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Abstract

This paper develops an anti-windup scheme for systems with rate-limited actuators. The
main results show how a full-order anti-windup compensator can be synthesised using an
algebraic Riccati equation and several free parameters. A further result then shows how the
free parameters may be chosen to influence, in an intuitive way, the local L2 gain of the
system and the size of the region of attraction. The results are of interest due to their low
computational burden and hence their applicability to systems of large state dimension.
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1 Introduction

Much of the constrained input literature addresses the problem of input saturation whereby
the magnitude of the control vector is subjected to element-wise constraints. Not surprisingly,
researchers have devoted much attention to this problem due to its prevalence in most engi-
neering applications. The magnitude saturation problem led practitioners and researchers to
develop compensators which could be retrofitted [10] to existing controllers to assist the orig-
inal controller in maintaining stability and performance during periods of saturation. These
compensators have become known as “anti-windup” (AW) compensators and many synthesis
techniques have been proposed (some of the notable examples are [18,42,14,20,9,30,7,21,17]).
It is evident that at present, at least in principle, the control engineer who faces magnitude sat-
uration problems has tools to enable him/her to address the problem, with some of the more
modern AW schemes guaranteeing stability and performance.

Magnitude limits on the control vector are not the only class of input nonlinearity which may
be present in an otherwise linear system. Another significant class of nonlinearity which is
well known to cause problems is input rate saturation. Although there are various ways of
modeling this phenomenon, in essence, rate saturation (or rate-limiting as it is often called)
limits, normally in an element-wise fashion, the rate of change of the control vector. This



type of nonlinearity is not as wide-spread as the saturation nonlinearity, as, for example, elec-
trical systems typically are less prone to suffer from this problem. Nevertheless, rate-limited
actuators can be a significant problem in many systems, particularly those with mechanical
actuators, and in some applications rate-limiting can have devastating consequences. Some of
the more notorious examples of the catastrophic effects of rate-limiting are the crashes of the
SAAB Grippen [1] and Boeing V22 Osprey aircraft [3], and the meltdown of the Chernobyl
nuclear power plant [35].

Recently, some attempts at applying anti-windup (AW) schemes to the rate saturation problem
have been made ([2,16,37,38]). Although the development of these schemes can be regarded
as a step towards bridging the gap between the need to provide rigorous guarantees of the
closed-loop system’s behaviour during rate-saturation, and the need to develop techniques
which are useful in practice, these schemes have tended to be lacking in intuition and have
not been developed enough for the practising engineer. One of main advantages of using AW
conditioning schemes is that the linear performance (i.e. the performance when rate-saturation
does not occur) is not directly restricted by the conditioning method, giving full freedom in
the design of the linear controller. Moreover, the AW compensation schemes advocated in [44]
which we follow here, are designed independently of the linear controller and thus the same
AW compensator can be used with multiple controllers. This can be useful in some practical
systems where the linear controller may change, depending on operating condition.

The anti-windup technique developed for systems with rate-limits in this paper is based on
the framework introduced in [44] and the Riccati equation synthesis method proposed in [33].
In order to make the method of [33] applicable to rate-limited systems we use fairly standard
results on sector narrowing - see [22,15,45] for example - where the deadzone nonlinearity is
described locally by a sector of reduced size, leading to a tighter bound. By combining these
various results, an AW design framework which is both rigorous and intuitive is developed. In
particular, the AW technique proposed contains several tuning variables which can be adjusted
in a reasonably straightforward manner in order to trade-off features important in practical
anti-windup problems. In fact, the results in this paper were developed with the aim of imple-
menting anti-windup compensators on a sophisticated experimental aircraft; these results are
reported elsewhere [34,5,6].

The paper is organised as follows. In the next section a discussion of linear systems subject to
rate-limited actuators will be given. Following this, the anti-windup problem for rate-limited
actuators will be introduced and a method for solving this based on the Riccati-based technique
of [33] will be proposed. A simulation example then follows and the paper ends with some
concluding remarks.

1.1 Notation

Notation is mainly standard throughout the paper. The notation H(s) ∈ RH∞ indicates that
the transfer function H(s) is real, rational and is analytic in the right-half-complex plane. We
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make extensive use of the saturation function defined as

satū(u) :=










sat1,ū1
(u1)

...

satm,ūm
(um)










and sati,ūi
(ui) = sign(ui) min(|ui|, ūi) (1)

The deadzone function is also frequently used and is defined as

Dz(u) := u − sat(u) (2)

The paper considers mainly local anti-windup compensation which requires consideration of a
region of attraction. For a nonlinear system ẋ = f(x) with equilibrium point x = 0, the region
of attraction is defined as

A =
{

x ∈ R
n : lim

t→∞
x(t) = 0

}

The L2 norm of a vector x(t) is defined as

‖x‖2 :=

∞∫

0

x(t)′x(t)dt

and the induced L2 norm (or L2 gain) of a nonlinear operator, H as

‖H‖i,2 := sup
06=x∈L2

‖Hx‖2

‖x‖2

Later in the paper, it is convenient to work with a local L2 gain which is defined as

‖H‖i,2,W := sup
06=x∈L2∩W

‖Hx‖2

‖x‖2

where W is some subset of the input space of H. It is clear that ‖H‖i,2,W ≤ ‖H‖i,2.

