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Optimal Sensor Placement for Target Localization and Tracking

in 2D and 3D

Shiyu Zhao, Ben M. Chen and Tong H. Lee

Abstract

This paper analytically characterizes optimal sensor placements for target localization and tracking in 2D and 3D. Three types

of sensors are considered: bearing-only, range-only, and received-signal-strength. The optimal placement problems of the three

sensor types are formulated as an identical parameter optimization problem and consequently analyzed in a unified framework.

Recently developed frame theory is applied to the optimality analysis. We prove necessary and sufficient conditions for optimal

placements in 2D and 3D. A number of important analytical properties of optimal placements are further explored. In order to

verify the analytical analysis, we present a gradient control law that can numerically construct generic optimal placements.

Index Terms

Fisher information matrix; gradient control; optimal sensor placement; target tracking; tight frame.

I. INTRODUCTION

Target localization and tracking using networked mobile sensor platforms has become an active research area in recent

years. When localizing a target from noisy measurements of multiple sensors, the sensor placement can significantly affect the

estimation accuracy of any localization algorithms. The term sensor placement as used here refers to the relative sensor-target

geometry. This paper will address the optimal sensor placement that can minimize the target localization uncertainty.

In the literature, there are generally two kinds of formulations for optimal sensor placement problems. One is optimal control

[1]–[4] and the other is parameter optimization [5]–[13].

The optimal control formulation is usually adopted for cooperative path planning [1]–[3], where the aim is to estimate the

target position on one hand and plan the path of sensor platforms to minimize the estimation uncertainty on the other hand. This

problem is also referred as simultaneous-localization-and-planning (SLAP) [2]. In a SLAP problem, target motion and sensor

measurement models are considered as process and measurement models, respectively. The Kalman filter usually is applied

to estimate the target position and to characterize the estimation covariance. In order to minimize the estimation covariance,

an optimal control problem will be formulated. The disadvantage of this kind of formulation is that the optimal control with

various constraints generally can only be solved by numerical methods. Analytical properties usually cannot be obtained.

To avoid complicated optimal control problems, many studies including our work in this paper formulate the optimal

placement problem as a parameter optimization problem. This kind of formulation has a long history and has been investigated

extensively in [5]–[13], to name a few. The parameter optimization formulation is based on the assumption that a rough

estimation of the target position has already been obtained in other ways. By using this rough estimation, the sensor positions

are the parameters to be optimized such that the consequent target localization based on the optimized placement will be more

accurate. The objective function in the parameter optimization formulation usually involves the Fisher information matrix (FIM).
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The FIM is the inverse of the Cramer Rao lower bound (CRLB), which is the minimum achievable estimation covariance. An

unbiased estimator that achieves the CRLB is called efficient. An optimal placement, which maximizes a function (such as the

determinant) of the FIM, can be interpreted as maximizing the target information gathered by the sensors or minimizing the

estimation covariance of any efficient estimators.

In contrast to the optimal control formulation, the parameter optimization formulation can be solved analytically. The

analytical solutions are important for us to get insight to the effect of sensor placement on target localization uncertainty. It is

notable that the numerical results based on the optimal control formulation generally are consistent with the analytical results

based on the parameter optimization formulation. For example, the numerical simulations in [1], [2] show that the final optimal

angle subtended by two sensors at the target is 90 degrees. In [5], [8], [9], it is also analytically proved that the placement of

two sensors is optimal if the angle subtended by the two sensors at the target is 90 degrees.

In this paper, we will investigate optimal sensor placement by adopting the parameter optimization formulation. Our aim is to

determine the optimal sensor-target geometry based on an initial estimation of the target position. Optimal sensor placement is

of not only theoretical interest but also significantly practical value. Many studies have shown that target tracking performance

can be improved when sensors are steered to form an optimal placement. In this paper, we only focus on determining optimal

placements and will not address target tracking. One may refer to [9] for a comprehensive example that illustrates the application

optimal sensor placements to cooperative target tracking.

Until now, most of the existing studies only consider 2D optimal sensor placements [5]–[10], [12] . Very few works in the

literature have tackled 3D cases [13]. Analytical characterization of generic optimal sensor placements in 3D is still an open

problem. In this paper we will extend the results in [5], [7]–[9] from 2D to 3D. The extension will be non-trivial. Maximizing

the determinant of the FIM has been widely adopted as the criterion for optimal placements in 2D. This criterion, however,

cannot be directly applied to 3D cases because the determinant of the FIM is hardly analytically tractable in 3D. Motivated by

this, we will propose a new criterion for optimal placement, which enables us to analytically characterize optimal placements

in 2D and 3D. The existing analysis of 2D cases can be regarded as a special case of our general analysis for both 2D and

3D cases.

The existing work on optimal sensor placement has addressed many sensor types including bearing-only [5], [8], [14], range-

only [5], [9], [15], received-signal-strength (RSS) [7], time-of-arrival (TOA) [5], [6], and time-difference-of-arrival (TDOA)

[5], [12]. These sensor types are analyzed individually in the literature. One of the contributions of this paper is to unify the

analyses of bearing-only, range-only, and RSS sensors. Based on our proposed optimality criterion, we will show the objective

functions for the three sensor types are exactly the same. Hence their optimal placement can be analyzed in a unified way.

Since the measurement models and FIMs of TOA and TDOA sensors are significantly different from those of the three, we

will not consider TOA and TDOA sensors in this paper.

By employing recently developed frame theory, we prove necessary and sufficient conditions for optimal placements in 2D

and 3D. Frames provide a redundant and robust way for representing signals and are widely used in signal processing. We

refer to [16], [17] for an introduction to frames. It might be interesting to ask why frames arise in optimal sensor placement

problems. This question can be loosely answered from the redundancy point of view. As mentioned in [16], one would use

frames when redundancy is a must. In our work, the redundancy can be interpreted as the ratio between the number of sensors

and the space dimension. When the sensor number equals the dimension, there is no redundancy in the system, then we will

show that the necessary and sufficient condition of optimal placement can be proved without using frames. But when the sensor

number is larger than the space dimension, our optimality analysis will heavily rely on frame theory.
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The paper is organized as follows. Section II introduces preliminaries to frame theory. Section III presents a unified

formulation for optimal placement problems of bearing-only, range-only, and RSS sensors in 2D and 3D. In Section IV,

necessary and sufficient conditions for optimal placement in 2D and 3D are proved. Section V further explores a number

of important properties of optimal placements. In Section VI, a gradient control law is proposed to numerically verify our

analytical analysis. Conclusions are drawn in Section VII.

II. PRELIMINARIES TO FRAME THEORY

Frames can be defined in any Hilbert space. Here we are only interested in d-dimensional Euclidean space Rd. Let ‖ · ‖ be

the Euclidean norm of a vector or the Frobenius norm of a matrix. As shown in [16]–[19], a set of vectors {ϕi}ni=1 in Rd

(n ≥ d) is called a frame if there exist constants 0 < a ≤ b < +∞ so that for all x ∈ Rd

a‖x‖2 ≤
n∑

i=1

〈x, ϕi〉2 ≤ b‖x‖2, (1)

where 〈·, ·〉 denotes the inner product of two vectors. The constants a and b are called the frame bounds. A frame {ϕi}ni=1

is called unit-norm if ‖ϕi‖ = 1 for all i ∈ {1, . . . , n}. Denote Φ = [ϕ1, . . . , ϕn] ∈ Rd×n. Because 〈x, ϕi〉2 = (xTϕi)
2 =

xTϕiϕ
T
i x, inequality (1) can be rewritten as

a‖x‖2 ≤ xT ΦΦTx ≤ b‖x‖2,

where the matrix ΦΦT =
∑n

i=1 ϕiϕ
T
i is called the frame operator. The frame bounds a and b obviously are the smallest and

largest eigenvalues of ΦΦT , respectively. Since a > 0, ΦΦT is positive definite. It is well known that d vectors in Rd form a

basis if the vectors span Rd. Frame essentially is a generalization of the concept of basis. The frame {ϕi}ni=1 can also span

Rd because ΦΦT is positive definite and hence Φ is of full row rank. But compared to a basis, a frame have n− d redundant

vectors. The constant n/d is referred as the redundancy of the system. When n/d = 1, the frame would degenerate to a basis

of Rd.

