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Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent
directions) of both systems theoretic and applications interest. They cannot be controlled by the direct extension
of existing techniques from either standard (termed 1D here) or 2D systems theory. This article develops
significant new results on the relationships between one physically motivated concept of controllability for the
so-called discrete linear repetitive processes and the structure and design of control laws, including the case when
disturbances are present.
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1. Introduction

The unique characteristic of a repetitive, or multipass,

process is a series of sweeps, termed passes, through a

set of dynamics defined over a fixed finite duration

known as the pass length. On each pass an output,

termed the pass profile, is produced which acts as a

forcing function on, and hence contributes to, the

dynamics of the next pass profile. This, in turn, leads to

the unique control problem for these processes in that

the output sequence of pass profiles generated can

contain oscillations that increase in amplitude in the

pass-to-pass direction.
To introduce a formal definition, let �5þ1

denote the pass length (assumed constant). Then in a

repetitive process the pass profile yk (p), 0� p�� � 1,

generated on pass k acts as a forcing function on, and

hence contributes to, the dynamics of the next pass

profile ykþ 1 (p ), 0� p� �� 1, k� 0.
Physical examples of these processes include long-

wall coal cutting and metal rolling operations, see, for

example, Edwards (1974) and Rogers, Galkowski and

Owens (2007). Also in recent years, applications have

arisen where adopting a repetitive process setting for

analysis has distinct advantages over alternatives.

Examples of these so-called algorithmic applications

include classes of iterative learning control schemes

(Moore, Chen and Bahl 2005) and iterative algorithms

for solving nonlinear dynamic optimal control pro-

blems based on the maximum principle (Roberts 2000).

Recently, it has been shown by Hladowski, Cai,
Galkowski, Rogers, Freeman and Lewin (2008), with
experimental verification on a gantry robot system,
how the repetitive process setting can be used to design
control laws that consider both trial-to-trial error
convergence and transient response along the trials
where these can conflict.

Attempts to control these processes using standard
(or 1D) systems theory/algorithms fail (except in a few
very restrictive special cases) precisely because such an
approach ignores their inherent 2D systems structure,
i.e. information propagation occurs from pass-to-pass
and along a given pass and also the initial conditions
are reset before the start of each new pass. In seeking a
rigorous foundation on which to develop a control
theory for these processes, it is natural to attempt to
exploit structural links which exist between, in
particular, the class the of so-called discrete linear
repetitive processes and 2D linear systems described by
the extensively studied Roesser or Fornasini–
Marchesini state-space models (see the original refer-
ences cited in, for example, Rogers et al. (2007)).
Discrete linear repetitive processes are distinct from
such 2D linear systems in the sense that information
propagation in one of the two separate directions
(along the pass) only occurs over a finite duration.
Moreover, many key elements of 2D discrete linear
systems theory provide, at very best, only partial
answers to key systems theoretic questions for repeti-
tive processes.
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This is the case for the so-called pass profile
controllability of discrete linear repetitive processes
which has no 2D Roesser or Fornasini–Marchesini
model interpretation. Also, a fundamental question for
applications is when does there exist implementable
control action which can force the process to produce
a pre-specified pass profile on a given pass? Previous
work has shown that the existence condition for such
action is precisely this pass profile controllability
property, which is completely characterised by a
matrix rank test defined in terms of matrices from
the process state-space model. This article develops
significant new results for important sub-cases that
could arise in applications due to key structural
properties of the defining state-space model and/or
the presence of disturbances.

Throughout this article dae is used to denote the
smallest integer which is at least equal to a and bac is
used to denote the largest integer which is at most
equal to a, e.g. d2e¼ b2c¼ 2, d2.1e¼ 3, b2.1c¼ 2,
b2.9c¼ 2.

