̄ΛD̄ (24)

This decomposition is crucial to the development of the results and the matrices A0,B0, B̄,C̄ and D̄ are described
in the appendix.

3.2 Preliminary results

The main results are established using some well known results (see [1] and [5] for example).



Lemma 1 (Projection Lemma)

The inequality Ψ+GΠH ′ +HΠ′G′ < 0 holds iff

G⊥Ψ(G⊥)′ < 0 and H⊥Ψ(H⊥)′ < 0 (25)

As we deal with the deadzone nonlinearity, ỹ = Dz(y), we make use of the commonly used sector bound. This
is known to be conservative, but allows tractable results to be obtained and also provides “robustness” to a class
of sensor nonlinearities. In the remainder of the paper, we provide results assuming only that ỹ = ψ(y) and
ψ(.) ∈ Sector[0, I]. The central result we use is ([8]):

Lemma 2 (Quadratic stability and L2 gain) A state-space system

ẋ = Ax+Bψ(Cx), x ∈ R
n, ψ : R

q 7→ R
q

is said to be quadratically stable with L2 gain γ for all ψ(.)∈ Sector[0, I] if and only if ∃P∈R
n×n
+ and ∃W ∈D

q×q
+

such that the following inequality holds

V̇ (x)+ γ−1‖z‖2 − γ‖w‖2 +2ψ(u)W ′(u−ψ(u)) < 0 (26)

for V (x) = x′Px > 0.

Finally, we shall need the following lemma from [18].

Lemma 3 Let X ,Y ∈ R
n×n
+ . Then the conditions

Y −X−1 ≥ 0 (27)
rank(Y −X−1) ≤ n1 (28)

hold if and only if there exist matrices Y12,X12 ∈ R
n×n1 and Y22,X22 ∈ R

n1×n1
+ such that

[
X X12

X ′
12 X22

]−1

=

[
Y Y12

Y ′
12 Y22

]

> 0 (29)

3.3 Existence conditions

The main result gives a set of matrix inequalities which can be checked for the existence of a globally stabilising
anti-windup compensator.

Theorem 1 Assume Γ(.) is given as in equations (8) and (18), then there exists an naw’th order anti-windup
compensator, Λ(s), which solves Problem 1 with L2 gain γ for all ỹ = ψ(y) where ψ(.) ∈ Sector[0, I] if and only
if there exist matrices

Qnom =

[
Q11 Q12
? Q22

]

∈ R
(np+nc)×(np+nc)
+ , Rnom ∈ R

(np+nc)×(np+nc)
+ , P44 ∈ R

np×np
+ W ∈ D

q×q
+ (30)



such that the following matrix inequalities hold:








B⊥
p (Q11A′

p +ApQ11)(B⊥
p )′ 0 B⊥

p Q11C′
pW B⊥

p Bpd B⊥
p Q11C′

pz
? (Ap +LCp)

′P44 +P44(Ap +LCp) P44L −P44Bpd 0
? ? −2W 0 0
? ? ? −γI 0
? ? ? ? −γI









< 0 (31)







RnomA′
nom +AnomRnom B0,nom +RnomC′

0,nom(W ) B1,nom RnomC′
2,nom

? A′
pP44 +P44Ap −2C′

pWCp P44[0 −Bpd] 0
? ? −γI 0
? ? ? −γI







< 0 (32)

Qnom −Rnom ≥ 0 (33)
rank(Qnom −Rnom) ≤ naw (34)

where expressions for the matrices Anom,B0,nom,B1,nom,C0,nom,C2,nom are given in the appendix.

Proof: If Γ(.) is given as in equations (8) and (18), the system under consideration has state-space realisation
given by equation (23). From Lemma 2, we know this will be the case iff there exists P∈R

(2np+nc+naw)×(2np+nc+naw)
+ ,

W ∈ D
q×q
+ such that

d
dt

(x̃′Px̃)+2ỹ′W (C̃1x̃− ỹ)+ γ−1‖z‖2 − γ‖w‖2 < 0 (35)

Substituting for x̃ and z from equation (23) and applying the Schur complement, inequality (35) holds if and only
if 





Ã′P+PÃ PB̃2 +C̃′
1W PB̃1 C̃′

2
? −2W 0 0
? ? −γI 0
? ? ? −γI







< 0 (36)

which can be written as






A′
oP+PAo PBo +C̃′

1W PB̃1 C̃′
2

? −2W 0 0
? ? −γI 0
? ? ? −γI







︸ ︷︷ ︸

=:Ψ

+







C̄′

D̄′

0
0







︸ ︷︷ ︸

=:G

Λ′
[

B̄′P 0 0 0
]

︸ ︷︷ ︸

=:H ′

+(?)′ < 0 (37)

Using Lemma 1, this holds iff

G⊥Ψ(G⊥)′ < 0 and H⊥Ψ(H⊥)′ < 0 (38)

The remainder of the proof evaluates these two expressions for G and H defined above.

