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This paper presents a novel way of manipulating the initial conditions in the consensus equation such that
a constrained agreement problem is solved across a distributed network of agents, particularly for a network
represented by a tree graph. The presented method is applied to the problem of coordinating multiple pendula
attached to mobile bases. The pendula should move in such a way that their motion is synchronized, which calls
for a constrained optimal control problem for each pendulum as well as the constrained agreement problem
across the network. Simulation results are presented that support the viability of the proposed approach as
well as a hardware demonstration.
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1 Introduction

The agreement protocol (or consensus equation) has by now emerged as a standard way in which
to achieve agreement among agents in a distributed network. It can be utilized for anything from
agreement in embedded physical systems like mobile robots or UAVs, to distributed computer
networks, e.g. Tanner et al. (2000), Ren and Beard (2004), Dimarogonas and Kyriakopoulos
(2007), Olfati-Saber and Murray (2003), Jadbabaie et al. (2003), Mesbahi and Egerstedt (2010).
And, as the value on which the agents agree is dependent on the agents’ initial conditions, it is
not overly surprising that this dependency can be employed such that the final agreement state
is guaranteed to satisfy certain constraints.

This work seeks to address the problem of finding an agreement state that satisfies a global
state constraint given only local interactions among distributed agents. Specifically, within a
group of agents, constraints exist between certain pairs of agents together with an information
exchange, resulting in what is referred to in this paper as pairwise constraints. The pairwise con-
straints naturally lead to a network topology where nodes represent agents and edges represent
pairwise constraints and information exchange.

The pairwise constraints that involve a particular agent are called that agent’s local constraints
and this particular agent only exchanges information with the agents with which it shares a
pairwise constraint, hence the ”local” descriptor. Subsequently, the global constraint for the
entire group is the constraint that all agents satisfy their respective local constraints. Each
agent can communicate its own state as well as its ”opinion” of what the other agents’ states
should be (i.e. state opinions) such that the entire network’s pairwise constraints are met.

As such, the goal of this work is to utilize the consensus equation to arrive at an agreement
on the state opinions of every agent in the network such that every pairwise constraint in the
network is satisfied (global constraint) given that only the local constraints are initially satisfied.
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We apply this constrained agreement protocol to the problem of controlling a collection of
cart-driven pendula in a coordinated fashion. In particular, their mobile bases are to be con-
trolled in such a way that, at some specified terminal time, they move in unison (with the same
frequency and phase) at a fixed inter-pendula distance. This should be achieved using only lo-
cal information, i.e. the control actions are only to be controlled based on information from
neighboring pendula.

The problem is ensuring that the agreement protocol results in final state opinions for all

pendula such that these final states satisfy the global constraint. Although running the standard
consensus equation (e.g. Olfati-Saber and Murray (2003), Jadbabaie et al. (2003)) – or versions
of the gossip algorithm Boyd et al. (2005), Xiao et al. (2005) – will result in an agreement, the
agreed upon states are not guaranteed to satisfy the global constraint. However, in this work,
we will demonstrate that the initial conditions for the agreement protocol can be manipulated
such that the resulting state opinions will satisfy the global constraints.

Although optimal control techniques are used in the control formulation presented in this
paper, the problem is, at heart, a distributed agreement problem rather than a distributed
optimal control problem. For more on the latter problem see for example Rotkowitz and Lall
(2006), Motee and Jadbabaie (2008), Bamieh et al. (2002) and Rantzer (2009), and the references
therein. These works seek to solve distributive optimal control problems over a network while
the work presented in this paper simply utilizes optimal control to drive the system to a desired
state as determined through an agreement protocol. Any form of control could, in principle, have
been used here. However, optimal control provides an effective method for solving the types of
constrained problems under consideration in this paper.

Relevant work on agreement for systems with constraints or oscillating dynamics include Jad-
babaie et al. (2004), where the stability of the Kuromoto model of coupled nonlinear oscillators
was investigated, and Moore and Lucarelli (2005), Nedic et al. (2008), where constrained con-
sensus was considered. However, in the former case, no constraints were present, and in the
latter case, the proposed solution required that the consensus update law be modified over time
with time-varying weights. In contrast to this, Chipalkatty et al. (2009) presents a simple, static
update law for achieving agreement while satisfying the constraints for a line topology network.
In this paper, we will present a novel method of using a static update law to satisfy global
constraints over not just a line topology, but any arbitrary directed tree graph topology. We will
also present the viability of this approach though a hardware demonstration

The outline of this paper is as follows: In Section 2, we introduce the distributed network of
agents and its constraints, followed by a discussion in Section 3 about the constrained consensus
problem. In Section 4, we show how selecting the initial conditions appropriately leads to an
agreement state that satisfies the global constraints and in Sections 5 and 6, we show how this
method is applied to the networked pendulum example. Simulation results are presented in both
Sections 5 and 6 as well as hardware results in Section 5.

2 Problem Formulation

2.1 Notation

A graph, G, is defined by a node set, V = {1, 2, 3, . . . , N} of N nodes and an edge set E ⊂ V ×V
of unordered node pairs. Two nodes, i and j, are adjacent, or neighbors, if (i, j) ∈ E. The
neighborhood set of a node i ∈ V , Ni, is the set of nodes j ∈ V adjacent to node i. A tree graph
is a specific type of graph where there exists only one path from a particular node to any other
node in the graph. Note that for tree graphs, the number of edges, M , in the graph is given by
M = N − 1. Edges can be given an orientation using σ : E → {−1, 1}, resulting in a directed
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graph, Gσ, for which an associated incidence matrix, D = [Dij ] ∈ R
N×M , has elements given by

Dij =







1 if vertex i is the tail of edge j
−1 if vertex i is the head of edge j
0 otherwise

, (1)

for i = 1 . . . N and j = 1 . . .M .