2. Background

The state-space model of the discrete linear repetitive
processes initially considered here has the following
form (see, for example, Rogers et al. 2007) over
0� p� �� 1, k� 0, where on pass k xk(p) is the n� 1
state vector, yk(p) is the m� 1 pass profile vector, and
uk(p) is the r� 1 vector of control inputs

xkþ1ð pþ 1Þ ¼ Axkþ1ð pÞ þ Bukþ1ð pÞ þ B0ykð pÞ

ykþ1ð pÞ ¼ Cxkþ1ð pÞ þDukþ1ð pÞ þD0ykð pÞ:
ð1Þ

To complete the process description, it is necessary to
specify the boundary conditions, i.e. the state initial
vector and the initial pass profile, respectively. Here it
suffices to consider the simplest possible form for
these, i.e.

xkþ1ð0Þ ¼ dkþ1, k � 0

y0ð pÞ ¼ yð pÞ, 0 � p � �� 1
ð2Þ

where dkþ 1 is an n� 1 vector with constant entries and
y(p) is an m� 1 vector whose entries are the known
functions of p.

The structure of the boundary conditions and, in
particular, the state initial vector sequence fxkþ1ð0Þgk�0
is critical to the stability properties of the example
considered since, unlike other classes of linear systems,
these alone can cause instability. For example, if we let
xkþ 1(0) be a function of points along the previous
pass, such as

xkþ1ð0Þ ¼ dkþ1 þ K1ykð�� 1Þ ð3Þ

where K1 is an n�m matrix, then Rogers et al. (2007)

gives an example which is stable with K1¼ 0, but could

be unstable when K1 6¼ 0. In applications there is

therefore a critical need to adequately model this

sequence. Note also that if the state initial vector

sequence is of the form (2) then clear structural

links exist with repetitive control systems, which in

repetitive process analysis is the same as using a single

variable V¼ k�þ p to convert the dynamics into those

of an equivalent infinite length single pass process.

Likewise, the previous pass profile sequence (3) can be

used to establish a link with delay differential systems.

The details of both these cases are again given in

Rogers et al. (2007) and it is also clear that these

links cannot be used to solve all systems theory and

control law design problems for even processes

described by (1) and (2).
The terms B0 yk(p) and D0 yk(p) describe the

contributions of the previous pass dynamics to the

current pass state and pass profile vectors, respectively.

In the longwall coal cutting, the pass profile at any

point along a pass is the height of the stone/coal

interface above some datum line. As the cutting

machine rests on the previous pass profile during the

production of the current one, and the objective of

each pass is to remove the maximum amount of coal

without penetrating the stone/coal interface, it is clear

how the previous pass profile influences the current

one. Note also that the model for the contributions

of the previous pass profile here is the simplest

possible and clearly adequate modelling of this feature

is critical if relevant control systems theory is to be

developed.
In this article, we will make extensive use of the

1D equivalent model of processes described by the

state-space model and boundary conditions given

above. Note that 1D equivalent models also arise in

the analysis of other classes of 2D linear systems, such

as in Porter and Aravena (1984). For discrete linear

repetitive processes of the form considered here, the

1D equivalent model has the distinct advantage of

being defined in terms of vectors with dimensions

which are fixed at the outset and the matrices involved

have constant entries. It is also important to note that

not all systems theoretic questions for discrete linear

repetitive processes can be solved by using this

approach.
To summarise the construction of this model (with

full details in, for example, Galkowski, Rogers

and Owens (1998)), first introduce the change of

variables

�kð pÞ ¼ yk�1ð pÞ, k � 0, 0 � p � �� 1, l ¼ kþ 1
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and define the so-called global pass profile, state and

input super-vectors as

Yðl Þ :¼

�lð0Þ

�lð1Þ

..

.

�lð�� 1Þ

266664
377775, Xðl Þ :¼

xlð1Þ

xlð2Þ

..

.

xlð�Þ

266664
377775,

Uðl Þ :¼

ulð0Þ

ulð1Þ

..

.

ulð�� 1Þ

266664
377775

respectively. Then the 1D equivalent model is given by

Yðlþ 1Þ ¼ �Yðl Þ þ DUðl Þ þ�dl

Xðl Þ ¼ �Yðl Þ þ�Uðl Þ þ�dl
ð4Þ

where

� ¼

D0 0 � � � 0

CB0 D0 � � � 0

CAB0 CB0 � � � 0

..

. ..
. . .

. ..
.

CA��2B0 CA��3B0 . . . D0

266666664

377777775
,

D ¼

D 0 � � � 0

CB D � � � 0

CAB CB � � � 0

..

. ..
. . .

. ..
.