2 Linear systems with rate-limited actuators

2.1 System modeling

The paper is concerned with systems which take the form shown in Figure 1 which depicts
a closed-loop system which is linear except for the rate-limit nonlinearity. The stabilisable,
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Fig. 1. Linear system with rate-limited actuators

detectable finite-dimensional linear time invariant (FDLTI) plant has state-space realisation

G(s) ∼







ẋ = Ax + Bur

y = Cx + Dur

(3)

where x ∈ R
np is the plant’s state vector, y ∈ R

q is the vector of measured outputs and
ur ∈ R

m is the input to the plant. The controller K(s) is also FDLTI and produces a control
signal u ∈ R

m from a reference input r ∈ R
nr and the measured output y. Disturbances have

not been included, although are handled with little extra effort (see [44]). The input to the plant
and the controller output are not necessarily identical due to the rate-limit nonlinearity, Φ(.) :
R

m 7→ R
m, present at the plant input. This rate-limit nonlinearity represents the restrictions on

the rates of the actuator and is well known to complicate stability and performance analysis of
a system.

_
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∫

Fig. 2. Rate-limit model

Unlike the position saturation nonlinearity, rate saturation is a dynamic nonlinearity and several
methods have been proposed to model it ([29,27,16,38]). Following [27] and others, in the
work here it is useful to model the rate-limit nonlinearity as shown in Figure 2. This model
of the rate-limiter features a (decentralised) magnitude saturation in a feedback loop with a
set of integrators and a (decentralised) set of gains H = diag(h1, . . . , hm). The rate-constraint
values, which are now interpreted as magnitude saturation constraints in Figure 2, are defined
as d̄i, i ∈ {1, 2, . . . ,m}. The system’s dynamic equations are as follows

Φr(u) ∼







ẋr = sat(−Hxr + Hu)

ur = xr

(4)

This model of a rate-limit is appealing because, when the rate-limits have not been reached
(i.e. when the saturation block in Figure 2 acts as the identity) the model behaves as a bank
of low pass filters with cut-off frequency 1/hi in each channel. However, when the rate-limits
have been reached, the rate-limit model can be interpreted as a restricted tracking problem:
that is the output ur attempts to follow u but with a restricted rate.
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Remark 1: The time constants 1
hi

must typically be greater than the dominant frequency com-
ponents of u in order to prevent the linear dynamics of the actuator from interfering too much
with the nominal control system design. This is often a valid practical assumption but if not,
some account of these linear dynamics must be taken during nominal linear controller design.
�

2.2 Anti-windup architecture and the equivalent system

H_
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Fig. 3. Equivalent magnitude limited system

When the behaviour of the rate-limit nonlinearity is described by equation (4), the only nonlin-
earity present in the system depicted in Figure 1, is the saturation nonlinearity internal to the
rate-limit. By augmenting the plant and controller as shown in Figure 3, one can translate the
rate-limit problem into an equivalent magnitude limit problem. In Figure 3, the “augmented”
controller and “augmented” plant are respectively given by

d = H[K1 K2 − Im]
︸ ︷︷ ︸

K̃










r

y

ur










and ỹ :=






y

ur




 =






G(s)1
s

I 1
s






︸ ︷︷ ︸

G̃(s)

dm (5)

A state-space representation of G̃(s) is easily derived as

G̃(s) =






G(s)1
s

I 1
s




 ∼












A B 0

0 0 I

C D 0

0 I 0












=






Ã B̃

C̃ 0




 (6)

The augmented plant now includes dynamics absorbed from the rate-limit model and thus has
a larger state-vector [x′, x′

r]
′ ∈ R

np+m; its poles are now those of the plant G(s) plus m poles at
the origin. The rate-limit problem can thus be thought of as a standard magnitude limit problem
with the new “plant”, G̃ driven by the signal dm and the new “controller”, K̃, producing the
“control” signal d.

5



K(s) G(s)

Θ(s)=

r

y

+ -

+

+

yd

dd

-
+ulin dm

ylin

~
d

d

M(s)-I
G(s)M(s)

~ ~

~

~

~
~

Fig. 4. Equivalent AW Saturation Problem: replace G(s) with G̃(s)
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Fig. 5. Equivalent representation of Figure 4

The above implies that rate-saturation problems can be treated in similar ways to magnitude
limited problems, and indeed similar AW architectures can be used. Figure 4 shows the archi-
tecture used in this paper; the “augmented” plant, G̃, and controller, K̃, are those introduced
earlier and the signal ỹ = [y′ x′

r]
′ ∈ R

q+m represents the “augmented” measurement from
the plant G̃. The anti–windup compensator, Θ(s), is driven by the signal d̃ := d−dm = Dz(d),
which is a signal internal to the rate-limit. The outputs from the anti-windup compensator are
labeled dd ∈ R

m and yd ∈ R
q+m which are injected at the augmented controller’s input and

output respectively. It is important to mention that this architecture could be difficult to realise
for physical rate-limits but as many systems contain software rate-limits to protect the physical
rate-limits, it would be straightforward to apply to the software limits.

