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A static Luenberger observer of a system with Sturm–Liouville operator is synthesised with the aid of a boundary
control formulation. To this aim, approximate observability, detectability and stability of the system is studied
and design results are worked out for a typical biochemical case study.
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1. Introduction

In this article, the observer synthesis of a typical

bilinear system with point measurements and boundary

control actions is studied. As far as the authors know,

the literature about observers using point measure-

ments is scarce.
The motivation is to treat the observer design of

a convection–diffusion–reaction (CDR) system with

infinite-dimensional system theory concepts. Since the

observer correction will be formulated at the bound-

ary, the theoretical framework developed for boundary

control (Fattorini 1968; Emirsajlow and Townley

2000) suffices and provides an elegant and mathema-

tically simple approach for observer design as well. As

far as we know, there has been little attention to apply

this theory to CDR type of problems where boundary

or point measurements are used for observations.

Instead, one usually considers a control or observation

on a small interval [0,w] for the analysis of CDR

systems (see e.g. Xu, Ligarius, and Gauthier 1995;

Winkin, Dochain, and Ligarius 2000; Delattre,

Dochain, and Winkin 2004).
With point measurements and boundary control

in mind, we make the following choice regarding the

observer design: the output estimation error ( ŷ� y) is

manipulated by the observer at the boundary of the error

system. Such an observer will be referred to as a

boundary observer.
For the moment, the boundary observer design

problem with given inputs is considered. To clarify the

idea, the bilinear system and its observer is introduced

in abstract boundary control form:

� :¼

_zðtÞ ¼ AzðtÞ � qðtÞzðtÞ; zð0Þ ¼ z0

BzðtÞ ¼ uðtÞ þ v1ðtÞ

CzðtÞ ¼ yðtÞ þ v2ðtÞ:

8><
>: ð1Þ

And, similar to Equation (1), we define the observer

system as

�obs :¼

_̂zðtÞ ¼ AẑðtÞ � qðtÞẑðtÞ; ẑð�, 0Þ ¼ ẑ0,

BẑðtÞ ¼ uðtÞ þ LC zðtÞ � ẑðtÞð Þ,

CẑðtÞ ¼ ŷðtÞ,

8><
>: ð2Þ

with z, ẑ in the Hilbert space Z, differential operator A

with A : DðAÞ � Z�Z and D(�) denoting the domain

of an operator. Furthermore, we have the integrable

scalar (possibly manipulated) variable q2R, and also

the vector of boundary inputs u2U. For simplicity, the

problem is considered on a one-dimensional spatial

domain, i.e. U� @�¼R
2 where @� denotes the

boundary of the spatial domain �. Here, �¼ [�1, �2]
with spatial coordinates �1, �22R. The boundary

control operator B and boundary observation opera-

tor C should be interpreted in the sense of

Definition 3.3.2 in Curtain and Zwart (1995), where

B : DðBÞ � Z�U satisfies DðAÞ � DðBÞ and

C : DðCÞ � Z� R
q, q� 1. To comply with the condi-

tion in their definition, it is further assumed that A is

given by

Az ¼ Az for z 2 DðAÞ ¼ DðAÞ \ kerðBÞ ð3Þ
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and generates a C0-semigroup.1 The specification of L
is postponed to Section 3.

This article is organised as follows. In Section 2,
some characteristics with respect to � as defined in
Equation (1) are specified, including the characterisa-
tion of A as a Sturm–Liouville (S-L)-type system
operator. The concept of approximate observability
and detectability for this class of boundary control
systems is introduced in Section 3. In Section 4, the
results are illustrated by an observer design for a UV
disinfection process modelled by a CDR partial
differential equation with boundary measurements
and under boundary control action. Some final
remarks and conclusions are given in Section 5.

2. System preliminaries

The following theorem shows that �, as in
Equation (1), has a mild solution.

2.1 Mild solution

Theorem 2.1: For Equation (1), where A as in
Equation (3), there exists a mild solution, with mild

solution operator Uðt, sÞz0 ¼ Tðt� sÞe

R t

s
b1u1ð�Þd�z0, where

T is the C0-semigroup generated by (A,D(A)).

Proof: The proof originates from the work of Jean
Bernoulli on ordinary differential equations for the
scalar case. First, let L(Z) be a shorthand notation for
a bounded linear operator from Z to Z. Furthermore,
write z¼ vw, then with v¼T (t� s)v0 and with z subject
to z_�Az¼ b1u1z, we get v _w ¼ b1u1vw. It follows that
w ¼ w0ðexp

R t
s b1u1ð�Þd�Þ. Substituting z0¼ v0w0 gives

the result. Further, according to Definition 3.2.4 of
Curtain and Zwart (1995), U(t, s) :�(�)!L(Z) is a
mild solution operator with �(�)¼ {(t, s); 0� s� t� �},
since:

(a) U(s, s)¼ I, s2 [0, �] holds,
(b) A is an infinitesimal generator of a

C0-semigroup, hence:

Uðt, rÞUðr, sÞz0 ¼Tðt� rÞe

R t

r
b1u1ð�Þd�Tðr� sÞe

R r

s
b1u1ð�Þd�z0

¼Tðt, sÞe

R t

r
b1u1ð�Þd�þ

R t

s
b1u1ð�Þd�z0,

which equals U(t, s), 0� s� t� �,
(c) it is standard to show that U(�, s) is strongly

continuous on [s, �] and that U(t, �) is strongly
continuous on [0, t]. h

2.2 The operator A

A in � is defined as an S-L operator and we summarise
some properties of A. As a consequence, �(A) with A,
a S-L operator, will be denoted as �S.L.(A).