(i) G⊥Ψ(G⊥)′. Note that G ∈ R
(2np+naw+nc+q+nw+nz)×(naw+q) can be written as

G =













0 0
0 0
I 0
0 C′

p
0 I
0 0
0 0













with rank(G) = naw +q (39)



Thus the null-space of G′ has dimension 2np +nc +nw +nz and a matrix of maximal rank whose columns span
this null-space can be constructed as

G⊥ =









I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 I −C′

p 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I









=:





I′1 I′2 0 0
0 0 I 0
0 0 0 I



 (40)

Thus it follows that G⊥Ψ(G⊥)′ < 0 is equivalent to




I′1(A
′
oP+PAo)I1 + I′1(PBo +C̃′

1W )I2 + I′2(B
′
oP+WC̃1)I1 −2I′2WI2 I′1PB̃1 I′1C̃′

2
? −γI 0
? ? −γI



 < 0 (41)

If, without loss of generality †, P is structured as

P =







P11 P12 P13 0
? P22 P23 0
? ? P33 0
? ? ? P44







> 0 (42)

then extensive algebra proves that inequality (41) can be written as






A′
nomPnom +PnomAnom PnomB0,nom +C′

0,nom(W ) PnomB1,nom C′
2,nom

? A′
pP44 +P44Ap −2C′

pWCp P44[0 −Bpd] 0
? ? −γI 0
? ? ? −γI







< 0 (43)

Applying the congruence transformation blockdiag(P−1
nom, I, I, I), and defining Rnom := P−1

nom, then gives inequality
(32) in the theorem.

(ii) H⊥Ψ(H⊥)′. Note that H can be written as

H = blockdiag(P, I, I, I)
[

B̄′ 0 0 0
]′

︸ ︷︷ ︸

H̃

(44)

Thus H⊥ = H̃⊥blockdiag(P−1, I, I, I), where H̃ ∈ R
(2np+naw+nc+q+nw+nz)×(naw+nc+m) is given by

H̃ =













0 0 Bp
0 I 0
I 0 0
0 0 0
0 0 0
0 0 0
0 0 0













with rank(H̃) = naw +nc +m (45)

The null space of H̃ has dimension 2np −m+q+nw +nz. Thus we can calculate H̃⊥ as

H̃⊥ =









B⊥
p 0 0 0 0 0 0

0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I









=:







J′1 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I







(46)

†Due to the triangular structure of Ã, there is no loss in generality of enforcing P to be block-diagonal - see appendix for more details



Thus letting Q := P−1 we get

H⊥Ψ(H ′)⊥=







J′1(QA′
o +AoQ)J1 J′1(Bo +QC̃′

1W ) J′1B̃1 J′1QC̃′
2

? −2W 0 0
? ? −γI 0
? ? ? −γI







< 0 (47)

Using the structure of P given in equation (42), Q = P−1 is defined as

Q :=







Q11 Q12 Q13 0
? Q22 Q23 0
? ? Q33 0
? ? ? Q44







(48)

Labourious algebra then shows that inequality (47) is equivalent to








B⊥
p (Q11A′

p +ApQ11)(B⊥
p )′ 0 B⊥

p Q11C′
pW B⊥

p Bpd B⊥
p Q11C′

pz
? Q44(Ap +LCp)

′ +(Ap +LCp)Q44 L −Bpd 0
? ? −2W 0 0
? ? ? −γI 0
? ? ? ? −γI









< 0

(49)
The congruence transformation blockdiag(I,Q−1

44 , I, I, I) can then be used to arrive at inequality (31) in the theo-
rem.

iii) Ensuring P > 0

Quadratic stability holds under the condition that P > 0, which is equivalent to inequality (42) holding. In
turn this will hold if P44 > 0, Qnom > 0 and there exist matrices, [Q′

13 Q′
23]

′, [P′
13 P′

23]
′ ∈ R

(np+nc)×naw and
P33,Q33 ∈ R

naw×naw such that the following inequality holds



Pnom

[
P13
P23

]

? P33





−1

=




Qnom

[
Q13
Q23

]

? Q33



 > 0 (50)