Tight frame is a very important concept in frame theory. A frame is called tight when a = b. From (1), it is easy to see the

frame {ϕi}ni=1 is tight when

n∑
i=1

ϕiϕ
T
i = aId. (2)

Taking trace on both sides of (2) yields a =
∑n

i=1 ‖ϕi‖2/d. It is an important and fundamental problem in frame theory to

construct a tight frame {ϕi}ni=1 that solves (2) with specified norms. This problem is also recognized as notoriously difficult

[20]. One approach to this problem is to characterize tight frames as the minimizers of the frame potential

FP ({ϕi}ni=1) =

n∑
i=1

n∑
j=1

(
ϕT
i ϕj

)2
. (3)

Frame potential is first proposed in [18] for unit-norm frames, and then generalized in [19] for frames with arbitrary norms.

The following concept irregularity [16], [19] is crucial for characterizing the minimizers of the frame potential.

Definition 2.1 (Irregularity): For any positive non-increasing sequence {ci}ni=1 with c1 ≥ · · · ≥ cn > 0, and any integer d

satisfying 1 ≤ d ≤ n, denote k0 as the smallest nonnegative integer k for which

c2k+1 ≤
1

d− k

n∑
i=k+1

c2i . (4)
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The integer k0 is called the irregularity of {ci}ni=1 with respect to d.

Remark 2.2: The irregularity of a sequence is evaluated with respect to a particular positive integer. The irregularity of a

sequence may be different when evaluated with respect to different positive integers. In this paper, we will omit mentioning

this integer when the context is clear.

Because the index k = d− 1 always makes (4) hold, the irregularity k0 always exists and satisfies

0 ≤ k0 ≤ d− 1.

When k0 = 0, inequality (4) degenerates to the fundamental inequality [19]

max
j=1,...,n

c2j ≤
1

d

n∑
i=1

c2i . (5)

In this paper we call the sequence {ci}ni=1 regular when k0 = 0, and irregular when 1 ≤ k0 ≤ d − 1. The fundamental

inequality (5) intuitively means that: a sequence is regular when no element is much larger than the others. Next we show

several examples to illustrate the concept of irregularity.

Example 2.3: Consider a sequence {ci}ni=1 with c = c1 = · · · = cn and any d ≤ n. Because 1/d
∑n

i=1 c
2
i = nc2/d ≥ c2,

the fundamental inequality (5) holds. Thus this sequence is regular with respect to any integer d ≤ n.

Example 2.4: Consider a sequence {ci}4i=1 = {10, 1, 1, 1} and d = 3. Note the feature of this sequence is that one element

is much larger than the others. Because 102 > 1/3(102 + 1 + 1 + 1), the sequence is irregular with respect to d = 3. In order

to determine the irregularity k0, we need to further check if {ci}4i=2 = {1, 1, 1} is regular with respect to d− 1 = 2. Since the

elements of {ci}4i=2 equal to each other, {ci}4i=2 is regular with respect to 2 as shown in Example 2.3. Hence the irregularity

of {ci}4i=1 with respect to d = 3 is k0 = 1. This example shows that a sequence would be irregular if certain element is much

larger than the others.

Example 2.5: Consider a sequence {ci}4i=1 = {10, 10, 1, 1} and d = 2 or 3. When d = 2, we have 102 < 1/2(102 +

102 + 1 + 1). Hence {ci}4i=1 is regular with respect to d = 2. When d = 3, we have 102 > 1/3(102 + 102 + 1 + 1),

102 > 1/2(102 + 1 + 1) and 1 < 1/1(1 + 1). Hence {ci}4i=1 is irregular with respect to d = 3 and the irregularity is k0 = 2.

This example shows that a sequence might be regular with respect to one integer but irregular with respect to another.

The minimizers of the frame potential in (3) are characterized by the following lemma [19], which will be used to prove

the necessary and sufficient conditions for optimal placement.

Lemma 2.6: In Rd, given a positive non-increasing sequence {ci}ni=1 with irregularity as k0, if the norms of the frame

{ϕi}ni=1 are specified as ‖ϕi‖ = ci for all i ∈ {1, . . . , n}, any minimizer of the frame potential in (3) is of the form

{ϕi}ni=1 = {ϕi}k0
i=1 ∪ {ϕi}ni=k0+1,

where {ϕi}k0
i=1 is an orthogonal set, and {ϕi}ni=k0+1 is a tight frame in the orthogonal complement of the span of {ϕi}k0

i=1.

Any local minimizer is also a global minimizer.

From Lemma 2.6, a minimizer of the frame potential consists of an orthogonal set {ϕi}k0
i=1 and a tight frame {ϕi}ni=k0+1.

The partition of the two sets is determined by the irregularity of the specified frame norms {ci}ni=1. When the irregularity

k0 = 0, it is clear that a minimizer of the frame potential is a tight frame. As a corollary of Lemma 2.6, the following result

[19] gives the existence condition of the solutions to (2).

Lemma 2.7: In Rd, given a positive sequence {ci}ni=1, there exists a tight frame {ϕi}ni=1 with ‖ϕi‖ = ci for all i ∈ {1, . . . , n}
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TABLE I: Measurement models and FIMs of the three sensor types.

Sensor type Measurement model FIM Coefficient Optimality criterion

Bearing-only hi(ri) =
ri
‖ri‖

F =

n∑
i=1

c2i (Id − gigTi ) ci =
1

σi‖ri‖
min

∥∥∥∥∥
n∑

i=1

c2i gig
T
i

∥∥∥∥∥
2

Range-only hi(ri) = ‖ri‖ F =

n∑
i=1

c2i gig
T
i ci =

1

σi
min

∥∥∥∥∥
n∑

i=1

c2i gig
T
i

∥∥∥∥∥
2

RSS hi(ri) = ln ‖ri‖ F =

n∑
i=1

c2i gig
T
i ci =

1

σi‖ri‖
min

∥∥∥∥∥
n∑

i=1

c2i gig
T
i

∥∥∥∥∥
2

solving (2) if and only if {ci}ni=1 is regular.

III. PROBLEM FORMULATION

Consider one target and n sensors in Rd (d = 2 or 3 and n ≥ d). As shown in Table I, we consider three types of sensors:

bearing-only, range-only, and RSS. Suppose n sensors involve only one sensor type. Sensor networks with mixed sensor types

are not addressed. Following [5], [7]–[9], a rough estimation p ∈ Rd of the target position is assumed to be obtained in

other ways. Since p is the only available information of the target, the optimal placement will be determined based on this

estimation. As illustrated in [9], the rough estimation of the target position can be obtained from a Kalman filter in practice and

the optimal placement can be applied to improve target tracking performance. It should be noted that this paper only focuses

on determining optimal sensor placements and will not discuss their application to target localization or tracking. Denote the

position of sensor i as si ∈ Rd, i ∈ {1, . . . , n}. Then ri = si − p denotes the position of sensor i relative to the target. The

relative sensor-target placement can be fully described by {ri}ni=1. Our aim is to determine the optimal {ri}ni=1 such that

certain objective function can be optimized. The distance between sensor i and the target is given by ‖ri‖. The unit-length

vector gi = ri/‖ri‖ represents the orientation of sensor i relative to the target.

A. Sensor Measurement Model and FIM

For any sensor type in Table I, the measurement model of sensor i is expressed as

zi = hi(ri) + vi,

where zi ∈ Rm denotes the measurement of sensor i, the function hi(ri) : Rd → Rm is determined by the type of the

sensor, and vi ∈ Rm is the additive measurement noise. We assume vi to be a zero-mean Gaussian noise with covariance as

Σi = σ2
i Im ∈ Rm×m, where Im denotes the m×m identity matrix. By further assuming the measurement noises of different

sensors are uncorrelated, the FIM given by n sensors is expressed as

F =

n∑
i=1

(
∂hi
∂p

)T

Σ−1i

∂hi
∂p

, (6)

where ∂hi/∂p denotes the Jacobian of hi(ri) = hi(si − p) with respect to p. We refer to [5], [7]–[9], [21] for a detailed

derivation of the FIM formula in (6).

The measurement models of bearing-only, range-only, and RSS sensors are given in Table I. The measurement of a bearing-

only sensor is conventionally modeled as one angle (azimuth) in 2D or two angles (azimuth and altitude) in 3D. The drawback

of this kind of model is that the model complexity increases dramatically as the dimension increases. As shown in Table I, we
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model the measurement of a bearing-only sensor as a unit-length vector pointing from the target to the sensor. A unit-length

vector essentially characterizes a bearing and is very suitable to represent a bearing-only measurement. This model, which

was proposed in our previous work [14], enables us to easily formulate optimal bearing-only placement in R2 and R3. The

measurement model of range-only sensors given in Table I is the same as the one in [5]. The measurement model of RSS

sensors given in Table I is a modified version of the one in [7]. Without loss of generality, we simplify the model in [7] by

omitting certain additive and multiplicative constants.