2.2 Multi-Agent Network

The multi-agent network in this paper is modeled by a tree graph, G = (V,E) where the N
nodes correspond to N agents. The M edges of the network correspond to information exchange
between agents as well as a pairwise constraint. Each edge is assigned an arbitrary orientation, as
given by σ, resulting in an associated incidence matrix, D. Note, however, that the graph is still
an undirected one, so the information exchange is undirected. Representing the network through
an incidence matrix is key here because the incidence matrix will be utilized to construct formal
definitions of the local and global constraints.

In order to illustrate the operations used later, an example network is presented and the
prescibed operations will be performed on this network throughout the paper.

Example Graph:

The example tree graph, Ĝ = (V̂ , Ê) with V̂ = {1, 2, 3, 4, 5} and Ê =
{(1, 2), (1, 4), (4, 3), (4, 5)}, is given with arbitrary edge orientations as presented in Figure (1).

The corresponding incidence matrix, D̂, is

D̂ =













1 1 0 0
−1 0 0 0
0 0 −1 0
0 −1 1 1
0 0 0 −1













. (2)

Figure 1. Tree Graph example, Ĝ

2.3 States and Opinions

Each agent in the network has an associated state and we let xii ∈ R
l denote agent i’s state for

all i ∈ V . The double indices are used here to denote agent i’s opinion of itself, which coincides
with its state, and this notation is now used again to denote an agent’s opinions of other agents.

Each agent in the network will form a state opinion of all the other agents in the network
and share those opinions with its neighbors. Let xij(t) ∈ R

l be agent i’s opinion of what agent
j’s state should be such that all the pairwise constraints in the network are satisfied (i.e agent
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i’s’ state opinion of agent j). The collection of these opinions is denoted by the state opinion
vector, xi, for each agent, where xi = [xi1, . . . , xii, . . . xiN ] for all i ∈ V . A form of this vector
will eventually become the quantity used in the proposed agreement protocol.

2.4 Pairwise Constraints

Let each edge with arbitrary orientation denote an associated linear pairwise constraint on agents
i and k for all nodes i, k ∈ V where (i, k) ∈ E. This linear pairwise constraint between agents is
defined as

P (xii − xkk) = b, (3)

with vertex i being the tail of the edge, b ∈ R
p, and P ∈ R

p×l. Note that P has full row rank.
This particular form for the pairwise constraints was chosen because it is linear with respect
to the difference in the agent’s states, allowing for relative constraints, e.g. for synchronizing
movement between the agents.

2.5 Constraint Definition

Given a pairwise constraint for every edge, the global constraint for the network is defined as the
collection of all pairwise constraints and is satisfied when the state of every node in the network
satisfies all pairwise constraints. An agent’s local constraints are defined as the set of all pairwise
constraints it shares with its neighbors. When a particular node’s state satisfies all the pairwise
constraints with its neighbors, this agent’s state satisfies its local constraints.

The following is a discussion on how to construct the local constraints for each node and the
global constraints for the network given the graph, G, and the incidence matrix, D. Since the
incidence matrix gives us a represention of all the edges in the network, the incidence matrix
will first be utilized to construct an expression for the global constraint on the network.

Let xg ∈ R
lN be a state opinion vector such that all it’s state opinions satisfy all the pairwise

constraints in the network. Then, the global constraint is defined as

(DT ⊗ P )xg = 1⊗ b, (4)

where ⊗ denotes the Kroenecker product and 1 is a M dimensional vector with all entries being
1.

From the example network G, the global constraint, (DT ⊗ P )xg = 1 ⊗ b, is satisfied if, for
xg = [x11, . . . , x55]

T ,









P −P 0 0 0
P 0 0 −P 0
0 0 −P P 0
0 0 0 P −P





















x11

x22

x33

x44

x55













=









b
b
b
b









. (5)

Here, since each row corresponds to an edge, this expression represents every pairwise constraint
in the network. The following operations isolate the rows of the transposed incidence matrix
that correspond to edges that node i is incident with and apply the pairwise constraints to these
edges to arrive at an expression for the local constraints of agent i.

For all i ∈ V , we define the diagonal matrix, F i ∈ R
M×M , whose mth diagonal element is 1 if

Dim 6= 0 and 0 otherwise, as well as the complement, F ic ∈ R
M×M , which is a diagonal matrix

whose mth diagonal element is 0 if Dim 6= 0 and 1 otherwise, for i = 1 . . . N and m = 1 . . .M .
To illustrate this further, the F i and F ic matrices are shown for agent 4 for the example graph
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Ĝ as

F̂ 4 =









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, F̂ 4c =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Note F̂ 4 contains a 1 in the column or row corresponding to the edges agent 4 is incident with
and vice versa for F̂ 4c

Then, let Ti ∈ R
M×N be defined as

Ti = F iDT

with the compliment, T c
i , being

T c
i = F icDT .

Note that F i + F ic = I, where I is the M ×M identity matrix. Again, the example is worked
further to show the matrices resulting from these operations. Ti and T c

i for agent 4 are

T̂4 =









0 0 0 0 0
1 0 0 −1 0
0 0 −1 1 0
0 0 0 1 −1









,

T̂ c
4 =









1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









.

Lemma 2.1: Given matrices Ti and T c
i for every agent i in the network for i = 1, . . . , N ,

then T c
i + Ti = DT

Proof

T c
i + Ti = F iDT + F icDT =

= (F i + F ic)DT = IDT = DT

�

Here, the rows of Ti ∈ R
M×N encode only the edges that node i is incident with while the

remaining rows have all elements as zero. Similarly, the rows of T c
i encode the edges that vertex

i is not incident with and edges incident with node i have all zero elements.
Additionally, a vector is needed to equate the appropriate constraints in each row to b. In

other words, each non-zero row in (Ti ⊗ P )x must equal b. The vector, f i = [f i
m]Mm=1 ∈ R

M , is
defined as having its mth element be 1 if Tim 6= 0 or 0 otherwise, for i = 1 . . . N and m = 1 . . .M .
Continuing with our example network, f̂4 = [0 1 1 1]T .

Lemma 2.2: Given the vector, f i, for every agent i in the network for i = 1, . . . , N , then

N
∑

i=1

f i = 21.
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Proof For every edge j in the network, there are two agents incident with that edge. Therefore,
a 1 will appear in the jth element for two agents, resulting in a 2 in every element of the sum
of f i’s. �

The matrix, Ti, can now be used to define the local constraints on agent i. Let xi satisfy
pairwise constraints that involve agent i, such that

(Ti ⊗ P )xi = f i ⊗ b, (6)

for i = 1 . . . N . In other words, only the pairwise constraints agent i can satisfy are represented
in (6). The local constraints for agent 4 in the graph example Ĝ, would be satisfied if, for

x4 = [x41, . . . , x45]
T , (T̂4 ⊗ P )x4 = f̂4 ⊗ b or









0 0 0 0 0
P 0 0 −P 0
0 0 −P P 0
0 0 0 P −P





















x41

x42

x43

x44

x45













=









0
b
b
b









.

Note that in the example, agents 2 and 4 are not neighbors so agent 4 has no basis on which
value to assign to x42. Also note that this value is not required for agent 4’s local constraints to
be satisfied. However, in order to utilize the consensus equation , these agents must assign state
opinions to non-adjacent agents.

In summary, each agent assigns a state opinion value to neighbors based on the initial state
values communicated such that they meet the local constraints, (6). Then, the consensus equation
will be used to reach an agreement on what the state opinion vectors should be. This agreed
upon state opinion vector needs to satisfy the global constraint, (4). So the problem, here, is
to determine how each agent should initialize their state opinion vectors so that the global
constraint is satisfied by the result of the consensus equation.

3 Applying the Consensus Equation

Again, the goal of this work is to find a state opinion vector that satisfies the global constraint
among distributed agents using only local interactions. In order to accomplish this, the consensus
algorithm will be used to have the agents come to an agreement on such a state. It should be
noted that each agent’s initial state opinions will satisfy the local constraints for that agent only.

Recall xi is the quantity over which the consensus equation will be run and it is desired that
the resulting quantity satisfies the global constraint. For agents in the neighborhood of agent
i, the initial state opinions are made based on the states of the agent as communicated by
those agents. However, for agents not in the neighbodhood of agent i, state opinions are still
required to construct the state opinions vector and utilize the consensus equation. However, the
lack of communication means that initializing the state opinion vector with state opinions for
non-adjacent agents is a problem. The following discusses how to deal with this problem by
first simply setting these values to zero and showing why the resulting agreement state does not
satisfy the global constraint.

3.1 Attempt 1: Filling the state opinion vector with 0’s

For undirected connected graphs, the consensus equation, as given by

ẋi(t) = −
∑

kεNi

(xi(t) − xk(t)) for i = 1 . . . N, (7)



July 19, 2011 22:33 International Journal of Control Tree˙Journal˙tCON

International Journal of Control 7

converges to the invariant centroid, xc ∈ R
Nl, where

xc =
1

N

N
∑

i=1

xi(0) (8)

(See, for example, ?) Note that the consensus algorithm requires that agents communicate their
state opinion vectors with their neighbors and vice versa.

Suppose the initial state opinions of non-adjacent agents are simply set to zero. Using the
example graph, it will be shown that the resulting agreement state does not satisfy the global
constraint although the initial conditions of each agent’s state opinion vector satisfy that agent’s
local constraints. Let the initial state opinion vectors be

x1 =













x11

x12

0
x14

0













, x2 =













x21

x22

0
0
0













, x3 =













0
0
x33

x34

0













,

x4 =













x41

0
x43

x44

x45













, x5 =













0
0
0
x54

x55













.

So, the resulting agreement state is

xc =













x11+x21+x41

5
x12+x22

5
x33+x43

5
x14+x34+x44+x54

5
x45+x55

5













. (9)

Given that the inital state opinion vectors satisfy the local constraints,

(T̂1 ⊗ P )x1 = f̂1 ⊗ b =









Px11 − Px12

Px11 − Px14

0
0









=









b
b
0
0









, (10)

(T̂2 ⊗ P )x2 = f̂2 ⊗ b =









Px21 − Px22

0
0
0









=









b
0
0
0









, (11)

(T̂3 ⊗ P )x3 = f̂3 ⊗ b =









0
0

Px34 − Px33

0









=









0
0
b
0









, (12)
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(T̂4 ⊗ P )x4 = f̂4 ⊗ b =









0
Px41 − Px44

Px44 − Px43

Px44 − Px45









=









0
b
b
b









, (13)

and

(T̂5 ⊗ P )x5 = f̂5 ⊗ b =









0
0
0

Px54 − Px55









=









0
0
0
b









. (14)

The result of plugging values from the local constraints into the global constraint is that

(D̂T ⊗ P )xc =
2

5









b+ 1
2Px41

b+ 1
2P (x21 − x34 − x54)
b+ 1

2P (x14 + x54)
b+ 1

2P (x14 + x34)









6=









b
b
b
b









(15)

and therefore the agreement state does not satisfy the global constraint.
As a result, it is proposed that local information (i.e the state opinion vector shared by an

agent’s neighbors) be used to initialize the state opinions for non-adjacent agents such that the
extra terms in each row of (15) will be canceled, i.e. x41 in row 1, x21, x34, x54 in row 2, x14, x54

in row 3 and x14, x34 in row 4. In addition, a gain value will be needed to cancel the 2
5 term

in (15). By doing this, it will be shown that the resulting agreement state satisfies the global
constraint.

3.2 Attempt 2: Initial Condition Definition by Propogation

It is proposed that the state opinions of agents not adjacent to agent i should be assigned values
in xi such that the equation

(T c
i ⊗ P )xi = 0M (16)

is satisfied, where 0M is a M dimensional vector with all elements being zero. Note that this
requires that each agent a priori knows the structure of the network in the form of the incidence
matrix.

For each agent, this equation is sufficient to choose state opinion values for every non-adjacent
agent. For any agent i, there are di agents adjacent to agent i. Therefore, there are N − 1 − di

agents not adjacent to agent i, which implies (N − 1 − di)l state opinions are undefined. T c
i

contains (M − di)l rows that represent pairwise constraints. This results in (M − di)l equations
and (N − 1 − di)l unknowns.

As a result, effectively choosing initial state opinions is feasible only if M = N − 1, i.e. G
is a tree graph. For graphs with cycles, M > N − 1, therefore, the system of equations is
overdetermined. For incomplete graphs, M < N − 1, resulting in a system of equations that is
insufficient to solve for all the initial state opinions.

To give further insight on the resulting state opinion assignments, we will return to the example
graph, G. To continue the example for agent 4, the intermediate matrix T c

4 results in

T c
4 =









1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









.
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So, we assign non-adjacent agents state opinions according to

(T c
4 ⊗ P )x4 =









P (x41 − x42)
0
0
0









=









0
0
0
0









.

x41 is a communicated value because agent 1 is adjacent to agent 4, so x42 is initially assigned
the same value as x41, i.e. it is assigned the value of the agent adjacent to agent 4 that is in the
path from agent 2 to agent 4. Similarly for agent 5,

(T c
5 ⊗ P )x5 =









P (x51 − x52)
P (x51 − x54)
P (x54 − x53)

0









=









0
0
0
0









reveals that as x54 is defined through communication, x51 and x53 are set to x54. As a result, x52

is also set to the value of x54. Figures 2 and 3 show this graphically for agents 4 and 5. Nodes of
the same color denote that the initial state opinions are equal from the view of the red colored
node.

Figure 2. Initial conditions propogation for example graph agent 4. The state opinion for non-adjacent agent 2 is assigned
the same value as adjacent agent 1.

Figure 3. Initial conditions propogation for example graph agent 5. The state opinion for non-adjacent agents 1, 2, and 3
are assigned the value of adjacent agent 4.

In other words, the state opinion assignments propagate out into the network from the neigh-
borhood of agent i as shown in Figure4. By setting the state opinion of a non-adjacent agent j
to the same value an adjacent agent on the path from agent i to the non-adjacent agent j, we
are guaranteeing that the pairwise constraints on that agent results in 0l in agent i’s opinion.

As a result, each element of xi is defined and it will now be shown that this choice of initial
conditions for the consensus equation will result in an agreement state that satisfies the global
constraint. The quantity used in the consensus equation is now denoted, Xi(0) = γxi for i =
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Figure 4. Directed Tree Graph example for initial conditions propagation. The figure represents the view of the graph from
the perspective of agent X. Agent X assigns state opinions for non-adjacent agents according to the colors shown in this
diagram: in agents X’s state opinion vector, values of non-adjacent agents are set to values of agents adjacent to agent X
that are in the path from the non-adjacent agent to agent X.

1 . . . N with Xi ∈ R
Nl and gain γ ∈ R. The consensus equation,

Ẋi(t) = −
∑

kεNi

(Xi(t) −Xk(t)) for i = 1 . . . N (17)

results in

Xc =
1

N

N
∑

i=1

Xi(0) =
γ

N

N
∑

i=1

xi (18)

as the final agreement state, Xc ∈ R
Nl.

It is required that this agreement state satisfy the global constraint where each agent’s state
opinion vector satisfies the pairwise constraint for each edge in the graph. Therefore, it is needed
that

(DT ⊗ P )Xc = 1⊗ b. (19)

To verify that the agreement state satisfies the global constraint, we can plug in the RHS of (18)
for Xc and rewrite the global constraint, (19) as

(DT ⊗ P )Xc = (DT ⊗ P )
γ

N

N
∑

i=1

xi

=
γ

N

N
∑

i=1

(DT ⊗ P )xi. (20)

Using (6), (20) can be written as

=
γ

N

N
∑

i=1

((Ti + T c
i ) ⊗ P )xi. (21)
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By the distributive property of the Kronecker product and (6), (21) becomes

=
γ

N

N
∑

i=1

(Ti ⊗ P )xi +
γ

N

N
∑

i=1

(T c
i ⊗ P )xi

=
γ

N

N
∑

i=1

f i ⊗ b+
γ

N

N
∑

i=1

(T c
i ⊗ P )xi. (22)

Recalling (6), (22) is rewritten as

=
γ

N
21 ⊗ b+

γ

N

N
∑

i=1

(T c
i ⊗ P )xi. (23)

Plugging (16) into (23) results in

(DT ⊗ P )Xc =
γ

N
21 ⊗ b

Plugging in γ = N
2 , it is shown that

(DT ⊗ P )Xc = 1⊗ b.

Therefore, the global constraint is satisfied by the final agreement state through the manipulation
of the initial conditions of the consensus equation. This leads us to the following theorem.

Theorem 3.1 : If the state opinions of agents not adjacent to agent i in Xi are assigned values

such that (T c
i ⊗ P )xi = 0M and γ = N

2 , then the resulting agreement state satisfies the global

constraint, (DT ⊗ P )Xc = 1⊗ b.

4 2D Pendulum Dynamics and Control

To investigate the viability of this approach, we apply the algorithm to the synchronization of a
distributed network of planar mass-cast pendula. The planar dynamics of the system allows us
to analyze a network that is modeled by a simple form of the tree graph, a line graph.

4.1 Dynamics

The dynamics of a single cart-pendulum system (referred to as an agent) can be derived using
Lagrange’s Equations (e.g. Spong (1989))

d

dt
(
∂L

∂q̇
) −

∂L

∂q
= Q, L = K − T,

where K is the kinetic energy of the system, T is the potential energy of the pendulum, Q is
the parameterized forces acting on the system, and L is the Lagrangian, where q is the vector
of parameters, [v θ]T as shown in Figure 5.

We can define the kinetic and potential energy as well as the parameterized forces acting on
the system. Based on Figure 5, the only parameterized force, Q, on the system is the force, F ,
applied in the v direction. This force will be the control input, u, to the system. No damping
force is considered in this model as pendula can be approximated as zero damping systems. The
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Figure 5. Pendulum Diagram

resulting equations of motion are

θ̈ =−
v̈

l
cos(θ) −

g

l
sin(θ)

v̈ =−
mlθ̈

M +m
cos(θ) +

mlθ̇2

M +m
sin(θ) +

u

M +m
.

4.2 Linearization

These dynamics can be linearized about the θ = 0, θ̇ = 0, v̇ = 0 equilibrium point. Here, we
denote vi and θi as the velocity and angle associated with the ith pendulum. As such, the single
pendulum system for the ith pendulum is given as ẋii(t) = Aixii(t) +Biui(t), where:

xii =









vi

v̇i

θi

θ̇i









, Ai =









0 1 0 0
0 0 0 0
0 0 0 1

0 0 −(M+m)g
Ml

0









, Bi =









0
1
M

0
−1
Ml









.

Note that this pair, (Ai, Bi), is completely controllable.
For a N planar pendulum system, the system can be written as ẋ(t) = Ax(t) +Bu(t), where

xT =
[

xT
11, . . . , x

T
NN

]

, u =
[

u1 . . . uN

]

′T

A =







A1 0
. . .

0 AN






, B =







B1 0
. . .

0 BN






.

Note that in this paper, Ai = Aj and Bi = Bj for i, j = 1, . . . , N , since the pendula are assumed
to be homogeneous.

4.3 Assumptions

Throughout this section, some assumptions are made and here we gather the assumptions for
the sake of easy reference. We first assume that each cart-pendulum system can measure its own
cart position, cart velocity, pendulum angle, and pendulum angular velocity. It is also assumed
that pendulum angles and angular velocities are small enough so that the linearized dynamics



July 19, 2011 22:33 International Journal of Control Tree˙Journal˙tCON

International Journal of Control 13

can be used to model the system behavior. Damping is also assumed to be small enough to
approximate it as exerting zero forces on the system. It is also assumed adjacent agents can
communicate state opinion vectors with each other.

4.4 Planar Pendula Network

Since the pendula lie in a plane, the natural resulting network topology is a line graph as in
Figure 6.

Figure 6. N Pendula Line Graph

The corresponding pairwise constraint is that the adjacent pendula achieve synchronization or,
more specifically, that they achieve identical angles, angular velocities, and cart velocities while
maintaining a set distance, d, between the carts. In terms of the pendula states, it is required
that vi − vj = d, v̇i − v̇j = 0, θi − θj = 0, θ̇i − θ̇j = 0, i.e. P (xi − xj) = b where P = I4 and
b = [d 0 0 0]T .

With the network topology and pairwise constraints defined, each agent must define its state
opinion vector. In addition, the global constraint can be defined using (4) and it is clear that
we wish to drive the system to a state that satisfies this constraint. What must now be defined
is how the system will be driven to such a state, once it is found, and how the state opinion
vectors will be initialized for both adjacent and non-adjacent agents. The following constrained
optimal control problem will give us both a way to initialize the state opinion vectors for each
agent as well as a control law to drive each pendula to the agreement state that results from the
consensus equation.

4.5 Optimal Control

For the following control law derivation, we treat a collection of pairwise constraints as a terminal
constraint on the linearized N agent system. This linear state constraint is denoted by Cx(T ) =
k.

The associated minimum energy, point-to-point transfer control problem with terminal time,
T , becomes

min
u
J(u(t)) =

∫ T

0
||u(t)||2dt (24)

such that

ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

x(T ) = xT ,

where we assume that xT satisfies the constraints, i.e. CxT = k. The solution to this common
optimal control problem is

uopt(xT ) = BT eA
T (T−t)W−1(xT − eATx0),
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where the Grammiam, W , is invertible and positive definite due to the controllability of the
system. Plugging uopt(xT ) back into the cost gives
J(uopt(xT )) =

= (eATx0 − xT )T e−AT TW−1e−AT (eATx0 − xT ).

Since xT is not unique, the goal now is to find the xT that minimizes (25), which can be
formulated as a quadratic programming problem,

min
xT

1

2
xT

TQxT +RxT

such that CxT = k, where

Q = 2e−AT TW−1e−AT

R = −2xT
0W

−1e−AT .

The unique solution,

xTopt
= Q−1(−RT + CT (CQ−1CT )−1(k + CQ−1RT ), (25)

gives the control,

uopt(xTopt
) = BT eA

T (T−t)W−1(xTopt
− eATx0). (26)

The enabling observation now is that we can use (25) to initialize the state opinions of adjacent
agents as to where they should be driven such that the local constraints are satisfied and sub-
sequently use these state opinions to initialize state opinions of non-adjacent agents. Then, the
consensus equation can be utilized to update each pendulum’s state opinion vectors. As shown
earlier, a final state opinion vector will be found that satisfies the global constraint for the entire
network and the control law, (26), can be used to drive the system to this state, synchronizing
the pendula.

4.6 System Control: Consensus Algorithm + Optimal Control

The following summarizes the algorithm used. First, each agent communicates its current state
to its neighbors. Then, using these states, each agent calculates its initial state opinion for its
neighbors using (25). Following this, each agent then assigns state opinions to non-adjacent
agents using (??). These values are now collected in a state opinion vector for each agent. Next,
each agent will communicate its state opinion vector at each time instant and use the consensus
equation to update its state opinion vector. Finally, the state opinion vector is then used in (26)
to calculate a control input. The state opinion vector update and control input calculation are
repeated at every time instant until the terminal time, T .

Note that this implies that the consensus equation converges prior to the terminal time of
the optimal control problem. For example, for an agent i not on the boundary(i.e. not agent
1 or N), the agent recieves the state of agent i − 1 and agent i + 1 and creates the vector
x(0) = [xi−1 xi xi+1]

T with

C =

[

P −P 0
0 P −P

]

(27)
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and k = [bT bT ]T . These quantities are then used in (25) to initialize the state opinions of the
agents two neighbors. After updating the state opinion vector through the consensus equation,
agent i uses the values Xi(t) to calculate its control at time t, for i = 1, . . . , N . Let Xii(t) be the
ith element of Xi(t) such that the following control law is calculated,

ui(Xii(t)) = BT
i e

AT
i (T−t)Wi(t)

−1(Xii(t) − eAiTxii(t)). (28)

Recall xii is the current state of agent i and Ai and Bi are the corresponding single pendulum
state space model. Wi(t) is the Grammian for the pair (Ai, Bi) from time t to T . We now have
a control that drives the entire network to a terminal state that satisfies the global constraint.

4.7 Simulation Results

The stated control laws are implemented in a MATLAB simulation of the presented pendulum
dynamics. Simulations are run with the following parameters: g = 9.8 m/s, l = 0.30 m, M =
1 kg, m = 0.2 kg, and d = 1.0 m for the pendulum model. It should be noted that in order for
this distributed control strategy to be effective, the consensus algorithm must converge to the
agreement value before the specified final time in the optimal control law, which in this case is
20 seconds.

In Figure 7, the results are shown for a five pendula scenario using the optimal control law and
the consensus algorithm. As a comparision, the same initial conditions are run for the centralized
case, where full network state information is known to all agents, i.e. only the optimal control
law is needed without the consensus equation. The results of this case are shown in Figure 8.

It can be seen for both cases that at 20 seconds, the distance between adjacent pendula is
close to 1 m, as prescribed, while the velocities, angles, and angular velocities are identical for
all the pendula. The animations of these scenarios are given in Figure 9.

4.8 Experimental Results

Simulations of the proposed decentralized control system were deemed successful, so to further
show the viability of this approach, a physical hardware demonstration was built. The testbed
consists of three planar mass cart pendula placed on three different parallel tracks as shown
in Figure 12(b). The goal is to synchronize the pendula swinging with zero cart position and
velocity after 10 seconds starting from an unsychronized initial condition. The representative
graph of the communication exchange and constraint directions is a 3 node line tree graph in
the same configuration as Figure 6 with N = 3.

The demonstration structure and mass cart-pendula was constructed using Lego blocks as
they serve as a effective rapid prototyping platform. Aluminum tubing was used as a track for
the mass-cart pendula to slide upon and a Vex Sprocket chain was used to propel the carts.
The effective pendulum length was 32.8 cm. The chain sprockets were driven by AX12+ Servo
motors as part of the Robotis Bioloid Robotics Kit. The Servo motors are connected to a CM-5
micro-controller which receives commands over a serial communication port from a PC. The
control software is implemented on the PC in a Java programing environment.

The AX12+ servo motors are equipped with integrated encoders relaying position and velocity
sensor information at 0.10 second update rate with a 0.0051 radian resolution. A Nubotrics WW-
02 WheelWatcher optical encoder was mounted to each pendulum to sense pendulum angle and
angular velocity. Data was updated at a 0.1 sec rate to match the AX12+ sensor rate at a 0.049
radian resolution. This particular sensor was chosen for its floating optical wheel that minimizes
friction.