3 Anti-windup compensation

The diagram in Figure 4 is somewhat difficult to interpret and, aside from using the AW com-
pensator Θ(s) to guarantee the stability of the system, the remaining design goals are unclear.
However, with the anti-windup compensator parameterised as

Θ(s) =






M(s) − I

G̃(s)M(s)




 , M(s) ∈ RH∞ (7)
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it is possible to re-draw Figure 4 as Figure 5. In this diagram, the subscripts “lin” denotes a
signal which is produced from a purely linear system and the subscript “d” denotes a signal
produced by a system driven by the deadzone function, “disturbing” the linear behaviour. This
transformation was first proposed in [43,44] (see also [20,40]) and reveals an attractive de-
coupling of the system into: nominal (unsaturated) linear loop, nonlinear loop and disturbance
filter. Two interesting features are evident from the diagram.

i) Assuming that the nominal (unsaturated) loop is stable, then provided G̃(s)M(s) ∈ RH∞,
the nonlinear stability problem reduces to that of guaranteeing stability of the nonlinear
loop.

ii) The deviation of the system from nominal linear performance is quantified by the “size” of
signal ỹd.

From the above, it follows that the anti-windup problem can be defined in terms of the non-
linear operator Tp : dlin 7→ yd [42,31], the “gain” of which dictates how much the linear
performance degrades in the presence of (rate) saturation.

3.1 Problem set-up

In the magnitude limit case, G(s) ≡ G̃(s), and therefore, providing that G(s) ∈ RH∞ global
stability can be established if global stability of the nonlinear loop can be established for
certain M(s); it has been proven (see for example [13,33]) that global quadratic stability is
possible if and only if the nominal linear plant is bounded real, i.e. ‖G(s)‖∞ < γ for some
possitive scalar γ. The rate-limit case is not quite as simple; even if G(s) is stable, because
G̃(s) = [G(s)′/s I/s], it follows that G̃(s) /∈ RH∞ and therefore not bounded real. This
implies that we must seek local stability. Additionally, the only way to ensure that the so-
called disturbance filter is stable is to introduce zeros in M(s) to “cancel” the unstable poles
in G̃(s). One convenient way to do this is to let M(s) be part of a coprime factorisation of
G̃(s) = N(s)M(s)−1. In this case, a state-space realisation for our anti-windup compensator
can be given as






M(s) − I

G̃(s)M(s)




 =






M(s) − I

N(s)




 ∼










Ã + B̃F B̃

F 0

C̃ 0










(8)

where F is a matrix chosen to ensure Ã+B̃F is Hurwitz and is effectively the free parameter in
our anti-windup synthesis routine. In this case a state-space realisation of Tp, which represents
the mapping from our linear “control signal”, dlin, to the perturbation to the output, ỹd, can be
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written as

Tp ∼







˙̃x = (Ã + B̃F )x̃ + B̃d̃

dd = Fx̃

ỹd = C̃x̃

d̃ = Dz(dlin − dd)

(9)

However, this cancelling of the unstable poles of G(s), causes problems in ensuring that the
nonlinear loop is globally stable. To circumvent this, we drop the stipulation of global stability
and instead seek to ensure that the system is locally exponentially stable. This also makes
practical sense, as in most control problems we are not interested in ensuring stability for all
possible states; rather we seek stability for a set of states around an operating point. Thus
formally we can pose the following problem:

Problem 1: Rate-limit Anti-windup Compensation

The objective of the rate-limit anti-windup problem is to design a compensator of the form
given in equation (8) such that

a) When dlin ≡ 0, the operator Tp is locally exponentially stable; that is limt→∞ x̃(t) = 0 for
all x̃(t) ∈ X ⊂ A.

b) When x̃(0) ≡ 0, ‖Tp‖i,2,W ≤ γ for some γ > 0 and some set W �

As our AW compensator in equation (8) is a function of the state-feedback gain F , the above
problem essentially reduces to choosing F such that Tp is locally exponentially stable and
‖Tp‖i,2,W ≤ γ. Note further that, by the structure of our AW compensator, if d ∈ D ∀t ≥ 0 ∗ ,
then the AW compensator will remain inactive and linear performance will be not be disturbed.
Also, in essence the local exponential stability assumption ensures that if dist(dlin,D) ∈ L2

and dlin ∈ W , then ỹd ∈ L2, ensuring an asymptotic return to linear behaviour if saturation
occurs - see [40] or [24] for more details.

3.2 Local anti-windup

The concept we make use of to enable local results to be derived is a long-standing tool in con-
strained input control, perhaps first being introduced in [15] and, since then, used frequently
in the anti-windup literature ([45,31] for example).

The idea is as follows. It is well known that the deadzone nonlinearity Dz(d) ∈ Sector[0, I]

∗ The hyper-cuboid D = [−d̄1, d̄1]× [−d̄2, d̄2]× . . .× [−d̄m, d̄m] divides the space of the input signal
into linear unconstrained region (i.e. d ∈ D) and a saturated region (i.e. d /∈ D)
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for all d ∈ R
m. Now assume that di ≤ do,i for some d0,i for all i, and define

S(d0) := {d ∈ R
m : −d0 � d � d0} (10)

where d0,i > d̄i. If this is the case for all time t > 0, it is evident that Dz(d) ∈ Sector[0,K]
where K = diag(ε1, ε2, . . . , εm) and εi = (do,i − d̄i)/do,i. It is possible to simplify this further
by letting ε = maxi εi, which implies that Dz(d) ∈ Sector[0, εI] for all d ∈ S(d0).

