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Place du Marechal de Lattre de Tassigny,

75775 Paris Cedex 16, France

November 9, 2010

Abstract

Initially introduced in the framework of quantum control, the so-called monotonic algo-

rithms have demonstrated excellent numerical performance when dealing with bilinear optimal

control problems. This paper presents a unified formulation that can be applied to more non-

linear settings compatible with the hypothesis detailed below. In this framework, we show

that the well-posedness of the general algorithm is related to a nonlinear evolution equation.

We prove the existence of the solution to this equation and give important properties of the

optimal control functional. Finally we show how the algorithm works for selected models from

the literature and compare it with the gradient algorithm.

1 Introduction

This paper presents a general unified formulation of several algorithms that were proposed in dif-
ferent areas of nonlinear control (see works in [34, 40, 10, 28]). Given a cost functional to minimize
J(v) depending on the control v, and a system described by a state function X(t) solution of the
evolution equation (4) below, these algorithms are iterative procedures that construct a sequence
of solution candidates vk with the important monotonic behavior J(vk+1) ≤ J(vk) ; the algorithms
have been named after this property as ”monotonic”. A convenient advantage of these procedures
is that the monotonicity does not requires any additional computational effort, but results from the
definition of the procedure itself.

These algorithms have first been used in the field of quantum control where the dynamics is
controlled by a laser field. In this framework the function that associates to a control v associates
the final state X(T ) of the system is highly nonlinear. This induces poor performance of standard,
gradient-based algorithms. The ”monotonic schemes” introduced in [2, 34, 40] were found to perform
excellently in this setting. These schemes were used in bi-linear situations i.e., when the operator
A(t, v(t)) is linear in v(t) and for a cost functional J(v) = G(X(T )) + C(v) that is sum of a part
G(X(T )) quadratic in the final state X(T ) and a part C(v) quadratic in the control v. These were
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soon followed by variants as those in [39, 41, 30, 32, 33] that included situations where G(X) has
negative semi-definite Hessian but C(v) was still quadratic in the control and, most importantly,
A(t, v) was linear in v.

In works cited up to now, the function G(X(T )) depends only on the final state X(T ) but
adaptations were proposed in [23, 22] to deal with the case where G depends on the whole dynamics
of the control process X(t) at intermediary times or when the dynamics involve bilinear integro-
differential equations.

Similar procedures were also proposed in different control applications where the evolution
equation is of parabolic type (see [28, 10]) or mixed hyperbolic-parabolic (see [19, 20]).

Up to this point all works presented above considered bilinear situations i.e., the evolution
equation is linear in the state X(t) and A(t, v) is linear in the control v; only recently different
cases were documented in the literature where A(t, v) is polynomial in the control v up to power 3;
in [29, 11] specific monotonic procedures were proposed that were showed to work in this setting.

A situation when A(t, v) depends polynomially on a one-dimensional control v(t) ∈ R was
proposed in [21]. A model where the system is a nonlinear Bose-Einstein condensate was given
in [31].

This paper continues in this direction and treats situations with arbitrary nonlinear A(t, v) but
still keeps the requirement that the explicit dependence of J on X be concave (see the hypothesis
detailed below). In all situations where monotonic algorithms were introduced the well-posedness
of the algorithms (i.e., the existence of vk+1 given vk) was proved by ad-hoc techniques although
the algebraic computations share similar points. The purpose of this paper is to identify and
exploit the similarities present in all these situations, and present a general setting that includes
the ”monotonic” algorithms. This allows to tackle a large class of non-linear situations that cannot
be solved with techniques present today in the literature. We prove rigorously the existence and
convergence of a procedure that from a control vk constructs a control vk+1 such that the cost
functional is monotonic. The question of whether such a procedure exists has never been asked
before in the literature because up to now the authors considered only particular cost functionals
J and particular evolution equations; in each case they proposed explicit analytic formulaes for
vk+1 applicable to their situation. On the contrary, we show here that in all contexts covered
by the theory (i.e., satisfy the hypothesis below) a control vk+1 can always be found to ensure
J(vk+1) ≤ J(vk) and we also give a constructive procedure to compute it.

The paper is structured as follows: Section 2 defines the general framework in which where our
procedure applies. The algorithm is presented in Section 3. At this point we show that the well-
posedness of the algorithm is related to a nonlinear evolution equation and prove the existence of the
solution to this equation. We also give important properties of the optimal control functional. Some
examples of concrete realizations follow in Section 4 together with numerical results illustrating the
application and the efficiency of the algorithm.

2 Problem formulation

Let E, H and V be Hilbert spaces with V densely included in H. We denote by ·E and 〈·, ·〉V the
scalar product associated with E and V.

For any vector spaces A and B, we denote by L(A,B) the space of linear continuous operators
between A and B.

Given a real valued function ϕ, we denote by ∇xϕ its gradient with respect to the variable x.
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We also denote by Dx and Dx,x the first and the second derivative of vectorial functionals in the
Fréchet sense.

