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Projection-free Parallel Quadratic Programming for Linear Model
Predictive Control

S. Di Cairan6®, M. Brand, S.A. Bortoff

Abstract

A key component in enabling the application of model predéctontrol (MPC) in fields such as automotive,
aerospace and factory automation is the availability of tmmplexity fast optimization algorithms to solve the MPC
finite horizon optimal control problem in architectures lwittduced computational capabilities. In this paper we
introduce a projection-free iterative optimization aligom and discuss its application to linear MPC. The algonith
originally developed by Brand for non-negative quadratiogpams, is based on a multiplicative update rule and
it is shown to converge to a fixed point which is the optimum. @ateleration technique based on a projection-
free line search is also introduced, to speed-up the coewergto the optimum. The algorithm is applied to MPC
through the dual of the quadratic program (QP) formulatedhfthe MPC finite time optimal control problem. We
discuss how termination conditions with guaranteed degfseboptimality can be enforced, and how the algorithm
performance can be optimized by pre-computing the matiic@sparametric form. We show computational results
of the algorithm in three common case studies and we compate iesults with the results obtained by other
available free and commercial QP solvers.

Index Terms

model predictive control, optimization, numerical algbms, constrained control.

. INTRODUCTION

Model predictive control (MPC) [1] is a powerful frameworkrfoptimal control of multivariable constrained
systems. MPC is based on the repeated, receding horizatiosoddi a finite-time optimal control problem formulated
from the system dynamics, the constraints on system staf@sts, and outputs, and the cost function describing
the control objectives and their relative priority.

A fundamental component of any MPC strategy is the numegtgdrithm for solving the finite-time optimal
control problem. MPC was originally developed for applieas in process control [2] where the systems to be
controlled are significantly complex (hundreds of inputsl autputs), but the available computational power is
large and the system time constants are also large. Alththughesulting optimal control problems are of large
scale, the readily available computer resources are gbnstdficient to meet the relatively loose chronometric
requirements. In recent years MPC has shown potential iaradomains including automotive, aerospace, and
factory automation [3]—[6], see also the recent surveys[B]] In these applications the MPC controller is executed
on embedded controllers with relatively low computatiopalver, and the control update cycle is much faster
(down to milliseconds or less) with the consequent need dst &lgorithms for small-to-medium scale optimal
control problems. Due to the cost and safety requirememéset algorithms need to be simple to code and verify,
have limited memory footprint, and be able to solve problevita tens to hundreds variables within milliseconds
or less in low complexity processors.

In this paper we consider MPC with linear prediction modelbjsct to polyhedral constraints and with per-
formance objectives formulated by convex quadratic fumsi As a consequence, the MPC finite-time optimal
control problem can be formulated as a constrained converratic program (QP) for which convergence to the
global optimum is guaranteed [9]. Several classes of dlyns are available for solving QPs, depending on the
problem size, sparsity and computational and memory remeénts of the target platform. Active set methods [10]
and interior points methods [9], are among the most powenfid customizable methods for solving constrained
guadratic programs. Their high performance is obtaineddbyirgy linear systems exploiting complex routines of
linear algebra such as QR and Cholesky factorization [1@],l&y keeping those factorizations in memory for future
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use. Recently, MPC-tailored interior point solvers [11]3] and active set solvers [14] have been introduced, and
they have been proven capable of achieving high performbapdaking advantage of the MPC problem structure.
Indeed both active sets and interior-point methods are ldapaf rapidly solving large problems. On the other
hand, they have significant computational requirementstdube use of complex routines for linear algebra, in
particular for solving systems of linear equations, thautes in complex, and hence difficult to validate, code, and
large program memory occupancy (e.g., hundreds of kila)yte

An alternative approach proposed in [15] is based on thei@kgblution of the MPC parametric quadratic
program. By computing the parametric solution offline, th@iraization algorithm is not executed at controller
runtime. The explicit MPC controllers has been proved sssftg, especially in automotive applications [3],
[16], [17]. However, the parametric solution complexitycieases combinatorially as a function of the number
of constraints. Thus, explicit MPC can be implemented eweminimal computational platforms, but is applicable
only to problems with few constraints and hence with a shogtligtion horizon.