Therefore by restricting our attention to d ∈ S(d0) where d0 < ∞ , which in turn implies
ε ∈ (0, 1), the deadzone is guaranteed to inhabit a narrower sector than Sector[0, I]; that is

d ∈ S(d0) ⇒ Dz(d) ∈ Sector[0, εI] (11)

Note that for any arbitrary large d0 there always exists an ε ∈ (0, 1) such that Dz(d) ∈
Sector[0, εI] (in fact, global results are recovered if d0,i = ∞ ∀i ∈ {1, . . . ,m}, and hence
Dz(d) ∈ Sector[0, I]). Note that by assuming Dz(d) ∈ Sector[0, εI], we are effectively re-
stricting our attention to only a subset of possible signals d and thus results derived on this
basis will be necessarily local, rather than global.

3.3 Region of attraction

As we are interested in deriving local results, it is desirable to estimate the region in which our
proposed anti-windup compensation technique provides local asymptotic stability. In other
words, when deriving an anti-windup compensator we also seek a region of attraction (ROA)
to accompany it, with it preferably being as large as possible. In general, computation of the
region of attraction for nonlinear systems is a nontrivial task and over the years many authors
([39,8,2,12,11,23,38]) have proposed methods which can be used to estimate the region of
attraction for a saturated system.

Quite frequently in saturated systems analysis, an exact description of the region of attraction
is not required and here we are content to consider a region of attraction with a crude geometry.
In the saturated systems literature (as in [19], [12] for example), an ellipsoidal approximation
is typically used,

E =
{

x̃ ∈ R
np+m : x̃′Px̃ < c

}

. (12)

The largest such ellipsoid can be estimated (see for example [36], [41]) using a simple formula
which will be given later. The salient feature of this type of representation is that it will allow a
transparent relationship between AW design parameters and a subset of the region of attraction,
E ⊂ X ⊂ A to be observed. It must be mentioned that the states of interest when characterising
the region of guaranteed stability are the states of our AW compensator x̃, as stability of our
linear loop is guaranteed to be global.
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3.4 Anti-windup solution

The objective of the anti-windup compensator proposed is to find a Θ(s) such that

• The map Tp : dlin 7→ yd is sufficiently small.
• The nonlinear loop is locally asymptotically stable

We have seen that finding such a Θ(s) can be reduced to finding an appropriate coprime fac-
torisation G̃(s) = N(s)M(s)−1, and that this, in turn, reduces to finding an appropriate state
feedback gain F . A systematic way of computing F , based on the Riccati equation approach
reported in [33,31] is given in the Theorem below.

Theorem 3.1 There exists a full order anti-windup compensator Θ = [Θ′
1 Θ′

2]
′ ∈ R

(q+2m)×m,
as stated in (8), which solves Problem 1 if there exist matrices P = P ′ > 0, W = diag(w1, . . . , wm) >
0, and positive real scalars γ and ε such that the following Riccati equation is satisfied

Ã′P + PÃ + PB̃(γ−2I − 2 (1−ε)W−1

ε2
)B̃′P + C̃ ′C̃ = 0 (13)

where the matrix Z must satisfy the following inequality:

Z = (2W − γ−2(εW )2) > 2εW > 0 (14)

Furthermore, if equation (13) is satisfied, a suitable Θ is obtained by calculating the matrix F
as

F = −
(

(2 − ε)W−1

ε2
− γ−2I

)

B̃′P (15)

A subset of the region of attraction is given by the ellipsoid

Ē =
{

x̃ ∈ R
np+m : x̃′Px̃ < cmax

}

(16)

where

cmax = min
i

d̄2
i w

2
i

(1 − ε)2( (2−ε)
ε2

− γ−2w2
i )B

′
iPBi

(17)

and wi is the ith diagonal element of W and Bi is the ith column vector of B, for some i ∈
{1, . . . ,m}. ��

Proof: A similar Theorem was briefly introduced in [31], although a slightly different proof
will be provided here. It is constructed in several stages as detailed below.

i) The main inequality Consider the function
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L :=
d

dt
x̃′Px̃ + ‖C̃x̃‖2 − γ2‖dlin‖2 + 2d̃′W (εd − d̃) < 0 (18)

The final term 2d̃′W (εd − d̃) arises from the assumption that d ∈ S(d) ∀t ≥ 0 and hence
that 2d̃′W (εd − d̃) ≥ 0. Now consider two cases

(1) Assume that x̃(0) = 0 and dlin ∈ W where

W := {dlin ∈ R
m : d ∈ S(d0)} (19)

This implies that d ∈ S(d0) ∀t ≥ 0 and thus if inequality (18) holds then this implies

d

dt
x̃′Px̃ + ‖C̃x̃‖2 − γ2‖dlin‖2 < 0 (20)

Integration with respect to time from t = 0 to t = ∞ gives

x̃(∞)′Px̃(∞) − x̃(0)′Px̃(0) + ‖ỹd‖2
2 − γ2‖dlin‖2

2 < 0 (21)

which in turn implies that ‖ỹd‖2 − γ‖dlin‖2 < 0 and hence that ‖T ‖i,2,W < γ. i.e. Condi-
tion b) of Problem 1 is satisfied.