As also pointed out in Delattre, Dochain, and
Winkin (2003), in many physical systems (e.g. vibra-
tion/diffusion problems or convection–dispersion in
chemical reactor models) A or �A is an S-L operator.
As such, we are motivated to inspect the properties of
A being an S-L type.

The differential operator in Equation (1) is
written as

Az ¼
1

w

d

d�
p
dz

d�

� �
� qz

� �
, ð4aÞ

with

pð�Þ,wð�Þ 2 Rþ, both C1 functions ð4bÞ

and

qð�Þ 2 R on �1, �2½ �: ð4cÞ

In the following, the state space is considered as

Z ¼ L2ð�1, �2Þ ð5aÞ

under the weighted inner product h�, �iw with the
properties of w(�) as given in Equation (4), i.e.

z1, z2h iw ¼

Z �2

�1

z1ð�Þz2ð�Þwð�Þd�: ð5bÞ

Furthermore, the domain DðAÞ is given by

DðAÞ ¼ z2Z j z,
dz

d�
absolutely continuous,

d2

d�
z2Z

� �
ð6aÞ

and the boundary (control) operator by

Bz ¼

�1zð�1Þ þ �1
dz

d�
ð�1Þ

�2zð�2Þ þ �2
dz

d�
ð�2Þ

0
BB@

1
CCA :¼ u2, ð6bÞ

with �i, � j real constants satisfying j�1j þ j�1j40 and
j�2j þ j�2j40. The boundary observations are
written as

Cz ¼

zð�iÞ

dz

d�
ð�iÞ

0
@

1
A :¼ y, i ¼ 1, 2: ð7Þ

Now, we turn to some characteristics of the S-L
system. Recognise from Equation (4) that �(A,D(A))
with Az ¼ Az for z 2 DðAÞ \ kerðBÞ and A, DðAÞ and
B as in Equations (4) and (6), respectively, is an S-L
operator, self-adjoint in a weighted inner product h�, �iw
and closed on Z, as in Equation (5) (see also Curtain
and Zwart (1995), Exercise 2.10).

We mention the following result from Delattre
et al. (2003).

Lemma 2.2: Let A be the negative part of an S-L
operator defined on its domain D(A)2Z given by
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Equation (3). Then,

(i) A is a Riesz spectral operator,2

(ii) A is the infinitesimal generator of a
C0-semigroup of bounded linear operators on
Z and on L2(�1, �2),

(iii) A has compact resolvent.

As a consequence of Lemma 2.2, �S.L.(A) and
properties of A and B given as before, �S.L has a mild
solution. See Theorem 2.1 for details of this solution.

As will be shown in Section 4, it is convenient to
check whether A in �S.L. is negative, which is
investigated in the next lemma. Recall that the
negativity of the generator of a C0-semigroup implies
the stability of the semigroup (see also Definition 5.1.1
and Theorem 5.1.3 in Curtain and Zwart (1995)).

Lemma 2.3 (Positivity of operator �A): The S-L
operator �A, with A as in Equations (3), (4) and (6) and
with positive real-valued continuous functions p(�), w(�)
and q(�), is positive3 on Z, as in Equation (5), for z 6¼ 0:

if
�2
�2
� 0,

�1
�1
� 0 and �1

�� ��þ �2
�� ��40 for �1,�2 6¼ 0,

if �1¼ 0:
�2
�2
� 0 and �2 6¼ 0,

if �2¼ 0:
�1
�1
� 0 and �1 6¼ 0,

if �1¼ 0¼ �2:

Proof: It is sufficient to check the time derivative of
the weighted norm of z, d

dt kzk
2
w ¼ z,�Azh iw � 0, using

the inner product Equation (5b). It follows that

2
d

dt
kzð�,tÞk2w

¼

Z �2

�1

�
d

d�
p
dz

d�

� �
þqz

� �
� zd�

¼�pð�Þ
dzð�, �Þ

d�
zð�, �Þ

����2
�1
þ

Z �2

�1

pð�Þ
dzð�, �Þ

d�

� �2

þ qð�Þzð�, �Þ2 d�

¼� pð�2Þ
dz

d�
ð�2, �Þzð�2, �Þ�pð�1Þ

dz

d�
ð�1, �Þzð�1, �Þ

� �
þ���

þ

Z �2

�1

pð�Þ
dzð�, �Þ

d�

����
����2þqð�Þzð�, �Þ2 d�

¼� pð�2Þ �
�2
�2

zð�2, �Þ
2

� �
�pð�1Þ �

�1
�1

zð�1, �Þ
2

� �� �
þ�� �

þ

Z �2

�1

pð�Þ
dzð�, �Þ

d�

����
����2þqð�Þzð�, �Þ2 d�:

Hence, given p, w40 and q� 0, the (sufficient)
conditions directly follow. h

3. Approximate observability and detectability

In Curtain and Zwart (1995), controllability and
observability results are derived for bounded B and

C operators. In an earlier work, stabilisability and

detectability results are obtained for parabolic dis-

tributed systems in the case of unbounded B and C

operators using a modal approach (Curtain 1982).

Stability and observability results, again in the case

where B and C are bounded operators, are deduced for

the S-L class of systems (Winkin et al. 2000; Delattre

et al. 2004).
In this section, a generalisation with respect to the

(approximate) observability of � with A, as in

Equation (3), and B and C, as in Equation (1) is

presented. Instead of depending heavily on technical

notions of admissibility and regularity (Weiss and

Curtain 1997; Bounit and Hammouri 1997; Bounit and

Idrissi 2005), we present an approximate observability

result which closely resembles the results in Curtain

and Zwart (1995). In a subsequent section on the

observer design, we deal with the detectability and

stability of S-L systems, typically encountered in CDR

processes. For the observability result, we need the

following concepts.

