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Abstract

We describe an elementary algorithm to build convex inner approximations of
nonconvex sets. Both input and output sets are basic semialgebraic sets given as
lists of defining multivariate polynomials. Even though no optimality guarantees
can be given (e.g. in terms of volume maximization for bounded sets), the algorithm
is designed to preserve convex boundaries as much as possible, while removing re-
gions with concave boundaries. In particular, the algorithm leaves invariant a given
convex set. The algorithm is based on Gloptipoly 3, a public-domain Matlab pack-
age solving nonconvex polynomial optimization problems with the help of convex
semidefinite programming (optimization over linear matrix inequalities, or LMIs).
We illustrate how the algorithm can be used to design fixed-order controllers for
linear systems, following a polynomial approach.
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1 Introduction

The set of controllers stabilizing a linear system is generally nonconvex in the parameter
space, and this is an essential difficulty faced by numerical algorithms of computer-aided
control system design, see e.g. [4] and references therein. It follows from the derivation
of the Routh-Hurwitz stability criterion (or its discrete-time counterpart) that the set
of stabilizing controllers is real basic semialgebraic, i.e. it is the intersection of sublevel
sets of given multivariate polynomials. A convex inner approximation of this nonconvex
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semialgebraic stability region was obtained in [4] in the form of linear matrix inequali-
ties (LMI) obtained from univariate polynomial positivity conditions, see also [9]. Convex
polytopic inner approximations were also obtained in [16], for discrete-time stability, using
reflection coefficients. Convex inner approximations make it possible to design stabiliz-
ing controllers with the help of convex optimization techniques, at the price of loosing
optimality w.r.t. closed-loop performance criteria (H2 norm, H∞ norm or alike).

Generally speaking, the technical literature abounds of convex outer approximations of
nonconvex semialgebraic sets. In particular, such approximations form the basis of many
branch-and-bound global optimization algorithms [15]. By construction, Lasserre’s hier-
archy of LMI relaxations for polynomial programming is a sequence of embedded convex
outer approximations which are semidefinite representable, i.e. which are obtained by
projecting affine sections of the convex cone of positive semidefinite matrices, at the price
of introducing lifting variables [6].

After some literature search, we could not locate any systematic constructive procedure
to generate convex inner approximations of nonconvex semialgebraic sets, contrasting
sharply with the many convex outer approximations mentioned above. In the context of
fixed-order controller design, inner approximations correspond to a guarantee of stability,
at the price of loosing optimality. No such stability guarantee can be ensured with outer
approximations.

The main contribution of this paper is therefore an elementary algorithm, readily imple-
mentable in Matlab, that generates convex inner approximations of nonconvex sets. Both
input and output sets are basic semialgebraic sets given as lists of defining multivariate
polynomials. Even though no optimality guarantees can be given in terms of volume
maximization for bounded sets, the algorithm is designed to preserve convex boundaries
as much as possible, while removing regions with concave boundaries. In particular, the
algorithm leaves invariant a given convex set. The algorithm is based on Gloptipoly 3,
a public-domain Matlab package solving nonconvex polynomial optimization problems
with the help of convex LMIs [7]. Even though the algorithm can be useful on its own,
e.g. for testing convexity of semialgebraic sets, we illustrate how it can be used to design
fixed-order controllers for linear systems, following a polynomial approach.

2 Convex inner approximation

Given a basic closed semialgebraic set

S = {x ∈ R
n : p1(x) ≤ 0 . . . pm(x) ≤ 0} (1)

where pi are multivariate polynomials, we are interested in computing another basic closed
semialgebraic set

S̄ = {x ∈ R
n : p̄1(x) ≤ 0 . . . p̄m̄(x) ≤ 0} (2)

which is a valid convex inner approximation of S, in the sense that

S̄ ⊂ S.
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Ideally, we would like to find the tightest possible approximation, in the sense that the
complement set S\S̄ = {x ∈ S : x /∈ S̄} is as small as possible. Mathematically we may
formulate the problem as the volume minimization problem

inf
S̄

∫

S\S̄
dx

but since set S is not necessarily bounded we should make sure that this integral makes
sense. Moreover, computing the volume of a given semialgebraic set is a difficult task
in general [8], so we expect that optimizing such a quantity is as much as difficult. In
practice, in this paper, we will content ourselves of an inner approximation that removes
the nonconvex parts of the boundary and keeps the convex parts as much as possible.