Remark 1 Recall that, given H1 and H2 two Banach spaces and U ⊂ H1 an open subset of H1, a
function f : U → H2 is said to be Fréchet differentiable at x ∈ U if there exists a continuous linear
operator Ax ∈ L(H1, H2) such that

lim
h→0

‖f(x+ h)− f(x)−Ax(h)‖H2

‖h‖H1

= 0.

The operator Ax is then called the Fréchet differential (or Fréchet derivative) of f at x and is
denoted Dxf , Ax.

Let us also recall that given an open set Ω ⊂ Rγ and a Hilbert space H1, the set L∞(Ω;H1) is
the space of functions f from Ω with values in the Hilbert space H1 such that for almost all t ∈ Ω
the norm ‖f(t)‖H1 is bounded by the same constant (the lowest of which is the L∞(Ω;H1) norm of
f). One can likewise define L2(Ω;H1):

L2(Ω;H1) = {f : Ω→ H1 such that

∫

Ω

‖f(t)‖2H1
dt <∞}. (1)

When the derivatives of f are considered the Sobolev spaces W 1,∞ have to be introduced; we
refer to [1, 38] for further details.

Within an optimal control formulation, the control of a system described by a state function
X(t) is encoded in the following optimization problem:

min
v

J(v), (2)

where

J(v) ,

∫ T

0

F
(
t, v(t), X(t)

)
dt+G

(
X(T )

)
. (3)

The functions F : R × E ×V → R and G : V → R are assumed to be differentiable and integral
assumed to exist. The state function X(t) ∈ V satisfies the following evolution equation

∂tX +A(t, v(t))X = B(t, v(t)) (4)

X(0) = X0. (5)

where v : [0, T ] → E is the control. The possibly unbounded operator A(t, v) : R × E × H → H
is such that for almost all t ∈ [0, T ] the domain of A(t, v)1/2 includes V; furthermore we take
B(t, v) such that for almost all t ∈ [0, T ] and all v ∈ E we have B(t, v) ∈ L(H,H)∩L(V,V∗)1. We
postpone to Section 3 (cf. Lemma 3.4, Theorem 3.5) the precise formulation of additional regularity
assumptions to be imposed on A,B, F,G.

Remark 2 Note that E is not necessarily of dimension one, not even finite dimensional, cf. Sec-
tion 4.2. This means that the control can be a set of several time-dependent functions but also a
distributed control depending on a spacial variable.

1For a space V we denote by V∗ its dual space.
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Let us stress that although the equation is linear in X (for v fixed) the mapping v 7→ X is not
linear ; the term A(t, v(t)) multiplies the state X and as such the mapping is highly nonlinear (of
non-commuting exponential type).

Remark 3 Most of the previous works considered a bilinear operator A(t, v) i.e., A(t, v)X = vX;
the only exceptions (cf. discussion in the Introduction) were of the polynomial type (of order at
most 3 in [29, 11] and polynomial with E = R1 in [21]). The techniques present in the above papers
cannot be used for general operators A(t, v) and control sets E. On the contrary the results in this
work include all the situations considered in the bibliography but also apply to nonlinearities in v
compatible with the hypothesis of Lemma 3.4 and Thm. 3.5 below.

The following concavity with respect to X will be assumed throughout the paper:

∀X,X ′ ∈ V, G(X ′)−G(X) ≤ 〈∇XG(X), X ′ −X〉V, (6)

∀t ∈ R, ∀v ∈ E, ∀X,X ′ ∈ V,

F (t, v,X ′)− F (t, v,X) ≤ 〈∇XF (t, v,X), X ′ −X〉V. (7)

Remark 4 Unlike the more technical hypothesis that will be assumed latter, the properties (6), (7)
and the linearity of (4) are crucial to the existence of the monotonic algorithms.

3 Monotonic algorithms

We now present the structure of our optimization procedure together with the general algorithm.

3.1 Tools for monotonic algorithms

The monotonic algorithms exploit a specific factorization which is the consequence of the results
described in this section. To ease the notations, we will make explicit the dependence of X on v,
i.e. we will write Xv instead of X in Eqs. (4–5).

We define the adjoint state Yv (see [8, 16]) which is the solution of the following evolution
equation:

∂tYv −A∗(t, v(t)
)
Yv +∇XF

(
t, v(t), Xv(t)

)
= 0 (8)

Yv(T ) = ∇XG
(
Xv(T )

)
. (9)

A first estimate about the variations in J can be obtained:

Lemma 3.1 For any v′, v : [0, T ]→ E denote

Υ
(
t,Xv(t), v(t), v

′(t), Yv(t), Xv′(t)
)
,

−〈Yv(t),
(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉V

〈Yv(t), B
(
t, v′(t)

)
−B

(
t, v(t)

)
〉V (10)

+F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′ (t)

)
. (11)
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Then

J(v′)− J(v) ≤
∫ T

0

Υ
(
t,Xv(t), v(t), v

′(t), Yv(t), Xv′(t)
)
dt. (12)

Proof Using successively (6),(7), (4) and finally (9), we find that:

J(v′)− J(v) =

∫ T

0

F
(
t, v(t), Xv′(t)

)
− F

(
t, v(t), Xv(t)

)

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
dt

+G
(
Xv′(T )

)
−G

(
Xv(T )

)

≤
∫ T

0

〈∇XF
(
t, v(t), Xv(t)

)
, Xv′(t)−Xv(t)〉V

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′(t)

)
dt

+〈Yv(T ), Xv′(T )−Xv(T )〉V

≤
∫ T

0

〈 ∂
∂t

Yv(t)−A
(
t, v(t)

)∗
Yv(t)

+∇XF
(
t, v(t), Xv(t)

)
, Xv′(t)−Xv(t)〉V

− 〈Yv(t),
(
A
(
t, v′(t)

)
−A

(
t, v(t)

))
Xv′(t)〉V

+ 〈Yv(t), B(t, v′(t))−B(t, v(t))〉V

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, v(t), Xv′ (t)

)
dt.

Due to (8), the first term of the right-hand side of this last inequality cancels and the result follows.
�

Remark 5 The purpose of this result is not to obtain an estimation of the increment J(v′)− J(v)
via the adjoint (which is well documented in optimal control theory, cf. [8, 16]); we rather emphasis
that the evaluation of the integrand Υ at time t requires information on the control v(s) for all
s ∈ [0, T ] (in order to compute Xv(T ) then Yv(t)) but on the second control v′(s) only for s ∈ [0, t]
(because this is enough to compute Xv′(t)). This estimate can be useful to decide at time t if
the current value of the control v′(t) will imply an increase or decrease of J(v′). This localization
property is a consequence of the concavity of F and G (in X) and bi-linearity induced by A. The
purpose of the paper is to construct and theoretically support a general numerical algorithm that
exploits this remark.

Remark 6 We can intuitively note that Υ has the factorized form:

Υ
(
t,Xv(t), v(t), v

′(t), Yv(t), Xv′(t)
)
= ∆(v, v′)(t) ·E

(
v′(t)− v(t)

)
, (13)
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with ·E the E scalar product. Thus v′ can always be chosen so as to make it negative (in the worse
case set it null by the choice v′ = v). We will come back with a formal definition of ∆(v, v′)(t) and
a proof of the previous relation in Section 3.3.

A more general formulation can be obtained if we suppose that the backward propagation of
the adjoint state is performed with the intermediate field ṽ (cf. also [18]), i.e. according to the
equation :

∂

∂t
Yṽ −A∗(t, ṽ(t)

)
Yṽ +∇XF

(
t, v(t), Xv(t)

)
= 0

Yṽ(T ) = ∇XG
(
Xv(T )

)
.

Note that because of its final condition, Yṽ actually also depends on v. Nevertheless, for the sake
of simplicity, we keep the previous notation. We then obtain the following lemma whose proof we
let as exercise for the reader:

Lemma 3.2 For any v′, ṽ, v : [0, T ]→ E,

J(v′)− J(v) ≤
∫ T

0

−〈Yṽ(t),
(
A
(
t, v′(t)

)
− A

(
t, ṽ(t)

))
Xv′(t)〉V

+ 〈Yṽ(t), B
(
t, v′(t)

)
−B

(
t, ṽ(t)

)
〉V

+ F
(
t, v′(t), Xv′(t)

)
− F

(
t, ṽ(t), Xv′ (t)

)
dt

+

∫ T

0

−〈Yṽ(t),
(
A
(
t, ṽ(t)

)
−A

(
t, v(t)

))
Xv(t)〉V

+ 〈Yṽ(t)(t), B
(
t, ṽ(t)

)
−B

(
t, v(t)

)
〉V

+ F
(
t, ṽ(t), Xṽ(t)

)
− F

(
t, v(t), Xṽ(t)

)
dt.

In this lemma, the variation in the cost functional J is expressed as the sum of two terms, and can
be considered as factorized with respect to v′ − ṽ and ṽ − v.

Remark 7 Lemmas 3.1 and 3.2 are generalizations of previous results that were proved in the
bilinear case. To the best of our knowledge, only specific corollaries requiring additional assumptions
have appeared in the literature up to now.

3.2 The algorithms

The factorization (13) that will be proved in Lemma 3.3 enables to design various ways to ensure
that J(v′) ≤ J(v), i.e. that guaranty the monotonicity resulting from the update v′ ← v. This
allows to present a general structure for our class of optimization algorithms. We focus on the one
that results from Lemma 3.1.
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Algorithm 1 (Monotonic algorithm)
Given an initial control v0, the sequence (vk)k∈N is computed iteratively by:

1. Compute the solution Xvk of (4–5) with v = vk.

2. Compute the solution Yvk of (8–9) with v = vk backward in time from

Yvk(T ) , ∇XG
(
Xvk(T )

)
.