Definition 3.1 (Semigroup invariance): Let V be a

subspace of the Hilbert space Z and let T (t) be a

C0-semigroup on Z. We say that V is T (t)-invariant if

for all t� 0: T (t)V�V.

Definition 3.2 (Admissibility): Let C : DðAÞ�Y.

Then C is admissible if 9t140, 9m(t1)� 0 and

8z2D(A), Z t1

0

kCTðtÞzk2 dt � mðt1Þkzk
2:

Definition 3.3 (Approximate observability): Let a

system �ðA, � ,CÞ, as in Equation (1), be defined

with A, as in Equation (3), an infinitesimal generator of

a C0-semigroup T (t), q¼ 0 and C admissible. The

observability map of �ðA, � ,CÞ on [0, �], �51, is the

bounded linear map C� :Z!L2([0, �],Y ) defined by:

C
�z :¼ CTð�Þz:

The non-observable subspace of �ðA, � ,CÞ is the

subspace of all initial states producing a zero output

for almost all t� 0:

N :¼ fz 2 Z j CTðtÞz ¼ 0 for almost all t � 0g

¼
\
�40

ker C�: ð8Þ

�ðA, � ,CÞ is approximately observable if the only

initial state producing the output zero on [0,1) is the

zero state, i.e. if N ¼ {0}.

We now characterise N with respect to our

system �.

1506 D. Vries et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
w
a
r
t
,
 
H
a
n
s
]
 
A
t
:
 
0
6
:
2
7
 
2
4
 
J
u
n
e
 
2
0
1
0



Lemma 3.4 (Properties non-observable

subspace): The non-observable subspace N has the

following characterisation with respect to �ðA, � ,CÞ,

as in Equation (1):

(a) N of �ðA, � ,CÞ is the largest closed

T (t)-invariant subspace contained in

kerCðrI� AÞ�1, with r4!0 and !0 the growth

bound4 on T (t), i.e. 8!4!0, 9M such that

8t� 0, kT (t)k�Me!t.
(b) N ¼ Spann2Jf�ng for J ¼ fn 2 N j C�n ¼ 0g.

Proof: First, let the operator A be invertible.

(a) We start with a simple but important equality.

For z1 :¼A�1z, we have CTðtÞA�1z ¼

CA�1TðtÞz, and so

CA�1TðtÞz ¼ 0 () CT ðtÞz1 ¼ 0: ð9Þ

Next, we define

N 1 ¼ fz j CA
�1TðtÞz ¼ 0 8tg:

We now prove that N ¼N 1 and we begin by

showing that N 1�N . Suppose z2N 1, then by

the above equality we have A�1z2N .

Furthermore, since z2Z, we have that

A�1z2N \D(A). Since N is T (t)-invariant,

A(N \D(A))�N (see Exercise 2.31 in Curtain

and Zwart (1995)). Hence, z¼A(A�1)z2N , i.e.

N 1�N .

Now take z2N and consider CA�1TðtÞz ¼

CTðtÞA�1z ¼ CTðtÞz1. Since z2N , A�1z2N by

Lemma 2.5.6 in Curtain and Zwart (1995). In

other words, N is closed and A�1-invariant.

We also have CTðtÞA�1z ¼ 0 and z2N 1.

Consequently, N �N 1.

Hence N ¼N 1. By Lemma 4.1.18 of

Curtain and Zwart (1995) we have that N 1 is

the largest closed T (t)-invariant subspace con-

tained in kerCðAÞ�1. Since N ¼N 1, the first

part is proved.
(b) Since A is a Riesz-spectral operator, we have

the closed T (t)-invariant subspace N of the

form

N ¼ Span
n2J

f�ng

for some index set J (Curtain and Zwart 1995,

Lemma 2.5.8). Since N is contained in

kerCA�1, we must have that CA�1�n ¼ 0 for

all n2 J. However, since N is the largest closed

T (t)-invariant subspace contained in

kerCðAÞ�1, we see that for n =2 J, there holds

that CA�1�n 6¼ 0. Consequently,

J ¼ fn 2 N j CA�1�n ¼ 0g

¼ fn 2 N j C
�n
�n
¼ 0g

¼ fn 2 N j C�n ¼ 0g:

This concludes the proof of part (b).

If the operator A is not invertible, then replace in the
above A by A� rI where r4!0. h

3.1 Detectability and stability

Let us now inspect the estimation error system
�"ðA, � ,CÞ, with A as in Equations (4) and (6a) and
C as in Equation (7), with �1¼ 0¼ �2. To comply with
the S-L framework, we describe the dynamics of the
estimation error " :¼ z� ẑ by

�" :¼

_" ¼ A"� b1u1", "ð0Þ ¼ "0

B" ¼
�1"ð�1Þ þ �1

d"

d�
ð�1Þ

�2"ð�2Þ þ �2
d"

d�
ð�2Þ

0
BB@

1
CCA

¼ LC"ð�Þ,

8>>>>>><
>>>>>>:

ð10aÞ

with C, as in Equation (7), mapping the states to point
observations at ��1 and ��2 and

LC"¼
L11"ð�1ÞþL12

d"

d�
ð�1ÞþL13"ð�2ÞþL14

d"

d�
ð�2Þ

L21"ð�2ÞþL22
d"

d�
ð�2ÞþL23"ð�1ÞþL24

d"

d�
ð�1Þ

0
B@

1
CA:
ð10bÞ

Note that it is not straightforward to arrive at
guaranteed stability results for the closed-loop obser-
ver configuration in case we have relaxed the assump-
tion of having an observation at the boundary to one
at a point anywhere along the spatial domain, i.e.
y(t)¼ z(��), �� 2 [0, 1].