Now, from Lemma 3 these matrices exist if and only if the following inequalities hold

Qnom −P−1
nom ≥ 0 (51)

rank(Qnom −P−1
nom) ≤ naw (52)

Recalling that P−1
nom = Rnom yields inequalities (33) and (34). This completes the proof. ��

The existence conditions in Theorem 1 are “almost” linear matrix inequalities in the variables Qnom,Rnom,W
and γ with two sources of nonlinearity preventing them being linear. The first is the obvious non-convex rank-
constraint in inequality (34) which often occurs in LMI controller design [5]. However, as in [8], for certain
orders of anti-windup compensator, particularly naw ≥ np and naw = 0, the rank constraint will vanish. The
second source of nonlinearity is the bilinear term involving Q11 and W , although for fixed W this becomes linear
and hence the inequalities become linear. Unlike the corresponding conditions for the input saturation case ([8])
note that the “multiplier” matrix W is still present in the existence conditions.

4 Discussion

When the anti-windup compensator is chosen to be of order np or zero, Theorem 1 gives matrix inequalities
which can be checked for existence. However, they do not reveal any intrinsic properties about the class of



systems for which they are satisfied, nor do they reveal lower bound on the L2 gain. A lower bound on the
L2 gain can easily checked by omitting the 2nd and 3rd rows and columns of inequality (31) and the second
column of inequality (32) to yield.





B⊥
p (Q11A′

p +ApQ11)(B⊥
p )′ B⊥

p Bpd B⊥
p Q11C′

pz
? −γI 0
? ? −γI



 < 0 (53)





RnomA′
nom +AnomRnom B1,nom RnomC′

2,nom
? −γI 0
? ? −γI



 < 0 (54)

(55)

These two equations are in the form of “bounded real lemma” inequalities, which imply that the L2 gain is lower
bounded by the H∞ norm of the closed-loop system, ‖[G,K]nom‖∞, and the H∞ norm of a system very closely
related to the open-loop plant (as given in inequality (53)). This is a similar observation to that made in the
case of anti-windup for systems with input saturation in [8], although added complications with the structure of
inequalities (31) and (32), make the bound above more conservative (due to the extra constraints in the 2nd and
3rd rows) than in the case of anti-windup compensation for systems with input saturation.

4.1 Simplified existence conditions

It is interesting to examine the properties of systems for which there exists an anti-windup compensator guar-
anteeing global quadratic stability and L2 gain. Although conditions are given in Theorem 1, it is desirable
to reveal deeper properties which the nominal linear system must possess in order for these conditions to be
satisfied. The main result of this section is

Corollary 1 Assume L = 0, then an anti-windup compensator Λ(s) which satisfied the conditions of Theorem 1
exists if and only if

1. Ap is Hurwitz

2. Anom is Hurwitz

Proof: Theorem 1 will be satisfied for sufficiently large γ providing that the following conditions hold:




B⊥
p (Q11A′

p +ApQ11)(B⊥
p )′ 0 B⊥

p Q11C′
pW

? (Ap +LCp)
′P44 +P44(Ap +LCp) P44L

? ? −2W



< 0 (56)

[
RnomA′

nom +AnomRnom B0,nom +RnomC′
0,nom(W )

? A′
pP44 +P44Ap −2C′

pWCp

]

< 0 (57)

Qnom −Rnom ≥ 0 (58)
rank(Qnom −Rnom) ≤ naw (59)

We shall examine these conditions in turn.

Inequality (56). Letting L = 0 and applying the Schur complement, it follows that inequality (56) is equivalent
to.

A′
pP44 +P44Ap < 0 (60)

B⊥
p (Q11A′

p +ApQ11 +Q11C′
pWCpQ11)(B⊥

p )′ < 0 (61)



These conditions will hold iff if Ap is Hurwitz.

Inequality (57). Necessity. From the (1,1) element it is trivial that Anom must be Hurwitz. To see that Ap also
must be Hurwitz, we apply the congruence transformation




R−1

nom

[
−I
0

]

0 I



 (62)

to obtain the equivalent inequality



A′

0,nomPnom +PnomA0,nom +

[
X44 0
0 0

]

PnomB0,nom +

[
X44 +C′

pWCp

0

]

? A′
pP44 +P44Ap −2C′

pWCp



 < 0 (63)

where X44 = A′
pP44 +P44Ap. Simple algebra shows that the (1,1) element is negative definite if and only if Ap is

Hurwitz and (BpCc,Ac) is detectable, which is implied by Anom being Hurwitz.