3. Define (as explained latter) vk+1 together with Xvk+1 such that for all t ≤ T the following
monotonicity condition be satisfied :

∆(vk+1, vk)(t) ·E
(
vk+1(t)− vk(t)

)
≤ 0. (14)

Lemma 3.1 then guarantees that J(vk+1) ≤ J(vk). Several strategies can be used to ensure (14); we
will present one below. Its importance stems from the fact that no further optimization is necessary
once this condition is fulfilled. In order to guarantee (14), many authors (see [18, 34, 40]) consider
an update formula of the form:

vk+1(t)− vk(t) = −1

θ
∆(vk+1, vk)(t), (15)

where θ is a positive number, that can also depend on k and t. In what follows, we focus on the
existence of solution of (15), and on practical methods to compute it. If vk+1 satisfies (15), the
variations in J satisfy:

J(vk+1)− J(vk) ≤ −θ
∫ T

0

(vk+1(t)− vk(t))2dt.

Note that (15) reads as an update formula combining on the one hand a gradient method:

vk+1(t)− vk(t) = −1

θ
∆(vk, vk)(t),

and on the other hand the so-called Proximal Algorithm (as described in [5]) which prescribes:

vk+1(t)− vk(t) = −1

θ
∆(vk+1, vk+1)(t).

Remark 8 When F = 0 and A is independent of v i.e., linear control with final objective, (15)
coincides with a gradient method.

3.3 Well-posedness of the algorithm

In this section, we focus on the procedure obtained when using Algorithm 1 with the update formula
(15). To the best of our knowledge no theoretical result exists in the literature to prove the existence
of a solution to the Eq. (15) for general choices of A(t, v) and general space of controls E because
previous authors only dealt with particular choices of functionals F,G, operators A,B and managed
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to obtain in each case an analytic solution; we provide here such a proof together with a convergent
procedure to compute it. Since this procedure involves the resolution of an implicit equation, the
proof is non-trivial and has been split in three parts: two preparatory Lemmas (3.3 and 3.4) and
the final result in Theorem 3.5. As a by-product, we obtain a proof of the monotonicity of the
algorithm.

Lemma 3.3 Suppose that for any t ∈ [0, T ]:
- A : R×V ×V × E → R defined by A(t,X, Y, v) = 〈Y,A(t, v)X〉V is of C1 class with respect

to v for any X,Y, v;
- B : R×V×E → R with B(t, Y, v) = 〈Y,B(t, v)〉V is of C1 class with respect to v for any Y, v;
- F is of C1 class with respect to v ∈ E for any X,Y, v.
Then there exists ∆(·, ·; t,X, Y ) ∈ C0(E2, E) such that, for all v, v′ ∈ E

∆(v′, v; t,X, Y ) ·E
(
v′ − v

)
= −

〈
Y,

(
A(t, v′)−A(t, v)

)
X +B(t, v′)−B(t, v)

〉

V

+F (t, v′, X)− F (t, v,X). (16)

Moreover, ∆(·, ·; t,X, Y ) can be defined through the explicit formula:

∆(v′, v; t,X, Y ) =

∫ 1

0

−∇w

(
〈Y,A(t, w)X −B(t, w)〉

V

)∣∣∣
w=v+λ(v′−v)

+∇vF (t, v + λ(v′ − v), X)dλ. (17)

Proof We denote by ‖ · ‖ the norm associated with E. Since A,B,F are Fréchet differentiable with
respect to v the full expression in Eq. (16) is of the form Ξ(v′)−Ξ(v) with Ξ(v) = −A(t,X, Y, v) +
B(t, Y, v)− F (t, v,X) differentiable with respect to v; Eq. (17) is an application of the identity

Ξ(v′)− Ξ(v) =

∫ 1

0

∇vΞ(v + λ(v′ − v))dλ ·E (v′ − v).

The continuity is obtained from that of ∇vΞ. �

Lemma 3.4 Suppose that
- A,B, F are of (Fréchet) C2 class with respect to v with DvvA, DvvB uniformly bounded as

soon as X,Y are in a bounded set;
- ∇vF is of C1 class with respect to X;
- DvvF (t, ·, X) is bounded by a positive, continuous, increasing function X 7→ k(‖X‖).
Then given ε > 0, (t, v,X, Y ) ∈ R× E ×V ×V and a bounded neighborhood W of (t, v,X, Y ),

there exists θ⋆ > 0 depending only on ε, W , ‖v‖, ‖X‖ and ‖Y ‖ such that, for any θ > θ⋆

1. ∆(v′, v; t,X, Y ) = −θ(v′ − v) has a unique solution v′ = Vθ(t, v,X, Y ) ∈ E;

2. Vθ(t, v,X, Y ) = v implies

−∇v

(
〈Y,A(t, v)X〉

V

)
(v) +∇v

(
〈Y,B(t, v)〉

V

)
(v) +∇vF (t, v,X) = 0, (18)
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3. ‖Vθ(t, v,X, Y ) − v‖ ≤ ‖X‖‖Y ‖+‖Y ‖+k(‖X‖)
θ {M0(t) +M1‖v‖} with M0(t) and M1 independent

of v,X, Y . If the dependence of A,B, F with respect to t is smooth then M0(t) is bounded on
[0, T ];

4. Vθ(t, v,X, Y ) is continuous on W ;

5. Let X belong to a bounded set; then X 7→ Vθ(t, v,X, Y ) is Lipschitz with the Lipschitz constant
smaller than ε.

Proof

1. Denote h = v′ − v and define Gt,v,X,Y (h) =
−∆(v+h,v;t,X,Y )

θ . When the dependence is clear
we will write simply G(h) instead of Gt,v,X,Y (h). We look thus for a solution to the following
fixed point problem: G(h) = h. For θ large enough, the mapping G is a (strict) contraction
and we obtain the conclusion by a Picard iteration. The uniqueness is a consequence of the
contractivity of G.