3 Detecting nonconvexity

Before describing the method, let us recall some basics definitions on polynomials and
differential geometry. Let x ∈ R

n 7→ pi(x) ∈ R[x] be a multivariate polynomial of total
degree d. Let

gi(x) =

[

∂pi(x)

∂xj

]

j=1...n

∈ R
n[x]

be its gradient vector and

Hi(x) =

[

∂2pi(x)

∂xj∂xk

]

j,k=1...n

∈ R
n×n[x]

its (symmetric) Hessian polynomial matrix. Define the optimization problem

qi = minx,y yTHi(x, y)y
s.t. pi(x) = 0

pj(x) ≤ 0, j = 1 . . .m, j 6= i
yTgi(x) = 0
yTy = 1

(3)

with global minimizers {x1 . . . xki} and {y1 . . . yki}.
Let us make the following nondegeneracy assumption on defining polynomials pi(x):

Assumption 1 There is no point x such that pi(x) and gi(x) vanish simultaneously while
satisfying pj(x) ≤ 0 for j = 1, . . . , m, j 6= i.

Since the polynomial system pi(x) = 0, gi(x) = 0, involves n + 1 equations for n un-
knowns, Assumption 1 is satisfied generically. In other words, in the Euclidean space of
coefficients of polynomials pi(x), instances violating Assumption 1 belong to a variety of
Lebesgue measure zero, and an arbitrarily small perturbation on the coefficients generates
a perturbed set Sǫ satisfying Assumption 1.
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Theorem 1 Under Assumption 1, polynomial level set (1) is convex if and only if qi ≥ 0
for all i = 1, . . . , m.

Proof: The boundary of set S consists of points x such that pi(x) = 0 for some i, and
pj(x) ≤ 0 for j 6= i. In the neighborhood of such a point, consider the Taylor series

pi(x+ y) = pi(x) + yTgi(x) + yTHi(x)y +O(y3) (4)

where O(y3) denotes terms of degree 3 or higher in entries of vector y, the local coordinates.
By Assumption 1, the gradient gi(x) does not vanish along the boundary, and hence
convexity of the boundary is inferred from the quadratic term in expression (4). More
specifically, when yTgi(x) = 0, vector y belongs to the hyperplane tangent to S at point
x. Let V be a matrix spanning this linear subspace of dimension n − 1 so that y =
V ŷ for some ŷ. The quadratic form yTHi(x)y = ŷTV THiV ŷ can be diagonalised with
the congruence transformation ŷ = Uȳ (Schur decomposition), and hence yTHi(x)y =
ȳTUTV THiV UȳT =

∑n−1

i=1
hi(x)ȳ

2
i . The eigenvalues hi(x), i = 1, . . . , n− 1 are reciprocals

of the principal curvatures of the surface. Problem (3) then amounts to finding the
minimum curvature, which is non-negative when the surface is locally convex around x.�

In the case of three-dimensional surfaces (n = 3), the ideas of tangent plane, local coor-
dinates and principal curvatures used in the proof of Theorem 1 are standard notions of
differential geometry, see e.g. Section 3.3. in [2] for connections between principal cur-
vatures and eigenvalues of the local Hessian form (called the second fundamental form,
once suitably normalized).

Figure 1: Hyperboloid of one sheet (white), with tangent plane (gray) at the origin, a
saddle point with a tangent convex parabola (thick black) and a tangent concave hyperbola
(thick black).

As an example illustrating the proof of Theorem 1, consider the hyperboloid of one sheet
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S = {x ∈ R
3 : p1(x) = x2

1 − x2
2 − x3 ≤ 0} with gradient and Hessian

g1(x) =





2x1

−2x2

−1



 , H1(x) =





2 0 0
0 −2 0
0 0 0



 .

At the origin x = 0, the tangent plane is T = {y ∈ R
3 : y3 = 0} and p1(y) = 2y21 − 2y22

is a bivariate quadratic form with eigenvalues 2 and −2, corresponding respectively to
the convex parabola {x : x2

2 + x3 = 0} (positive curvature) and concave hyperbola
{x : x2

1 − x3 = 0} (negative curvature), see Figure 1.

Theorem 1 can be exploited in an algorithmic way to generate a convex inner approxima-
tion of a semialgebraic set.

Algorithm 1 (Convex inner approximation)

Input: Polynomials pi, i = 1 . . .m defining set S as in (1). Small nonnegative scalar ǫ.

Output: Polynomials p̄i, i = 1 . . . m̄ defining set S̄ as in (2).

Step 1: Let i = 1.

Step 2: If deg pi ≤ 1 then go to Step 5.

Step 3: If pi(x) ∈ S, solve optimization problem (3) for optimum qi and minimizers
{x1 . . . xk}. If pi(x) /∈ S, go to Step 5.

Step 4: If qi < 0, then select one of the minimizers xj, j = 1 . . . ki, let pm+1 = gi(x
j)(x−

xj) + ǫ. Then let m = m+ 1, and go to step 3.

Step 5: Let i = i+ 1. If i ≤ m then go to Step 2.

Step 6: Return p̄i = pi, i = 1, . . .m.

The idea behind the algorithm is as follows. At Step 3, by solving the polynomial opti-
mization problem of Theorem 1 we identify a point of minimal curvature along algebraic
varieties defining the boundary of S. If the minimal curvature is negative, then we sep-
arate the point from the set with a gradient hyperplane, and we iterate on the resulting
semialgebraic set. At the end, we obtain a valid inner approximation.

Note that Step 2 checks if the boundary is affine, in which case the minimum curvature
is zero and there is no optimization problem to be solved.

The key parameter of the algorithm is the small positive scalar ǫ used at Step 4 for
separating strictly a point of minimal curvature, so that the algorithm does not identify
it again at the next iteration. Moreover, in Step 4, one must elect arbitrarily a minimizer.
We will discuss this issue later in this paper.

Finally, as pointed out to us by a referee, the ordering of the sequence of input polynomials
pi has an impact on the sequence of output polynomials p̄i, and especially on the size of
the convex inner approximation S̄. However, it seems very difficult to design a priori an
optimal ordering policy.
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4 Matlab code and geometric examples

At each step of Algorithm 1 we have to solve a potentially nonconvex polynomial optimiza-
tion problem. For that purpose, we use Gloptipoly 3, a public-domain Matlab package [7].
The methodology consists in building and solving a hierarchy of embedded linear matrix
inequality (LMI) relaxations of the polynomial optimization problem, see the survey [12].
The LMI problems are solved numerically with the help of any semidefinite programming
solver (by default Gloptipoly 3 uses SeDuMi). Under the assumption that our original
semi-algebraic set is compact, the sequence of minimizers obtained by solving the LMI
relaxations is ensured to converge mononotically to the global minimum. Under the addi-
tional assumption that the global optima live on a zero-dimensional variety (i.e. there is
a finite number of them), Gloptipoly 3 eventually extracts some of them (not necessarily
all, but at least one) using numerical linear algebra. The LMI problems in the hierarchy
have a growing number of variables and constraints, and the main issue is that we cannot
predict in advance how large has to be the LMI problem to guarantee global optimality.
In practice however we observe that it is not necessary to go very deep in the hierarchy
to have a numerical certificate of global optimality.

4.1 Hyperbola

Let us first with the elementary example of an unbounded nonconvex hyperbolic region
S = {x ∈ R

2 : p1(x) ≤ 0} with p1(x) = −1 + x1x2, for which optimization problem (3)
reads

min 2y1y2
s.t. x2y1 + x1y2 = 0

−1 + x1x2 = 0
y21 + y22 = 1.

Necessary optimality conditions yield immediately k1 = 2 global minimizers x1 =
√
2

2
(1, 1),

y1 =
√
2

2
(1,−1) and x2 =

√
2

2
(−1,−1), y2 =

√
2

2
(−1, 1), and hence two additional (normal-

ized) affine constraints p2(x) = −2 + x1 + x2 and p3(x) = −2 − x1 − x2 defining the slab
S̄ = {x : pi(x) ≤ 0, i = 1, 2, 3} = {x : −2 ≤ x1 + x2 ≤ 2} which is indeed a valid inner
approximation of S.

4.2 Egg quartic

Now we show that Algorithm 1 can be used to detect convexity of a semialgebraic set.
Consider the smooth quartic sublevel set S = {x ∈ R

2 : p1(x) = x4
1 + x4

2 + x2
1 + x2 ≤ 0}

represented on Figure 2. Assumption 1 is ensured since the gradient g1(x) = [2x1(x
2
1 +

2) 4x3
2 + 1] cannot vanish for real x.

A Matlab implementation of the first steps of the algorithm can be easily written using
Gloptipoly 3:

% problem data
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Figure 2: Convex smooth quartic.

mpol x y 2

p1 = x(1)^4+x(2)^4+x(1)^2+x(2);

g1 = diff(p1,x); % gradient

H1 = diff(g1,x); % Hessian

% LMI relaxation order

order = 3;

% build LMI relaxation

P = msdp(min(y’*H1*y), p1==0, ...

g1*y==0, y’*y==1, order);

% solve LMI relaxation

[status,obj] = msol(P)

Notice that we solve the LMI relaxation of order 3 (e.g. moments of degree 6) of problem
(3). In GloptiPoly, an LMI relaxation is solved with the command msol which returns
two output arguments: status and obj. Argument status can take the following values:

• -1 if the LMI relaxation is infeasible or could not be solved for numerical reasons;

• 0 if the LMI relaxation could be solved but it is impossible to detect global optimality
and to extract global optimizers, in which case obj is a lower (resp. upper) bound
on the global minimum (resp. maximum) of the original optimization problem;

• +1 if the LMI relaxation could be solved, global optimality is certified and global
minimizers are extracted, in which case obj is the global optimum of the original
optimization problem.
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Running the above script, Gloptipoly returns obj = 2.0000 and status = 1, certifying
that the minimal curvature is strictly positive, and hence that the polynomial sublevel
set is convex.

Note that in this simple case, convexity of set S follows directly from positive semidefi-
niteness of the Hessian H1(x) = diag (12x2

1+2, 12x2
2), yet Algorithm 1 can systematically

detect convexity in more complicated cases.

4.3 Waterdrop quartic

Consider the quartic S = {x ∈ R
2 : p1(x) = x4

1 + x4
2 + x2

1 + x3
2 ≤ 0} which has a singular

point at the origin, hence violating Assumption 1.

Applying Algorithm 1, the LMI relaxation of order 4 (moments of degree 8) yields a glob-
ally minimal curvature of −0.094159 achieved at the 2 points x1 = (−0.048892, −0.14076)
and x2 = (0.048896, −0.14076). With the two additional affine constraints pk(x) =
g1(x

k)(x − xk) ≤ 0, k = 2, 3, the resulting set S̄ has a globally minimal curvature of 1
certified at the LMI relaxation of order 4, and therefore it is a valid convex inner approx-
imation of S, see Figure 3.

x
1

x 2

x1 x2

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−1

−0.8

−0.6

−0.4

−0.2

0

Figure 3: Nonconvex waterdrop quartic (light gray) and its convex inner approximation
(dark gray) obtained by adding affine constraints at two points x1 and x2 of minimal
curvature.

This example illustrates that Algorithm 1 can work even when Assumption 1 is violated.
Here the singularity is removed by the additional affine constraints. This example also
shows that symmetry of the problem can be exploited, since two global minimizers are
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found (distinct points with the same minimal curvature) to remove two nonconvex parts
of the boundary simultaneously.

4.4 Singular quartic

Consider the quartic S = {x ∈ R
2 : p1(x) = x4

1 +x4
2+x3

2 ≤ 0} which has a singular point
at the origin, hence violating Assumption 1.

Running Algorithm 1, we obtain the following sequence of bounds on the minimum cur-
vature, for increasing LMI relaxation orders:

order 2 3 4 5
obj −7.5000 · 10−1 −7.7502 · 10−2 −8.5855 · 10−3 −4.9525 · 10−3

GloptiPoly is not able to certify global optimality, so we can only speculate that the global
minimum is zero and hence that set S is convex, see Figure 4. We may say that set S is
numerically convex.

x
1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

Figure 4: Numerically convex singular quartic.

Indeed if we strenghten the constraint p1(x) ≤ 0 into p1(x)+ǫ ≤ 0 for a small positive ǫ, say
10−3, then GloptiPoly 3 certifies global optimality and convexity with obj = -4.0627e-7

at the 4th LMI relaxation. On the other hand, if we relax the constraint into p1(x)+ǫ ≤ 0
with a negative ǫ = −10−3, then GloptiPoly 3 certifies global optimality and nonconvexity
with obj = -0.22313 at the 4th LMI relaxation. We can conclude that the optimum of
problem 3 is sensitive, or ill-conditioned, with respect to the problem data, the coefficients
of p1(x). The reason behind this ill-conditioning is the singularity of S at the origin, see
Figure 5 which represents the effect of perturbing the constraint p1(x) ≤ 0 around the
singularity.

9



x
1

x 2

−0.2 −0.1 0 0.1 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x
1

x 2

−0.2 −0.1 0 0.1 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 5: Perturbed quartic p1(x) + ǫ ≤ 0 (bold line) can be convex (ǫ = 10−3) or
nonconvex (ǫ = −10−3) near singularity of original quartic level set p1(x) = 0 (light line).

5 Control applications

In this section we focus on control applications of Algorithm 1, which is used to generate
convex inner approximation of stability regions in the parameter space.

5.1 Third-order discrete-time stability region

Algorithm 1 can lend insight into the (nonconvex) geometry of the stability region. Con-
sider the simplest non-trivial case of a third-order discrete-time polynomial x1 + x2z +
x3z

2 + z3 which is stable (roots within the open unit disk) if and only if parameter
x = (x1, x2, x3) lies within the interior of compact region S = {x ∈ R

3 : p1(x) =
−x1 − x2 − x3 − 1 ≤ 0, p2(x) = x1 − x2 + x3 − 1 ≤ 0, p3(x) = x2

1 − x1x3 + x2 − 1 ≤ 0}.
Stability region S is nonconvex, delimited by two planes p1(x) = 0, p2(x) = 0 and a
hyperbolic paraboloid p3(x) = 0 see e.g. [1, Example 11.4].

Optimization problem (3) corresponding to convexity check of the hyperbolic paraboloid
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reads as follows:
min −2y21 + 2y1y3
s.t. x2

1 − x1x3 + x2 − 1 = 0
−x1 − x2 − x3 − 1 ≤ 0
x1 − x2 + x3 − 1 ≤ 0
(2x1 − x3)y1 + y2 + x3y3 = 0
y21 + y22 + y23 = 1.

(5)

The objective function and the last constraint depend only on y, and necessary optimality
conditions obtained by differentiating the Lagrangian −2y21 + 2y1y3 + t(y21 + y22 + y23 − 1)
with respect to y yield the symmetric pencil equation





−4 + 2t 0 2
0 2t 0
2 0 2t









y1
y2
y3



 = 0

From the determinant of the above 3-by-3 matrix, equal to t(t2 − 2t − 1), we conclude
that multiplier t can be equal to 1 −

√
2,0 or 1 +

√
2. The choice t = 0 implies y1 =

0, y2 = 1, y3 = 0 which is inconsistent with the last but one constraint in (5). The choice

t = 1 −
√
2 yields y1 = ±(1 +

√
2)α, y2 = 0, y3 = ±α with α = 1/

√

4− 2
√
2 and the

objective function −2y21 + 2y1y3 = −1 +
√
2. The choice t = 1 +

√
2 yields y1 = ±α,

y2 = 0, y3 = ±(−1 −
√
2)α and the objective function −1 −

√
2, a negative minimum

curvature. Therefore region S is indeed nonconvex.

From the remaining constraints in (5), we conclude that the minimal curvature points x
can be found along the portion of parabola

√
2x2

1 − x2 +1 = 0 included in the half-planes
(2+

√
2)x1+x2+1 ≥ 0 and −(2+

√
2)x1+x2+1 ≥ 0. Any plane tangent to the hyperbolic

paraboloid p3(x) = 0 at a point along the parabola
√
2x2

1 − x2 + 1 = 0 can be used to
generate a valid inner approximation of the stability region. For example, with the choice
x1 = (0, 1, 0), we generate the gradient half-plane p4(x) = g3(x

1)(x− x1) = x2 − 1 ≤ 0.

More generally, for discrete-time polynomials of degree n ≥ 3, stability region S is the
image of the box B = [−1, 1]n (of so-called reflection coefficients) though a multiaffine
mapping, see e.g. [16] and references therein. The boundary of S consists of ruled
surfaces, and the convex hull of S is generated by the images of the vertices of B through
the multiaffine mapping. It would be interesting to investigate whether this particular
geometry can be exploited to generate systematically a convex inner approximation of
maximum volume of the stability region S.

5.2 Fixed-order controller design

Consider the open-loop discrete-time system (−2z2 + 1)/(z3 + z2 + a), parametrized by
a ∈ R, in negative closed-loop configuration with the controller (x1z + x2)/(z + 1). The
characteristic polynomial is equal to q(z) =

∑

4

k=0
qkz

k = z4 +2(1− x1)z
3 + (1− 2x2)z

2 +
(a + x1)z + a + x2, and it is Schur stable (all roots in the open unit disk) if and only if

11



pk < 0, k = 1, 2, . . . , 4 and p6 = −p2p3p4 + p22p5 + p1p
2
4 < 0 where













p1
p2
p3
p4
p5













=













−1 1 −1 1 −1
4 −2 0 2 −4

−6 0 2 0 −6
4 2 0 −2 −4

−1 −1 −1 −1 −1

























q0
q1
q2
q3
q4













.

The affine inequalities pk(x1, x2) < 0, k = 1, 2, . . . , 5 define a polytope in the controller
parameter plane (x1, x2) ∈ R

2, and the inequality p6(x1, x2) < 0 defines a cubic region.

In the case a = 0, with the following Gloptipoly 3 implementation of Steps 1-3 of Algo-
rithm 1:

mpol x y 2

p1 = -x(1)+x(2);

p2 = -6*x(1)+4*x(2);

p3 = -10*x(2)-4;

p4 = -8+4*x(2)+6*x(1);

p5 = -4+x(1)+x(2);

p6 = 6*x(1)^2*x(2)+3*x(1)^2-10*x(1)*x(2)-2*x(1)-3*x(2)^3+6*x(2)^2+x(2);

g6 = diff(p6,x); % gradient

H6 = diff(g6,x); % Hessian

% LMI relaxation order

order = input(’LMI relaxation order = ’);

% build LMI relaxation

P = msdp(min(y’*H6*y), p6==0, p1<=0, p2<=0, p3<=0, p4<=0, p5<=0, ...

g6*y==0, y’*y==1, order);

% solve LMI relaxation

[status,obj] = msol(P)

we obtain a negative lower bound obj = -3.5583 at the 2nd LMI relaxation, which is
inconclusive. At the 3rd LMI relaxation, we obtain a positive lower bound obj = 0.8973

which certifies convexity of the stability region, see Figure 6. Since the stability region
S̄ = {x ∈ R

2 : pk(x) ≤ 0, k = 1, 2, . . . , 6} is convex, we can optimize over it with standard
techniques of convex optimization. More specifically, a recent result in [11] indicates that
any limit point of any sequence of admissible stationary points of the logarithmic barrier
function f(x) = −

∑

6

k=1
log pk(x) is a Karush-Kuhn-Tucker point satisfying first order

optimality condition. In particular, the gradient of f(x) vanishes at the analytic center
of the set. Using Maple (or a numerical local optimization method) we can readily obtain
the analytic center x∗

1 ≈ 0.57975, x∗
2 ≈ 0.13657 (five-digit approximations of algebraic

coefficients of degree 17) corresponding to a controller well inside the stability region.
Such a controller can be considered as non-fragile, in the sense that some uncertainty on
its coefficients will not threaten closed-loop stability.

Now for the choice a = −3/4 we carry on again our study of convexity of the stability
region with the help of a similar GloptiPoly script. At the 2nd LMI relaxation we obtain
a negative lower bound obj = -385.14 which is inconclusive. At the 3rd LMI relaxation,
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Figure 6: Convex stability region (dark gray), with analytic center (cross) corresponding
to a fixed-order controller.

we obtain a negative lower bound obj = -380.88 which is also inconclusive. Eventually,
at the 4th LMI relaxation, we obtain a negative lower bound obj = -380.87 which is
certified to be the global minimum with status = 1. The point x1 at which the minimum
curvature is achieved is a vertex of the stability region, and the tangent at this point of
the nonconvex part of the boundary is used to generate a valid inner approximation S̄, see
Figure 7. Any point chosen in this triangular region corresponds to a stabilizing controller.
We see that here the choice of the point of minimum curvature is not optimal in terms of
maximizing the surface of S̄. A point chosen elsewhere along the negatively curved part
of the boundary would be likely to generate a larger convex inner approximation.

5.3 Optimal control with semialgebraic constraints

In Model Predictive Control (MPC), an optimal control problem is solved recursively.
This resolution is usually based on direct methods that consist of deriving a nonlinear
program from the optimal control problem by discretization of the dynamics and the path
constraints. Since the embedded software has strict specification on algorithm complexity
and realtime computation, convexity of the program is a key feature [17]. Indeed, in this
context, our convex inner approximation of the admissible space become valuable to speed
up the computation even at the price of some conservatism.

In open-loop control design, convexity of the problem is a matter of concern especially
when the optimal control problem is part of an MPC procedure. In this case, the optimal
control problem is solved mostly using direct methods that transfom it into a parametric

13



x1

x
1

x 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7: Convex inner approximation (dark gray) of nonconvex fourth-order discrete-
time stability region (light gray).

optimization problem. Convexity permits to limits the complexity of the resolution and so
reduces the computation time of an optimal solution. Unfortunately, in dynamic inversion
techniques based on differential flatness, the generally convex constraints on the states
and inputs are replaced by nonconvex admissible sets in the flat output space, see [17]
and reference therein for details. Thus, in such a method, it is necessary to design inner
convex approximation of the admissible subset to develop a tractable algorithm [18].

Consider the following optimal control problem

minx,u

∫ tf

t0

u2(t)dt

s.t. ẋ =

[

0 1
0 0

]

x+

[

0
1

]

u

x(t0) = x0, x(tf ) = xf

p1(x) ≤ 0.

The objective of this problem is to steer the linear system from an initial state to a final
state in a fixed time inside the admissible state subset S defined e.g. by the waterdrop
quartic defined in section 4.3:

S = {x ∈ R
2 : p1(x) = x4

1 + x4

2 + x2

1 + x3

2 ≤ 0}. (6)

We describe thereafter a classical methodology for solving the previous optimal control
problem using flatness-based dynamic inversion, see [13, 14, 19] for other examples. As
the dynamics are linear and fully actuated, dynamic inversion can be used to develop
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an efficient algorithm for the considered problem [19]. Thus, the system trajectory can
be parametrized by a user-specified sufficiently smooth function x1(t) = f(t) so that
x2(t) = ḟ(t) and u(t) = f̈(t). The function f(t) is classically described by a chosen basis
b(t) and the associated vector of weighting coefficient α such that

f(t) =
∑

k

αkbk(t).

In order to derive a finite dimensional program, the admissible set constraint is discretized
and enforced at a finite number of time instants {ti}i=1,...,N such that t0 ≤ t1 < t2 < · · · <
tN ≤ tf . Since S is nonconvex, we obtain a finite-dimensional nonlinear nonconvex
program:

minα

∑

i u
2(α, ti)

s.t. x(α, t0) = x0, x(α, tf ) = xf

p1(x(α, ti)) ≤ 0, i = 1, . . . , N.

The inner approximation S̄ calculated previously in section 4.3 is given by S̄ = {x ∈ R
2 :

p1(x) ≤ 0, p2(x) = g1(x
1)(x − x1) ≤ 0, p3(x) = g1(x

2)(x − x2) ≤ 0} where g1(x
1) and

g1(x
2) is the gradient of p1(x) evaluated at x = x1 and x = x2, respectively. The use of

the inner approximation S̄ as admissible subset leads to the following convex program:

minα

∑

i u
2(α, ti)

s.t. x(α, t0) = x0, x(α, tf ) = xf

p1(x(α, ti)) ≤ 0, p2(x(α, ti)) ≤ 0, p3(x(α, ti)) ≤ 0, i = 1, . . . , N.

In the following, we set t0 = 0, x0 = [0.3000,−0.8000] and tf = 2.5, xf = [−0.3000,−0.8000].
The time function f(t) is a 5-segment-piecewise polynomial of the 4th order (degree 3)
defined on a B-spline basis. We run both programs for different values of N . In table 1 we
compare the computation times and optimal costs. See Figure 8 for the state trajectories.
For this example, we observe the positive effect that convexity has on the reduction of

N 10 20 50 100 200 500 1000
CPU time [s] Convex 0.029 0.045 0.056 0.058 0.102 0.225 0.498

Nonconvex 0.109 0.195 0.199 0.409 0.513 0.836 1.46
Optimal cost Convex 1.65 1.67 1.68 1.69 1.68 1.68 1.68

Nonconvex 1.52 1.52 1.52 1.52 1.52 1.52 1.52

Table 1: Computation times and optimal costs of the nonconvex and convexified optimal
control problems, as functions of the number N of discretization points.

the computational burden, balanced by the relatively small loss of performance.

6 Conclusion

We have presented a general-purpose computational algorithm to generate a convex inner
approximation of a given basic semialgebraic set. The inner approximation is not guar-
anteed to be of maximum volume, but the algorithm has the favorable features of leaving
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Figure 8: Optimal trajectories (bold) in nonconvex admissible set (left) and in convex
inner approximation (right).

invariant a convex set, and preserving convex boundaries while removing nonconvex re-
gions by enforcing linear constraints at points of minimum curvature. Even though our
initial motivation was to construct convex inner approximations of stability regions for
fixed-order controller design, our algorithm can be used on its own for checking convexity
of semialgebraic sets.

Each step of the algorithm consists in solving a potentially nonconvex polynomial opti-
mization problem with the help of a hierarchy of convex LMI relaxations. For this we
use Gloptipoly 3, unfortunately with no guarantee of a priori computational burden, even
though in practice it is observed that global optimality is ensured at a moderate cost, as
soon as the dimension of the ambient space is small. Numerical experiments indicate that
the approach may be practical for ambient dimensions up to 4 or 5. For larger problems,
we can rely on more sophisticated nonlinear or global optimization codes [15], even though
this possibility has not been investigated in this paper. Indeed, our main driving force is
to contribute with a readily available Matlab implementation.

Our algorithm returns a sequence of polynomials such that the intersection of their sub-
level sets is geometrically convex. However, the individual polynomials (of degree two
or more) are not necessarily convex functions. One may therefore question the relevance
of applying a relatively complex algorithm to obtain a convex inner approximation in
the form of a list of defining polynomials which are not necessary individually convex.
A recent result of [11] indicates however that any local optimization method based on
standard first-order optimality conditions for logarithmic barrier functions will generate
a sequence of iterates converging to the global minimum of a convex function over convex
sets. In other words, geometric convexity seems to be more important that convexity of
the individual defining polynomials.

Indeed, if convexity of the inner approximation is guaranteed in the presented work, con-
vexity of the defining polynomials would allow the use of constant multipliers to certificate
optimality in a nonlinear optimization framework. Instead, with no guarantee of convex-
ity of the defining polynomials, the geometric proprety of convexity of the sets is more
delicate to exploit efficiently by optimization algorithms.
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Finally, let us emphasized that it is conjectured that all convex semialgebraic sets are
semidefinite representable in [3], see also [10]. It may then become possible to fully
exploit the geometric convexity of our inner convex through an explicit representation
as a projection of an affine section of the semidefinite cone. For example, in our target
application domain, this would allow to use semidefinite programming to find a suboptimal
stabilizing fixed-order controller.
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