The FIMs of the three sensor types are shown in Table I. The FIM can be calculated by substituting h(ri) in to (6). The

calculation is straightforward and omitted here. As will be shown later, the coefficients {ci}ni=1 in the FIMs fully determine

the optimal placements. Following [5], [7]–[9], we assume the coefficient ci to be arbitrary but fixed. (i) For bearing-only or

RSS sensors, because ci = 1/(σi‖ri‖), both σi and ‖ri‖ are assumed to be fixed. Otherwise, if ‖ri‖ is unconstrained, the

placement will be optimal when ‖ri‖ approaches zero. To avoid this trivial solution, it is reasonable to assume ‖ri‖ to be

fixed. (ii) For range-only sensors, because ci = 1/σi, only σi is assumed to be fixed. Hence ‖ri‖ will have no influence on

the optimality of the placement for range-only sensors.

To end this subsection, we would like to point out that the FIMs given in Table I are consistent with the ones given in [5],

[7]–[9] in 2D cases. To verify that, we can substitute gi = [cos θi, sin θi]
T ∈ R2 into the FIMs in Table I.

B. New Criterion for Optimal Placement

The conventional criterion for optimal placement is to maximize the determinant of the FIM, i.e., detF . But detF is hardly

analytically tractable in R3. In order to analytically characterize optimal placements in R2 and R3, we will consider a new

objective function. Let {λi}di=1 be the eigenvalues of F and λ̄ = 1/d
∑d

i=1 λi. The new objective function considered in this

paper is ‖F − λ̄Id‖2. Compared to the conventional one detF , the new objective function ‖F − λ̄Id‖2 is of strong analytical

tractability. We next formally state the optimal sensor placement problem that we are going to solve.

Problem 3.1: Consider one target and n sensors in Rd (d = 2 or 3 and n ≥ d). The sensors involve only one of the three

sensor types in Table I. Given arbitrary but fixed positive coefficients {ci}ni=1, find the optimal placement {g∗i }ni=1 such that

{g∗i }ni=1 = arg min
{gi}ni=1⊂Sd−1

‖F − λ̄Id‖2, (7)

where Sd−1 denotes the unit sphere in Rd.

Remark 3.2: The relative sensor-target placement can be fully described by {ri}ni=1. Recall ‖ri‖ is assumed to be fixed for

bearing-only or RSS sensors, and ‖ri‖ has no effect on the placement optimality for range-only sensors. Thus for any sensor

type, the optimal sensor placement can also be fully described by {gi}ni=1. That means we only need to determine the optimal

relative sensor-target bearings {g∗i }ni=1 to obtain the optimal placement.

Although the FIMs of different sensor types may have different formulas as shown in Table I, the following result shows

that substituting the FIMs of the three sensor types into (7) will lead to an identical objective function. The following result

is important because it enables us to unify the formulations of optimal placement for the three sensor types.

Lemma 3.3: Consider one target and n sensors in Rd (d = 2 or 3 and n ≥ d). The sensors involve only one of the three

sensor types in Table I. The problem defined in (7) is equivalent to

{g∗i }ni=1 = arg min
{gi}ni=1⊂Sd−1

‖G‖2 , (8)
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where G =
∑n

i=1 c
2
i gig

T
i .

Proof: If all sensors are bearing-only, the FIM is F =
∑n

i=1 c
2
i (Id − gigTi ) and then λ̄ = 1/d

∑d
j=1 λj = trF/d =

(d− 1)/d
∑n

i=1 c
2
i . Hence

F − λ̄Id =

n∑
i=1

c2i (Id − gigTi )− d− 1

d

n∑
i=1

c2i Id

= −
n∑

i=1

c2i gig
T
i +

1

d

n∑
i=1

c2i Id.

If all sensors are range-only or RSS, the FIM is F =
∑n

i=1 c
2
i gig

T
i and then λ̄ = 1/d

∑d
j=1 λj = trF/d = 1/d

∑n
i=1 c

2
i .

Hence

F − λ̄Id =

n∑
i=1

c2i gig
T
i −

1

d

n∑
i=1

c2i Id.

Therefore, for any one of the three sensor types given in Table I, the new objective function can be rewritten as

‖F − λ̄Id‖2 =

∥∥∥∥∥
n∑

i=1

c2i gig
T
i −

1

d

n∑
i=1

c2i Id

∥∥∥∥∥
2

= ‖G‖2 − 1

d

(
n∑

i=1

c2i

)2

. (9)

Because 1/d(
∑n

i=1 c
2
i )2 is constant, minimizing ‖G‖2 is equivalent to minimizing ‖F − λ̄Id‖2.

One primary task of this paper is to solve the parameter optimization problem (8). It should be noted that we must clearly

know the sensor type that we work with, such that the coefficients {ci}ni=1 in G can be calculated correctly according to the

sensor type. Once {ci}ni=1 have been calculated, the sensor types will be transparent to us. As a consequence, the analysis of

optimal sensor placement in the sequel of the paper will apply to all the three sensor types.

C. Relationship between the New and Conventional Criterions

The new criterion for optimal placement is to minimize ‖F − λ̄Id‖2, while the widely adopted conventional one is to

maximize detF . We will show that the new criterion has a very close connection to the conventional one.

Lemma 3.4: For any one of the three sensor types given in Table I, we have

detF ≤ λ̄d,

where the equality holds if and only if

‖F − λ̄Id‖2 = 0. (10)

Proof: For any one of the three sensor types, the FIM F is symmetric positive (semi) definite. Hence λj is real and

nonnegative. From the FIMs shown in Table I, we have
∑d

j=1 λj = trF = (d − 1)
∑n

i=1 c
2
i for bearing-only sensors, and∑d

j=1 λj = trF =
∑n

i=1 c
2
i for range-only or RSS sensors. Note {ci}ni=1 is assumed to be fixed. Hence

∑d
j=1 λj is an

invariant quantity for any one of the three sensor types. By the inequality of arithmetic and geometric means, the conventional
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objective function detF satisfies

detF =

d∏
j=1

λj ≤

1

d

d∑
j=1

λj

d

= λ̄d, (11)

where the equality holds if and only if λj = λ̄ for all j ∈ {1, . . . , d}, which means

F = λ̄Id ⇔ ‖F − λ̄Id‖2 = 0. (12)

To sum up, detF is maximized to its upper bound λ̄d if and only if ‖F − λ̄Id‖2 = 0.

Based on Lemma 3.4, we next further examine the relationship between the new and conventional criterions case by case.

(i) In R2, we have detF = 1/2((trF)2 − tr (F 2)) = 1/2
(
4λ̄2 − ‖F‖2

)
and ‖F − λ̄I2‖2 = tr (F − λ̄I2)2 = ‖F‖2 − 2λ̄2,

which suggest

‖F − λ̄I2‖2 = −2 detF + 2λ̄2.

Because 2λ̄2 is constant, minimizing ‖F − λ̄I2‖2 is rigorously equivalent to maximizing detF in R2. Thus the new criterion is

rigorously equivalent to the conventional one for all 2D cases. As a consequence, our analysis based on the new criterion will

be consistent with the 2D results in [5], [7]–[9]. (ii) In R3, if ‖F − λ̄I3‖2 is able to achieve zero, then detF can be maximized

to its upper bound as shown in Lemma 3.4. In this case the new criterion is still rigorously equivalent to the conventional

one. (iii) In R3, ‖F − λ̄I3‖2 is not able to reach zero in certain irregular cases (see Section IV for the formal definition of

irregular). In these cases detF and ‖F − λ̄I3‖2 may not be optimized simultaneously. But as will be shown later, the analysis

of irregular cases in R3 based on the new criterion is a also reasonable extension of the analysis of irregular cases in R2.

D. Equivalent Placements

Before solving (8), we identify a group of placements that result in the same value of ‖G‖2.

Proposition 3.5: The objective function ‖G‖2 is invariant to the sign of gi for all i ∈ {1, . . . , n} and any orthogonal

transformations over {gi}ni=1.

Proof: First, gigTi = (−gi)(−gi)T for all i ∈ {1, . . . , n}, hence ‖G‖2 is invariant to the sign of gi. Second, let

U ∈ Rd×d be an orthogonal matrix satisfying UTU = Id. Applying U to {gi}ni=1 yields {g′i = Ugi}ni=1. Then we

have G′ =
∑n

i=1 c
2
i g
′
i(g
′
i)

T =
∑n

i=1 c
2
i (Ugi)(Ugi)

T = UGUT . Since G and G′ are both symmetric, we have ‖G′‖2 =

tr (UGUTUGUT ) = tr (G2) = ‖G‖2.