CA��2B CA��3B . . . D

26666664

37777775
�T ¼ CT ðCAÞT ðCA2Þ

T
� � � ðCA��1ÞT

� �

� ¼

B0 0 . . . 0

AB0 B0 . . . 0

..

. ..
. . .

. ..
.

A��1B0 A��2B0 . . . B0

266664
377775,

� ¼

B 0 . . . 0

AB B . . . 0

..

. ..
. . .

. ..
.

A��1B A��2B . . . B

266664
377775

�T ¼ AT ðA2Þ
T . . . ðA�ÞT

� �
Pass profile controllability is defined as follows

(see, for example, Hladowski, Galkowski, Rogers, and

Owens 2006).

Definition 2.1: Discrete linear repetitive processes

described by (1) and (2) are said to be pass profile

controllable if 9 a pass number K* and control input

vectors ukþ 1(p), defined over 0� p��� 1, 0� k�K*,

which will drive the process to an arbitrarily specified

pass profile on pass K*.

Other work (Hladowski et al. 2006) has shown that

pass profile controllability holds if, and only if,

rank D D0D � � �D
m�1
0 D

� �
¼ m: ð5Þ

In terms of applications, this is clearly a highly

relevant problem, i.e. it is required to force the process

to produce a pre-specified pass profile on a particular

pass. It is known (Rogers et al. 2007) that this property

is required for the existence of a control law to

guarantee the most basic form of stability for these

processes (and is a necessary condition for stronger

versions). In iterative learning control, for example,

this imposes the requirement that a particular trajec-

tory is learnt after K* trials have elapsed and it is

also clear that there is no Roesser/Fornasini–

Marchesini model 2D systems model version of this

problem.
In many practical cases, pass profile control-

lability cannot hold since D¼ 0 (direct feedthrough

term from the current pass input vector to current

pass profile vector) and for these we can make no

progress by this route. This article shows that a

weaker form of this property can still be present

in such cases and also that it is possible to use

state feedback to minimise its effects on onward

analysis.
The cases when pass profile controllability does

not hold follow immediately from (5), i.e. when D0¼ 0

and D is not of full rank. Given the role of pass profile

controllability in the control of discrete linear repeti-

tive processes, it is clearly of interest to ask if a weaker

form of this property holds in such cases. For further

analysis, we require the following definition.

Definition 2.2: Define the natural number � as

follows:

(i) �¼ 1 when D0¼ 0 and CB0 6¼ 0, or
(ii) �¼ 2, 3, . . .when

8t ¼ 0, 1, . . . , �� 2, CAtB0 ¼ 0

8t4 �� 2 CAtB0 6¼ 0
ð6Þ

and D0¼ 0.

Suppose now that we partition Y(l ) as

Yðl Þ :¼ ðY1ðl ÞÞT
��ðY2ðl ÞÞT

��ðY3ðl ÞÞT
� �T

68 L. Hladowski et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
8
:
2
9
 
3
1
 
J
a
n
u
a
r
y
 
2
0
1
0



where the vectors Y1(l ) and Y3(l ) are of dimension

�m� 1 and the vector Y2(l) is of dimension

m(�� 2�)� 1. Then (4) can be rewritten as

Yiðlþ1Þ ¼�i1Y
1ðlÞþ�i2Y

2ðlÞþ�i3Y
3ðl ÞþDiUðlÞþ�idl

i¼ 1,2,3

where (see also Hladowski et al. 2006)

Yðl Þ :¼

Y1ðl Þ

Y2ðl Þ

Y3ðl Þ

264
375 ð7Þ

and

Y1ðl Þ :¼

�lð0Þ

�lð1Þ

..

.

�lð�� 1Þ

266664
377775,Y2ðl Þ :¼

�lð�Þ

�lð�þ 1Þ

..

.

�lð�� �� 1Þ

266664
377775,

Y3ðl Þ :¼

�lð�� �Þ

�lð�� �þ 1Þ

..

.

�lð�� 1Þ

266664
377775

�11 ¼ �12 ¼ �13 ¼ �33 ¼ �23 ¼ 0

�21 ¼

CA��1B0 0

..

. . .
.

CA2��2B0 � � � CA��1B0

..

. ..
.

CA����2B0 � � � CA��2��1B0

2666666664

3777777775

�22 ¼

0 0
�

CA��1B0 0

..

. . .
.