For simplicity (but without loss of generality), we
furthermore let Li3¼ 0¼Li4, i2 {1, 2}. In what follows
in the conditions for detectability and stability, it is
convenient to introduce the operator B

L and for
notational convenience ‘renew’ the definition of L:

B
L" :¼ B� LCð Þ" ¼

�L1 "ð�1Þ þ �
L
1

d"

d�
ð�1Þ

�L2 "ð�2Þ þ �
L
2

d"

d�
ð�2Þ

0
B@

1
CA, ð11Þ

where

L :¼
L11 L12

L21 L22

� �
, �L :¼

�1 � L11

�2 � L21

� �
and

�L :¼
�1 � L12

�2 � L22

� �
: ð12Þ

Finally, we let

AL ¼ A, DðALÞ ¼ DðAÞ \ kerBL: ð13Þ

International Journal of Control 1507
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Definition 3.5 (Detectability): Whenever there exists
an L2L(Rq,Rm), such that AL as in Equation (13)
generates an exponentially stable C0-semigroup; then
we say that �"ðA,B,CÞ is detectable.

Lemma 3.6 (Existence boundary static
observer): There exists an L2L(Rq,Rm) such that
AL, as in Equation (13), generates an exponentially
stable C0-semigroup. Thus, the system �ðA,B,CÞ is
detectable.

Proof: Consider the estimation error " ¼ z� ẑ. From
the proof of Theorem 2.3, it follows that it is sufficient
to check whether �AL is a positive S-L operator, i.e.
h",�AL"i40. Since �L"þ �L d"

d� ¼ 0, we can always
choose a suitable L such that j�Lj þ j�Lj40 and the
boundary conditions in D(AL) are such that �AL is
positive. Since �AL is a S-L operator, it has compact
resolvent and therefore generates an exponentially
stable semigroup (Delattre et al. 2004). h

The following corollary immediately follows.

Corollary 3.7 (Static observer design): The system
�"ðAL,BL

Þ is exponentially stable

if
�L2
�L2
� 0,

�L1
�L1
� 0 and �L1

�� ��þ �L2
�� ��40 for �L1 , �

L
2 6¼ 0,

if �L1 ¼ 0:
�L2
�L2
� 0 and �L2 6¼ 0,

if �L2 ¼ 0:
�L1
�L1
� 0 and �L1 6¼ 0,

if �L1 ¼ 0¼ �L2 :

For many processes, it is not practical to implement
an observer where �L 6¼ 0 6¼ �, since a calculation or
measurement of the spatial derivative of z(�i) is needed.
Hence, if possible, a boundary observer matrix L

should be chosen so that derivative terms of y in the
error system are cancelled.

4. Observer design for CDR example

4.1 Model

UV disinfection is a practical example of a CDR system
where, typically, sensors and actuators are placed at
pre-specified points or at the boundary. UV light is,
amongst others, applied in fluid (water/juice) treatment
processes to deactivate (pathogenic) micro-organisms,
in the food process industry, in (waste)water treatment
and in greenhouse technology industries (see some
examples in Duse, da Silva, and Zietsman 2003;
Guerrero-Beltran and Barbosa-Canovas 2004;
Lazarova, Savoye, Janex, Blatchley, and Pommepuy
1999; Mavrov, Fahnrich, and Chmiel 1997).

UV disinfection techniques have gained more attention
since they do not leave traces of chemical reagents, in
contrast to e.g. water disinfection by chlorination.

However, current control practice is rather con-
servative and indirect, since only transmittance of the
fluid to be treated is measured. Transmittance cannot
be related to the actual active pathogenic biomass and
therefore one relies on the off-line laboratory analysis
of measurement samples. In order to efficiently cut
lamp energy costs, we would like to implement an
observer that uses one or more direct biomass
measurements. If properly designed, such an observer
allows us to monitor the (most resistant) pathogen
concentration at any point in the reactor.

The inputs (control variables) and outputs (mea-
surements) of our annular UV system model are
specified at the boundaries. After normalising and
making the variables non-dimensional, the UV disin-
fection process reads (see Chapter 2 in Vries (2008) for
modelling details):

�UV ¼ �ðA,B,CÞ with A,B,C

as in Equations (4), (6) and (7), respectively,

ð14Þ

and where

pð�Þ ¼ e�pe�, wð�Þ ¼ pee
�pe� and q ¼ 0 ð15Þ

and boundary conditions specified with

�1 ¼ 1, �1 ¼ �1=pe, �2 ¼ 0 and �2 ¼ 1: ð16Þ

4.2 Design of L

In the UV disinfection process, it is desired to have a
good estimate of the concentration at the outlet of the
reactor. It is now illustrated how to tune L by the aid
of eigenvalue analysis.

The calculation of eigenvalues of the system
dynamics is less straightforward (and is numerically
more involved) with the current Danckwerts boundary
conditions compared to a setup with e.g. Dirichlet and
Neumann conditions. Hence, for demonstration pur-
poses and the ease of design, we impose a Dirichlet-
type condition at �1 for the eigenvalue calculations of
the error system. To this aim, the first row of L is set
to L1j¼ (0 �1) such that the derivative term in the
boundary of the error system cancels. Furthermore,
from an engineering point of view we prefer to tune our
observer with just one scalar gain, so we let
L11¼ 0¼L22.

These prerequisites lead to

L ¼
0 �1

L21 0

� �
¼

0 �
1

pe
L21 0

0
@

1
A with

L21 6¼ �2 to be chosen, ð17Þ

1508 D. Vries et al.
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with � and � as in Equation (16). Consequently,

�L ¼
1

�L21

� �
and �L ¼

0

1

� �
:

The error system �"
I for this example with L, as in

Equation (17), then reads

�"
UV :¼

_" ¼ A"� b1u1"

¼
1

pe

d2

d�
"�

d"

d�
, "ð0Þ ¼ "0,

B
L" ¼

"ð0Þ

�L21"ð1Þ þ
d"

d�
ð1Þ

 !
:

8>>>>><
>>>>>:

ð18Þ

For observer design, L21 can be tuned by eigenvalue
placement of the error system. By Theorem 3.7 we also
know the following remark.