(2) Next assume that dlin = 0 ∀ t ≥ 0 and that x̃(0) ∈ E where

E =
{

x̃ ∈ R
np+m : x̃′Px̃ ≤ c

}

(22)

for some c > 0. Furthermore let c be sufficiently small to ensure that d ∈ S(d0). Then it
follows that 2d̃′W (εd − d̃) ≥ 0 and inequality (18) implies that

d

dt
x̃′Px̃ = V̇ (x̃) < 0 (23)

and thus V (x̃) is a Lyapunov function for the nonlinear loop in Figure 5, which ensures
local asymptotic stability for all x̃(0) ∈ E . Thus the system is locally asymptotically stable
and hence, if inequality (18) holds, Condition a) of Problem 1 is satisfied.
Thus, it remains for us to prove that satisfaction of inequality (18) is equivalent to the

expressions given in the Theorem.
ii) Evaluation of the main inequality. The remainder of the proof shows how we can re-write

the cost function L, equation (18), as the conditions given in Theorem 3.1. Evaluating equa-
tion (18) results in an inequality containing several cross terms in d̃, dlin, and x̃. Using
similar ideas to those proposed in [32], it is possible to address this issue and avoid LMI
formulations.

Expanding (18) and substituting d = dlin − dd gives

L = x̃′C̃ ′C̃x̃ − γ2d′
lindlin + ˙̃x

′
Px̃ + x̃′P ˙̃x + 2d̃′εWdlin − 2d̃′εWdd − 2d̃′Wd̃ (24)

We now group the cross-product terms in three steps:
(I) Cross-product terms involving dlin and d̃ are grouped as follows:

−
[

γ2d′
lindlin − 2d̃′εWdlin

]

= −‖(γdlin − γ−1Wεd̃)‖2 + γ−2d̃′ε2W 2d̃ (25)
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Combining the above with (24), a cost function containing no cross-product terms between
dlin and d̃ is obtained. Using equation (9) to expand ˙̃x and noticing that dd = Fx̃:

L = x̃′(C̃ ′C̃ + Ã′P + PÃ + 2F ′B̃′P )x̃ + 2x̃′(PB̃ − εF ′W )d̃

−d̃′Zd̃ − ‖γdlin − γ−1Wεd̃‖2 (26)

where Z = 2W − γ−2ε2W 2

(II) Cross-Product terms involving d̃ and x̃ are grouped as follows:

−
[

d̃′Zd̃ − 2x̃′(B̃′P − εWF )′d̃
]

=−‖(Z 1

2 d̃ − Z− 1

2 (B̃′P − εWF )x̃)‖2 +

x̃′(B̃′P − εWF )′Z−1(B̃′P − εWF )x̃ (27)

Note that Z must be positive definite in order to have a well posed problem. This condition
arises from the necessity of making the quadratic term

−‖(Z 1

2 d̃ − Z− 1

2 (B̃′P − εWF )x̃)‖2

negative for any pair (d̃, x̃). It can easily be shown that if Z < 0, this is not always
guaranteed. By replacing this new group of terms, a new cost function is obtained. This
cost function has no cross-product terms between d̃ and x̃.

L ≤ x̃′(C̃ ′C̃ + Ã′P + PÃ + 2F ′B̃′P + PB̃Z−1B̃′P − 2F ′WεZ−1B̃′P + F ′WεZ−1εWF )x̃ (28)

(III) Terms involving F and F ′F are grouped:

F ′WεZ−1εWF + 2PB̃(I − Z−1εW )F = ‖Z− 1

2 (εWF + (Zε−1W−1 − I)B̃′P )‖2

−PB̃(Zε−1W−1 − I)′Z−1(Zε−1W−1 − I)B̃′P (29)

Thus it follows that our cost function (18) can be written as

L = La + Lb + Lc (30)

where

La=x̃′(C̃ ′C̃ + Ã′P + PÃ + PB̃Z−1B̃′P −
PB̃(Zε−1W−1 − I)′Z−1(Zε−1W−1 − I)B̃′P )x̃ (31)

Lb=‖Z− 1

2 (εWF + (Zε−1W−1 − I)B̃′P )x̃‖2 (32)

Lc=−‖Z 1

2 d̃ − Z− 1

2 (B̃′P − εWF )x̃‖2 − ‖γdlin − γ−1Wεd̃‖2 (33)

Equation (30) comprises three terms; the last, Lc, is a negative definite quadratic term.
Therefore if the first two terms can be set to zero, then L(.) < 0. Setting the second term,
Lb, and noting that Z > 0, yields:

εWF + (Zε−1W−1 − I)B̃′P = 0 (34)
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Using the expression for Z (Z = 2W − γ−2ε2W 2) yields the following condition for the
gain matrix F :

F = −
(

(2 − ε)W−1

ε2
− γ−2

)

B̃′P (35)

where P = P ′ > 0 comes from solving the Ricatti equation which makes La = 0:

Ã′P + PÃ + C ′C + PB̃Z−1B̃′P − PB̃(Zε−1W−1 − I)′Z−1(Zε−1W−1 − I)B̃′P = 0 (36)

⇔ Ã′P + PÃ + C ′C + PB̃[Z−1 − (Zε−1W−1 − I)Z−1(Zε−1W−1 − I)]B̃′P = 0 (37)

⇔ Ã′P + PÃ + C ′C + PB̃[−ε−2W−2Z + 2ε−1W−1]B̃′P = 0 (38)

Equation (13) is then obtained by substituting Z = 2W − γ−2ε2W 2 into equation (38).
iii) Calculation of the region of attraction. In part i) it was shown that the system is locally

asymptotically stable in a set E ⊂ X where X is a subset of the region of attraction. As
mentioned earlier, we estimate ellipsoidal subsets of the region of attraction and in particu-
lar are interested in calculating the largest such ellipsoid, Ē which has the following form

Ē =
{

x̃ ∈ R
np+m : x̃′Px̃ < cmax

}

. (39)

For the estimation of the region of attraction it is assumed that dlin = 0 and, to ensure that
the deadzone is within a reduced sector, that the states x̃ belong to the set

X =
{

x̃ ∈ R
np+m : d ∈ S(d0) ∀t ≥ 0

}

⊂ A (40)

Thus to calculate an ellipsoidal region of attraction we seek the largest set such that

x̃ ∈ Ē ⇒ d ∈ S(d0) ∀t ≥ 0 (41)

or equivalently we seek the largest set

Ē =
{

x̃ ∈ R
np+m : x̃′Px̃ < cmax, |d| = |Fx̃| � d0

}

(42)

Thus if x̃ ∈ Ē it follows that d ∈ S(d0) and Dz(d) ∈ Sector[0, εI]; hence the system is
locally stable. To calculate Ē , we follow a method used in, for example, [36], [41]. The
largest ellipsoid region of attraction can be posed a maximisation problem:

max
x̃

x̃′Px̃ s.t. |Fx̃| � d0 (43)

which is equivalent to

max
x̃

x̃′Px̃ s.t. |Fix̃| < d0,i ∀i ∈ {1, . . . ,m} (44)

where, Fi is the ith row of F . The largest such ellipsoid can then be calculated using

cmax = min
i

d2
0,i

FiP−1F ′
i

(45)
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Substituting for F yields

cmax =
d̄2

i w
2
i

(1 − ε)2( (2−ε)
ε2

− γ−2w2
i )B

′
iPBi

(46)

which completes the proof. ��

Remark 2: It can be seen that as ε gets close to unity, the size of cmax, and hence the size of Ē
increases, for fixed γ and W . Thus by making ε arbitrarily close to unity, the size of the region
of attraction can be made arbitrarily large for some appropriate choice of γ and W . �

3.5 Improved tuning procedure

The main issue in using Theorem 3.1 for anti-windup synthesis is that the Riccati equation
(13) is not guaranteed to be solvable for arbitrary γ, ε and W and hence the design could be
complex. However, using equation (14), which imposes the inequality constraint Z > 0, it is
possible re-write Theorem 3.1 in a manner where a solution to the Riccati equation (13) is
always guaranteed.

Corollary 1 There exists a full order anti-windup compensator Θ = [Θ′
1 Θ′

2]
′ ∈ R

(q+2m)×m

which solves strongly the anti-windup problem if there exists a matrix P = P ′ > 0, and
positive real scalars ε ∈ (0, 1), and ρ > 0 such that the following Riccati equation is satisfied

Ã′P + PÃ − ρPB̃B̃′P + C̃ ′C̃ = 0 (47)

Furthermore, if equation (47) is satisfied, a suitable Θ achieving ‖T ‖i,2,W < γ is obtained by
calculating the matrix gain F as follows:

F = −(1 − ε)−1ρB̃′P (48)

where γ =
√

1
ρ
. An estimate the region of attraction is given by the ellipsoid

Ē = {x̃ : x̃′Px̃ ≤ cmax} where cmax = max
i







d̄2
i

ρ2B̃′
iPB̃i







(49)

�

Proof: The proof will show how, by re-defining certain parameters, the expressions in Theorem
3.1 can be re-written as those in Corollary 1. As before, γ and ε are assumed to be positive
scalars, and W is chosen to be W = ωI, ω > 0. First note that using inequality (14), we
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obtain a bound on γ−2 as

γ−2I < 2
(1 − ε)

ε2
W−1 ⇒ ∃k ∈ (0, 2) s.t. γ−2 = k

(1 − ε)

ε2
ω−1 (50)

The extra term k is included in order to allow us to rewrite the inequality as an equality.
Substituting this into equation (13) yields the Riccati equation

Ã′P + PÃ − PB̃RB̃′P + C̃ ′C̃ = 0 (51)

where R is defined as R = (2 − k) (1−ε)
ε2

ω−1I . This allows us to replace R by R = ρI where

ρ = (2 − k)
(1 − ε)

ε2
ω−1 (52)

which yields Riccati equation (47) in Corollary 1. Similarly using the expressions for ρ and
γ−2 in equation (15) allows us to write