Sufficiency. Assume, Anom and Ap are Hurwitz, then, choosing P44 sufficiently large ensures that inequality (57)
holds.

Conditions (58) and (59). Assume that naw = np, then condition (59) is trivially satisfied. Next let,

Qnom =

[
Q11 R12
? R22

]

(64)

Then choosing Q11 sufficiently large ensures that inequality (58) is satisfied. ��

Remark 4 Again, it is useful to constrast these results with those in [8] which correspond to the case of actuator
rather than sensor saturation. The fundamental existence conditions are effectively the same in both cases: global
exponential stability of both the plant and the un-saturated closed-loop is a requirement for there to exist an anti-
windup compensator ensuring global quadratic stability and finite L2 gain. These conditions were also hinted at
in [19]. However, the L2 gain bound is somewhat different in the sensor saturation case because (i) the presence
of the observer adds extra constraints to this bound (see inequalities (31) and (32)) and (ii), the “bounded real”
inequality for the open-loop (which contributes to a lower bound on the L2 gain) is modified by “outer factors”
which depend on B⊥

p . In particular the dependence of the L2 gain bound on B⊥
p implies that the more actuated a

system is, the fewer constraints on the L2 gain there will be. �

5 Example

To illustrate the use of anti-windup compensation for sensor saturation, Theorem 1 is applied to a simple exam-
ple. Consider the plant





Ap Bp Bpd

Cp 0 0
Cpz 0 0



 =









−2.2000 −0.2050 −0.0100 1 0.001
2.0000 0 0 0 0

0 1.0000 0 0 0
1.0000 0.4000 0.0750 0 0
1.0000 0.4000 0.0750 0 0









(65)

and the linear controller [

Ac Bc Bcr

Cc Dc Dcr

]

=

[

0 −4 4
4.25 −17 17

]

(66)

The closed-loop interconnection [G,K]nom of these two elements is asymptotically stable; the plant is also asymp-
totically stable. Thus from Corollary 1, we know that an anti-windup compensator enforcing global exponential



stability and L2 gain will exist. An observer for this system is constructed according equation (10) with L = 0
(i.e. the observer is just a copy of the plant, as proposed in [19]).

An anti-windup compensator was designed using Theorem 1, with W = 1. Using standard controller re-construction
algorithms (given in [8] and [5] for example), the following anti-windup compensator was obtained





Λ1 Λ2

Λ31 Λ32

Λ41 Λ42



 =









−308.3860 −18.9999 −12.8327 −21.1642
−37.2891 −4.1645 −0.9023 −1.5614
−1.3277 1.4301 −1.5368 −0.6332
−12.7091 −1.8722 0.0113 −8.1895
−6679.9 −424.6887 −272.5045 −487.7512









(67)

which corresponded to an L2 gain of γ = 1.0254.

Figure 8 shows the system’s response, y(t) to a pulse input of magnitude 2 units in various circumstances. The
dotted line shows the response when no sensor saturation is present, and thus the anti-windup compensator is not
active. The dashed line shows the response when sensor saturation with limits ȳ = 1.5 units is introduced. Notice
the sharp degradation in performance and the excessive overshoot in the response. The solid line shows the
response of the system with the same level of sensor saturation but with the above anti-windup compesator active.
Although the system cannot recover the precise pulse characteristics, the deviation from the linear behaviour is
substantially lower and the recovery of the linear response is much faster. Figure 9 shows the behaviour of the
signal which is passed to the sensors (i.e. after saturation), ym(t). Observe that when anti-windup compensation
is active, the sensor remains saturated for a shorter period of time and linear behaviour is resumed earlier.

Remark 5: Note that the results in [26] are more restrictive because that uses Architecture 1 which involves
two saturation nonlinearities and is hence more conservative. Crucially, the results of [26] also require the linear
controller to be exponentially stable which is not the case with the PI controller used here.
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Figure 8: Output response y(t) of example system

6 Conclusion

Necessary and sufficient conditions for the existence of an anti-windup compensator which guarantees quadratic
stability and L2 gain of a linear system subject to a sensor saturation nonlinearity have been presented. An
important corollary to these conditions implies that such an anti-windup compensator only exists if and only if
the nominal open-loop and closed-loop linear systems are asymptotically stable. This implies that anti-windup
compensators for systems with sensor saturation exist under the same conditions as they do for systems with input
saturation; a fact which was first hinted at in [19], although no proof was supplied. However, due to the problem’s
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Figure 9: Sensor response ym(t) of example system

structure, the L2 gain bound for systems with sensor saturation is generally different to that for systems with
input saturation. An example has presented the effectiveness of the proposed technique. As indicated in the
introduction, sensor saturation could be used to approximate the case in which only the sign of the output is
known and it would be of interest to investigate the use of the methods proposed here in such situations.
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A State-space matrices