Remark 1 (Condition for L21 in the UV disinfection
process): �"

UV, as in Equation (18), is exponentially

stable, whenever the sufficient condition
�L
2

�L
2

� 0 holds,
i.e. whenever L21� 0.

4.3 Eigenvalue analysis

We would like to know how L21 influences the error
dynamics. Therefore, we calculate the eigenvalues � of
AL, where AL" ¼ A" for " 2 DðAÞ \ kerðBL

Þ.
For �"

UVðA
LÞ we obtain the following lemma.

Lemma 4.1: Suppose there exists an L21� 0 such that
AL generates an exponentially stable semigroup. Then
the spectrum of the operator AL consists of isolated
eigenvalues with finite multiplicities given by

�ðALÞ ¼ �pðA
LÞ ¼ f�Lk : k � 0g � ð�1, 0Þ,

where �p(A
L) denotes the point spectrum of AL. The

eigenvalues �Lk , k� 0 are simple, real and given by

�Lk ¼ �
1

pe
&Lk
	 
2

�
1

4
pe, ð19Þ

where &Lk , k� 0 is the set of all the solutions to the

resolvent equation

tanð&Lk Þ ¼ �
&Lk

1
2 pe � L21

and &Lk 4 0 ð20Þ

such that

05 &Lk 5 &Lkþ1 8k4 0: ð21Þ

Hence, �Lk 5
1
4 pe 5 0, �Lk !�1 as k!1 and

�Lkþ1 � �
L
k

�� ��!1 as k!1. The associated eigenvec-

tors �Lk 2 DðALÞ, k� 0 are given for all �2 [0, 1] and for

all k� 1 by

�kð�Þ ¼ exp
1

2
pe�

� �
sinð&Lk �Þ: ð22Þ

Proof: The stability condition follows from

Corollary 3.7 and Remark 1. The derivation of the

spectral properties of �"
UV are shown in

Appendix A. h

As a consequence of Theorem 4.1, &L behaves

like 		k for k!1, and for k finite, we have to obtain

&Lk numerically. To illustrate, Figure 1 shows some

intersection points &Lk , k¼ {1, 2, 3} and their corre-

sponding eigenvalues �Lk have been calculated for

pe¼ 0.5 and different values of L21.

Remark 2 (Case where dq/dt¼ 0): In the case that the

control u1 is given and constant, the operator AL

changes. In that case,AL is specified with constant q� 0,

i.e. dq/dt¼ 0 and the eigenvalues change accordingly.

Here, we only give the result, since the calculation is

similar as in Theorem 4.1. We impose the stability of

�"
UV with L21� 0. Then, the spectrum of AL with q

assumed constant consists of isolated eigenvalues �qk
with finite multiplicities given by �ðALÞ ¼ �p,qðA

LÞ ¼

f�qk : k � 0g � ð�1, 0Þ, where �p,q(A
L) denotes the

Figure 1. (a) �Lk , from left to right: �L2 , �
L
1 , �

L
0 for varying L21 and (b) the intersection between f and the tangent function in

Equation (20) for different values of L21: tan(&L) [ ], f(&L, 1) [.], f (&L,�1) [ ], f(&L, �3), [ .] with f(&L, L21) :¼
&L/(L21� 0.5).
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point spectrum of AL. The eigenvalues �qk, k� 0 are
simple, real and given by

�qk ¼ �
1

pe
ð&Lk Þ

2
�
1

4
pe � q5

1

4
pe � q5 0, ð23Þ

where &Lk , k� 0 are all the solutions to the resolvent
equation

tan &Lk ¼ �
&Lk

1
2 pe � L21

, &qk 4 0 ð24Þ

such that

05 &Lk 5 &Lkþ1 8k4 0: ð25Þ

In the time-varying case we have that the evolution
operator U(t, s), as in Theorem 2.1, is bounded from
above by

kUðt, sÞk � exp ð!0 � qminÞðt� sÞð Þ

with !0 the growth bound5 on T (t) and q� qmin� 0 the
lower bound on the lamp strength.

For reference, the eigenvalues � and associated
eigenvectors �k of �UV are given here as well
(calculation goes similar to the calculation of �L

and �L):

�k ¼ �
1

4
pe �

1

pe
&2k, ð26Þ

with &k, k� 0, the set of all solutions to the resolvent
equation

tanð&kÞ ¼
2pe&k

&2k �
1
2 pe
	 
2 ð27Þ

and orthonormal associated eigenvectors

�k¼C0 exp
1

2
pe�

� �
pe
&k

sinð&k�Þþ2cosð&k�Þ

� �
, C040:

ð28Þ

Note that the solution of this eigenvalue problem is
numerically more involved due to the presence of the
Danckwerts conditions.

Equipped with the design conditions for a
Luenberger observer for system �UV, we can now
study the influence of the observer gain L21 on the
eigenvalues of the error system. Using the results
obtained in Sections 2 and 3, we also obtain some
remarks on the observability of �"

UV and the solution
of the whole system follows.

4.4 Performance bounds

Remark 3: From Equation (20), it follows that

. for fixed k, limL!�1 &
L
k ¼ 	k	, and therefore

limL!1 �
L
k ¼ �

1
4 k

2	2=pe;

. for fixed L2 [�1, 0], we get &k 2�
ðk� 1

2Þ	, k	
�
, and therefore the eigenvalues

�Lk 2 �
1
pe

�
ðk� 1

2Þ
2	2, k2	2

�
.