0

CA��2��2B0 � � � CA��1B0

26666664

37777775

�
�
�
�
�
�
�
�
�
�
�

�31 ¼

CA����1B0 � � � CA��2�B0

..

. . .
. ..

.

CA��2B0 � � � CA����1B0

2664
3775 ð8Þ

In this case, we have that Y1(l ), l4 1, is never pass

profile controllable and Y3(l ) does not influence any

future pass profile. Hence, such a process is not pass

profile controllable and instead we can consider the

following property.

Definition 2.3: Discrete linear repetitive processes

described by (1) and (2) for which 9�� 1, satisfying

(i) or (ii) as appropriate in Definition 2.2, are said to

be relaxed pass profile controllable if 9 a pass number

K* and control input vectors ukþ1(p), defined over

0� p��� 1, 0� k�K*, such that the process

dynamics are transferred from an initial pass profile

segment of the form

bYð1Þ ¼ ðY1ð1ÞÞT
���ðY2ð1ÞÞT

h iT
to a prescribed pass profile segment on pass K* of

the form

eY� :¼ eYðK�Þ ¼ ðY2ðK�ÞÞT
���ðY3ðK�ÞÞT

h iT
: ð9Þ

The key points here are that on each pass the

first � points are not pass profile controllable and the

last � points do not contribute to the dynamics of

any subsequent pass profile. This is illustrated in

Figure 1. It is also obvious that the maximum allowed

value for � is

�max ¼
�� 1

2

� �
ð10Þ

since for �4�max Y
2(l ) does not exist.

Let � ¼ minðb��c � 3,K� � 4Þ and also introduce

the so-called relaxed pass profile controllability

matrix defined in terms of the 1D equivalent model as

Then we have the following result.

Theorem 2.4 (Hladowski et al. 2006): Discrete linear

repetitive processes described by (1) and (2) for which

D0¼ 0 and (6) holds are relaxed pass profile controllable

if, and only if, 9 K* such that

rank ~�ð ~K�Þ ¼ m �� �ð Þ:

The maximum value of K̃* is equal to ~K�max ¼

�� �ð Þ þ 1:

Next, we investigate the particular case when the

pass profile segment represented by Y3(l) (i.e. the last

part of the pass) remains free as well, i.e. not

the subject of the control action, which can happen

in many practical applications, for example metal

rolling.

�ðK�Þ¼
D2 �22D2þ�21D1 �2

22D2þ�22�21D1 � � � ��
22D2þ���1

22 �21D1 ��
22�21D1 0

D3 �32D2þ�31D1 �32 �22D2þ�21D1ð Þ � � � �32 ���1
22 D2þ���2

22 �21D1

� �
�32 ��

22D2þ���1
22 �21D1

� �
�32�

�
22�21D1

" #
:
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2.1 Two sided relaxed pass profile controllability

Definition 2.5: Discrete linear repetitive processes

described by (1) and (2) for which 9 �� 1, satisfying

(i) or (ii) as appropriate in Definition 2.2, are said to be

two sided relaxed pass profile controllable if 9 a pass

number K* and control input vectors ukþ1(p), defined

over 0� p��� 1, 0� k�K*, such that the process

dynamics are transferred from an initial pass profile

segment of the form

bYð1Þ :¼ ðY1ð1ÞÞTðY2ð1ÞÞT
� �T

to a prescribed pass profile segment on pass K* of the

form

eY� :¼ eYðK�Þ :¼ Y2ðK�Þ:

Note here the critical difference between relaxed

and two sided relaxed pass profile controllability,

the former requires us to achieve Y2(K*) and

Y3(K*) whereas the second only requires us to achieve

Y2(K*).

Let � ¼ minð ��
	 

� 3,K� � 4Þ and introduce

the so-called two sided relaxed pass profile

controllability matrix formed in terms of the 1D
equivalent model as

~�ðK�Þ ¼
h
D2

����22D2 þ�21D1

����2
22D2 þ�22�21D1

���
�3

22D2 þ�2
22�21D1

��� � � � �����
22D2

þ���1
22 �21D1

�����
22�21D1

i
: ð11Þ

Then we have the following result.