2. If v′ = v then h = 0 thus G(h) = 0 which gives (18) after using (17).

3. For θ large enough, the mapping G is not only a contraction but has its Lipschitz constant
less than, say, 1/2. Because of the contractivity of G, we have ‖h‖ − ‖G(0)‖ ≤ ‖h− G(0)‖ =
‖G(h)− G(0)‖ ≤ 1

2‖h‖, which amounts to ‖h‖ ≤ 2‖G(0)‖. Next, we note that

‖G(0)‖ ≤ ‖∆(v, v, t,X, Y )−∆(0, 0, t,X, Y )‖ + ‖∆(0, 0, t,X, Y )‖
θ

≤M2‖v‖+M3(t)

and the estimate follows.

4. Formula (17) shows that ∆ depends continuously on t, v, v′, X, Y . Consider converging se-
quences tn → t, vn → v, Xn → X , Yn → Y and define hn , Vθ(tn, vn, Xn, Yn) and
h , Vθ(t, v,X, Y ).
Given W and η > 0, consider a large enough value of θ such that:

- for any (t′, v′, X ′, Y ′) ∈W , Gt′,v′,X′,Y ′ is a contraction with Lipschitz constant less than 1/2.

- for any (t′, v′, X ′, Y ′), (t′′, v′′, X ′′, Y ′′) ∈W ,

‖∆(v′′ + h, v′′, t′′, X ′′, Y ′′)−∆(v′ + h, v′, t′, X ′, Y ′)‖ ≤ η.

This last property implies ‖Gtn,vn,Xn,Yn
(h) − Gt,v,X,Y (h)‖ ≤ η

θ for n large enough. On the
other hand

‖hn − h‖ = ‖Gtn,vn,Xn,Yn
(hn)− Gt,v,X,Y (h)‖

≤ ‖Gtn,vn,Xn,Yn
(hn)− Gtn,vn,Xn,Yn

(h)‖
+‖Gtn,vn,Xn,Yn

(h)− Gt,v,X,Y (h)‖

≤ 1

2
‖hn − h‖+ η

θ
.

We have thus obtained that for n large enough : 1
2‖hn − h‖ ≤ η

θ and the continuity follows.
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5. Subtracting the two equalities

∆(V1, v; t,X1, Y ) = −θ(V1 − v), ∆(V2, v; t,X2, Y ) = −θ(V2 − v)

and using that ∆(V, v; t,X, Y ) is C1 in X and v gives to first order

∆V (...)(V1 − V2) + ∆X(...)(X1 −X2) = −θ(V1 − V2).

For θ large enough the operator ∆V (...) + θ · Id is invertible and the conclusion follows.

�

Remark 9 Note that θ⋆ is proportional to (‖X‖V‖Y ‖V + ‖Y ‖V + k(‖X‖V)).

We are now able to construct a procedure such that the existence of vk+1(t) satisfying (14) is
guaranteed.

Theorem 3.5 Suppose that A,B, F satisfy the hypothesis of the Lemma 3.4. Also suppose that
the operators A,B are such that Eqs. (4–5) and (8-9) have solutions for any v ∈ L∞(0, T ;E) with
v 7→ X, v 7→ Y locally Lipschitz. Then:

1. For any v ∈ L∞(0, T ;E), there exists θ⋆ > 0 such that for any θ > θ⋆, the (nonlinear)
evolution system

∂tXv′(t) +A(t, v′)Xv′(t) = B(t, v′) (19)

v′(t) = Vθ(t, v(t), Xv′ (t), Yv(t)) (20)

Xv′(0) = X0 (21)

has a solution. Here Yv is the adjoint state defined by (8–9) and corresponding to control v.

2. There exists a sequence (θk)k∈N such that the algorithm 1 (cf. Section 3.2)

a/ initialization v0 ∈ L∞(0, T ;E),

b/ vk+1(t) = Vθk(t, vk(t), Xvk+1(t), Yvk(t))

is monotonic and satisfies

J(vk+1)− J(vk) ≤ −θk‖vk+1 − vk‖2L2([0,T ]).

3. With the notations above, if for all t ∈ [0, T ] vk+1(t) = vk(t) (i.e. algorithm stops) then vk is
a critical point of J : ∇vJ(v

k) = 0.

Proof Some of the proof is contained in the previous lemmas. The part that still has to be proved
is the existence of a solution to (19)-(21).