For the intermediate cases of medium-size problems that toelee solved in simple, yet not minimal, embedded
control architectures, gradient-based iterative alporg [10] are interesting candidates. lterative algorithares
based on (many) repeated executions of few basic operatidinde the number of iterations can be large,
each iteration requires little time and operations that doraquire complex subroutines. In [18], a fast-gradient
algorithm [19]-[21] is proposed for MPC controllers whetee tconstraints are expressed in terms of “simple
sets”. Such sets can be used to enforce, for instance, irquutds. For constraints that cannot be formulated by
simple sets, [22] proposes an iterative procedure basedhemual of the problem where the system equations
are relaxed. In [23] a fast gradient algorithm is proposedtii@ dual of the MPC quadratic program. For the
algorithm in [23] there are no additional restrictions oe ttonstraints that can be handled. A key property of the
algorithms in [22], [23] is that, under mild assumptions,@bd on the number of iterations to converge to the
solution can be computed, thus making the algorithm maxinmumber of operations predictable. An algorithm
based on the fast gradient method combined with the Lagrambod of multipliers was proposed in [24] and
accelerated gradient methods for problems with a strucand in particular for distributed MPC, were proposed
in [25], [26]. The iterative algorithms in [22]-[24] perfortwo steps at every iteration. First, they update the ctirren
solution by performing simple operations on the cost funrcgjradient without accounting for the constraints, and
then project the updated solution into the feasible seth@igh for “simple” sets the projection operation may
be computationally inexpensive, forcefully changing thpelated candidate solution a-posteriori can significantly
reduce the improvement achieved in the iteration. This isedl tnown problem that limits the performance of
classical projected-gradient iterative methods [27], ardch led to the development of fast gradient methods,
where such problem is reduced, but it is still present.

In this papet we propose a projection-free algorithm for constrained @Papplication to linear MPC where
the iteration update guarantees that the update solutiontaites feasibility. Hence, a-posteri projections on the
feasibile set, which in general reduce the improvementesel in the iteration itself, are not needed. The algorithm,
related to the one proposed in [30], was initially formuthbe [31] for solving non-negative least squares problems
arising in image processing, and it was named Parallel QtiadProgramming (PQP) because it can be efficiently
parallelized. The name PQP can also be interpreted as Rooidree Quadratic Programming to highlight this
additional feature of the algorithm. Here, we show how PQP lm&a compounded with an acceleration technique
that performs a projection-free line search, which is paférly useful to reduce the number of iterations needed
to reach the optimum. We show how to apply PQP to the MPC opétign problem by solving the dual of
the QP formulated from the MPC finite-time optimal controblplem. For this approach, termination conditions
guaranteeing a requested degree of suboptimality can loecexf We also show that for MPC problems several
computations can be executed offline, hence avoiding dymamemory allocation and large input/output dataflow.

The paper is organized as follows. In Section Il we introdtiee PQP algorithm for non-negative least squares
problems, we prove the convergence of the algorithm, andnwreduce an acceleration technique based on a
projection-free line search. In Section Il we formulate tinear MPC problem, the resulting convex quadratic
program, and the notion of suboptimal solution. Then, weusis the application of PQP to the MPC quadratic
program and the termination conditions guaranteeing trsiretk degree of solution suboptimality. In Section IV

Preliminary results related to this subject have been pteddn [28] and [29]. This paper provides more details onaligerithms and the
related convergence proofs and more detailed simulatiaties and comparisons. Also, the algorithm implementatimave been improved,
thus leading to improved performance in the simulations.



DI CAIRANO, BRAND, BORTOFF 3

we discuss how to efficiently apply PQP to MPC by exploiting garametric primal and dual QP form of MPC to
pre-compute and pre-store several matrices and to redlm@atéons. In Section V we present simulation results
on thee MPC benchmark problems and compare the PQP perfoentraterms of computation time with the ones
of available open source and commercial QP solvers. Finall$ection VI we summarize conclusions and future
work.

Notation: R, Rg., R, Z, Zy., Z denote real, nonnegative real, positive real, integernagative integer, and
positive integer numbers, respectively, aAg 212 €7Z: a <z < b} For a vectorp, [¢]; denotes the"
component, for a matri® € R"*™, [®];; denotes the element at th#& row and;* column. We denote the vector
entirely composed of ones of dimensioen by 1,,, the identity matrix by/,,, and the matrix entirely composed
of zeros by0,,, where the subscripts are dropped when clear from the corBgxo we denote the Hadamard
(element-wise) product between two vectors. Inequallietsveen vectors are intended componentwise, while for a
symmetric matrix@, @ > 0 (Q > 0) indicates positive definiteness (semidefiniteness). Ractorx and a matrix
@ > 0 of appropriate dimensiorﬂxH?Q = 2/Qx. Given a matrix® € R"*™, we defined™, d~ € R"*™ such
that [®7];; = max(0, [®];;) [®7];; = max(0, —[®];;). Given the vectow € R", diag(v) € R"*" is the diagonal
matrix havingv on the diagonal. Given the optimization probleinin.cz J(z), the optimum is/* and the optimal
solutior? is z*, i.e., J* = J(z*). Given a continuous time signal,(t), t € R, the discrete time (sampled) signal
with periodTs, a(k), k € Zo+, is such thau(k) = a.(kTs). The notationa(i|k) denotes the value af predicted
i steps ahead based on data at tikme

Il. PARALLEL QUADRATIC PROGRAMMING FORNON-NEGATIVE LEAST SQUARES

For a regressor data matrig;; € R™*"- and a response data vectgy € R™, the (linear) least squares (LS)
problem seeks the value of the parameter veeterR™- that minimizes th&-norm of the residual vector, € R™,
re = Az — by, i.€., that minimizeg|r.|| = \/Z?él([Alsz]i — [bis)i)?. This is achieved by minimizing the squared
norm of the residual vector

* : 1 2
2" =arg min S|z — bis|l” 1)
For the common case wherg > n., the solution of (1) can be computed in closed formzas= (A’A)~1 A'b.
Several variants of the LS problem (1) exist [32]. A problemattappears in several applications in fields as
different as image processing, control theory, and datangiis the non-negative least squares (NNLS) problem,
where (1) is compounded with the constraints that the paemvectorz has to belong to the non-negative cone,
i.e.,zcRiy, e,
1
2* = arg min —|| Az — by (2
ZERGT 2
Although very similar to (1), for problem (2) it is not simple compute a closed-form solution, and hence it is
solved by appropriate numerical algorithms. NNLS probl&ngan be formulated as

1
min  J(z) = §Z/HZ +Fz2+M (3a)
st.  z2>0, (3b)

whereF € R", H € R"=*"=, H >0, and$2'Hz + 'z + M = || A5z — bis||?, where M > 0. Problem (3) is a
convex quadratic program (QP) subject to linear conssaint
In order to compute the optimal solution of (3), first the Laggian of (3) is computed,

L(z,\) = %z'Hz + F'z2— Nz (4)

Based on (4), the optimality conditions for (3) are obtaihgdvariational calculus [33] as
20V, L(z,A\) =0 (5a)
Ao VaL(z,A) =0, (5b)

2If there exists multiplez € Z such that/(z) = J* they are all called optimal solutions.
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where for (3), (5a) results in
zoV,L(z,\) = zo(Hz+F —)\) (6)
zo(H Y24+ FT)—(H 2+ F~ +))).

Assume momentarily that; > 0 (possibly infinitesimally) for alli € Z, ,, ;. As a consequence)]; = 0 for all
i € Zp1,.1» and (5) reduces to the fixed point

o [H_Z+F_]Z'
=

Remark 1: Optimality conditions (5) are derived from variational @allus, and hence related to optimal control
theory. They are well known to be equivalent, under mild agsions, to the KKT optimality conditions for
numerical optimization [9], see [33]. An alternative wayexpress (5) is

0<z1VJ(z)>0 (8)

[Z]i7 Vi € Z[an] (7)

where | denotes orthogonality. Such a notation is common in lin@angementarity problems [34]. By (8) the
fixed point (7) is obtained without the need for explicitlysaming\; =0, i € Zj; -

In what follows we use (7) to obtain an iteration that moveshes in the direction of the anti-gradient without
leaving the feasible region. In cas¢ > 0, and thusz = 0, the iteration can be shown to drivg to 0 without
explicitly estimating);. For a fixed matrixp € R™=*"- chosen to guarantee convergence as explained later, the
Parallel Quadratic Programming algorithm is derived asiesd in Algorithm 1.