Theorem 2.6: Discrete linear repetitive processes
described by (1) and (2) for which 9 �� 1 as defined in
Definition 2.2, is two sided relaxed pass profile
controllable if, and only if, 9K̃* such that

rank ~�ð ~K�Þ ¼ m �� 2�ð Þ: ð12Þ

Also the maximum value of K̃* is equal to

~K�max ¼ �� 2�ð Þ þ 1:

Proof: Two sided relaxed pass profile controllability
is a special case of relaxed pass profile controllability
where only Y2 ¼ Y2

ref is required. Consider now the
general response formula

Y2ðK Þ ¼ �K�1
22 Y2ð1Þ þ�K�2

22 �21Y
1ð1Þ

þ
XK�2
j¼1

h
� j

22D 2 þ� j�1
22 �21D1

i
�UðK� j� 1Þ þ D2UðK� 1Þ:

The matrix-vector form of this last expression is
defined in terms of (11) and then the condition of
Definition 2.5 requires that (12) holds. Moreover, the
formula for ~K�max is immediate. œ

3. Control of relaxed pass profile controllable

processes

In some applications it will clearly be required to deal
explicitly with disturbances. Hence, in this section we
consider an extension of (1) in the form

xkþ1ðpþ1Þ ¼Axkþ1ðpÞþBukþ1ðpÞþB0ykðpÞþEwkþ1ðpÞ

ykþ1ðpÞ ¼Cxkþ1ðpÞþDukþ1ðpÞþD0ykðpÞþFwkþ1ðpÞ

ð13Þ

over 0� p��� 1, k� 0, where wk(p) is a q� 1
disturbance vector affecting the state and pass profile
updating equations which can vary both along the pass
and from pass-to-pass.

The control goal now is to drive the system to the
required reference pass profile, denoted in the 1D
equivalent model by Yref. We assume that (13) is
relaxed pass profile controllable (see Definition 2.3)
and hence the first � points of the pass profile vector
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δ points δ points

Legend:
–Points along the pass that influence the next 
pass profile but are not influenced by the previous one.

– Points along the pass that influence the next
pass profile and are influenced by the previous one.

–Points along the pass which d  o not influence
the next pass profile but are influenced by the previous one.

Figure 1. Illustrating relaxed pass profile controllability.
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cannot be influenced by the control term. Therefore

only a part of the output super-vector can be specified,

as Y1 is unobtainable. Hence, the required limit pass

profile (Yref) consists only of the second (Y2) and third

(Y3) sub-vectors of the Y and is written as

Yref ¼

eX
Y2

ref

Y3
ref

264
375, Y2

ref

Y3
ref

" #
¼

yrefð�Þ

yrefð�þ 1Þ

..

.

yrefð�� 1Þ

266664
377775

where eX denotes a vector of the required dimensions

whose elements cannot be influenced by control action.
The 1D equivalent model for this case can (by an

obvious extension to the construction in the distur-

bance free case) be written as

Y1ðlþ 1Þ ¼ D1Uðl Þ þ�1dl þ�Y
1Wðl Þ

Y2ðlþ 1Þ ¼ �21Y
1ðl Þ þ�22Y

2ðl Þ

þ D2Uðl Þ þ�2dl þ�Y
2Wðl Þ

Y3ðlþ 1Þ ¼ �31Y
1ðl Þ þ�32Y

2ðl Þ

þ D3Uðl Þ þ�3dl þ�Y
3Wðl Þ

ð14Þ

for l� 1, where

�Y
1 ¼

F 0 � � � 0

CE F � � � 0

..

. ..
. . .

. ..
.

CA��1E CA��2E . . . F

0

266664
377775

�Y
2 ¼

CA�E � � �

CA�þ1E � � �

..

.

CA����1E � � �

F 0 � � � 0

CE F � � � 0

..

. ..
. . .

. ..
.

CA��2��1E CA��2��2E � � � F

0

266664
377775

�Y
3 ¼

CA���E � � �

CA���þ1E � � �

..

.

CA��1E � � �

F 0 � � � 0

CE F � � � 0

..

. ..
. . .

. ..
.

CA��1E CA��2E . . . F

266664
377775

and finally

Wðl Þ ¼ ðwl ð0ÞÞ
T
ðwl ð1ÞÞ

T . . . ðwl ð�� 1ÞÞT
� �T

denotes the disturbance super-vector. The structure of

�22 is also critical to what follows, i.e.