Indeed, Remark 1 reveals what would be suspected

from Figure 1, i.e. the magnitude of the distance

j!k�!k�1j if L21!�1 or if k!1.
Furthermore, note that the difference between the

growth bounds of T"(t) is dependent on L21:

D� :¼ �0 � �
L
0 , with growth bound �0 :¼ sup

k2N

�k:

ð29Þ

The difference D� will be referred to as the performance

increase of the observer. For the UV disinfection case,

Remark 1 and the eigenvalues �L, as in Equation (19),

tells us that � 1
4 pe

2 � 	2 5 pe�
L
0 5 �

1
4 pe

2 for all L21,

hence there is a maximal performance increase Dmax
� ¼

	2=pe. Similarly, if we only allow L21� 0, then

� 1
4 pe

2 � 	2 5 pe�0 5 � 1
4 pe

2 � 1
4	

2 and the perfor-

mance increase can maximally be 3
4	

2=pe.

4.5 Observability

Given system �UVðA, � ,CÞ, as in Equations (14) and

(7), we can calculate when the UV system is

approximately observable. We propose the following

proposition.

Proposition 4.2: Given system �UVðA, � ,CÞ, as in

Equations (14) and (7), i.e. with observations on the

interval �� 2 [0, 1], then

(i) by considering y¼ z(��) as the only observation,

�UV is approximately observable if

&k 6¼ �
1

2
pe�
� tanð&k�

�Þ, k � 0 ð30Þ

(ii) by considering y ¼ dz
d� ð�

�Þ as the only observa-

tion, �UV is approximately observable if

tanð&k�
�Þ 6¼ �

&

pe
, k � 0 and �� 6¼ 1: ð31Þ

Proof: From Theorem 4.2, we should have that

C�kð�
�Þ 6¼ 0 k� 0, and C admissible to obtain approx-

imate observability. First admissibility is checked.

Introduce the shorthand notation. Consider

yðtÞ ¼ CTðtÞz0 ¼ CeAt
X
k

zk�k

¼ C

X1
k

zke
�kt�k ¼

X
k

zke
�kt C�k|{z}

ck

:
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By Cauchy–Schwarz and orthonormality of the eigen-

vectors of A (straightforward calculation, see also

Appendix D2 in Vries (2008)), we have

kyðtÞk2 �
X
k¼1

cke
�kt

�� ��2X
k

zkj j
2 ¼

X
k

e2�kt ckj j
2kz0k

2:

By Theorem 3.2,
R1
0 kyk

2 dt � mkz0k
2 should hold.

The above leads to

Z 1
0

kyðtÞk2¼

Z 1
0

X
k

cke
�kt

�����
�����
2

dt�

Z 1
0

X
k

cke
�kt

�� ��2X
k

zkj j
2 dt

�

Z 1
0

X
k

e2�kt ckj j
2 dt

 !
kz0k

2

,
X
k

Z 1
0

c2k
�2�k

dtkz0k
2 �mkz0k

2

with m, an arbitrary positive constant. Now, consider

(i) y¼ z(��), thus C� ¼ �ð��Þ, �� 2 [0, 1] and the

eigenvalues of A, i.e. �k in Equation (26)

with their associated eigenvectors �k in

Equation (28). By the above C is admissible,

since for k!1, �k behaves like k
2	2/(4pe) so

that there exists indeed a value of m which

makes the inequality true.
(ii) y¼z_ (��), thus C� ¼ _�ð��Þ 6¼ 0, k� 0. Hence, if

��¼ 1, _�kð1Þ ¼ 0 so the system is not (approxi-

mately) observable. Again, the eigenvectors

�k read as Equation (28), thus we obtain

the condition that _�kð�Þ ¼ pe sinð&k�Þ þ
& cosð&k�Þ 6¼ 0 for ��51. The admissibility

check goes analogously to the proof of (i). h

As a consequence of Theorem 4.2, �UV is always

approximately observable for Cz ¼ C
bz :¼ zð1Þ, since

we get the condition that & 6¼ 	{
ffiffi
3
p

2 pe which is always

true since & 2Rþ. It is easy to see that for observations

y¼ z(0), the system is not observable. For a point

observation in the interval (0, 1), the approximate
observability has to be checked by Equation (30).

It has already been mentioned that only the
estimate ŷ ¼ ẑð1Þ is desired. The non-observability for
�UVð�, � ,C

b
Þ when d

d� zð1Þ or z(0) is involved is not a
problem if only estimates of z(1) are needed due to the
degrees of freedom in the choice of L.

4.6 Mild solution in Riesz bases

The mild solution of the system �UV with �A, an S-L
operator, and the error system �", as in Equation (18),
can be directly written in orthogonal Riesz bases.
By Theorem 2.1 we have

zð�, tÞ ¼ Uðt, 0Þz0ð�, tÞ ¼
X1
k¼1

e�kt�k z0,�kh ie
�
R t

0
qðtÞd�

,

with �k given in Equation (28) satisfying Equation (27)
and with associated eigenvectors �k, as in
Equation (28), for the UV disinfection model �UV.
Similarly, for the error system �"

UV, �
L
k is given in

Equation (19) satisfying Equation (20) for all L21� 0,
and has associated eigenvectors �k, as in Equation (22),
for the error dynamics system �"

UV.

4.7 Performance evaluation

With slight abuse of notation, we omit the sub- and
superscript of L in the figures.

Figure 2(a) and its equivalent contour plot
(Figure 2(b)) show the behaviour of the growth
bound �0 for pe2 (0, 10] and L2 [�3, 0]. Indeed, the
larger the pe-numbers, the larger the growth bound and
the lesser the effect of the observer gain. Notice also
that for smaller L, the growth bound tends to zero and
the stability margin becomes smaller.