Given v ∈ L∞(0, T ;E), consider the following iterative procedure :

v0 = v, vl+1(t) = Vθ(t, v(t), Xvl(t), Yv(t)).

We take a spherical neighborhood Bv(R) of v of radius R and suppose that ∀k ≤ l, vk ∈ Bv(R).
Since the correspondence v 7→ Xv is continuous, it follows that the set of solutions Sv,R , {Xw;w ∈
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Bv(R)} of (4) is bounded. In particular for w = vl by the item 3 of Lemma 3.4 the quantity
‖Vθ(t, v(t), Xvl(t), Yv(t))−v‖ will be bounded by R for θ large enough (depending on R, independent
of l), i.e. vl+1 ∈ Bv(R). Thus vl ∈ Bv(R) for all l ≥ 1.

Since Sv,R is bounded, recall that by item 5 of Lemma 3.4 the mapping X 7→ Vθ(t, v(t), X, Yv(t))
has on Sv,R a Lipschitz constant as small as desired. Since the mapping w 7→ Xw is Lipschitz, for
θ large enough, w ∈ Bv(R) 7→ Vθ(t, v(t), Xw , Yv(t)) is a contraction. By a Picard argument the
sequence vl is converging. The limit will be the solution of (19–20). �

4 Examples

We now present three examples that fit into the setting of Theorem 3.5. The space does not allow
to treat different variants (cf. references in Introduction) so we leave them as an exercise to the
reader.

Within the framework of control theory, nonlinear formulations prove useful nowadays in do-
mains as diverse as the laser control of quantum phenomena (see [15, 25, 26, 27, 36, 37]) or the
modeling of a equilibrium (or again social beliefs, product prices, etc) of a game with an infinite
numbers of agents (see [12, 13, 14]). Yet other applications arise from modern formulations of the
Monge-Kantorovich mass transfer problem (see [4, 3, 28]).

In the following, we present some examples coming from these fields of application and present
the corresponding monotonic algorithm resulting from Theorem 3.5.

4.1 (I): Quantum control

4.1.1 Setting

The evolution of a quantum system is described by the Schrödinger equation

∂tX + iH(t)X = 0

X(0, z) = X0(z),

where i =
√
−1, H(t) is the Hamiltonian of the system and z ∈ Rγ the set of internal degrees of

freedom. We assume that the Hamiltonian is a self-adjoint operator over L2(Rγ ;C), i.e. H(t)∗ =
H(t)2. Note that this implies the following norm conservation property

‖X(t, ·)‖L2(Rγ ;C) = ‖X0‖L2(Rγ ;C), ∀t > 0, (22)

so that the state (also called wave-) function X(t, z), evolves on the (complex) unit sphere S ,{
X ∈ L2(Rγ ;C) : ‖X‖L2(Rγ ;C) = 1

}
.

The Hamiltonian is composed of two parts: a free evolution Hamiltonian H0 and a part that
describes the coupling of the system with an external laser source of intensity v(t) ∈ R, t ≥ 0; a first
order approximation leads to adding a time-independent dipole moment operator µ(z) resulting in
the formula H(t) = H0 − v(t)µ and the dynamics:

∂tX + i (H0 − v(t)µ)X = 0

X(0) = X0.

2For any operator M , we denote by M
∗ its adjoint.
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The purpose of control may be formulated as to drive the system from its initial state X0 to a
final state Xtarget compatible with predefined requirements. Here, the control is the laser intensity
v(t). Because the control is multiplying the state, this formulation is called “bilinear” control. The
dependence v 7→ X(T ) is of course not linear.

The optimal control approach can be implemented by introducing a cost functional. The fol-
lowing functionals are often considered:

J(v) , ‖X(T )−Xtarget‖2L2(Rγ ;C) +

∫ T

0

α(t)v2(t)dt, (23)

J̃(v) , −〈X(T ), OX(T )〉L2(Rγ ;C) +

∫ T

0

α(t)v2(t)dt, (24)

where O is a positive linear operator defined on H, characterizing an observable quantity and
α(t) > 0 is a parameter that penalizes large (in the L2 sense) controls. The goal is to minimize
these functionals with respect to v. According to (22) the cost functional J is equal to

J(v) , 2− 2Re〈X(T ), Xtarget〉L2(Rγ ;C) +

∫ T

0

α(t)v2(t)dt, (25)

so that the functionals J and J̃ satisfy assumptions (6) and (7).

4.1.2 Mathematical formulation

We have
• A(t, v) = H0+ v(t)µ with (possibly) unbounded v-independent operator H0 (but which gener-

ates a C0 semi group) and bounded operator µ. The dependence of A on v is smooth (linear) and
therefore all hypotheses on A are satisfied.