Nominal linear system. Closed-loop linear system:





Anom B0,nom B1,nom

C1,nom 0 0
C2,nom 0 0



 =







Ap +BpDcCp BpCc BpDcCp BpDcr Bpd
BcCp Ac BcCp Bcr 0
Cp 0 0 0 0
Cpz 0 0 0 0







Open-loop linear system “A” matrix:

A0,nom =

[
Ap BpCc
0 Ac

]

(68)

Dummy C-matrix
C0,nom(W ) =

[
−CpWC′

p 0
]

(69)

Saturated system

Ã =







Ap +BpDcCp BpCc BpΛ32 BpΛ42Cp
BcCp Ac Λ31 Λ41Cp

0 0 Λ1 Λ2Cp
0 0 0 Ap +LCp







B̃1 =







BpDcr Bpd
Bcr 0
0 0
0 −Bpd







B̃2 =







Bp(Λ42 −Dc)
Λ41 −Bc

Λ2
L







C̃1 =
[

Cp 0 0 0
]

C̃2 =
[

Cpz 0 0 0
]

(70)

Partitioned saturated system

A0 =







Ap BpCc 0 0
BcCp Ac 0 0

0 0 0 0
0 0 0 Ap +LCp







B0 =







−BpDc
−Bc

0
L







(71)

B̄ =







0 0 Bp
0 I 0
I 0 0
0 0 0







Λ =





Λ1 Λ2
Λ31 Λ32
Λ41 Λ42



 (72)

C̄ =

[
0 0 I 0
0 0 0 Cp

]

D̄ =

[
0
I

]

(73)



B On the use of diagonal Lyapunov functions

In this section we show that, without loss of generality when one is seeking a Lyapunov function to enforce
the Circle Criterion for Ψ(.) ∈ Sector[0, I], then if the “A” matrix has a triangular structure, then without loss of
generality one can assume a diagonal structure for the Lyapunov function. Formally this is stated as

Lemma 4 Consider the inequality
[

A′P+PA PB+C′W
? −2W

]

< 0 (74)

where A is block triangular, viz

A =

[
A11 A12

0 A22

]

∈ R
(n1+n2)×(n1+n2) B =

[
B11

B21

]

∈ R
(n1+n2)×m C =

[
C11 C12

]
∈ R

m×(n1+n2) (75)

Then there exist matrices P ∈ R
(n1+n2)×(n1+n2)
+ and W ∈ D

m×m
+ which satisfies this inequality if and only if there

exists matrices P = blockdiag(P11,P22)∈R
(n1+n2)×(n1+n2)
+ and W ∈D

m×m
+ which also satisfy the above inequality.

Proof: The proof is a simple application of Finsler’s lemma. Note that in terms of the matrices A,B,C, the above
inequality can be written as





A′
11P11 +P11A11 P11A12 P11B11 +C′

11W
? A′

22P22 +P22A22 P22B21 +C′
12W

? ? −2W





︸ ︷︷ ︸

ΨM

+





I A′
11

0 A′
12

0 B′
11



P12

[
0 A22 B21
0 I 0

]

+(?)′ < 0 (76)

Using Finsler’s Lemma and the Schur complement, it follows that inequality (76) is satisfied if and only if
∃σ ∈ R such that









A′
11P11 +P11A11 P11A12 P11B11 +C′

11W I A′
11

? A′
22P22 +P22A22 P22B21 +C′

12W 0 A′
12

? ? −2W 0 B′
11

? ? ? −σ−1I 0
? ? ? ? −σ−1I









< 0 (77)









A′
11P11 +P11A11 P11A12 P11B11 +C′

11W 0 0
? A′

22P22 +P22A22 P22B21 +C′
12W A′

22 I
? ? −2W B′

21 0
? ? ? −σ−1I 0
? ? ? ? −σ−1I









< 0 (78)

Necessity. For both inequalities (77) and (78) to hold, it is necesssary that ΨM < 0.

Sufficiency. If ΨM < 0, then it follows that there always exists a sufficiently small σ such that both inequalities
(77) and (78) hold.

Hence ΨM < 0 is both necessary and sufficient for the inequality (74) to hold, providing the matrices are struc-
tured as above. Notice that ΨM < 0 is nothing more than inequality (74) with P = blockdiag(P11,P22). This
completes the proof. ��


