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A High-Gain-Based Global Finite-Time Nonlinear Observer1
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In this paper, a global finite-time observer is designed for a class of nonlinear systems with bounded rational
powers imposed on the incremental nonlinearities. Compared with the previous global finite-time results, the
new observer designed here is with a new gain update law. Moreover, an example is given to show that the
proposed observer can reduce the time of the observation error convergence.
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1 INTRODUCTION

Consider the problem of observer design for a nonlinear system described by

{
ẋ = f(x, u),
y = h(x), (1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the output. Unlike in the case of linear
system, the observability of nonlinear system depends on the inputs of the system (Gauthier
and Bornard 1981), (Gauthier et al. 1992), (Shim and Seo 2003). Perhaps for this reason, over
the years, several papers have investigated the relationship between nonlinear observability and
the existence of nonlinear observers (Hermann and Krener 1977), (Fliess 1982). Since then, a lot
of works have been done to try to design nonlinear observers through linearization of nonlinear
systems (Krener and Isidori 1983), (Rugh 1986), (Kotta 1987). With the definition of uniform
observability or observability for any input as proposed by (Gauthier et al. 1992), thereafter,
many existing results on nonlinear observer design are based on uniform observability. For ex-
ample, (Gauthier et al. 1992) proposes a simple nonlinear observer by a high gain method, then
a nonlinear observer is designed in (Hammouri et al. 2002) for nonlinear systems with a triangu-
lar structure, and high gain observers in the presence of measurement noise (Ahrens and Khalil
2009) are employed to output feedback control problem for a class of nonlinear systems through
a switched-gain approach and so on. A common assumption for the observer design of nonlinear
system is the Lipschitz condition in the nonlinear terms as discussed in the works (Rajamani
1998), (Pertew et al. 2006), (Chen and Chen 2007) and references therein. Research on nonlinear
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observer design has also been done on some other kinds of nonlinear systems. (Krishnamurthy
et al. 2003) gives global high-gain-based observers for nonlinear systems with output dependent
upper diagonal terms, while global asymptotic high gain observers are studied in (Praly 2003)
for nonlinear systems with the nonlinear terms admitting an incremental rate of the measured
output.

Based on the finite-time stability and homogeneity theory of nonlinear systems (Bhat and
Bernstein 2000), (Bhat and Bernstein 2005), different kinds of finite-time observers for nonlinear
systems are developed. For example, (Perruquetti et al. 2008) introduces a finite-time observer
with application to secure communication, where a homogeneous Lyapunov function is con-
structed. Then, based on this homogeneous Lyapunov function, semi-global finite-time and two
different kinds of global finite-time observers are designed for single output triangular nonlinear
systems which are uniformly observable and globally Lipschitz (Shen and Xia 2008), (Shen and
Huang 2009), (Ménard et al. 2010). Global finite-time observers (Shen et al. 2011) are proposed
for a class of globally Lipschitz nonlinear systems with nontriangular structure where the inter-
actions between all the states of the nonlinear terms are allowed. Then, in (Burlion et al. 2011),
a global finite-time observer with high gain is designed for a class of nonlinear systems where the
nonlinear terms admit an incremental rate depending only on the output. Unfortunately, in all
these papers, the derivative of the homogeneous Lyapunov function along the observation error
system is not continuous. Then, (Shen and Xia 2010) gives a correct proof of the convergence of
observation error and a semi-global finite-time observer is designed for the following nonlinear
systems whose solutions exist for all positive time:





ẋ1 = x2 + f1(y, u),
ẋ2 = x3 + f2(y, x2, u),

...
ẋn = fn(y, x2, . . . , xn, u),
y = x1 = Cx, C =

[
1 0 . . . 0

]
,

(2)

where u ∈ Rm, x ∈ Rn, y ∈ R, with the nonlinear terms fi(·) (i = 2, . . . , n) satisfying conditions:

|fi(y, x2, . . . , xi, u)− fi(y, x̂2, . . . , x̂i, u)| ≤ Γ(u, y)

1 +

n∑

j=2

|x̂j |υj




i∑

j=2

|xj − x̂j |+ l

i∑

j=2

|xj − x̂j |βij , (3)

where Γ(·) is a continuous function, l > 0, υj ∈ [0, 1
j−1) (j = 2, . . . , n), the rational powers

of the incremental terms satisfy q−i
q−j+1 < βij < i

j−1 (2 ≤ j ≤ i ≤ n) (where q > n is a
positive real number). Asymptotic and finite-time stability are studied for a class of nonlinear
homogeneous systems (Shen and Xia 2011) where the best possible lower bound of homogeneity
of degree is obtained. Then, motivated by (Rosier 1992), a new kind of continuous homogeneous
Lyapunov function and a global finite-time observer are constructed in (Li et al. 2011) for a
nonlinear system (2) under condition (3) with a better lower bound of the rational powers

n−i
n−j+1 < βij < i

j−1 (2 ≤ j ≤ i ≤ n).
In this paper, we restrict our attention to estimating the states only for those nonlinear sys-

tems (2) whose solutions globally exist and are unique for all positive time. The primary objective
of this paper is to design a new global finite-time observer for nonlinear system (2) with condi-
tion (3). We will show that under the same rational powers n−i

n−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤ n),

global finite-time observers exist with a new gain update law where two new items are intro-
duced compared with the dynamic high gain used in (Li et al. 2011). Moreover, through an
example, it will be shown that the observer proposed in this paper can render the observation
error converging much more quickly than that in (Li et al. 2011) although the amplitude of the
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observation error curve is a bit greater.
The rest of the paper is organized as follows. Some previous results are reviewed in section 2.

Then in section 3, our main result, a global finite-time observer with a new gain update law is
designed for system (2) under condition (3) with a detailed proof. An example is given in section
4, highlighting the performance of the proposed observer and some comparisons are made with
the results in (Li et al. 2011). Then the paper is concluded in section 5. Finally, the proofs of
two useful lemmas are included in the Appendix.

2 PREVIOUS RESULTS

Before we consider the global finite-time observer for system (2) with condition (3), let us recall
some previous results for nonlinear system(2) with condition (3) where the rational powers
satisfying q−i

q−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n) (where q > n is a positive real number) in (Shen

and Xia 2010) and n−i
n−j+1 ≤ βij < i

j−1 (2 ≤ j ≤ i ≤ n) in (Li et al. 2011), respectively.
For nonlinear system (2), earlier, (Shen and Xia 2010) presents a semi-global finite-time ob-

server of the following form:





˙̂x1 = x̂2 + La1de1cα1 + f1(y, u),
˙̂x2 = x̂3 + L2a2de1cα2 + f2(y, x̂2, u),

...
˙̂xn = Lnande1cαn + fn(y, x̂2, . . . , x̂n, u),

(4)

with the observer gain L being dynamically updated by

L̇ = −L[ϕ1(L1−σ − ϕ2)− ϕ3Ψ(u, y, x̂)], L(0) > ϕ2, (5)

where ϕ1, ϕ2 ≥ 1, ϕ3 are three positive real numbers, Ψ(u, y, x̂) = Γ(u, y)(1 +
∑n

j=2 |x̂j |vj ), and
ai > 0 (i = 1, . . . , n) are the coefficients of the Hurwitz polynomial

sn + a1s
n−1 + . . . + an−1s + an, (6)

and

αi = iα− (i− 1), i = 1, . . . , n, (7)

where α ∈ (1 − 1
n−1 , 1), and the rational power βij satisfy q−i

q−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n)

(where q > n is a positive real number).
Then, based on the same gain update law (5), a kind of global finite-time observers with two

homogeneous terms (Li et al. 2011) with different degrees (one less than 1 and the other greater
than 1) are constructed for nonlinear system (2) with condition (3) where the rational powers
satisfying n−i

n−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n) as follows





˙̂x1 = x̂2 + La1de1cα1 + L1−(β1−1)(1−η)σa1de1cβ1 + f1(y, u),
˙̂x2 = x̂3 + L2a2de1cα2 + L2−(β2−1)(1−η)σa2de1cβ2 + f2(y, x̂2, u),

...
˙̂xn = Lnande1cαn + Ln−(βn−1)(1−η)σande1cβn + fn(y, x̂2, . . . , x̂n, u),

(8)

where βi = iβ − (i− 1), (i = 0, 1, . . . , n), β > 1+σ
σ , 0 < η < 1− α < 1.
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3 MAIN RESULT

The purpose of this paper is try to design a global finite-time observer with a new gain update
law for the nonlinear system (2) with condition (3) where the rational powers satisfying n−i

n−j+1 ≤
βij < i

j−1 (2 ≤ j ≤ i ≤ n). Before we give our result, let us introduce a useful lemma first.
The rational power βij (2 ≤ j ≤ i ≤ n) in (3) satisfy the following condition.

Lemma 3.1: For βij (2 ≤ j ≤ i ≤ n) given in (3), 1 − 1
n < α < 1, if βij > n−i

n−j+1 , we have
α− 1− αj−1βij + αi−1 < 0.

Proof The proof of Lemma 3.1 is in the Appendix. ¤

In the following, we will prove that the observer of the form (4) with the following dynamic
gain

L̇ = −L[ϕ1(L1−σ − ϕ2)− ϕ3Ψ(u, y, x̂)− ϕ4L
1−2σ |y − x̂1|m − ϕ5Ψ(u, y, x̂) |y − x̂1|m], (9)

L(0) > ϕ2 is a global finite-time observer for nonlinear system (2) with condition (3), where
ϕ1, ϕ2 > 1, ϕ3, ϕ4, ϕ5 are five positive numbers, m is a positive number satisfying

m ≥ max{αj−1βij − αi−1, 1}, 2 ≤ j ≤ i ≤ n, (10)

Ψ(u, y, x̂) is the same as that in (5).
For the gain update law L(t) in (9), we have the following result.

Lemma 3.2: For the observer gain L(t) in (9), there exists M > 0 such that L(t) < M, t ∈
[0, T ], ∀T ∈ (0,∞).

Proof The proof is simple, thus omitted here. ¤

The dynamics of the observation error e = x− x̂ is given by





ė1 = e2 − La1de1cα1 ,

ė2 = e3 − L2a2de1cα2 + f̃2,
...

ėn = −Lnande1cαn + f̃n,

(11)

where f̃2 = f2(y, x2, u)−f2(y, x̂2, u), . . . , f̃n = fn(y, x2, . . . , xn, u)−fn(y, x̂2, . . . , x̂n, u). Consider
the change of coordinates

εi =
ei

Li−1+σ
,

where 0 < σ < 1 will be given later. Then (11) can be expressed as





ε̇1 = Lε2 − L(α1−1)σ+1a1dε1cα1 − L̇
Lσε1,

ε̇2 = Lε3 − L(α2−1)σ+1a2dε1cα2 − L̇
L(σ + 1)ε2 + f̃2

L1+σ ,
...

ε̇n = −L(αn−1)σ+1andε1cαn − L̇
L(n− 1 + σ)εn + f̃n

Ln−1+σ .

(12)

Before we prove the global finite-time stability of the error system (12), let us investigate some
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properties of the following homogeneous nonlinear system





ε̇1 = Lε2 − L(α1−1)σ+1a1dε1cα1 ,

ε̇2 = Lε3 − L(α2−1)σ+1a2dε1cα2 ,
...

ε̇n = −L(αn−1)σ+1andε1cαn .

(13)

First, for system (13), suitably choose ai (1 ≤ i ≤ n) such that there exists P T = P > 0
satisfying

AT P + PA ≤ −I, h1I ≤ D1P + PD1 ≤ h2I, (14)

where h1, h2 > 0 are real constants, D1 = diag{σ, 1 + σ, . . . , n− 1 + σ}, A =




−a1 1 . . . 0
...

...
. . .

−an−1 0 . . . 1
−an 0 . . . 0


.

The following lemma gives a new homogeneous Lyapunov function. Under this Lyapunov
function and condition (14), we will see that system (13) is finite-time stable.

Lemma 3.3: For system (13), construct the following homogeneous function

V (ε) =
{∫∞

0
1

vq+1 (χ ◦ V̄ )(vε1, v
α1ε2, . . . , v

αn−1εn)dv, ε ∈ Rn \ {0},
0, ε = 0,

(15)

where V̄ (ε) = εT Pε, P, D1 are given in (14), q > 0 is an integer, χ(s) =



0, s ∈ (−∞, 1]
2(s− 1)2, s ∈ (1, 3

2)
1− 2(s− 2)2, s ∈ [32 , 2)
1, s ∈ [2,∞)

, χ(s) ∈ C ′(R,R). Then

(i) V (ε) is a positive definite function homogeneous of degree q with respect to the weights
{αi−1}1≤i≤n. V (ε) is called a q h-Lyapunov function of V̄ (ε) w.r.t. χ,L, (α0, α1, . . . , αn−1).

(ii) There exist c1, c2 > 0 such that

c1V (ε) ≤ ∂V (ε)
∂ε

T

D1ε ≤ c2V (ε). (16)

(iii) If q > max{αi}0≤i≤n−1 + 1, dV (ε)
dt

∣∣∣
(13)

is C1 on Rn, then there exists a c3 > 0 such that

dV (ε)
dt

∣∣∣∣
(13)

≤ −c3L
1−σV (ε)γ , (17)

where γ = q+α−1
q .

Proof We give a direct and detailed proof of the lemma in the Appendix. ¤

Based on Lemma 3.1, Lemma 3.2 and Lemma 3.3, our main result with explicit proof is given
in the following.

Theorem 3.4 : If n−i
n−j+1 ≤ βij < i

j−1 (2 ≤ j ≤ i ≤ n), then for any 1 − 1
n < α < 1, there

exist ϕi > 0 (1 ≤ i ≤ 6) and 0 < σ < 1 such that the system (4) with dynamic high gain (9) is
a global finite-time observer for nonlinear system (2) with condition (3).
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Proof
Under the condition that 1− 1

n < α < 1, ai (1 ≤ i ≤ n) satisfying (14), 0 < σ < 1 (which will
be given later), we will use the homogeneous Lyapunov function V (ε) as defined in Lemma 3.3
to derive the global finite-time stability.

For all ε ∈ Rn, calculating the derivative of the Lyapunov function V (ε) defined in (15) along
the solution of system (12), from Lemma 3.3, we have

dV (ε)
dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)− c1ϕ3Ψ(u, y, x̂)V (ε)

−c1ϕ4L
1+(m−2)σ|ε1|mV (ε)− c1ϕ5L

mσΨ(u, y, x̂)|ε1|mV (ε) +
∂V (ε)

∂ε

T

F̃ , (18)

where F̃ =
(
0, f̃2

L1+σ , . . . , f̃n

Ln−1+σ

)T
.

For ∂V (ε)
∂ε

T
F̃ , we have

∣∣∣∣∣
∂V (ε)

∂ε

T

F̃

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=2

∂V (ε)
∂εi

f̃i

Li−1+σ

∣∣∣∣∣ ≤
n∑

i=2

∣∣∣∣
∂V (ε)
∂εi

∣∣∣∣
1

Li−1+σ
(Ψ(u, y, x̂)

i∑

j=2

|xj − x̂j |+ l

i∑

j=2

|xj − x̂j |βij ) ≤
n∑

i=2

i∑

j=2

Ψ(u, y, x̂)
∣∣∣∣
∂V (ε)
∂εi

∣∣∣∣ |εj |+ l

n∑

i=2

i∑

j=2

∣∣∣∣
∂V (ε)
∂εi

∣∣∣∣ |εj |βijL(j−1+σ)βij−(i−1+σ).

If βij < i
j−1 , there exist a σ1 > 0 such that βij < i−σ1

j−1+σ1
, vj < 1−σ1

j−1+σ1
, (2 ≤ j ≤ i ≤ n).

Choose 0 < σ < σ1, then we get

L(j−1+σ)βij−(i−1+σ) < L1−2σ.

Then, by Lemma 4.2 in (Bhat and Bernstein 2005), we have

∣∣∣∣∣
∂V (ε)

∂ε

T

F̃

∣∣∣∣∣ ≤
n∑

i=2

i∑

j=2

Ψ(u, y, x̂)
∣∣∣∣
∂V (ε)
∂εi

∣∣∣∣ |εj |+ lL1−2σ
n∑

i=2

i∑

j=2

∣∣∣∣
∂V (ε)
∂εi

∣∣∣∣ |εj |βij

≤ k1Ψ(u, y, x̂)
n∑

i=2

i∑

j=2

V (ε)
q−αi−1+αj−1

q + k2lL
1−2σ

n∑

i=2

i∑

j=2

V (ε)
q−αi−1+αj−1βij

q , (19)

where k1 = max{z:V (z)=1}
∣∣∣∂V (z)

∂zi

∣∣∣ |zj |, k2 = max{z:V (z)=1}
∣∣∣∂V (z)

∂zi

∣∣∣ |zj |βij .

Then, for δ > 0, define Bδ
∆= {ε : V (ε) ≤ δ}, Pδ = {ε : |ε1| < δ}. Let Ω = {ε : (0, ε2, . . . , εn) ∈

Rn}.
The proof is divided into two parts: ε ∈ Rn \ Ω and ε ∈ Ω, where part I consists of two

small parts ε ∈ B1 \ Ω and ε ∈ (Rn \ B1) \ Ω , respectively. When ε ∈ B1 \ Ω, we can get
dV (ε)

dt

∣∣∣
(12)

≤ −1
3c3L

1−σV (ε)γ . Then we have dV (ε)
dt

∣∣∣
(12)

≤ −c3L
1−σV (ε)γ for ε ∈ (Rn \ B1) \ Ω.

Thus, we obtain dV (ε)
dt

∣∣∣
(12)

≤ −1
3c3L

1−σV (ε)γ for all ε ∈ Rn \ Ω. Then when ε ∈ Ω, it can

be verified that the non-trivial solution of system (12) can only pass through Ω finite times.
Thus, from the combination of these two parts, we obtain the global finite-time stability of error
system (12).

Part I:
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1. When ε ∈ B1 \ Ω, from (18) and (19), we have

dV (ε)
dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)− c1ϕ3Ψ(u, y, x̂)V (ε)

−c1ϕ4L
1+(m−2)σ|ε1|mV (ε)− c1ϕ5L

mσΨ(u, y, x̂)|ε1|mV (ε)

+k1n
2Ψ(u, y, x̂)V (ε) + k2n

2lL1−2σV (ε)
q+β

q , (20)

where β = min2≤j≤i≤n{αj−1βij − αi−1}. From Lemma 3.1, we can derive γ <
q+β

q , then, there
exist d11, d21, d31 > 0 such that when ϕ1 < d11, ϕ2 > d21, ϕ3 > d31 we have

dV (ε)
dt

∣∣∣∣
(12)

≤ −1
3
c3L

1−σV (ε)γ − c2ϕ1ϕ2V (ε)− c1ϕ4L
1+(m−2)σ|ε1|mV (ε)

−c1ϕ5L
mσΨ(u, y, x̂)|ε1|mV (ε) ≤ −1

3
c3L

1−σV (ε)γ , (21)

where d11 = c3
3c2

, d21 =
(

3k2n2l
c3

) 1
σ

, d31 = k1n2

c1
.

2. When ε ∈ (Rn \ B1) \ Ω, from (18) and (19), we can derive

dV (ε)
dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)− c1ϕ3Ψ(u, y, x̂)V (ε)

−c1ϕ4L
1+(m−2)σ|ε1|mV (ε)− c1ϕ5L

mσΨ(u, y, x̂)|ε1|mV (ε)

+k1n
2Ψ(u, y, x̂)V (ε)

q−αn−1+1

q + k2n
2lL1−2σV (ε)

q+β̄

q , (22)

where β̄ = max2≤j≤i≤n{αj−1βij − αi−1}.
Let G = {z : V (z) = 1}. For any ε ∈ (Rn \ B1) \ Ω, there exist δ > 0 and λ such that

ε = (λεδ
1, λ

α1εδ
2, . . . , λ

αn−1εδ
n)T = diag{λ, λα1 , . . . , λαn−1}εδ, εδ = (εδ

1, . . . , ε
δ
n)T ∈ G \ Pδ. Then

we have

|ε1|mV (ε) = λm+q|εδ
1|mV (εδ) = λm+q|εδ

1|m = V (ε)
m+q

q |εδ
1|m,

Because |εδ
1|m ≥ minε∈G\Pδ

|ε1|m = δm, then we can get the following inequality

|ε1|mV (ε) ≥ δmV (ε)
m+q

q , ε ∈ (Rn \ B1) \ Ω. (23)

Thus, from (22) and (23), we obtain

dV (ε)
dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)− c1ϕ3Ψ(u, y, x̂)V (ε)

−c1ϕ4L
1+(m−2)σδmV (ε)

m+q

q − c1ϕ5L
mσΨ(u, y, x̂)δmV (ε)

m+q

q

+k1n
2Ψ(u, y, x̂)V (ε)

q−αn−1+1

q + k2n
2lL1−2σV (ε)

q+β̄

q . (24)

Because m ≥ max{αj−1βij − αi−1, 1} (2 ≤ j ≤ i ≤ n), we can get L1+(m−2)σ ≥ L1−σ. Then,
there exist d41, d51 > 0 such that ϕ4 > 2c2

c1δm ϕ1 holds when ϕ4 > d41, ϕ5 > d51. Thus, for
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ε ∈ (Rn \ B1) \ Ω, we have

dV (ε)
dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ − c2ϕ1ϕ2V (ε)− c1ϕ3Ψ(u, y, x̂)V (ε) ≤ −c3L

1−σV (ε)γ , (25)

where d41 = max{2k2n2l
c1δm , 2c3

3c1δm }, d51 = k1n2

c1δm .
Finally, from (21) and (25), by combining part 1 and 2, we get that the following inequality

dV (ε)
dt

∣∣∣∣
(12)

≤ −1
3
c3L

1−σV (ε)γ , (26)

holds for ε ∈ Rn \ Ω.
Part II:
When ε ∈ Ω, let ε(t, t0, ε0) denote a non-trivial solution of system (12). In the following, we

will verify that there does not exist such t2 > t1 ≥ t0 that ε(t, t0, ε0) stays on Ω in the interval
(t1, t2). We will prove it using a contradiction argument. Suppose there exists such interval that
ε(t, t0, ε0) can stay on Ω. From the first equation of system (12), we can derive ε2 = 0 on (t1, t2).
Then, from the second equation, we can obtain ε3 = 0 on (t1, t2). Then following the same steps,
we have εi = 0 (2 ≤ i ≤ n) on (t1, t2), which is a contradiction. Thus, ε(t, t0, ε0) can only pass
through Ω. Let tk denote the time when ε(t, t0, ε0) passes through Ω. From (26), we have

dV (ε)
dt

∣∣∣∣
(12)

V (ε)−γ ≤ −1
3
c3L

1−σ ≤ −1
3
c3ϕ

1−σ
2 . (27)

Integrate both sides of (27), we have

n∑

k=1

∫ tk+1

tk

V (ε)−γdV (ε) ≤ −1
3
c3ϕ

1−σ
2

∫ tk+1

tk

dt,

i.e.,

1
1− γ

V (ε(tn+1))1−γ ≤ 1
1− γ

V (ε(t1))1−γ − 1
3
c3ϕ

1−σ
2 (tn+1 − t1). (28)

Here, we still use the contradiction argument to prove that {tk} is a finite sequence. If {tk}
is not a finite sequence, then we have tn −→ +∞ as n −→ +∞. And we can get that the
left side of (28) approaches to zero while the right side of (28) approaches to −∞, which is a
contradiction. Thus, {tk} is a finite sequence. Therefore, there exists a T1 such that (26) holds
for all ε ∈ Rn (t > T1).

Thus, from Theorem 4.2 in (Bhat and Bernstein 2000) and by combining part I and part
II, we get the global finite-time convergence of the observation error εi (i = 1, . . . , n). The
settling time T (ε0) is T (ε0) ≤ 3

c3ϕ2
1−σ(1−γ)V (ε0)1−γ + T1, where t0 is the initial time, ε0 =

(e0
1,

e0
2

ϕ2
σ , . . . , e0

n

ϕ2
n−1+σ )T is the initial state. Then from Lemma 3.2, we get ei

M i−1+σ < ei

Li−1+σ = εi =
0 when t > T (ε0)+T1 (1 ≤ i ≤ n), i.e., the system (4) with update gain (9) is a global finite-time
observer for system (2) with condition (3).

This completes the proof. ¤
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4 EXAMPLE

Example 1 Consider the same nonlinear system as in (Li et al. 2011)





ẋ1 = x2,
ẋ2 = −1.5x2 − x1.4

2 − x1,
y = x1,

where the following nonlinear condition holds: |(−1.5x2 − x1.4
2 − x1) − (−1.5x̂2 − x̂1.4

2 − x1)| ≤
(1.5+1.4|x̂2|0.4)|x2−x̂2|+|x2−x̂2|1.4. Following the results in (Li et al. 2011), a global finite-time
observer is designed as





˙̂x1 = x̂2 + 4Ldy − x̂1cα + 4L1−(β−1)(1−η)σdy − x̂1cβ ,
˙̂x2 = 3L2dy − x̂1c2α−1 + 3L2−2(β−1)(1−η)σdy − x̂1c2β−1 − 1.5x̂2 − x̂1.4

2 − y,

L̇ = −L[ϕ1(L1−σ − ϕ2)− ϕ3(1.5 + 1.4|x̂2|0.4)],
(29)

while the global finite-time observer designed in this paper is as follows





˙̂x1 = x̂2 + 4Ldy − x̂1cα,
˙̂x2 = 3L2dy − x̂1c2α−1 − 1.5x̂2 − x̂1.4

2 − y,

L̇ = −L[ϕ1(L1−σ − ϕ2)− ϕ3(1.5 + 1.4|x̂2|0.4)− ϕ4L
1−2σ|x1 − x̂1|2

−ϕ5(1.5 + 1.4|x̂2|0.4)|x1 − x̂1|2].
(30)

In order to illustrate the performance of systems (29) and (30) more clearly, several figures
are given under the following three different initial conditions and parameters.

Condition I
Parameters: α = 0.95, β = 105, σ = 0.01, η = 0.01, ϕ1 = 0.1, ϕ2 = 1.2, ϕ3 = 0.2, ϕ4 =

500, ϕ5 = 400. The initial values: x1(0) = 0.2, x2(0) = 0.3, x̂1(0) = 0.1, x̂2(0) = 0.4, L(0) = 1.5.
Condition II
Parameters: α = 0.8, β = 104, σ = 0.001, η = 0.1, ϕ1 = 0.01, ϕ2 = 1, ϕ3 = 1, ϕ4 = 20, ϕ5 =

30. The initial values: x1(0) = 2, x2(0) = 5, x̂1(0) = 3, x̂2(0) = 1, L(0) = 1.5.
Condition III
Parameters: α = 0.8, β = 104, σ = 0.001, η = 0.1, ϕ1 = 0.01, ϕ2 = 1, ϕ3 = 1, ϕ4 = 20, ϕ5 =

30. The initial values: x1(0) = 2, x2(0) = 5, x̂1(0) = 3, x̂2(0) = 1, L(0) = 10.
From the simulations (with uniform random number noise added to the observers) as shown

in Figure 1, we can see that the change of different parameters as well as the initial values of
the states and the high gain L do have some effect on the convergence of the observation error
system. However, it is very clear that no matter under which case, the new global finite-time
observer (30) proposed by this paper can render the error systems converge more quickly while
it is a bit more noise-sensitive than the one (29) designed previously.

5 CONCLUSION

A global finite-time observer was designed for a class of nonlinear systems with rational pow-
ers imposed on the incremental nonlinear terms. Compared with the previous global finite-time
results, the observer was given with a new gain update law where the term |y − x̂1|m is intro-
duced. Through an example, we showed that the observer proposed in this paper can reduce the
convergence time of the observation error.
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Figure 1. Observation errors of system (29) (shown in (a), (b) and (c)) and system (30) (shown in (d), (e) and (f))
under condition I, condition II and condition III

Acknowledgment

The authors would like to thank antonymous referees for their constructive suggestions and
comments that are extremely helpful to improve the quality of the paper.

Appendix A: Proofs of Lemma 3.1 and Lemma 3.3

A.1 Proof of Lemma 3.1

Proof
To prove α − 1 − αj−1βij + αi−1 < 0 is equivalent to prove βij > αi

αj−1
for 2 ≤ j ≤ i ≤ n.

For 1 − 1
n < α < 1, we have αi

αj−1
= iα−(i−1)

(j−1)α−(j−2) which is strictly increasing with respect to α.
Because α < 1, βij > n−i

n−j+1 , there exists a ε > 0 such that α < n−1+ε
n and βij > n−i+iε

n−j+1+jε−ε .

Then we get αi

αj−1
<

i n−1+ε

n
−(i−1)

(j−1) n−1+ε

n
−(j−2)

= n−i+iε
n−j+1+jε−ε < βij .

Thus, the proof is completed. ¤

A.2 Proof of Lemma 3.3

Proof
First, for π > 0, 0 < σ < 1, define Fπ

∆= {ε : |ε1| = π}, B1,π
∆= {ε : εT ε ≤ π}, B1,π

∆= {ε : εT ε <

π}, B2,π
∆= {(ε1, ε2, . . . , εn)T :

∑n
i=2 ε2

i ≤ π2}, B2,π
∆= {(ε1, ε2, . . . , εn)T :

∑n
i=2 ε2

i < π2}, B3,π,i
∆=

{(ε1, L
−iσα1ε2, . . . , L

−iσαn−1εn)T :
∑n

i=2 ε2
i ≤ π2}, B3,π,i

∆= {(ε1, L
−iσα1ε2, . . . , L

−iσαn−1εn)T :∑n
i=2 ε2

i < π2}, Pπ
∆= {ε : |ε1| ≤ π}, Pπ

∆= {ε : |ε1| < π} and Sπ
∆= {ε : εT ε = π}.

The proofs of (i) and (ii) are quite easy. For (i), by change of integration, it can be verified that
V (ε) is homogeneous of degree q with respect to the weights {αi}0≤i≤n−1. From condition (14),
it is also not difficult to derive the inequality (16) in (ii).
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The proof of (iii) is a bit complicated. We will see that the proof is divided into two parts.
The first part is to construct a compact set A (where A will be given later) encircling the origin
where some inequalities are obtained. The compact set is derived by combination of four sets. In
the second part, for any ε ∈ Rn \ {0}, the inequality (17) in (iii) is derived through establishing
the relationship between dV (ε)

dt

∣∣∣
(13)

and dV (ε0)
dt

∣∣∣
(13)

, ε0 ∈ A by use of the homogeneity theory.

Part I:
This part is divided into six parts. In the first four parts, we will show that dV (ε)

dt

∣∣∣
(13)

satisfies

some inequalities on the following sets S1 ∩ PL−σ , (P(1+π1)L−σ \ P(1−π1)L−σ) ∩ B3,π1,2, FL−hσ ∩
(B1,1 \ B3,π1,2) and (PL−σ \ PL−hσ) ∩ (B3,π1,2 \ B3,π1,2), separately, where π1 > 0, h > 2 will be
given later. Then in the fifth part, V (ε) admits some inequalities for ε belonging to each of these
four sets. Finally, in the sixth part, the compact set A is derived from the combination of these
four sets.

(1) Let l1 be the largest l > 0 such that max{v≤l}max{ε∈B1,2\B1, 1
2
} V̄ (vε1, . . . , v

αn−1εn) ≤ 1.

Let l2 be the smallest l > 0 such that min{v≥l}min{ε∈B1,2\B1, 1
2
} V̄ (vε1, . . . , v

αn−1εn) ≥ 2. Then

we have V (ε) =
∫ l2
l1

1
vq+1 (χ ◦ V̄ (vε1, . . . , v

αn−1εn))dv + 1
qlq2

, ε ∈ B1,2 \ B1, 1
2
. And

dV (ε)
dt

∣∣∣∣
(13)

= 2L

∫ l2

l1

χ′(V̄ (vε1, . . . , v
αn−1εn))

vq+α
K(v, ε1, . . . , εn)dv, ε ∈ B1,2 \ B1, 1

2
, (A.1)

where

K(v, ε1, . . . , εn) =




0
vα1ε2

...
vαn−1εn




T

P




vα1ε2
...

vαn−1εn

0


 +




vε1

0
...
0




T

P




vα1ε2 − a1L
(α1−1)σdvε1cα1

...
−anL(αn−1)σdvε1cαn




+




0
vα1ε2

...
vαn−1εn




T

P



−a1L

(α1−1)σdvε1cα1

...
−anL(αn−1)σdvε1cαn


 . (A.2)

When ε ∈ S1 ∩ PL−σ , from (A.1) and (A.2), there exists L1 > 2 such that when L > L1,
we have dV (ε)

dt

∣∣∣
(13)

< −L
2

∫ l2
l1

1
vq+α

∑n
i=2 v2αi−1ε2

i χ
′(V̄ (vε1, . . . , v

αn−1εn))dv, ε ∈ S1 ∩ PL−σ , where

a∗ = max{1≤i≤n} ai, p̄ = max{1≤i, j≤n} |Pij |.
And clearly, we have (S1 ∩ P0) ⊂ (S1 ∩ PL−σ) ⊂ (S1 ∩ P2−σ). Let l3 be the largest l > 0

such that max{v≤l}max{ε∈S1∩P0} V̄ (vε, . . . , vαn−1εn) ≤ 1. Let l4 be the smallest l > 0 such that
min{v≥l}min{ε∈S1∩P0} V̄ (vε, . . . , vαn−1εn) ≥ 2. It is not difficult to get l3 ≥ l1, l4 ≤ l2. Then we
have

dV (ε)
dt

∣∣∣∣
(13)

< −Ld1, ε ∈ S1 ∩ PL−σ , (A.3)

where d1 = 1
2 min{ε∈S1∩P2−σ}

∫ l4
l3

1
vq+α

∑n
i=2 v2αi−1ε2

i χ
′(V̄ (vε1, . . . , v

αn−1εn))dv.
(2) Because a1P11 > 0, from (A.1) and (A.2), there exist π1 ∈ (0, 1) such that for ε ∈

(P1+π1 \ P1−π1) ∩ B3,π1,1, we have dV (ε)
dt

∣∣∣
(13)

< −L1−σ
∫ l2
l1

a1P11v1+α1

vq+α χ′(V̄ (±v, 0, . . . , 0))dv.

Because dV (ε)
dt

∣∣∣
(13)

is homogeneous of degree q+α−1 with respect to the weights {αi}0≤i≤n−1,
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we get

dV (ε)
dt

∣∣∣∣
(13)

< −d2L
1−(q+α)σ, ε ∈ (P(1+π1)L−σ \ P(1−π1)L−σ) ∩ B3,π1,2, (A.4)

where d2 =
∫ l2
l1

a1P11v1+α1

vq+α χ′(V̄ (±v, 0, . . . , 0))dv.
(3) Let l5 be the largest l > 0 such that max{v≤l}max{ε∈P(1+π1)L−σ∩(B1,1\B3,π1,2)} V̄ (vε1, . . . , v

αn−1

εn) ≤ 1. And let l6 be the smallest such l > 0 such that min{v≥l}min{ε∈P(1+π1)L−σ∩(B1,1\B3,π1,2)}
V̄ (vε1, . . . , v

αn−1εn) ≥ 2. Then, for ε ∈ P(1+π1)L−σ ∩ (B1,1 \ B3,π1,2), we

have V (ε) =
∫ l6
l5

1
vq+α (χ ◦ V̄ (vε1, . . . , v

αn−1εn))dv + 1
qlq6

and dV (ε)
dt

∣∣∣
(13)

=

2L
∫ l6
l5

1
vq+α χ′(V̄ (vε1, . . . , v

αn−1εn))K(v, ε1, . . . , εn)dv.

And for any ε ∈ P(1+π1)L−σ ∩ (B1,1 \ B3,π1,2), there exists L̃ ≥ 1 such that ε =
(L̃σ(L̃−σL−σε1), L̃α1σL−2α1σε2, . . . , L̃

αn−1σL−2αn−1σεn)T , |ε1| ≤ 1 + π1,
∑n

i=2 ε2
i = π2

1.
Then, for any ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), there exists h̄1 > 2 such that when h ≥ h̄1, we have

dV (ε)
dt

∣∣∣
(13)

< −L
2

∫ l6
l5

χ′(V̄ (vL−hσ,...,vαn−1 L̃αn−1σL−2αn−1σεn))
vq+α

∑n
i=2 L̃2αi−1σL−4αi−1σv2αi−1ε2

i dv.

Moreover, for any ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), let l7(ε) and l8(ε) be such that 5
4 ≤

V̄ (vε1, . . . , v
αn−1εn) ≤ 7

4 when l7(ε) ≤ l ≤ l8(ε) (without loss of generality, it is as-
sumed that 0 ≤ l7(ε) ≤ l8(ε)). Note that from the definition of χ(s), 1 ≤ χ′(s) ≤ 2 for
5
4 ≤ s ≤ 7

4 . Then, there exists h̄2 > 2 such that when h > h̄2 we can get dV (ε)
dt

∣∣∣
(13)

<

−L
2

∫ l8(ε)
l7(ε)

∑n
i=2 L̃2αi−1σL−4αi−1σv2αi−1ε2

i

vq+α dv < − 5L
16λ̄(q+α−1)

l8(ε)q+α−1−l7(ε)q+α−1

l7(ε)q+α−1l8(ε)q+α−1 , where λ̄ = λmax(P ).

It is clear that {z : zT Pz = 5
4} ∩ {z : zT Pz = 7

4} = ∅, thus, we can de-

rive M1 <
∑n

i=1(z
1
i

q+α−1
αi−1 − z2

i

q+α−1
αi−1 )2, where M1 > 0 is a positive real number, z1 =

(z1
1 , . . . , z

1
n)T ∈ {z : zT Pz = 7

4} and z2 = (z2
1 , . . . , z

2
n)T ∈ {z : zT Pz = 5

4}. Because
(l8(ε)L̃σ(L̃−σL−hσε1), l8(ε)α1L̃α1σL−2α1σε2, . . . , l8(ε)αn−1L̃αn−1σL−2αn−1σεn)T ∈ {z : zT Pz =
7
4} and (l7(ε)L̃σ(L̃−σL−hσε1), l7(ε)α1L̃α1σL−2α1σε2, . . . , l7(ε)αn−1L̃αn−1σL−2αn−1σεn)T ∈ {z :

zT Pz = 5
4}, we can get M1 ≤ L̃2(q+α−1)σL−4(q+α−1)σ(l8(ε)q+α−1− l7(ε)q+α−1)2(

∑n
i=2 ε

2(q+α−1)
αi−1

i +
1),

∑n
i=2 ε2

i = π2
1.

Because {z : 1 ≤ zT Pz ≤ 2} is a bounded compact set, then, there exist

M2, M3 > 0 such that M2 <
∑n

i=2 z
2(q+α−1)

αi−1

i < M3, z ∈ {z : 1 ≤ zT Pz ≤ 2}.
And it is not difficult to see that there exist εj ∈ P(1+π1)L−σ ∩ (B1,1 \ B3,π1,2) such
that (lj(ε)L̃σ(L̃−σL−hσεj

1), lj(ε)
α1L̃α1σL−2α1σεj

2, . . . , lj(ε)
αn−1L̃αn−1σL−2αn−1σεj

n)T ∈ {z : 1 ≤
zT Pz ≤ 2}, j = 7, 8. And M3 > L̃2(q+α−1)σL−4(q+α−1)σlj(ε)2(q+α−1)

∑n
i=2 εj

i

2(q+α−1)
αi−1 , j =

7, 8,
∑n

i=2 εj
i

2
= π2

1.