Figure 2. �0 versus �35L50 and 05pe� 10. (a) 2D Graph of �0 and (b) contour lines of �0.
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For (control) engineering applications, it may be
more interesting to find out the magnitude of L21 for a
given performance increase Dmax

� :¼ �0 � �
L
0 . In

Equation (29), bounds on D� are given with the aid
of Remark 3. In addition, we now calculate L? :¼L21

for several Péclet-numbers at which a given D� is
obtained. The results are depicted in Figure 3. We see
that, for increasing pe, L

? increases rapidly for some D�
in Figure 3(a). For reference, the line L¼ 0 is also
shown in Figure 3(b). Notice from Figure 3 that a
particular value of the performance gain D� can only
be achieved for a certain range of Péclet-numbers.

5. Conclusions

Inspired by CDR processes in food and water
treatment industry, we analysed the approximate
observability, detectability and stability for distributed
parameter systems with a differential operator belong-
ing to the S-L class and the assumption that there are
only boundary measurements available. Conditions on
detectability and stability have been derived for the
design of a static, Luenberger boundary observer. With
the aid of eigenvalue placement, the performance of an
observer for a UV disinfection process case has been
assessed and tested by numerical calculations.

In the example case, we come to the following
conclusions:

. From the eigenvalue analysis and numerical
calculations, it follows that for mild Péclet-
numbers (pe
 1, hence a low convection–
diffusion ratio), there is more room to obtain
a performance gain with a suitable observer
gain L21. For large Péclet numbers, fast
process dynamics already push the estimation
error to zero. In this case one may decide to

choose a small positive L21 4 1
2 pe as a

smoothing filter.
. The growth bound of the error system is

pushed to higher absolute magnitudes when-

ever the lamp strength is stronger, i.e. for

increasing b1u1.

The presented observer design approach gives a good

impression how the error system will behave, indepen-

dent of some choice of discretisation or approximation

method.

Notes

1. The semigroup is defined as in Definition 2.1.8,
Chapter 2 of Curtain and Zwart (1995).

2. The definition of a Riesz spectral operator is found in
Theorem 2.3.5 in Curtain and Zwart (1995).

3. Operator Q is said to be positive if hAz, zi40 for all
nonzero z2D(Q).

4. The growth bound of a semigroup T is given by
!0 ¼ inft40

1
t log kT k
	 


:
5. The definition of a growth bound !0 of a Riesz spectral

operator is !0 ¼ inft40
1
t log kT k
	 


¼ supn�1 Re ð�nÞ:

References

Bounit, H., and Hammouri, H. (1997), ‘Observers for Infinite

Dimensional Bilinear Systems’, European Journal of

Control, 3, 325–339.
Bounit, H., and Idrissi, A. (2005), ‘Regular Bilinear Systems’,

IMA Journal of Mathematical Control and Information, 22,

26–57.
Curtain, R. (1982), ‘Finite-dimensional Compensator Design

for Parabolic Distributed Systems with Point Sensors and

Boundary Input’, IEEE Transactions on Automatic

Control, 27, 98–104.

Figure 3. L? versus D� and pe; (a) [L¼ 0 (dashed) and L? for 05pe� 4 and varying D�, i.e. from upper to lowest line D�¼ 0.25 to
2.25 (solid) with steps of 0.25 and (b) 2D plot of L? versus pe and D�. The values of pe for which the performance gain D�, is not
feasible (i.e. no solutions exist), is depicted by empty space.

1512 D. Vries et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
w
a
r
t
,
 
H
a
n
s
]
 
A
t
:
 
0
6
:
2
7
 
2
4
 
J
u
n
e
 
2
0
1
0



Curtain, R., and Zwart, H. (1995), An Introduction to

Infinite–dimensional Linear Systems Theory, New York:

Springer-Verlag.
Delattre, C., Dochain, D., and Winkin, J. (2003),

‘Sturm–Liourille Systems are Riesz-spectral Systems’,

International Journal of Applied Mathematics and

Computer Science, 13, 481–484.
Delattre, C., Dochain, D., and Winkin, J. (2004),

‘Observability Analysis of Nonlinear Tubular

(bio)Reactor Models: A Case Study’, Journal of Process

Control, 14, 661–669.
Duse, A.G., da Silva, M.P., and Zietsman, I. (2003),

‘Coping with Hygiene in South Africa, a Water Scarce

Country’, International Journal of Environmental Health

Research, 13, S95–S105.
Emirsajlow, Z., and Townley, S. (2000), ‘From PDEs

with Boundary Control to the Abstract State Equation

with an Unbounded Input Operator’, European Journal of

Control, 6, 27–49.

Fattorini, H. (1968), ‘Boundary Control Systems’,

SIAM Journal of Control, 6, 349–388.
Guerrero-Beltran, J.A., and Barbosa-Canovas, G.V. (2004),

‘Review: Advantages and Limitations on Processing Foods

by UV Light’, Food Science and Technology International,

10, 137–147.
Lazarova, V., Savoye, P., Janex, M.L., Blatchley, E.R., and

Pommepuy, M. (1999), ‘Advanced Wastewater

Disinfection Technologies: State-of-the-art and

Perspectives’, Water Science and Technology, 40, 203–213.
Mavrov, V., Fahnrich, A., and Chmiel, H. (1997),

‘Treatment of Low-contaminated Waste Water from the

Food Industry to Produce Water of Drinking Quality for

Reuse’, Desalination, 113, 197–203.