Algorithm 1 Parallel Quadratic Programming (PQP)
1: seth =0, Z(h) = z> 0.

2: repeat
3: for 1=1:n, do
4 compute update
(H™ +¢)zm) + Fl;
[zt )i = (o) +F+]i[2’(h)]u 9)
5. end for
6: h=h+1

7. until (termination condition)

In Algorithm 1 the initial value in Line 1 is an arbitrary gitiy feasible value, i.e., any point in the positive
cone. The termination condition in Line 7 is discussed esitaaty later.

The PQP algorithm, originally proposed by [31], has someradting properties. As for projected-gradient
methods, the update rule is completely parallelizableh witmmunications overhead determined by the bandwidth
of the Hessiarf . Significant speed-ups can be obtained on GPUs, multicokésCéhd Single Instructions Multiple
Data (SIMD) architectures. In contrast to projected-ggatimethods, the iteration itself maintains feasibilitgnbe
there is no need for a-posteriori projections onto the fdasset which may significantly reduce the solution
improvement obtained during the iteration. Finally, thenergence rate of the algorithm is linear.

Remark 2:For the PQP algorithm the dominant operation is a matrixeregroduct, resulting in a complexity
of O(m, - p), wherep is the number of desired bits of precision amd < ng is the number of nonzeros if.

For parallel implementations the time complexity reduae®tb, - p), whereb, < n, is the bandwidth ofH. In
comparison, interior-point methods typically have comitle O(n? - log(p)), the dominant operation being matrix
inversion/division. Thus, the PQP algorithm is attractfee large scale sparse problems [31]. However, as it is
shown in this paper, it has also advantage for the size ofl@mbthat are typical of MPC applications.

Remark 3:Each iteration of the PQP update has been proven to reduce ®frat least a constant fraction,
resulting in a linear rate of convergence [31] and supeaatfim®nvergence is often observed. While no formal proof
is yet available, in numerous tests the convergence rat@iaiest appears to be proportional to the square root of
the Hessian condition number [29], similarly to fast-geadimethods [18].
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A. PQP algorithm convergence

The convergence of Algorithm 1 to the optimuh of (3) can be guaranteed by a suitable choice of the matrix
¢ € R"=*"= in (9). Consider a series expansion.bfz) aroundz € R+,

T = J() + (€~ VI(:) + 5(E ~ 2V H(E ) (10)
For z > 0, we define an auxiliary function by modifying the last term(iD),
G(€,2) = J(2) + (€~ 2/ VI(2) + 5(€ — 2YK()(E —2), (11)

whereC(z) € R"=*"+ is the diagonal matrix
K(z) = diag((H* + ¢)z + F)diag(z) .

Clearly, G(z, z) = J(z). Next we prove that by properly choosiig

1) G upper-bounds/, i.e, for all > 0,z > 0, G(&, 2) > J(&);

2) the multiplicative update (9) yields;, 1) = argming G(&, 2(n));

3) for any givenzg, > 0, the sequencgz )}, obtained from (9) is such that(zg,. 1)) < J(z@)), for all

h € Roy;

4) the sequencéz,) };, converges to the optimum of (3), i.@im;, o 2(p) = 2%, andz* > 0.

We first prove some technical lemmas.

Lemma 1:Let P € Rj;“"* be a nonnegative real symmetric matrix with at least one eanglement in each
row, £ € R’};. Let D € R™=*"= be a diagonal matrix with elements

[P€li

Dl =g

for i=1,2,--- n,. (12)

Then (D — P) > 0 and(D + P) > 0.
Proof: Consider the matrices/;, My € R"=*"=,

My = diag(§)(D + P)diag(§), M = diag(§)(D — P)diag(§).

Since¢ > 0, diag(¢) is invertible. HenceD + P and D — P are congruent with\/; and M,, respectively, and
(D+ P) >0, (D—P)>0if and only if M; > 0 (M, > 0) [35]. For any¢ € R?, ¢ # 0,

OMC = 3 (D) + (PRI = S DLl (clilcly + 3 (Pl €€l Chld)s
i,j=1 ij=1 ij=1
= Y PR + Y (PllellellClicl = 5 D Pl leklel;(C) + [l > 0
ij=1 ij=1 ij=1
Thus, D + P is positive definite. Similarly(’Ms¢ = %ZZ;:I[P],-j[S]i[g]j([C],- —[¢];)? > 0. Therefore,D — P is
positive semidefinite. |

Lemma 2:For some non-negative matrixe R{); "~ that depends only off, G(¢, z) upper-bounds/(¢), i.e.,
forall £ >0,z >0, J(&) < G(&,2).
Proof: We prove thatC(z) — H > 0 from which it follows that

G(&2) = J(E) = (€ —2)(K(z) —H)(§ = 2) 20, V£>0, V2> 0.
Define H+ 2 H* + ¢, H- = H* — H. We splitK(z) — H into the sum of two matrices,
K(z) - H = diag(H"z+ F)diag(z)™' — (HT — H™)
= (diag(H"2)diag(z)™! — H) + (diag(FT)diag(z) "' + H™)
= Kpsa(2) + Kun(2)

where,sq(2) = diag(H*z)diag(z) ' — HT and Ky, (2) = ¢ + diag(FT)diag(z)~! + H~. From Lemma 1 we
have that/C,s4(z) > 0 for all z > 0. Then, we can choos¢ so thatk,,(z) > 0, for all z > 0. For example,
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chooseyp to be a nonnegative diagonal matrix, i.g); > 0, and[¢];; = 0 if i # j, where[¢]; > [H~ - 1]; for all
i = 2 p.)- Then, H~ is diagonally dominant and thus positive semidefinite, aedce alsoC,,, and K(z) — H
are positive semidefinite. |

In this paper we use the above definition fari.e., [¢];; = 0 if i # j, [#l;; > [H™ - 1]; for all 4,5 = Zp ,, 3.
However, all the proofs reported next do not depend on théeifip choice.

Remark 4:For the considered choice of larger values of¢];; reduce the speed of convergence of Algorithm 1
by moving the gain in the multiplicative update (9) towatd$n many useful cases it can be shown that convergence
can be obtained for small values jefl;;, i = Z; ,,_). In several cases, for instance whAT is already diagonally
dominant, it is possible to séb]; = 0 for all i = Zj; ,, ;.

Lemma 3:Given anyz > 0, £ € R": obtained by

[(H™ +¢)zmy + F7;
[(H* + @)z + FT;
is such thatt > 0, and it yields the minimum o (&, z).

Proof: For any fixedz > 0, G(¢, z) is quadratic and positive semidefinite §n hence it has global minimum
for £ such that

[€li = [zam]is 1 € Zpi s (13)

VeG(§,2) =VJ(2) + K(2)(§ —2) = 0. (14)
Solving (14) foré we recover (13) in matrix form,

¢ = 2-K()'WVJIkE) =2-Kk) Y Hz+ F)
= 2K N HT+¢)z+FH+KE) Y H +¢)z+F)
= 2—2z+K)TWH +¢)z+F)
= diag(z)diag((H' + ¢)z + FN) "N (H™ + ¢)z + F7).
Sincez > 0 and the matrices in (13) are all nonnegative, it is stragyiatard that{ > 0. |

Lemma 4:Given anyz,) # z*, if there existsi € Z .. such that[z]; , (H* + ¢)zn) + F7); # 0, the
objective function decreases with iteration (9), i.e.,

J(zni1)) < G(2hr1)s 2) < G2y 2m) = J(2n))- (15)