F = −(R +
W−1

ε
)B̃′PF = −(1 − ε)−1

(

1 +
(k − 1)ε

2 − k

)

ρB̃′P (53)

Similarly, substituting this expression for F into equation (45) allows a cmax to be calculated
as

cmax = max
i







d̄2
i

ρ2
(

1 + (k−1)ε
2−k

)2
B̃′

iPB̃i







(54)

Note that the expression for the Riccati equation is simpler than before (it is only a function of
ρ) but the expression for the γ and the region of attraction are still not clear. However, note from
equation (50), the effect of k can be offset to some extent by tuning W = ωI appropriately.
Thus, if one simply fixes k = 1, it follows that the expressions for F and cmax reduce to those
given in the Theorem ��

Remark 3: The usefulness of Corollary 1 is in its ease of tuning: the three parameters (ε ∈
(0, 1), ω > 0 and γ > 0) of Theorem 3.1 have been replaced by just two (ε ∈ (0, 1) and ρ > 0).
Furthermore, the Riccati equation in Corollary 1 is just a function of ρ and is just a standard
LQR-type Riccati equation which will always have a solution P = P ′ > 0 as (Ã, B̃, C̃) are
assumed stabilisable and detectable �

This new formulation is appealing because the Riccati equation is purely a function of ρ and
an explicit bound on the local L2 gain is given by γ. Another of the interesting features of
this new simplified strategy is that it allows precise mathematical conclusions to be drawn
about the trade-off between the local performance level and the region of attraction: it can be
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observed that equations (52) and (54) embody the trade-off between performance and region
of attraction as they both involve ρ. In particular it is interesting to see how the region of
attraction’s size alters as a function of ρ. Note that the region of attraction could equivalently
be expressed as

Ē =
{

x̃ ∈ R
np+m : x̃′ρE(ρ)x̃ ≤ 1

}

, (55)

E(ρ) := min
i

ρP (ρ)
ρB̃′

iPB̃i

d̄2
i

= min
i

ρP (ρ)
ρPii(ρ)

d̄2
i

(56)

It is difficult to characterise the size of this ellipsoid, but one way of doing so is by the sum of
the length of its semi-axes, which is equal to the trace of E−1(ρ), which can be written as

tr[E−1(ρ)] = max
i

d̄2
i tr

{

[ρP (ρ)]−1[ρPii(ρ)]−1
}

(57)

So the key parameter which determines the “size” of the region of attraction is the matrix
ρP (ρ). We will establish how this varies as a function of ρ. First, multiply equation (47) by ρ
to get

Ã′Pρ + ρPÃ − ρPB̃B̃′Pρ + ρC̃ ′C̃ = 0. (58)

Defining Q(ρ) := P (ρ)ρ > 0 we now have

Ã′Q(ρ) + Q(ρ)Ã − Q(ρ)B̃B̃′Q(ρ) + ρC̃ ′C̃ = 0. (59)

Now if (ρ
1

2 C̃, Ã) is detectable, it follows [28,39,16] that

dQ(ρ)

dρ
> 0, lim

ρ→0
Q(ρ) = 0. (60)

From this it also follows that dQii(ρ)/dρ > 0. Thus P (ρ)ρ = Q(ρ) and ρPii(ρ) = Qii(ρ) are
monotonically increasing functions of ρ. Hence tr[E−1(ρ)] = maxi d̄

2
i tr[Q

−1(ρ)Q−1
ii (ρ)], is

a monotonically decreasing function of ρ which implies that as ρ increases, the “size” of the
region of attraction decreases. Furthermore, in the limit as ρ tends to zero (ε → 1 i.e. global
results), the region of attraction becomes the whole state-space.

Note also that we can write F as

F =
−1

1 − ε
B̃′Q(ρ), (61)

and thus we can see that as ρ becomes smaller, F becomes smaller (in the sense that its norm
reduces) and as ρ → 0, F → 0 and we recover the IMC solution; this also corresponds to
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γ = ∞. In other words, we have the “worst” performance for the IMC AW case (which is not
surprising since G̃(s) is not bounded real). In conclusion we can see that

γ ∝ 1√
ρ

and |Ē | ∝ 1

ρ
, (62)

meaning that there is a clear trade-off between minimising the local L2 gain and maximising
the size of the region of attraction.

Remark 4 The tuning procedure presented above states that for a given ρ - and therefore for
a given performance bound and region of attraction - there exists a family of compensator
gains, F , parametrised by ε ∈ (0, 1). The parameter ε can be seen to play a similar role to
the free parameter in the low-high-gain design of [19] and one may expect some performance
enhancement when ε is chosen close to unity. However, it is difficult to specify precisely what
this performance enhancement is. Experience suggests that when ε is chosen close to unity
(i.e. F is “high gain”) noticeably better time domain performance is observed when the states
are close to the origin, but that this can worsen dramatically for states closer to the edge (but
within) the ROA. When ε is chosen closer to zero (i.e. F is “low gain”), the difference between
the small and large signal performance of the compensators does not seem so noticeable and
appears to allow the compensators to preserve stability for regions beyond the guaranteed
ROA.