Then we can get l8(ε)q+α−1 − l7(ε)q+α−1 > min{ε:∑n
i=2 ε2

i =π2
1}

√
L4(q+α−1)σM1

L̃2(q+α−1)σ(
∑n

i=2 ε

2(q+α−1)
αi−1

i +1)

and

1
lj(ε)q+α−1 > min{ε:∑n

i=2 ε2
i =π2

1}

√
L̃2(q+α−1)σ

∑n
i=2 ε

2(q+α−1)
αi−1

i

L4(q+α−1)σM3
, j = 7, 8. Therefore, we have

dV (ε)
dt

∣∣∣∣
(13)

< −L1−2(q+α−1)σL̃(q+α−1)σd3, ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), (A.5)

where d3 = min{ε:∑n
i=2 ε2

i =π2
1}

5
√

M1
∑n

i=2 ε

2(q+α−1)
αi−1

i

16λ̄(q+α−1)M3

√
∑n

i=2 ε

2(q+α−1)
αi−1

i +1

.



13

(4) Fourthly, when ε ∈ (PL−σ \ PL−hσ) ∩ (B3,π1,2 \ B3,π1,2), because for any ε1 =
(ε1

1, ε
1
2, . . . , ε

1
n)T ∈ (PL−σ \ PL−hσ) ∩ (B3,π1,2 \ B3,π1,2) and any ε2 = (±L−σ, ε1

2, . . . , ε
1
n)T ∈

FL−σ ∩ (B3,π1,2 \ B3,π1,2), we have ‖ε1 − ε2‖2
2 ≤ 4L−2σ.

Because of the continuity of dV (ε)
dt

∣∣∣
(13)

on ε ∈ Rn, we derive

dV (ε)
dt

∣∣∣∣
(13)

< −d2

2
L1−(q+α)σ < 0, ε ∈ (PL−σ \ PL−hσ) ∩ (B3,π1,2 \ B3,π1,2). (A.6)

(5) From (A.3), we can select L > max{1≤i≤2}{2, Li} such that

V (ε)−γ ≥ d−γ
4 , ε ∈ S1 ∩ PL−σ , (A.7)

where d4 = max∑n
i=2 ε2

i =1 V (ε).
When ε ∈ FL−σ ∩ B3,π1,2, we can have V (±L−σ, L−2α1σε2, . . . , L

−2αn−1σεn) =
L−qσV (±1, L−α1σε2, . . . , L

−αn−1σεn) ≤ d5L
−qσ, where d5 = max∑n

i=2 ε2
i≤π2

1
V (±1, ε2, . . . , εn).

Then, we get

V (ε)−γ > d−γ
5 Lσ(q+α−1), ε ∈ FL−σ ∩ B3,π1,2. (A.8)

When ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), by use of homogeneity property, we have V (±L̃σL̃−σL−hσ,

L̃α1σL−2α1σε2, . . . , L̃
αn−1σL−2αn−1σεn) = L̃qσL−qσV (±L̃−σL−(h−2)σ, ε2, . . . , εn) ≤ d6L̃

qσL−2qσ,
where d6 = max|ε1|≤1,

∑n
i=2 ε2

i≤π2
1
V (ε1, ε2, . . . , εn). Then the following inequality holds:

V (ε)−γ > d−γ
6 L2σ(q+α−1)L̃−σ(q+α−1), ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2). (A.9)

When ε ∈ (PL−σ \ PL−hσ) ∩ (B3,π1,2 \ B3,π1,2), we can get
V (±L−(1+(h−1)s)σ, L−2α1σε2, . . . , L

−2αn−1σεn) = L−qσV (±L−(h−1)sσ, L−α1σε2, . . . , L
−αn−1σεn) ≤

d6L
−qσ, where 0 < s < 1. Therefore, we get

V (ε)−γ > d−γ
6 L(q+α−1)σ, ε ∈ (PL−σ \ PL−hσ) ∩ (B3,π1,2 \ B3,π1,2). (A.10)

(6) Thus, from the above inequalities (A.3), (A.7); (A.4), (A.8); (A.5), (A.9)
and (A.6), (A.10), we can obtain a compact set which encircles the origin and is shown in
the following

A ∆= (S1 ∩ PL−hσ) ∪ (FL−σ ∩ B3,π1,2) ∪ (FL−hσ ∩ (B1,1 \ B3,π1,2)) ∪ ((PL−σ \ PL−hσ)

∩(B3,π1,2 \ B3,π1,2)),

and

dV (ε)
dt

∣∣∣∣
(13)

V (ε)−γ ≤ −c3L
1−σ, ε ∈ A, (A.11)

where c3 = min{d1d
−γ
4 , d2d

−γ
5 , d3d

−γ
6 , d2d

−γ
6

2 } > 0.

Part II: Because V (ε) and dV (ε)
dt

∣∣∣
(13)

are homogeneous of degrees q and q +α−1 with respect

to the weights {αi}0≤i≤n−1, for any ε ∈ Rn \ {0}, there exist v0 > 0 and ε0 ∈ A such that
ε = (ε1, . . . , εn)T = (v0ε

0
1, . . . , v

αn−1

0 ε0
n)T . Moreover, we have dV (ε)

dt

∣∣∣
(13)

= vq+α−1
0

dV (ε0)
dt

∣∣∣
(13)

and
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V (ε) = vq
0V (ε0). Then, from (A.11), we derive

dV (ε)
dt

∣∣∣∣
(13)

= V (ε)−γ dV (ε0)
dt

∣∣∣∣
(13)

V (ε0)−γ ≤ −c3L
1−σV (ε)−γ , ε ∈ Rn \ {0}. (A.12)

This completes the proof.
¤
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