• E = R, H = L2(Rd;C), V = dom(H
1/2
0 ) (over C), or their realifications H = L2 × L2,

V = dom(H
1/2
0 )× dom(H

1/2
0 ) (over R) as explained in [9];

• B(t, v) = 0.
• F (t, v,X) = α(t)v(t)2 with α(t) ∈ L∞(R); here the second derivative DvvF is obviously

bounded. Since it is independent of X it will be trivially concave.
• G is either (see e.g., [17, 18]) 2 − 2Re〈Xtarget, X(T )〉V or −〈X(T ), OX(T )〉V where O is a

positive semi-definite operator; both are concave in X .
• Here

∆(v′, v; t,X, Y ) = −Re〈Y, iµX〉V + α(t)(v′ + v) (26)

and the equation in v′ is: ∆(v′, v; t,X, Y ) = −θ(v′−v) and has for θ large enough a unique solution

v′ = Vθ(t, v,X, Y ) , (θ−α(t))v+Re〈Y,iµX〉V
θ+α(t) .

• at the k + 1-th iteration, Theorem 3.5 guarantees the existence of the solution Xk+1 of the
following nonlinear evolution equation:

i∂tX
k+1(t) =

(
H0 +

(θ − α(t))vk + Re〈Yvk , iµXk+1〉V
θ + α(t)

µ

)
Xk+1(t) (27)

Then

vk+1 =
(θ − α(t))vk +Re〈Yvk , iµXk+1〉V

θ + α(t)
, Xvk+1 = Xk+1. (28)

12



4.1.3 Numerical test

In order to test the performance of the algorithm we have chosen a case already treated in the
literature (see [40]). The system under consideration is the O −H bond that vibrates in a Morse

type potential V (z) = D0(exp(−β(z − z′)) − 1)2 − D0 and H0 = −m ∂2

∂z2 + V (z). The dipole
moment operator of this system is modeled by µ(z) = µ0.ze

− z
z⋆ . The objective is to localize the

wavefunction at time T = 131000 at a given location z0 ; this is expressed through the requirement
that the functional J̃ is maximized, with the observable O defined by O(z) = γ0√

π
e−γ2

0(z−z0)
2

. The

numerical values we use are given below:

D0 β z′ z⋆ z0 γ0 µ0 m
0.1994 1.189 1.821 0.6 2.5 25 3.088 2.8694.10−4

We consider a constant penalization parameter α = 1 and optimization parameter θ = 10−2. To
compare this procedure with a standard algorithm, we have also minimized J(v) with an optimal
step gradient method. The line search is achieved through a golden section search cf. [24]. Results
are presented in Fig. 1. This test shows that the gradient method fails in efficiently solving the

0 5 10 15 20 25 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iterations
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)

Figure 1: Numerical resolution of the example of Section 4.1. The cost functional J(v) is optimized
using the monotonic algorithm (28) (green line) and the optimal step gradient algorithm (blue line).

problem, whereas the monotonic procedure ensures that the cost functional values rapidly decrease.
Note that the non-convexity of the problem renders difficult the convergence of the gradient method.
On the other hand, the monotonic scheme fully exploits the concavity of the cost functional with
respect to the state variable. In our implementation the time of computation is about two times
larger for the gradient method as the line search requires about 3 evaluations of the cost functional
per iteration.
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4.2 (II) : Mean field games

4.2.1 Setting

Although the Nash equilibrium in game theory has been initially formulated for a finite number of
players, modern results (see [12, 13, 14]) indicate that it is possible to extend it to an infinite number
of players and obtain the equations that describe this equilibrium; applications have already been
proposed in economic theory and other are expected in the behavior of multi-agents ensembles and
decision theory.

The equations describe evolution of the density X(t, z) of players at time t and position z ∈
Q = [0, 1] in terms of a control v(t, z) and a fixed parameter ν > 0:

∂tX − ν∆X + div(v(t, z)X) = 0,

X(0) = X0.

The control v is chosen to minimize the cost criterion (3). For reasons related to economic
modeling interesting examples include situations where F,G are concave in X , e.g., as in [10]

G = 0, F (t, z,X) =

∫

Q

p(t)(1− βz)X(t, z) +
c0 · z ·X(t, z)

c1 + c2X(t, z)
+

v2(t)

2
X(t, z)dz, (29)

with positive constants β, c0, c1, c2 and p(t) a positive function. Another example is given in [28]:

G(X(T )) =

∫

Q

V (z)X(T, z)dz, F (t, z,X) =

∫

Q

X(t, z)v2(t, z)dz, (30)

where V encodes a potential. The interpretation of this terminal cost is that the crowd aims at
reaching zones of low potential V at the terminal time T while minimizing the cost of changing
state.

The numerical relevance of the monotonic algorithms to this setting has been established in
several works, see [28, 10].

4.2.2 Mathematical formulation

We have
• E = W 1,∞(0, 1), H = L2(0, 1), V = H1(0, 1) see [10] and [6] (Chap XVIII §4.4)
• A(t, v) = −ν∆ · +div(v·). The dependence of A on v is smooth (linear) and therefore all

hypotheses on A are satisfied (DvvA = 0, ...).
• B(t, v) = 0.