Vries, D. (2008), ‘Estimation and Prediction of

Convection–Diffusion–Reactions Systems from Point

Measurements’, PhD dissertation, DISC, Systems and

Control Group, Wageningen University.
Weiss, G., and Curtain, R. (1997), ‘Dynamic Stabilization of

Regular Linear Systems’, IEEE Transactions on Automatic

Control, 42, 4–21.
Winkin, J.J., Dochain, D., and Ligarius, P. (2000),

‘Dynamical Analysis of Distributed Parameter Tubular

Reactors’, Automatica, 36, 349–361.
Xu, C.Z., Ligarius, P., and Gauthier, J.P. (1995),

‘An Observer for Infinite-dimensional Dissipative Bilinear

Systems’, Computers & Mathematics with Applications, 29,

13–21.

Appendix A. Proof of Theorem 4.1

AL is an S-L operator and therefore it has a spectrum
with isolated eigenvalues with finite multiplicities
(Theorem 2.2). Furthermore, it is self-adjoint under the
inner product h�, �iw and negative for L21� 0 (Remark 1).
Consequently, �L50.

For this S-L-type problem, we write

�L ¼ CL
1 �

L
1 þ CL

2 �
L
2 : ðA1Þ

Furthermore, �L should satisfy the boundary conditions

B
L
1�

L :¼ �Lð0Þ ¼ 0 ðA2Þ

B
L
2�

L :¼ _�Lð1Þ � L21�
Lð1Þ ¼ 0: ðA3Þ

The eigenvalues �L can be found from AL�L¼ �L�. To this
aim, consider the following three cases.

Case 1a: Let �L 4 1
4 pe, i.e. �

L
1 ¼ e
1ð�

LÞ� and �L2 ¼ e
1ð�
LÞ�

with


1ð�
LÞ ¼

pe
2
�&La , 
2ð�

LÞ¼
pe
2
þ&La and &La ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe
2

� �2
þpe�L

r
:

ðA4Þ

Case 1b: Let �5 1
4 pe, i.e. �

L
1 ¼ e


�L
1
� and �L2 ¼ e
1ð�

LÞ� with


1ð�
LÞ ¼

pe
2
� &Lb , 
2ð�

LÞ ¼
pe
2
þ &Lb and

&Lb ¼ {&L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe
2

� �2
þ pe�L

r
: ðA5Þ

Case 2: �L ¼ ð12 peÞ
2, i.e. let �L1 ¼ e

1
2pe� and �L2 ¼ �e

1
2pe�.

The eigenvalues �L of AL exist if and only if the
determinant D(�L) of the system of boundary equations (A3)
is zero (see Exercise 2.10b in Curtain and Zwart (1995)), i.e.

Dð�LÞ :¼ det
B

L
1�

L
1 B

L
1�

L
2

B
L
2�

L
1 B

L
2�

L
2

 !
¼ 0:

Hence, case by case we get the following.

Case 1a:

�ð�LÞ ¼ det
1 1


1ð�
LÞ�L21

	 

e
1ð�

LÞ 
2ð�
LÞ�L21

	 

e
2ð�

LÞ

� �
:

Hence, D(�L)¼ 1 � (
2(�
L)�L21)e


2(�L)� 1 �
(
1(�

L)�L21)e

1(�L). Since for all L21 and for

pe40, &aL 4 0, this leads to

e&
a
L 4 e�&

L
a 4 0 and

1

2
pe þ &

L
a � L21

� �
4

1

2
pe � &

L
a � L21

� �
4 0:

Consequently, D(�)40 and no solution for the
eigenvalues �L can be found.

Case 1b: Analogous to Case 1a, we get

Dð�LÞ ¼ 1 � 
2ð�
LÞ � L21

	 

e
2ð�

LÞ � 1 � 
1ð�
LÞ � L21

	 

e
1ð�

LÞ:

However, for �L50 this reduces to

Dð�Þ ¼ e
pe
2

1

2
peþ {&

L�L21

� �
e{&

L

�
1

2
pe� {&

L�L21

� �
e�{&L

� �

¼ e
pe
2 2{&L cosð&LÞþ2{

1

2
pe�L21

� �
sinð&LÞ

� �
:

Hence for D(�L)¼ 0, &Lk , k� 0 is the set of all
solutions to the resolvent equation:

tanð&Lk Þ ¼ �
&Lk

1
2 pe � L21

: ðA6Þ
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Case 2:

Dð�LÞ ¼ det
1 0

1
2 pe � L21

	 

e
1
2pe 1

2 pe þ 1� L21

	 

e
1
2pe

� �
:

Hence, D(�L)¼ 0 if L21 ¼
1
2 pe þ 1, since pe40.

The eigenvalues �L follow from Equation (A5), Case 1b or
the rather exceptional Case 2. For a detectable system �"

UV

with L21� 0, Case 2 does not occur. Furthermore, recognise
that �Lk !�1 as k!1 and �Lkþ1 � �

L
k

�� ��!1 as k!1.
From B1�, i.e. the Dirichlet condition at �1¼ 0 and �L as

in Equation (A5), we obtain for the eigenvectors �, as in

Equation (A1),


1ð�
LÞCL

1 þ 
2ð�
LÞCL

2 ¼ 0, CL
1 6¼ 0 6¼ CL

1 :

Hence, the associated eigenvectors of AL, i.e. �Lk 2 DðALÞ,
k� 0 are given for all �2 [0, 1] and for all k� 1 by

�Lk ¼ C0

�
1

2
pe � {&

L
k

� �
exp

1

2
pe � {&

L
k

� �
�

1

2
pe � {&

L

� �

� exp
1

2
pe þ {&

L
k

� ��

, �Lk ð�Þ ¼ C0 exp
1

2
pe�

� �
sinð&Lk �Þ with CL

0 :¼ CL
1 ¼ �C

L
2 :
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