4 Example

In this section the effectiveness of the results are shown through a well known academic ex-
ample. Consider the problem of a missile auto-pilot as presented in [33,26,25], which is a third
order two-input-two-output dynamic linear system. As required, the feedback interconnection
of the plant and controller when no rate-limits are present is internally stable and well posed.
However the “real” nonlinear system has actuators with rate constraints of ±3[deg/s] imposed
in both channels.

Figure 6(a) shows the nominal linear response of the missile for a pulse r = [ 5 −5 ]. Notice the
decoupled outputs and swift but well-damped rise-times in both channels. However, it must be
mentioned that the rate of the control signal exceeds the imposed limits and consequently the
system with rate-limited actuators could exhibit a loss in performance and perhaps stability.
Figure 6(b) confirms this and shows clearly how the system looses its decoupling and tracking
properties when rate-limits are introduced.

To limit the performance degradation during periods of rate saturation an AW compensator is
introduced. As mentioned earlier, for the rate saturated case, the task of choosing appropriate
values of the design parameters presented in Theorem 3.1 is not as simple as in [32], but the
approach is still intuitive. The designer’s task can be simplified by using the tuning algorithm
proposed in Section 3.5; we will concentrate on this approach.
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(a) Nominal Response (b) Rate Saturated Response with no AW

Fig. 6. System Response

Corollary 1 provides a simple way of characterising the performance level and stability region
of the AW compensator. Notice that the available parameters are ρ and ε, where ρ gives a
measure of nonlinear performance and ε defines the polyhedral set of allowed signals d, i.e.
S(d0) = {d : −d0 � d � d0}. The main goal of our design is to synthesize an AW compen-
sator which guarantees stability in as large as set as possible while preserving performance
as much as possible. As shown earlier, in order to achieve good performance (i.e. ‖Tp‖i,2,W

small), it is desirable to choose ρ large; from equation (54) it can be concluded that for an en-
larged region of attraction ρ must be small. In other words, the trade-off between performance
and region of attraction is encapsulated in the design parameter ρ.

The main issue with the approach used in this paper is that it is local in nature: performance
and stability guarantees are ensured only if d ∈ S(d0). On the other hand, the conditions
presented are only sufficient, and a system which does not guarantee d ∈ S(d0) may still be
stable within a large region of attraction (or perhaps the whole state space). Even if we assume
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Fig. 7. Rate-limited response of missile: nominal linear (solid), full-order AW ρlow (dash-dot), full-order
AW ρhigh (dash)

that the AW compensator can guarantee global (or semiglobal) stability, degradation of the
closed-loop compensated system’s performance may still be present as the norm bound of the
map Tp no longer holds. In fact, after some analysis, it can be inferred that as the system moves
away from the pre-established ROA, the gain ‖Tp‖i,2,W increases, yielding an increase on the
system’s deviation from linear dynamics and hence a degradation of the prescribed nonlinear
performance.

To illustrate the design of AW compensators using Corollary 1, two compensators are de-
signed: ε = 0.9 is fixed and ρ takes a values of ρlow = 10−4 and ρhigh = 10 for the “low” and
“high” performance compensators respectively.

Figure 7(a) depicts missile responses obtained with the ρlow and ρhigh AW compensators re-
spectively and a reference pulse with amplitude of ±5[deg]. Clearly in both cases the sys-
tem’s response is enhanced by the use of AW compensation: rate saturation levels are reduced,
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tracking properties are retained and return to linear behaviour is well behaved. It is somewhat
more difficult to conclude which compensator delivers the best performance; for the low AW
compensator the second channel exhibits fast tracking performance while the first channel is
sluggish. On balance however, one might say that the “high performance” compensator does
indeed perform better for this small input demand.

Figure 7(b) illustrates the missile responses obtained with the two compensators when the ref-
erence demands are increased to ±30[deg]. Such a large reference demand causes the system
to depart from its guaranteed region of stability (i.e. d /∈ S(d, do)) and while stability is not
lost, performance does degrade. As the region of stability for the high performance compen-
sator is smaller than that of the low performance compensator, it is not surprising that it’s
performance deteriorates more. Although both compensators suffer a lack of tracking ability
in the first channel (due to the restricted rate and short duration of the pulse demand), the low
performance compensator retains its tracking ability in the second channel and exhibits a re-
duced phase-lag in the first channel. However, the high gain compensator is unable to preserve
this tracking performance and the second channel fails to follow that of the linear system well.
In conclusion, this example it appears preferable to accept a loss of small-signal performance
in exchange for better preservation of large-signal performance.

5 Conclusion

This paper has proposed an anti-windup scheme for systems with rate-limited actuators. The
proposed synthesis algorithms have been constructed using ideas which are reasonably well
known in the AW literature, although the Riccati-based solution is novel and superior from a
computational perspective. A key feature of the proposed AW algorithms is that they are fairly
easy to tune and feature a parameter, ρ, which captures the trade-off between local performance
and the size of a subset of the region of attraction.

The proposed algorithms have been demonstrated on a simple example, but their real use is
envisaged for complex, high order systems where LMI-based methods may have difficulty.
These algorithms were used for the design of the AW compensators for investigating rate-
limiting on the ATTAS aircraft. Details of the flight tests are reported in [4–6] but, broadly
speaking, it was found that the methods described within this paper are useful for designing
AW compensators for complex, practical systems.
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