The matrix �22 is nilpotent and we have the

following result (Hladowski et al. 2006).

Theorem 3.1: Suppose that �22 has the structure

of (15). Then in the general case �l �

22 ¼ 0, where

l � ¼
�

�
� 2

l m
: ð16Þ

Note here the updating of Y1(lþ1) is static in the sense

that it does not depend on any of the sub-vectors ofY on

the previous pass, i.e. Y1(l ), Y2(l ), Y3(l ).

Introduce now the so-called incremental vectors as

Ŷ2ðlþ 1Þ ¼ Y2ðlþ 1Þ � Y2
ref

Ŷ3ðlþ 1Þ ¼ Y3ðlþ 1Þ � Y3
ref:

ð17Þ

Now solve (17) for Y2(lþ 1) and Y3(lþ 1) and then

substitute in (14) to obtain

Y1ð2Þ ¼ D1Uð1Þ þ�1d1 þ�Y
1Wð1Þ,

Ŷ2ð2Þ ¼ �21Y
1ð1Þ þ�22Y

2ð1Þ þ ð�22 � I ÞY2
ref

þ D2Uð1Þ þ�2d1 þ�Y
2Wð1Þ,

Ŷ3ð2Þ ¼ �31Y
1ð1Þ þ�32Y

2ð1Þ

þ�32Y
2
ref � Y3

ref

þ D3Uð1Þ þ�3d1 þ�Y
3Wð1Þ

for l¼ 1 and

Ŷ2ðlþ 1Þ ¼ �22Ŷ
2ðl Þ þ ð�22 � I ÞY2

ref

þ D2Uðl Þ þ�21D1Uðl� 1Þ

þ�Y
2Wðl Þ þ�21�

Y
1Wðl� 1Þ

þ�2dl þ�21�1dl�1,

Ŷ3ðlþ 1Þ ¼ �32Ŷ
2ðl Þ þ�32Y

2
ref � Y3

ref

þ D3Uðl Þ þ�31D1Uðl� 1Þ

þ�3dl þ�31�1dl�1

þ�Y
3Wðl Þ þ�31�

Y
1Wðl� 1Þ

ð18Þ

for l4 1. The goal now is to find the set of appropriate

input super-vectors fUðl Þg
l¼1,2, ..., lz

, such that

Ŷ2ðlzÞ ¼ 0 and Ŷ3ðlzÞ ¼ 0 because by (17) this implies

that Y2ðlzÞ ¼ Y2
ref and Y3ðlzÞ ¼ Y3

ref. To achieve the

goal, the following control algorithm (based on

decoupling of the disturbance (W( l )) and initial

condition (dl) vectors and exploiting the nilpotency

property of �22) is proposed:
Control algorithm A

(a) Set U(1)¼ 0, l¼ 2
(b) Find U(l ) such that

D2Uðl Þ ¼ ðI��22ÞY
2
ref��21D1Uðl�1Þ��Y

2Wðl Þ

��21�
Y
1Wðl�1Þ��2dl��21�1dl�1

D3Uðl Þ ¼��32Y
2
ref�Y3

ref��31D1Uðl�1Þ��3dl

��31�1dl�1��Y
3WðlÞ��31�

Y
1Wðl�1Þ ð19Þ

�22 ¼

0 0

CA��1B0 0

..

. . .
.

0

CA��2��2B0 � � � CA��1B0

266664
377775: ð15Þ
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If no such U(l ) exists, stop as the algorithm
cannot be applied.

(c) If Ŷ2ðl Þ ¼ 0 and Ŷ3ðl Þ ¼ 0, stop. The required
solution is found, lz¼ l.

(d) Increase l by one and go to (a)

Theorem 3.2: Control algorithm A achieves
Y2ðlzÞ ¼ Y2

ref and Y3ðlzÞ ¼ Y3
ref if (19) has solutions for

l¼ 2,3, . . . , lz.