The system hardware/software architecture is shown in Figure 10. Motor commands are sent
out as velocity commands as the motors cannot be controlled by force commands. Software for
the CM-5 is written in C code. Sensor data is passed through a 4th order FIR low-pass filter
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(b) Velocity.
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(d) Angular Velocity.

Figure 7. Synchronization control of 5 distributed pendula results showing final positions are 1m apart with identical final
velocity, angle, and angular velocity.

designed in MATLAB.
The initial conditions for the demonstration run as seen in the attached video were created by

running each pendulum at a sinusoid function of different phase shifts at the natural frequency
of the pendulum, 0.8688 Hz , for 5 sec. Then, the velocity control commands are then applied
for 10 sec. As shown in Figures 11, at the end of the 10 sec. period, the pendulum angles and
anglular velocities are within 0.049 radians of each other implying the pendulum swinging is
synchronized within that error. The data in the plots are smoothed using a 4th order spline in
MATLAB and the 0.049 radian angle resolution error is compensated for in the pendulum angle
data.

5 3D Pendulum Dynamics and Optimal Control

We, now, want to show the versatility of this technique by applying it to a network system
modeled by any arbitrary tree graph. The application is extended to the synchonization of
a distributed network of spherical pendula. We develop the application further by defing the
dynamics, control, and consensus problem associated with this example. The main differences
from the planar example are the network topology and pendulum dynamics. The consensus
algorithm and control laws are similar to the planar pendula case.
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(b) Velocity.
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(d) Angular Velocity.

Figure 8. Synchronization control of 5 centralized pendula results showing final positions are 1m apart with identical final
velocity, angle, and angular velocity.

5.1 3D Pendulum Dynamics

The dynamics of a single cart-pendulum system (referred to as an agent) can be derived using
Lagrange’s Equations (e.g. Spong (1989)). We can define the parameters and forces acting on
the system through Figure 13(a). The only parameterized forces acting on the system, Fv and
Fz, applied in the v and z directions, will cause oscillations of the θ and ψ angles. These forces
will be the control inputs, uv and uz, to the system. No damping force is considered in this model
as pendula can be approximated as zero damping systems. However, these dynamics cannot be
linearized about the θ = 0 hanging equilibrium point because this point represents a singularity
in the Jacobian of the system. As a result, Yang et al. (2000) propose an approximation of the
dynamics given that the angle from vertical, θ stays under 10 degrees. When this is the case,
the pendulum can be projected onto the v-w and z-w planes such that new angles, α and β, can
be defined. This separates the system such that β changes purely as a result of uz and α as a
result of uv. For small angles, this approximation assumes the projected pendulum length is l.
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Figure 9. Animation of 5 pendula showing initial conditions and final synchronization for both distributed and centralized
cases.

Figure 13(b) shows the resulting system and the resulting equations of motion are

v̈ =−
mlα̈

M +m
cos(α) +

mlα̇2

M +m
sin(α) +

uv

M +m

z̈ =−
mlβ̈

M +m
cos(β) +

mlβ̇2

M +m
sin(β) +

uz

M +m

α̈ =−
v̈

l
cos(α) −

g

l
sin(α)

β̈ =−
z̈

l
cos(β) −

g

l
sin(β).
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Figure 10. System architecture of 3 pendula platform.

0 5 10 15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Angle vs Time

Time

A
ng

le

(a) Pendulum Angle.

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5
Anglular Velocity vs Time

Time

A
ng

lu
la

r 
V

el
oc

ity

(b) Pendulum Angular Velocity.

Figure 11. Demonstration results showing synchronization of experimental pendula.

The resulting single pendulum system linearized about the α = 0, α̇ = 0, β = 0, β̇ = 0, v̇ = 0,
ż = 0 equilibrum point is ẋii(t) = Aixii(t) +Biui(t), where

xii =

























vi

v̇i

zi
żi
αi

α̇i

βi

β̇i

























, Bi =

























0 0
1
M

0
0 0
0 1
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0 0
−1
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0
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0 −1
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(a) Demonstration testbed. (b) Carts.

(c) Servo Motors.

Figure 12. Demonstration Platform Images.

Note that this pair, (Ai, Bi), is completely controllable.
For a N planar pendulum system, the system can be written as ẋ(t) = Ax(t) +Bu(t), where

x(t) =
[

xT
11(t), . . . , x

T
NN (t)

]T
, (29)

u(t) =
[

u1(t) . . . uN (t)
]T
,

A =







A1 0
. . .

0 AN






, B =







B1 0
. . .

0 BN






.

Recall that in this paper, Ai = Aj and Bi = Bj for i, j = 1, . . . , N , since the pendula are
assumed to be homogeneous. For this example, we will be using the example graph, G, as
our a representation of the distributed cart-pendula system. Given this system, a control law is
sought to drive these pendula in such a way that they achieve identical angles, angular velocities,
and cart velocities while maintaining a set distance, δ, between the carts. This requirement will
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(a) Pendulum Diagram with hanging singularity. (b) Modified Pendulum Diagram with small angle
approximation.