Geometrically speaking, changing the sign of gi means flipping sensor i about the target, and an orthogonal transformation

represents a rotation, reflection or both combined operation over all sensors. It is noticed that the invariance to the sign change

of gi was originally recognized in [8] for bearing-only sensors. By Proposition 3.5, we define the following equivalence

relationship.

Definition 3.6 (Equivalent placements): Given arbitrary but fixed coefficients {ci}ni=1, two placements {gi}ni=1 and {g′i}ni=1

are called equivalent if they are differed by indices permutation, flipping any sensors about the target, or any global rotation,

reflection or both combined over all sensors.

Due to the equivalence, there always exist an infinite number of equivalent optimal placements minimizing ‖G‖2. If two

optimal placements are equivalent, they lead to the same objective function value. But the converse statement is not true in
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s1

s3

s2

p

s1

s3

s2

p

s1

s3

s2

p

s1

s3

s2 p

(a) (b)

(c) (d)

Fig. 1: Examples of equivalent placements (d = 2, n = 3): (a) Original placement. (b) Rotate all sensors about the target 60 degrees clockwise. (c) Reflect
all sensors about the vertical axis. (d) Flipping the sensor s3 about the target.

general. In Section V-C, we will give the condition under which the converse is true. Examples of 2D equivalent placements

are given in Figure 1.

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL PLACEMENT

In this section, we will prove the necessary and sufficient conditions for optimal placements solving (8). Recall G =∑n
i=1 c

2
i gig

T
i . Then we have

‖G‖2 =

n∑
i=1

n∑
j=1

(cicjg
T
i gj)

2

=

n∑
i=1

n∑
j=1

(ϕiϕj)
2,

where ϕi = cigi for i ∈ {1, . . . , n}. The vectors {ϕi}ni=1 form a frame in Rd. The objective function ‖G‖2 is exactly the

frame potential of the frame {ϕi}ni=1 as shown in (3). The matrix G is the frame operator. Note here ‖ϕi‖ = ci. The coefficient

sequence {ci}ni=1 will fully determine the minimizers of ‖G‖2. According to the irregularity of {ci}ni=1, optimal placements

are categorized as regular and irregular as shown below.

When {ci}ni=1 is regular, the necessary and sufficient condition of optimal placement is given below. The 2D version of the

following result has been proposed in [5], [7], [8].

Theorem 4.1 (Regular optimal placement): In Rd with d = 2 or 3, if the positive coefficient sequence {ci}ni=1 is regular,

then the objective function ‖G‖2 satisfies

‖G‖2 ≥ 1

d

(
n∑

i=1

c2i

)2

. (13)

The lower bound of ‖G‖2 is achieved if and only if

n∑
i=1

c2i gig
T
i =

1

d

n∑
i=1

c2i Id. (14)

Proof: Let {µj}dj=1 be the eigenvalues of G. Then
∑d

j=1 µj = trG =
∑n

i=1 c
2
i is constant. Let µ̄ = 1/d

∑d
j=1 µj =
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1/d
∑n

i=1 c
2
i . It is obvious that

‖G‖2 =

d∑
j=1

µ2
j ≥ dµ̄2 =

1

d

(
n∑

i=1

c2i

)2

.

The lower bound of ‖G‖2 is achieved if and only if µj = µ̄ for all j ∈ {1, . . . , d}, which implies G = µ̄Id, i.e., the equation

(14). By denoting ϕi = cigi, (14) becomes
∑n

i=1 ϕiϕ
T
i = 1/d

∑n
i=1 c

2
i Id which is the same as (2). Thus a regular optimal

placement solving (14) actually corresponds to a tight frame. Because {ci}ni=1 is regular, by Lemma 2.7 there exist optimal

placements solving (14).

We call a placement regular when its coefficient sequence is regular, and regular optimal when it solves (14). To obtain a

regular optimal placement, we still need to solve (14). Details of the solutions to (14) will be given in Section V-A.

Remark 4.2: When ‖G‖2 reaches its lower bound 1/d(
∑n

i=1 c
2
i )2, we have ‖F − λ̄Id‖2 = 0 by (9). By Lemma 3.4, the

conventional objective function detF will be maximized to its upper bound. Therefore, regular optimal placements not only

minimize the new objective functions ‖G‖2 and ‖F − λ̄Id‖2 but also maximize the conventional one detF in R2 and R3.

When {ci}ni=1 is irregular, (14) will have no solution. Then the the necessary and sufficient condition of optimal placement

is given below. The 2D version of the following result has been proposed in [5], [7], [8].

Theorem 4.3 (Irregular optimal placement): In Rd with d = 2 or 3, if the positive coefficient sequence {ci}ni=1 is irregular

with irregularity as k0 ≥ 1, without loss of generality {ci}ni=1 can be assumed to be a non-increasing sequence, and then the

objective function ‖G‖2 satisfies

‖G‖2 ≥
k0∑
i=1

c4i +
1

d− k0

(
n∑

i=k0+1

c2i

)2

. (15)

The lower bound of ‖G‖2 is achieved if and only if

{gi}ni=1 = {gi}k0
i=1 ∪ {gi}

n
i=k0+1, (16)

where {gi}k0
i=1 is an orthogonal set, and {gi}ni=k0+1 forms a regular optimal placement in the (d−k0)-dimensional orthogonal

complement of {gi}k0
i=1.

Proof: Recall ‖G‖2 is the frame potential of the frame {ϕi}ni=1 where ϕi = cigi. From Lemma 2.6, the minimizer of ‖G‖2

is of the following form: {cigi}k0
i=1 is an orthogonal set, and {cigi}ni=k0+1 is a tight frame (i.e., a regular optimal placement)

in the orthogonal complement of {cigi}k0
i=1.

Let Φ1 = [ϕ1, . . . , ϕk0
] ∈ Rd×k0 , Φ2 = [ϕk0+1, . . . , ϕn] ∈ Rd×(n−k0), and Φ = [Φ1,Φ2] ∈ Rd×n. When {gi}ni=1 is of the

form in (16), the columns of Φ1 are orthogonal to those of Φ2. Then

‖G‖2 = tr (ΦT Φ)2 = tr (ΦT
1 Φ1)2 + tr (ΦT

2 Φ2)2.

Because {gi}k0
i=1 is an orthogonal set, we have tr (ΦT

1 Φ1)2 =
∑k0

i=1 ‖ϕi‖4 =
∑k0

i=1 c
4
i . Because {gi}ni=k0+1 is a regular optimal

placement in a (d− k0)-dimensional subspace, we have tr (ΦT
2 Φ2)2 = 1/(d− k0)(

∑n
i=k0+1 c

2
i )2 by Theorem 4.1. Therefore,

when {gi}ni=1 is of the form in (16), the objective function ‖G‖2 reaches its lower bound as shown in (15).

We call a placement irregular when its coefficient sequence is irregular, and irregular optimal when it is of the form in

(16). In Theorem 4.3, because {gi}ni=k0+1 is a regular optimal placement in a (d−k0)-dimensional space, an irregular optimal

placement problem will eventually convert to a regular one in a lower dimensional subspace.
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Fig. 2: An illustration of the three kinds of irregular optimal placements in R2 and R3. (a) d = 2, k0 = 1; (b) d = 3, k0 = 1; (c) d = 3, k0 = 2.

Apparently the irregularity of {ci}ni=1 plays a key role in determining optimal placements. Recall the irregularity k0 of an

irregular sequence with respect to d satisfies 1 ≤ k0 ≤ d− 1. In R2, we have d = 2 and hence k0 = 1; in R3, we have d = 3

and hence k0 = 1 or 2. Thus there exist only three kinds of irregular optimal placements in R2 and R3. By Theorem 4.3,

these three kinds of irregular optimal placements can be intuitively described as below.

(i) Irregular optimal placement in R2 with irregularity k0 = 1: the vector g1 is orthogonal to {gi}ni=2, and {gi}ni=2 are

collinear. See an illustration in Figure 2 (a).

(ii) Irregular optimal placement in R3 with irregularity k0 = 1: the vector g1 is orthogonal to {gi}ni=2, and {gi}ni=2 form a

regular optimal placement in the 2D plane perpendicular to g1. See an illustration in Figure 2 (b).

(iii) Irregular optimal placement in R3 with irregularity k0 = 2: the vectors g1, g2 and {gi}ni=3 are mutually orthogonal, and

{gi}ni=3 are collinear. See an illustration in Figure 2 (c).

We now intuitively explain why irregular optimal placements are the way as described above. The sequence {ci}ni=1 is

irregular when certain ci is much larger than the others. The coefficient ci actually is the weight for sensor i. The larger the

weight ci is, the more sensor i contributes to the FIM. Recall ci = 1/(σi‖ri‖) or ci = 1/σi. If sensor i is very close to the

target (i.e., ‖ri‖ is small) and its measurement is very accurate (i.e., σi is small), then ci will be very large and sensor i may

dominate all the others. Thus the dominant sensor can measure the target sufficiently accurately in one dimension, and all the

other sensors should measure the target in the orthogonal complement in order to improve the overall measurement accuracy.

To make our analysis more general, we do not assume σi’s to be identical. It is also meaningful to check the special case,

σi = σj for all i 6= j, which often arises in practice. For bearing-only or RSS-based sensors, the coefficient is ci = 1/(σi‖ri‖).

So when σi = σj for all i 6= j, a regular sequence {ci}ni=1 implies the following equation according to the fundamental

inequality (5):

max
j=1,...,n

1

‖rj‖2
≤ 1

d

n∑
i=1

1

‖ri‖2
, (17)

which geometrically means no sensor is much closer to the target than the others. Conversely, if certain sensors are much

closer to the target than the others, then the sequence {ci}ni=1 will be irregular. The 2D version of inequality (17) has been

proposed in [5], [7], [8]. For range-only sensors, the coefficient is ci = 1/σi. If σi = σj for all i 6= j, then ci = cj and {ci}ni=1
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is regular with respect to any d ≤ n.

We next consider an important special case n = d, i.e., the sensor number equals to the dimension of the space. This case is

important because the optimal placement will be independent to the coefficients {ci}ni=1 in this case. The optimal placement

in the case of n = d = 2 has been solved by [5], [7]–[9].

Theorem 4.4: In Rd with d = 2 or 3, if n = d, the objective function ‖G‖2 satisfies

‖G‖2 ≥
d∑

i=1

c4i .

The lower bound of ‖G‖2 is achieved if and only if {gi}di=1 is an orthogonal basis of Rd.

Proof: Since G =
∑d

i=1 c
2
i gig

T
i and gTi gi = 1 for all i ∈ {1, . . . , n}, we have

‖G‖2 = tr (G2)

=

d∑
i=1

d∑
j=1

c2i c
2
j (gTi gj)

2

=

d∑
i=1

d∑
j=1,j 6=i

c2i c
2
j (gTi gj)

2 +

d∑
i=1

c4i

≥
d∑

i=1

c4i ,

where the equality holds if and only if gTi gj = 0 for all i, j ∈ {1, . . . , d} and i 6= j.

Theorem 4.4 can also be proved as a corollary of Theorem 4.1 and Theorem 4.3. But as shown above, we can also directly

prove it without using frame theory. This can be explained from the redundancy point of view. Recall the constant n/d reflects

the redundancy of the system. There will be no redundancy when n/d = 1. Then frames are no longer necessary for the

optimality analysis.

V. ANALYTICAL PROPERTIES OF OPTIMAL PLACEMENTS

In this section, we further explore a number of analytical properties of optimal placements in 2D and 3D. Theorem 4.3

implies that an irregular optimal placement problem can be eventually converted to a regular one in a lower dimensional space.

Hence we will only focus on regular optimal placements.

A. Explicit Construction

The work in [5], [7]–[9] has proposed explicit construction methods for some special 2D optimal placements. The construction

of generic optimal placements in 2D or 3D is still an open problem. From Theorem 4.1, we know a regular optimal placement

is essentially a tight frame. In fact, construction of tight frames in arbitrary dimensions has been extensively studied. Thus by

referring to [20], [22]–[24], to name a few, we are able to construct optimal placements with an arbitrary number of sensors

and arbitrary but fixed coefficients in 2D and 3D.

We here present a proof of the necessary and sufficient condition for 2D regular optimal placements without using frame

theory. In the meantime, we propose an explicit construction method for arbitrary 2D regular optimal placements. The necessary

and sufficient condition for 2D optimal placements has already been given in [5], [7], [8], where the sufficiency, however, is

not proved. We will prove the sufficiency by construction. The following lemma can be found in [5], [7]–[9], [18], [25], [26].
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Lemma 5.1: In R2, the unit-length vector gi can be written as gi = [cos θi, sin θi]
T . Then (14) is equivalent to

n∑
i=1

c2i ḡi = 0, (18)

where ḡi = [cos 2θi, sin 2θi]
T .

Proof: Substituting gi = [cos θi, sin θi]
T into (14) gives

n∑
i=1

c2i

 1
2 cos 2θi

1
2 sin 2θi

1
2 sin 2θi − 1

2 cos 2θi

 = 0,

which is equivalent to (18).

By Lemma 5.1, the matrix equation (14) is simplified to a vector equation (18). In order to construct {gi}ni=1 solving (14), we

can first construct {ḡi}ni=1 solving (18). Once ḡi = [cos 2θi, sin 2θi]
T is obtained, gi can be retrieved as gi = ±[cos θi, sin θi]

T .

Note the sign changes of gi give equivalent optimal placement as mentioned in Definition 3.6.

Theorem 5.2: In R2, given a positive sequence {ci}ni=1, there exists {ḡi}ni=1 with ‖ḡi‖ = 1 solving (18) if and only if

max
j=1,...,n

c2j ≤
1

2

n∑
i=1

c2i . (19)

Proof: Necessity: If
∑n

i=1 c
2
i ḡi = 0, then c2j ḡj =

∑
i 6=j c

2
i ḡi for all j ∈ {1, . . . , n}. Hence c2j = ‖c2j ḡj‖ = ‖

∑
i 6=j c

2
i ḡi‖ ≤∑

i6=j ‖c2i ḡi‖ =
∑

i 6=j c
2
i . Then adding c2j on both sides of the inequality gives 2c2j ≤

∑n
i=1 c

2
i .

Sufficiency: If c2j ≤ 1/2
∑n

i=1 c
2
i for all j ∈ {1, . . . , n}, it is obvious that there always exists an index n0 (2 ≤ n0 ≤ n)

such that

c21 + · · ·+ c2n0−1 ≤
1

2

n∑
i=1

c2i , (20)

c21 + · · ·+ c2n0−1 + c2n0
≥ 1

2

n∑
i=1

c2i . (21)

When n0 < n, denote

`1 = c21 + · · ·+ c2n0−1,

`2 = c2n0
,

`3 = c2n0+1 + · · ·+ c2n. (22)

Obviously `1 + `2 + `3 =
∑n

i=1 c
2
i . From (19), cn0

≤ 1/2
∑n

i=1 c
2
i and hence `1 + `3 ≥ `2. From (20), `1 ≤ 1/2

∑n
i=1 c

2
i and

hence `2 + `3 ≥ `1. From (21), `1 + `2 ≥ 1/2
∑n

i=1 c
2
i and hence `1 + `2 ≥ `3. Therefore, `1, `2 and `3 satisfy the triangle

inequality and can form a triangle. Choose ḡ1 = · · · = ḡn0−1. Then
∑n0−1

i=1 c2i ḡi = `1ḡ1. Choose ḡn0+1 = · · · = ḡn. Then∑n
i=n0+1 c

2
i ḡi = `3ḡn. Then (18) becomes

`1ḡ1 + `2ḡn0
+ `3ḡn = 0. (23)

We can choose ḡ1, ḡn0
and ḡn that align with the three sides of the triangle with side length as `1, `2 and `3, respectively (see

Figure 3). Then (23) and consequently (18) can be solved. When n0 = n, the above proof is still valid. In this case, we have

`3 = 0 and `1 = `2, and (23) becomes ḡ1 + ḡn0 = 0.

From the proof of Theorem 5.2, an explicit construction of 2D regular optimal placements can be summarized in Algorithm
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`1

`3`2

α12 α13

ḡi (i < n0)

ḡi (i > n0)

ḡn0

Fig. 3: Geometric illustration for the 2D construction.

Algorithm 1 Construction of 2D regular optimal placements {gi}ni=1 with coefficients {ci}ni=1.

1: Choose n0 satisfying (20) and (21). Then compute `1, `2 and `3 in (22).
2: Compute interior angles α12 and α13 of the triangle with side lengths as `1, `2 and `3 (See Figure 3).
3: Choose gi = [1, 0]T for i ∈ {1, . . . , n0 − 1}, gn0

= [cos((π + α12)/2), sin((π + α12)/2)]
T , and gi =

[cos((π − α13)/2), sin((π − α13)/2)]
T for i ∈ {n0 + 1, . . . , n}.

1. The following example illustrates the construction method in Algorithm 1.

Example 5.3: In R2, given six bearing-only sensors with sensor-target ranges respectively as ‖r1‖ = 5, ‖r2‖ = 6, ‖r3‖ = 7,

‖r4‖ = 8, ‖r5‖ = 9, and ‖r6‖ = 10. The measurement noise variance is σi = 1 for all i ∈ {1, . . . , 6}. Recall ci = 1/(σi‖ri‖)

for bearing-only sensors. Then c21 = 0.0400, c22 = 0.0278, c23 = 0.0204, c24 = 0.0156, c25 = 0.0123, c26 = 0.0100, and

1/2
∑6

i=1 c
2
i = 0.0631. It is easy to check the sequence {ci}6i=1 is regular. Because c21 < 1/2

∑6
i=1 c

2
i and c21 + c22 >

1/2
∑6

i=1 c
2
i , choose n0 = 2. Hence `1 = 0.0400, `2 = 0.0278, and `3 = 0.0584. Then α12 = 2.0560 rad and α13 =

0.4344 rad. As instructed in Algorithm 1, choose g1 = [1, 0]T , g2 = [0.8563,−0.5165]T , g3 = · · · = g6 = [0.2155, 0.9765]T .

It can be verified that
∑6

i=1 c
2
i gig

T
i = 1/2

∑6
i=1 c

2
i I2.

B. Equally-weighted Optimal Placements

The coefficient ci actually is the weight of sensor i. A placement is called equally-weighted if c1 = · · · = cn. Since {ci}ni=1

is regular with respect to any d ≤ n if c1 = · · · = cn, equally-weighted placements must be regular. For bearing-only or RSS

sensors, equally-weighted means σi = σj and ‖ri‖ = ‖rj‖ for all i 6= j as ci = 1/(σi‖ri‖). The corresponding geometry is

that all sensors are restricted on a 2D circle or a 3D sphere centered at the target. For range-only sensors, equally-weighted

means σi = σj for all i 6= j as ci = 1/σi.

Equally-weighted placements are important because they often arise in practice and have some important special properties. In

the equally-weighted case, (14) is simplified to
∑n

i=1 gig
T
i = n/dId, which implies that an equally-weighted optimal placement

is essentially a unit-norm tight frame [18], [26]. In R2, an equally-weighted placement is optimal if n (n ≥ 3) sensors are

located at the vertices of an n-side regular polygon [5], [7]–[9], [18], [26] as shown in Figure 4. In R3, an equally-weighted

placement is optimal if n sensors are located at the vertices of a Platonic solid [18], [26]. There are only five Platonic solids as

shown in Figure 5. It should be noted that equally-weighted optimal placements are not limited to regular polygons or Platonic

solids. In Section V-D we will show more examples of equally-weighted optimal placements.
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(a) (b) (c) (d) (e)

Fig. 4: Examples of 2D equally-weighted optimal placements: regular polygons. Red square: target; blue dots: sensors.

(a) (b) (c) (d) (e)

Fig. 5: Examples of 3D equally-weighted optimal placements: Platonic solids. Red square: target; blue dots: sensors. (a) Tetrahedron, n = 4. (b) Octahedron,
n = 6. (c) Hexahedron, n = 8. (d) Icosahedron, n = 12. (e) Dodecahedron, n = 20.

C. Uniqueness

Due to placement equivalence, there exist at least an infinite number of equivalent optimal placements minimizing ‖G‖2.

It is interesting to ask whether all optimal placements are mutually equivalent. Now we give the condition under which all

optimal placements are mutually equivalent, or in other words, the optimal placement is unique up to the equivalence. Again

we only consider regular cases.

According to Theorem 4.4, it is clear that the optimal placement is unique in the case of n = d. We next show the regular

optimal placement is also unique in the case of n = d + 1 (i.e., three sensors in R2 or four sensors in R3). The uniqueness

will be proved by construction, which is inspired by the work in [25] on unit-norm tight frames.

Theorem 5.4: In Rd with d = 2 or 3, if n = d + 1, given a regular coefficient sequence {ci}d+1
i=1 , the regular optimal

placement {gi}d+1
i=1 is unique up to the equivalence in Definition 3.6.

Proof: Suppose {gi}d+1
i=1 is a regular optimal placement solving (14). Denote ϕi = cigi and Φ = [ϕ1, . . . , ϕd+1] ∈

Rd×(d+1). Then (14) can be written in matrix form as ΦΦT = 1/d
∑d+1

i=1 c
2
i Id. Hence Φ has mutually orthogonal rows with

row norm as
√

1/d
∑d+1

i=1 c
2
i . Let x = [x1, . . . , xd+1] ∈ Rd+1 be a vector in the orthogonal complement of the row space

of Φ. Assume ‖x‖ =
√

1/d
∑d+1

i=1 c
2
i . Adding xT after the last row of Φ yields an augmented matrix Φaug =

[
ΦT , x

]T ∈
R(d+1)×(d+1). It is clear that ΦaugΦT

aug = 1
d

∑d+1
i=1 c

2
i Id+1. Thus Φaug is a scaled orthogonal matrix and its columns are

mutually orthogonal. The jth column of Φaug is [ϕT
j , xj ]

T ∈ Rd+1 for all j ∈ {1, . . . , d+ 1}. Note the column norm of Φaug

is
√

1/d
∑d+1

i=1 c
2
i . Then we have ‖ϕj‖2 + x2j = 1/d

∑d+1
i=1 c

2
i and hence

xj = ±

√√√√1

d

d+1∑
i=1

c2i − c2j . (24)

The regularity condition ensures 1/d
∑d+1

i=1 c
2
i − c2j ≥ 0.
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Algorithm 2 Construction of the unique regular optimal placement {gi}d+1
i=1 with coefficients {ci}d+1

i=1 .

1: Choose x = [x1, . . . , xd+1] ∈ Rd+1 with xj = ±
√

1/d
∑d+1

i=1 c
2
i − c2j for i ∈ {1, . . . , d+ 1}.

2: Use the singular value decomposition (SVD) to numerically compute an orthogonal basis of the orthogonal complement
of x. Let x = UΣV T be an SVD of x, where U ∈ R(d+1)×(d+1) is an orthogonal matrix.

3: Let ui denote the ith column of U . Then x = ±
√

1/d
∑d+1

i=1 c
2
iu1, and Φ can be constructed as

Φ =

√√√√1

d

d+1∑
i=1

c2i [u2, . . . , ud+1]
T ∈ Rd×(d+1). (27)

4: Compute gi = ϕi/ci for i ∈ {1, . . . , d+ 1}.

By reversing the above proof, we can obtain an explicit construction algorithm for optimal placement with n = d + 1 as

shown in Algorithm 2. The rest is to prove the constructed optimal placements are mutually equivalent. First, given a vector

x ∈ Rd+1 satisfying (24), let Φ and Φ′ be two different bases of the orthogonal complement of x. Due to orthogonality, there

exists an orthogonal matrix U ∈ R(d+1)×(d+1) such that

U

 Φ

xT

 =

 Φ′

xT

 . (25)

Write U as

U =

 U11 U12

U21 U22

 , (26)

where U11 ∈ Rd×d, U12 ∈ Rd×1, U21 ∈ R1×d, and U22 ∈ R. Substituting (26) into (25) gives U21Φ + (U22 − 1)xT = 0.

Since the rows of Φ and xT are linearly independent, we have U21 = 0, U22 = 1. Thus U12 = 0 and U11Φ = Φ′. Therefore,

the placements described by Φ and Φ′ are differed only by an orthogonal transformation U11. From Definition 3.6, the two

placements are equivalent. Second, let E ∈ R(d+1)×(d+1) be a diagonal matrix with diagonal entries as 1 or −1. Given arbitrary

x and x′ both satisfying (24), there exists an E such that x′ = Ex. Note E is also an orthogonal matrix. It can be analogously

proved that the optimal placements would be differed by an orthogonal transformation and a number of flipping of sensors

about the target. From Definition 3.6, these placements are also equivalent.

From the proof of Theorem 5.4, an explicit construction of the unique regular optimal placement in the case of n = d+ 1

can be summarized in Algorithm 2. The following example illustrates the construction method in Algorithm 2.

Example 5.5: In R3, given four bearing-only sensors with sensor-target ranges respectively as ‖r1‖ = 20, ‖r2‖ = 21,

‖r3‖ = 22 and ‖r4‖ = 23. The measurement noise variance of the ith sensor is σi = 0.01 with i ∈ {1, . . . , 4}. Recall

ci = 1/(σi‖ri‖) for bearing-only sensors. Then c21 = 25.00, c22 = 22.68, c23 = 20.66, c24 = 18.90 and 1/3
∑4

i=1 c
2
i = 29.08.

The sequence {ci}4i=1 is regular. From (24), choose x = [2.02, 2.53, 2.90, 3.19]T . Compute the SVD of x and use (27) to

compute Φ as

Φ =


−2.5307 4.5286 −0.9906 −1.0891

−2.9016 −0.9906 4.2568 −1.2487

−3.1901 −1.0891 −1.2487 4.0197

 .
It can be verified

∑4
i=1 c

2
i gig

T
i = ΦΦT = 1/3

∑4
i=1 c

2
i I3.
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Fig. 6: The unique equally-weighted optimal placements with n = 3 in R2. Red square: target; blue dots: sensors. (a) Regular triangle. (b) Flip s1 about the
target.
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Fig. 7: The unique equally-weighted optimal placements with n = 4 in R3. Red square: target; blue dots: sensors. (a) Regular tetrahedron. (b) Flip s4 about
the target. (c) Flip s4 and s3 about the target.

Figure 6 and Figure 7 show examples of unique optimal placements. From the last subsection, we know a regular triangle

and a regular tetrahedron are equally-weighted optimal. By Theorem 5.4 they are also unique up to equivalence. Hence the

two equivalent placements in Figure 6 consist of all possible forms of the equally-weight optimal placements with n = 3 in

R2. The three equivalent placements in Figure 7 consist of all possible forms of the equally-weight optimal placements with

n = 4 in R3.

When n > d+ 1, the regular optimal placement may not be unique. In the next subsection, we will give examples to show

the optimal placement may not be unique when n ≥ 4 in R2 or n ≥ 6 in R3. Now a question remains: whether the regular

optimal placement with n = 5 in R3 is unique up to the equivalence. The answer is negative. The following is an explanation

and an explicit construction of the regular optimal placement with n = 5 in R3.

Suppose the sequence {ci}5i=1 is regular with respect to d = 3. Denote ϕi = cigi and Φ = [ϕ1, . . . , ϕ5] ∈ R3×5. Then (14)

becomes ΦΦT = 1/3
∑5

i=1 c
2
i I3. There always exists Φ′ = [ϕ′1, . . . , ϕ

′
5] ∈ R2×5 in the orthogonal complement of the row

space of Φ such that  Φ

Φ′

[ ΦT Φ′T
]

=
1

3

5∑
i=1

c2i I5,

which implies ‖ϕj‖2 + ‖ϕ′j‖2 = 1/3
∑5

i=1 c
2
i and Φ′Φ′T = 1/3

∑5
i=1 c

2
i I2. Thus {ϕ′j}5j=1 represents a 2D regular optimal

placement with ‖ϕ′j‖ =
√

1/3
∑5

i=1 c
2
i − c2j for all j ∈ {1, . . . , 5} (it can be verified {‖ϕ′j‖}5j=1 is regular with respect to

d = 2). Therefore, to obtain Φ, we can first construct {ϕ′j}5j=1 using Algorithm 1 for example, and then find Φ in the orthogonal

complement of the row space of Φ′. Since {ϕ′i}5i=1 may have non-equivalent solutions, {ϕi}5i=1 would not be unique up to

the equivalence.
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D. Distributed Construction

When there are a large number of sensors, it might be inconvenient to design the optimal placement involving all sensors.

The following property can be applied to construct large-scale optimal placements in a distributed manner. The 2D versions

of the following result have been proposed in [5], [7], [8].

Theorem 5.6: The union of multiple disjoint regular optimal placements in Rd (d = 2 or 3) is still a regular optimal

placement in Rd.

Proof: In Rd, consider multiple disjoint regular optimal placements: {ci, gi}i∈Ik with Ik as the index set of the kth

placement (k = 1, . . . , q). The term disjoint as used here means that different placements share no common sensors. Define

I =
⋃q

k=1 Ik. If | · | denotes the cardinality of a set, then |I| =
∑q

k=1 |Ik|.

For the kth placement, since {ci, gi}i∈Ik is regular optimal in Rd, from Theorem 4.1 we have∑
i∈Ik

c2i gig
T
i =

1

d

∑
i∈Ik

c2i Id.

For the union placement, we have

∑
j∈I

c2jgjg
T
j =

q∑
k=1

∑
i∈Ik

c2i gig
T
i

=
1

d

q∑
k=1

∑
i∈Ik

c2i Id

=
1

d

∑
j∈I

c2jId.

By Theorem 4.1, the union placement is regular optimal in Rd.

Theorem 5.6 implies that a large-scale regular optimal placement can be constructed in a distributed manner: firstly divide

the large-scale placement into a number of disjoint regular sub-placements, secondly construct each regular optimal sub-

placement, and finally combine these optimal sub-placements together to obtain a large regular optimal placement. We call this

kind of method distributed construction. Because the combination of the optimal sub-placements can be arbitrary, distributed

construction will lead to an infinite number of optimal placements for the large system. These optimal placements have the

same FIM and ‖G‖2, but they are generally non-equivalent. From Theorem 5.6, we also know only regular placements can

be possibly divided into some regular subsets.

The distributed construction method is very suitable for constructing equally-weighted optimal placements. That is because

any equally-weighted sequence {ci}ki=1 is regular if k ≥ d, and thus {ci}ni=1 can be easily divided into a number of regular

subsets. We next present two instances. (i) For any integer n ≥ 4, it is obvious that there exist nonnegative integers m1 and

m2 such that n can be decomposed as n = 2m1 +3m2. Thus in R2 we can always distributedly construct an equally-weighted

optimal placement with n ≥ 4 by using the ones with n = 2 or 3. (ii) For any integer n ≥ 6, there exist nonnegative integers

m1, m2 and m3 such that n = 3m1 + 4m2 + 5m3. Thus in R3 we can always distributedly construct an equally-weighted

optimal placement with n ≥ 6 by using the ones with n = 3, 4 or 5. As a consequence, noticing distributed construction

yields an infinite number of non-equivalent optimal placements, equally-weighted placements with n ≥ 4 in R2 or n ≥ 6 in

R3 always have an infinite number of non-equivalent optimal solutions.

We show some typical examples in Figure 8 to illustrate the distributed construction. From Section V-B, we know a regular

triangle or regular tetrahedron placement is equally-weighted optimal. The placement shown in Figure 8 (a), (b) or (c) is
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(a) (b) (c)

(d) (e)

Fig. 8: Examples of optimal placement by distributed construction. Red square: target; dots: sensors.

distributedly constructed by two regular optimal placements with n = 3 (the sensors with the same color form a triangle

optimal placement). The placement shown in Figure 8 (d) or (e) is distributedly constructed by the optimal placement with

n = 4 as shown in Figure 7 (c), which is equivalent to the regular tetrahedron. Thus by Theorem 5.6 all placements in Figure

8 are regular optimal.

VI. NUMERICAL VERIFICATION

In order to verify our previous analytical analysis, in this section we solve the parameter optimization problem (8) from a

numerical perspective and then present some numerical simulations. More specifically, we employ Lyapunov approaches to

design a centralized gradient control law which can numerically minimize the objective function ‖G‖2 given an appropriate

initial point. The control law can be applied to numerically construct generic regular and irregular optimal placements in 2D

and 3D.