Proof: Substituting (19) into (18) yields

Ŷ2ðlþ 1Þ ¼ �22Ŷ
2ðl Þ Ŷ3ðlþ 1Þ ¼ �32Ŷ

2ðl Þ

or, equivalently,

Ŷ2ðlþ 1Þ ¼ �l
22Ŷ

2ð1Þ Ŷ3ðlþ 1Þ ¼ �32Ŷ
2ðl Þ

for l4 1. By Theorem 3.1 we can write

Ŷ2ðl� þ 1Þ ¼ �l�

22Ŷ
2ð1Þ ¼ 0 Ŷ3ðl� þ 1Þ ¼ �32Ŷ

2ðl�Þ :

Also

Ŷ2ðl� þ 2Þ ¼ 0 Ŷ3ðl� þ 2Þ ¼ �32Ŷ
2ðl� þ 1Þ ¼ 0

ð20Þ

and by (17) the required result is obtained and the
proof is complete. œ

Theorem 3.3: Control algorithm A requires at most
l�max ¼ d

�
�e steps to yield the required result.

Proof: As shown in Theorem 3.1, �l�

22 ¼ 0. Moreover
by (20), Ŷ3ðl� þ 2Þ ¼ 0, hence the algorithm needs at
most l*þ2 steps. Introducing (16) yields the required
result. œ

3.1 Control of two sided relaxed pass profile
controllable processes with disturbances

The essential difference between two sided relaxed and
relaxed pass profile controllability is the lack of
requirements on Y 3, and hence in the former case the
equations defining Y 3 must be deleted from the
analysis since Y 3 is not subject to control action.
Substituting the first incremental vector of (17) into the
middle equation of (14) yields

Y1ð2Þ ¼ D1Uð1Þ þ�1d1 þ�Y
1Wð1Þ

Ŷ2ð2Þ ¼ �21Y
1ð1Þ þ�22Y

2ð1Þ þ ð�22 � IÞY2
ref

þ D2Uð1Þ þ�2d1 þ�Y
2Wð1Þ

ð21Þ

for l¼ 1 and

Ŷ2ðlþ 1Þ ¼ �22Ŷ
2ðl Þ þ ð�22 � I ÞY2

ref þ D2Uðl Þ

þ�21D1Uðl� 1Þ þ�Y
2Wðl Þ

þ�21�
Y
1Wðl� 1Þ þ�2dl þ�21�1dl�1

ð22Þ

for l4 1. The task now is to enforce Ŷ2ðl Þ ¼ 0
and hence attain the required reference pass profile
vector Y 2ðl Þ ¼ Y2

ref. To achieve this, we modify the
previous algorithm (Control algorithm A) to the
following:

Control algorithm B

(a) Set U(1)¼ 0, l¼ 2
(b) Find U(l ) such that the following equation

holds:

D2Uðl Þ ¼ ðI��22ÞY
2
ref ��21D1Uðl� 1Þ

��Y
2Wðl Þ þ�21�

Y
1Wðl� 1Þ

��2dl þ�21�1dl�1

ð23Þ

If no such U(l ) exist, stop as the algorithm
cannot be applied.

(c) If Ŷ2ðl Þ ¼ 0, stop. The required solution is
found, lz¼ l

(d) Increase l by one and go to (a)

Now we have the following results whose proof is very
similar to that for Theorem 3.2 and hence is omitted
here.

Theorem 3.4: Control algorithm B achieves
Y2ðlzÞ ¼ Y2

ref if (23) has solutions for l¼ 2, 3, . . . , lz.

Theorem 3.5: Control algorithm B requires at most
l�max ¼ d

�
� � 1e steps to yield the required result.

Proof: Note that we only need to force Ŷ2ðl Þ to zero.
Using Theorem 3.1 we obtain Ŷ2ðl� þ 1Þ ¼
�l�

22Y2ð1Þ ¼ 0. Introducing (16) now gives the required
result. œ

4. Modifying the value of d

It is clear from the analysis so far in this paper that if
the value of � is large, then we cannot control a large
part of the pass profile vector. In this section, we show
how auxiliary control action can be used to beneficially
change the value of �.

Consider the application of the control law to (1)

ukþ1ð pÞ ¼ K1xkþ1ð pÞ þ K2ykð pÞ þ vkð pÞ ð24Þ

resulting in the controlled process state-space model

xkþ1ð pþ 1Þ ¼ A�xkþ1ð pÞ þ Bvkð pÞ þ B �0ykð pÞ

ykþ1ð pÞ ¼ C�xkþ1ð pÞ þDvkð pÞ þD�0ykð pÞ
ð25Þ

where

A� ¼ Aþ BK1, B�0 ¼ B0 þ BK2

C� ¼ CþDK1, D�0 ¼ D0 þDK2

and the new external vector v could subsequently be
used to introduce further control action. Also it is
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often beneficial to reduce the value of � and hence

minimise the uncontrollable part of the process

pass profile sequence. This can be achieved by using

(24) if we can find appropriate values for K1 and K2.