• with definitions in (29) F (t, v,X) =
∫
Q
p(t)(1 − βz)X(t, z) + c0·z·X(t,z)

c1+c2X(t,z) +
v(t,z)2

2 X(t, z)dz; F

is concave in X ; the second differential DvvF has all required properties.
• G = 0 (algorithm will apply in general when G is concave with respect to X).
• Here

∆(v′, v; t,X, Y ) = ∇Y +
v′ + v

2
(31)

and the equation in v′ is: ∆(v′, v; t,X, Y ) = −θ(v′ − v) and has for all θ > 0 a unique solution

v′ = Vθ(t, v,X, Y ) , (θ−1/2)v−∇Y
θ+1/2 .
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• at the k + 1-th iteration, Theorem 3.5 guarantees the existence of the solution Xk+1 of the
following nonlinear evolution equation:

∂tX
k+1(t)− ν∆Xk+1 + div(

(θ − 1/2)vk −∇Yvk

θ + 1/2
Xk+1) = 0. (32)

Then

vk+1 =
(θ − 1/2)vk −∇Yvk

θ + 1/2
, Xvk+1 = Xk+1. (33)

4.2.3 Numerical test

The algorithm is tested on the time interval [0, 1] with p(t) = 1 and the numerical values β = 0.8,
c0 = c2 = 1 , c1 = 0.1. The same gradient method as in Section 4.1.3 is also tested. Results are
presented in Fig. 2. In this example, the gradient method gives better results in the first iterations.
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Figure 2: Numerical resolution of the example of Section 4.2. The cost functional J(v) is optimized
using the monotonic algorithm (33) (green line) and the optimal step gradient algorithm (blue line).

However, the monotonic algorithm converges asymptotically faster.

4.3 Additional application

As a third example we consider a nonlinear vectorial case from [7, 35] which differs from that of

Section 4.1 in that v(t) =

(
v1
v2

)
∈ E = R2 and A(t, v) = i[H0 +(v1(t)

2 + v2(t)
2)µ1 + v1(t)

2v2(t)µ2].

Here, denoting ξ1 = −Re〈Y, iµ1X〉V + α(t), ξ2 = −Re〈Y, iµ2X〉V we obtain

∆(v′, v; t,X, Y ) = ξ1

(
v1 + v′1
v2 + v′2

)
+ ξ2

(
(v1 + v′1)v

′
2

(v1)
2

)
(34)
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and the equation in v′ is: ∆(v′, v; t,X, Y ) = −θ(v′−v) and has for θ large enough a unique solution

v′ = Vθ(t, v,X, Y ) =




(θ−ξ1)v2−ξ2v
2
1

θ+ξ1

− θ−ξ1+ξ2
(θ−ξ1)v2−ξ2v21

θ+ξ1

θ+ξ1+ξ2
(θ−ξ1)v2−ξ2v21

θ+ξ1

v1


. We leave as an exercise to the reader the writing

of the equation for Xk+1 and the formula for vk+1.
This model corresponds to the problem of controlling the orientation γ of a molecule, considered as
rigid rotator.

4.3.1 Numerical test

To test our approach we have used the parameters of the molecule CO (see [7, 35]), namely H0 =
BJ2, where B is the rotational constant and J is the angular momentum. We consider the basis
given by the spherical harmonics ; the corresponding matrix is diagonal with diagonal coefficients
given by (H0)k,k = k(k + 1). The controlled is performed over an interval of length T = 20Tper =
20 π

B . We consider constant penalization factor α = 10−1 and optimization parameter θ = 103.
The other parameters correspond to the polarizability and the hyperpolarizability components
of the molecule. We have µ1 = − 1

2λ, and µ2 = − 3
4β, with λ = 1

2 (λ‖ cos
2 γ + λ⊥ sin2 γ), β =

1
6 ((β‖ − 3β⊥) cos3 γ + 3β⊥ cos γ). The matrix cos γ is tridiagonal, with:

(cos γ)k,k = 0, (cos γ)k,k+1 = (cos γ)k+1,k =
k + 1√

(2k + 1)(2k + 3)
.

We use the numerical values given in [7, 35]:

B λ⊥ λ‖ β‖ β⊥
1.93 11.73 15.65 28.35 6.64

A gradient method similar to the one that is used in Section 4.1.3 is also performed. The results
are presented in Fig. 3. The monotonic algorithm shows a fast convergence whereas the gradient
method does not optimizes efficiently the cost functional values.

5 Conclusion

Motivated by a set of control algorithms that were initially introduced in the specific context of
quantum control we have presented an abstract formulation that includes them all. It is seen that
the algorithm involves at each step the resolution of a highly nonlinear evolution equation. We
identified the theoretical assumptions that ensure that the evolution equation is well posed and
has a solution. The proof being constructive it serves as basis for numerical approximations of
the solution. We also proved several properties concerning the algorithms and more specifically
concerning its convergence. Examples are provided to indicate how the proposed procedure solves
cases from the literature and also new situations that were not previously considered. Numerical
simulations indicate that the procedures have indeed the expected behavior.
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Figure 3: Numerical resolution of the example of Section 4.3. The cost functional J(v) is optimized
using the monotonic algorithm (34) (green line) and a gradient method (blue line).
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