Assume the motion model of sensor i to be ṡi = ui, where ui ∈ Rd is the control input. Then we have ṙi = ui because

ri = si− p and the target position estimation p is given. Let r = [rT1 , . . . , r
T
n ]T ∈ Rdn. Denote β as the constant lower bound

of ‖G‖2 as shown in Theorem 4.1 and 4.3. Then the optimal placement set is E0 = {r ∈ Rdn : ‖G‖2 − β = 0}. Choose

the Lyapunov function as V (r) = 1/4(‖G‖2 − β). Clearly V is positive definite with respect to E0. Denote ∂V/∂ri as the

Jacobian of V with respect to ri. Then we have

V̇ =

n∑
i=1

∂V

∂ri
ṙi =

n∑
i=1

c2i
‖ri‖

gTi GPiṙi,

where Pi = Id − gigTi is an orthogonal projection matrix satisfying PT
i = Pi, P 2

i = Pi, and Null(Pi) = span{gi}. Null(·)

denotes the null space of a matrix. Design the gradient control law as

ṙi = −PiGgi, (28)
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Fig. 9: Gradient control of equally-weighted (regular) placements with n = 4 in R3.
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(a) n = 3, k0 = 1
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(b) n = 4, k0 = 1
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(c) n = 4, k0 = 2

Fig. 10: Gradient control of irregular placements in R3.

such that

V̇ = −
n∑

i=1

c2i
‖ri‖
‖PiGgi‖2 ≤ 0

and V̇ = 0 when PiGgi = 0 for all i ∈ {1, . . . , n}.

Proposition 6.1: For any initial condition r(0) ∈ Rdn with ‖ri(0)‖ 6= 0 for all i ∈ {1, . . . , n}, the solution to the nonlinear

r-dynamics (28) asymptotically converges to the set

E = {r ∈ S : PiGgi = 0, i = 1, . . . , n} ,

where S = {r ∈ Rdn : ‖ri‖ = ‖ri(0)‖, i = 1, . . . , n}.

Proof: The time derivative of ‖ri‖ is

d‖ri‖
dt

=
rTi
‖ri‖

ṙi = −gTi PiGgi = 0. (29)

The last equality uses the fact gTi Pi = 0. By (29) we have ‖ri(t)‖ ≡ ‖ri(0)‖ 6= 0. Hence S is a positive invariant set with
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respect to the r-dynamics. The set S consists of a group of spheres in Rd centered at the origin. Thus S is compact. Note

V̇ = 0 and ṙ = 0 for all points in E . By the invariance principle [27], every solution starting in S asymptotically converges

to E .

By Proposition 6.1, the r-dynamics converge either to the optimal placement E0 or the set E \ E0. By introducing Lagrange

multipliers γi, i = 1, . . . , n, the constrained optimization problem (8) is equivalent to minimizing the Lagrangian function

L = ‖G‖2 +
∑n

i=1 γi(g
T
i gi − 1). From ∂L/∂gi = 0, a short calculation shows that E is the critical point set, which

consists of not only minimizers of ‖G‖2 (i.e., optimal placements) but also saddle points and maximizers of ‖G‖2 (i.e., non-

optimal placements). The sets E0 and E are equilibrium manifolds. It is noticed that nonlinear stabilization problems involving

equilibrium manifolds also emerge in formation control area recently [28]–[30]. It is possible to conduct strict stability analysis

including identifying the attractive region of E0 by using Center manifold theory [28], [30] or differential geometry [29]. But

that will be non-trivial because the geometric structure of E0 is extremely complicated as shown in [31].

Figure 9 and Figure 10 show a number of optimal placements obtained by the proposed gradient control law. Due to space

limitations, we only show examples in 3D. The three final converged placements in Figure 9 are actually the three regular

optimal ones shown in Figure 7. The three final placements in Figure 10 are the two as illustrated in Figure 2 (b) and (c).

Clearly the numerical results are consistent with our previous analytical analysis. The optimality error refers to the difference

between ‖G‖2 and its lower bound given in (13) or (15). The optimality error can be used as a numerical indicator to evaluate

the optimality of a placement. As shown in Figure 9 and Figure 10, the optimality errors all converge to zero.

A. Simulation

More simulations will be presented to demonstrate the performance of the gradient control. Our previous analytical charac-

terization of optimal sensor placements will be verified by the simulations.

1) Scenario 1 for bearing-only or RSS-based sensors: For bearing-only or RSS-based sensors, the sensor-target ranges are

assumed to be fixed. The control law (28) naturally fulfills this assumption. Examples of 2D and 3D optimal placements

achieved by the gradient control are shown in Figure 11 and Figure 12, respectively. The noise covariances of all sensors are

chosen to be identical in the simulation.

Figure 11 shows 2D examples. In (a) or (e), the final angle subtended at the target by the two sensors is 90 degrees. In (b)

and (c), the two optimal placements are equivalent. In (d), the optimal placement is a distributed construction by two optimal

two-sensor sub-placements. The optimal placements in (f), (g), and (h) have non-equal sensor-target ranges. The placement in

(g) is irregular. The sensor with shortest sensor-target range drives the other two sensors to be collinear with the target.

Figure 12 shows 3D examples. In (a) or (e), the final angle subtended at the target by any two sensors is 90 degrees. The

final placement in (b) forms a tetrahedron. The final placements in (c) and (d) are both equivalent to the one in (b). An

optimal placement with irregularity as k0 = 1 is shown in (f). The sensor with shortest sensor-target range drives the other

three sensors to an orthogonal plane, in which the three sensors form a 2D optimal placement like the one in Figure 11 (c).

An optimal placement with irregularity as k0 = 2 is shown in (g). These sensors are mutually orthogonal except the two with

long sensor-target ranges collinear. A complicated optimal placement with ten sensors is given in (h).

These simulation results are consistent with our previous optimality analysis. It is also observed that sensors can converge

to an optimal placement which is close to their initial positions.

2) Scenario 2 for range-only sensors: For range-only sensors, the sensor-target ranges are not required to be fixed. We

consider a 3D scenario which might be applied to cooperative air and ground surveillance [32]. Consider two unmanned aerial
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Fig. 11: Examples of 2D optimal placements achieved by the gradient control law. k0: irregularity; green diamonds: initial sensor positions; red dots: final
sensor positions; blue curves: sensor trajectories; black square: target.

(a) n = 3, k0 = 0 (b) n = 4, k0 = 0 (c) n = 4, k0 = 0 (d) n = 4, k0 = 0

(e) n = 3, k0 = 1 (f) n = 4, k0 = 1 (g) n = 4, k0 = 2 (h) n = 10, k0 = 0

Fig. 12: Examples of 3D optimal placements achieved by the gradient control law. k0: irregularity; green diamonds: initial sensor positions; red dots: final
sensor positions; blue curves: sensor trajectories; black square: target.
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(a) 3D view (b) Top view

Fig. 13: Cooperative air and ground surveillance. Green diamonds: initial vehicle positions; red dots: final vehicle positions; blue curves: vehicle trajectories;
black square: ground target.
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Fig. 14: The error between ‖G‖2 and its lower bound.

vehicles (UAVs) and two unmanned ground vehicles (UGVs). Each vehicle carries a range-only sensor, which can measure

the distance from the ground target to the vehicle. UAVs fly at a fixed altitude and UGVs move on the ground. In addition to

the objective function ‖G‖2, we introduce the following external potential for sensor i:

VE(ri) =
(
eT3 ri − `i

)2
,

where e3 = [0, 0, 1]T and `i is the required altitude of the vehicles. Here the external potential is used to control the sensor-

target range to fulfill level-plane position constraints. Denote VI = ‖G‖2 as the inter-sensor potential, and VE =
∑n

i=1 VE(ri)

as the external potential of all sensors. The total potential function is V = VI + VE . And the gradient control law becomes

ṙi = −(∇riVI +∇riVE),
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where ∇ri is the gradient with respect to ri. The external potential VE should be compatible with the inter-sensor potential VI ,

otherwise, the external potential will affect the convergence to optimal placements. By compatible, we mean∇riVI+∇riVE = 0

if only if ∇riVI = 0 and ∇riVE = 0. Since ∇riVI ⊥ ri, VE is compatible with VI if there is no ri make ∇riVE ⊥ ri. One

compatible example is that all range-only sensors move on the boundary of a convex area containing the target [9].

In the simulation, we choose `1 = `2 = 10 and `3 = `4 = 0. The noise variances of different sensors are the same. Figure

13 shows the trajectories and the converged placement of the vehicles. For complicated placements, it is usually difficult to

intuitively judge their optimality. We can evaluate the optimality by using the error between ‖G‖2 and its lower bound given

in (15) and (13). As shown in Figure 14, the optimality error converges to zero.

VII. CONCLUSIONS

The main contribution of this paper is that we present a unified way to analytically characterize optimal placements of

bearing-only, range-only, or RSS sensors in 2D and 3D. The necessary and sufficient conditions for optimal placement in 2D

and 3D are proved. The gradient control proposed in this paper is already sufficient for the purpose of numerical verification

of the analytical analysis. But it is a centralized control based on all-to-all communications and ensures local stability of the

optimal placement set. It is meaningful to study distributed or global stability guaranteed control laws or numerical algorithms

in the future.
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