It is obvious that any process described by (1) must

satisfy one of the following:

. D0¼ 0 and the process is both relaxed pass

profile and pass profile uncontrollable. In this

case, the only option is to use (24) with

DK2¼ 0 to increase �5 �max, and then test for

pass profile controllability of the new state-

space model.
. D0 6¼ 0 and the process is pass profile

uncontrollable. In this case, there is no � in

the sense of Definition 2.2 and hence the

process is relaxed pass profile uncontrollable.

In this case it is therefore first necessary to

force D0 to zero. To achieve this, we have to

find K2 such that

D0 ¼ �DK2: ð26Þ

If (26) has solutions, it is necessary to deter-

mine the value of � and then check

the requirements of Theorem 2.4. If the con-

trolled process is relaxed pass profile control-

lable, further reduction of � can be achieved by

modifying K1, as in the next case.
. Relaxed pass profile controllability holds but

a change of � is required. In this case it is

obvious that applying (24) with DK2 6¼ 0

immediately means extended pass profile

controllability cannot hold. To reduce �,
apply (24) with DK2¼ 0 and then attempt

to find K1 such that � for the modified

process is less than that for the uncontrolled

process and moreover relaxed pass pro-

file controllability holds for this �. As

shown in (10), it is only necessary to test

for �� �max.

If the relevant case here is achieved, then the control

law designs given earlier in this article can be applied to

the modified process.

5. Conclusions

This article has produced new results on pass profile
controllability of discrete linear repetitive processes
where this property is well defined physically. The
particular focus has been on what can be achieved in
the presence of structural properties of the defining
state-space model that will often arise in applications.

Acknowledgement

This work has been partially supported by the Ministry of
Science and Higher Education in Poland under the project
No. N514 293235.

References

Edwards, J.B. (1974), ‘Stability Problems in the Control of
Multipass Processes’, Proceedings of the Institution of
Electrical Engineers, 121(11), 1425–1431.

Galkowski, K., Rogers, E., and Owens, D.H. (1998), ‘Matrix

Rank Based Conditions for Reachability/controllability of
Discrete Linear Repetitive Processes’, Linear Algebra and
its Applications, 275–276, 201–224.

Hladowski, L., Cai, Z., Galkowski, K., Rogers, E.,
Freeman, C., and Lewin, P.L. (2008), ‘Using 2D Systems
Theory to Design Output Signal Based Iterative Learning

Control Laws with Experimental Verification’, in 47th
IEEE Conference on Decision and Control, pp. 3026–3031.

Hladowski, L., Galkowski, K., Rogers, E., and Owens, D.

(2006), ‘Relaxed Pass Profile Controllability of Discrete
Linear Repetitive Processes’, International Journal of
Control, 79(8), 938–958.

Moore, K.L., Chen, Y., and Bahl, V. (2005), ‘Monotonically

Convergent Iterative Learning Control for Linear Discrete-
time Systems’, Automatica, 41(9), 1529–1537.

Porter, W.A., and Aravena, J.L. (1984), ‘1-D Models for

M-D Processes’, IEEE Transactions on Circuits and
Systems, 31(8), 742–744.

Roberts, P.D. (2000), ‘Numerical Investigations of a Stability

Theorem Arising From 2-Dimensional Analysis of an
Iterative Optimal Control Algorithm’, Multidimensional
Systems and Signal Processing, 11(1/2), 109–124.

Rogers, E., Galkowski, K., and Owens, D.H. (2007), Control

Systems Theory and Applications for Linear Repetitive
Processes, Vol. 349 of Lecture Notes in Control and
Information Sciences, Berlin: Springer Verlag.

International Journal of Control 73

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
a
m
p
t
o
n
]
 
A
t
:
 
1
8
:
2
9
 
3
1
 
J
a
n
u
a
r
y
 
2
0
1
0