Figure 13. Pendulum Diagrams

be the pairwise constraints enforced between adjacent agents i and j such that (3) is enforced,
for

P =
[

I8×8

]

(30)

b =
[

δ1 0 δ2 0 0 0 0 0
]T

(31)

with distances δ1 ∈ R
1 in the Px direction and δ2 ∈ R

1 in the Pz direction such that δ =
√

δ21 + δ22 .
I8×8 is the identity matrix. It should be noted that δ can be different for each pairwise constraint
on the graph.The assumptions made about this system are identical to the assumptions made
in the planar pendula case in the last section.

5.2 System Control: Consensus Algorithm + Optimal Control

Now, that the system dynamics and pairwise constraints are defined for a given network graph,
we define the consensus problem to be the same as the planar case. The only difference is that
we are now dealing with a larger class of network topologies, trees graphs instead of just line
graphs. Let di indicate the number of adjacent agents to agent i for all i ∈ Vp. Each pendulum
can calculate state opinions for its neighbors based on its state, xii(t) ∈ R

8, and the state of
its di adjacent agents, xjj(t) ∈ R

8 for j ∈ Ni. This local state opinion vector is defined as
Xdi

(t) = [y1, . . . , xi, . . . , ydi
]T ∈ R

8×N , where

yk =
{

xjj(t) where j is the kth agent in Ni (32)

for k = 1, . . . , di and j = 1, . . . , N . For agent i, Adi
and Bdi

are the corresponding pendula state
space models for di adjacent agents. Wdi

(t) is the Grammian for the pair (Adi
, Bdi

) from time t
to T .

Here, each pendulum can initially solve for a optimal terminal state based on the local state
opinion vector that satisfies its local constraint at t = 0. Let τi be the matrix Ti with all columns
with every element being zero removed. From Section 5, the optimal terminal state, used to
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initialize the state opinions for adjacent agents, is given by the unique solution,

xiT = Q−1
i (−RT

i + CT
i (CiQ

−1
i CT

i )−1(pi + CiQ
−1
i RT

i ), (33)

where

Qi = 2e−AT
diTW−1

di e
−AdiT (34)

Ri = −2XT
di

(0)W−1
di e

−AdiT (35)

Ci = τ i ⊗ P (36)

pi = fi ⊗ b. (37)

The state opinion vector, xi, for this problem will be defined using xiT for adjacent agents state
opinions and the state assignments in (16) for non-adjacent agent state opinions.

Then, Xi(0), the initial conditions of the consensus equation, are defined from xi and γ. After
this, the consensus equation updates the state opinion vector, Xi(t), for each pendulum based on
the state opinion vectors of its neighbors. The state opinions for agent i can be extracted from
the state opinion vector, Xi(t), and used to calculate an optimal control law to drive agent i.
After every update, the new consensus values of agent i are used in the optimal control presented
in Chipalkatty et al. (2009). The control law, at time t is given by (26) for i = 1, . . . , N and the
control input for agent i is ui ∈ R

2. We now have a control that drives the entire network to a
terminal state that satisfies the terminal constraint.

It should be noted that the pendula converge to a set distance δ apart and have equal angles
and angular velocities. They also have equal cart velocities; however, these velocities are not
guaranteed to be zero. It should also be noted that in order for this distributed control strategy
to be effective, the consensus algorithm must converge to the agreement value before the specified
final time in the optimal control law, T .
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Figure 14. 5 Pendulum simulation results showing position formation and identical velocity. X and Z Positions plots show
that the adjacent agents maintain inter-agent distance while the velocity plots show identical velocities after the 20 s mark.
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Figure 15. 5 Pendulum simulation results showing identical angles and angular velocity after the 20 s mark showing
pendulua synchronization.

5.3 Simulation Results

The stated control laws are implemented in a MATLAB simulation of the presented pendulum
dynamics. Simulations are run with the following parameters: g = 9.8 m/s, l = 0.30 m, M =
1 kg, and m = 0.2 kg for the pendulum model. For each edge, a different δ was assigned: edge
1 (δ1 = 1.0 m, δ2 = 2.0 m), edge 2 (δ1 = −5.0 m, δ2 = 6.0 m), edge 3 (δ1 = 3.0 m, δ2 = 1.0
m), and edge 4 (δ1 = −4.0 m, δ2 = 3.0 m) It should be noted that in order for this distributed
control strategy to be effective, the consensus algorithm must converge to the agreement value
before the specified final time in the optimal control law, which in this case is 20 seconds.

In Figures 14 and 15, the results are shown for a five pendula scenario using the optimal
control law and the consensus algorithm.

It can be seen that at 20 seconds, the distance between adjacent pendula is close to the
respective δ’s, as prescribed, while the velocities, angles, and angular velocities are identical for
all the pendula. The animations of these scenarios are given in Figures 16(a) and 16(b).

6 Conclusions

The main contribution of this paper is a method for reaching agreement among distributed
agents (organized in a tree graph topology) such that a globally defined constraint is satisfied
over the network given only local information. This method only requires a priori knowledge of
the network topology and a static update law, that only needs to be initialized and updated
using local information.

In other words, we just need to set-up the each agent’s initial state opinion vector, which
can be done using information communicated only from its neighbors, and then simply run the
standard consensus equation (as given in Mesbahi and Egerstedt 2010) over the network. The
result of the consensus equation is a network state that satisfies the global constraint.

This technique was applied to the control of a distributed network of linearized planar and
spherical pendula. This algorithm, together with point-to-point transfer optimal control, was
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(a) 5 Pendulum Simulation showing initial conditions.
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Figure 16. 5 Pendulum Simulation

able to drive these linear systems to a terminal manifold such that the manifold synchronizes
the pendula oscillations and maintains a desired cart formation.

Future research directions include
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