Proof: The first inequality in (15) follows from Lemma 2. Next, we peothe second inequalité.(z (41, 2(n))
is convex inz;, 1) by construction, and strictly convex with respectdg, ;1)]i, i € Zp ,,_), such thatzg, [s[(H ' z()+
F*]; #0, because

92 [(HT + ¢)zny + FT;
7g =K i = >0.
IR (2(hr1)s 2(n)) = [K(2(m))] ol
Since[K(z)]i > 0 and 2,y # 2%, [2(n41))i = [arg ming G(&, 2(n))]i # [2(n))i, bECaAUSE
[nsn)i = [z = = [K(zy) " VI (z)))i # 0. (16)
Thus,§ = 2, is not a minimizer ofG(¢, z()), andG(z(n41), 2(n)) < G(2(n)s 2(hn))- [ |

Theorem 1:Let ¢ € Rj;*"* be chosen to satisfy the assumptions of Lemma 2, and suchHhat¢]; > 0,
for all i € Zp ,,_;- Given any positive:° > 0 the update (9) generates a sequefigg) }, such that the sequence
{J(2(n)) }n converges to the optimum, i.dimy o J(2()) = J*, and

lim 2 = 2™ a7

h—00

Proof: Since [H + ¢|;; > 0, for all i € Zy; ), the assumptions of Lemma 4 are satisfied and monotonic
decrease of J(z(;))}n is guaranteed. From (16) we know thats a stationary point if and only if

20V, J(2)=0

According to (8), this is also the KKT optimality conditioorf(3) whenV(z) > 0 andz > 0. Next we show that
the update has no other fixpoints in the positive cone. Assgmi> 0 (possibly infinitesimally), a fixpoint requires
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VJ(z) = 0. Due to convexity of/(z), VJ(z) = 0 only for z = z*. Consequently any fixpoint of the update (9) is

a solution of (3). Since/(z) is lower bounded, the decreasing sequefiée: ()}, converges to the lower bound

J*. Since the update is stationary onlyzdtwhere J(z*) = J*, z* = limj, 0 2(5)- Thus,{J(2())}s converges to

the minimumJ(z*) as{z)}» approaches the limit*. [
Remark 5: Although all iterates remain in the positive cone, elemefits that correspond to active constraints

(at optimum) in (3) are seen to rapidly (albeit asymptohgadecay to zero. These can be thresholded to zero and

the corresponding rows and columnsif F, = can be removed from subsequent iterations of the updatbelf t

QP is only weakly convex and therefore does not have a unifplsaboptimum, the sequene@h)h will converge

to an optimal point determined hby.

B. PQP acceleration by line search

While classical optimization algorithms usually compute solution update by performing two steps, a descent
direction selection, and a step size selection (also céifledsearch), Algorithm 1 performs the two actions at once
by (9). In fact, PQP may be interpreted as a dynamically scgtadient method. In order to see this, consider the
PQP update (9), where for simplicity= 0, and sum and subtract from each component the denominatdtam

sl = [ — e
(h+1)li (R))i [Htzy + F*;

[Hz(h) + FJ;,

and hence
Z(h41) = 2y — T(2n)) V2 J(2).

The matrixT(z ;) is diagonal matrix where

[2(n))i
H+Z(h) + F+]i’

thus it scales the gradient, or alternatively it precood#ithe Hessian [36], such that the solution remains feasibl
The gradient scaling view reveals a weakness of the PQP fikpmiogress toward the optimum can be slowed if
the numeratofz,)]; is very close to zero but the optimal value of this varialfg; is not. This can be remedied
by moving all such variables away from zero. The followinghtea provides a locally optimal move that can be
computed in the same number of flops as the PQP iteration.

Lemma 5: Let thez(;) € R" be a feasible solution for NNLS (3). The vectgy,, ) € R"~ obtained by

[T(zm))]ii = [ Vi€ Zp s

_ Ve JGm) P if 'q
7 ppHpn >0
a(Z(h)) - { 0 rt ozherwise (182)
Zh41) = Zm) +a(2n)Ph; (18b)
where
pn = (V2J(zm)) ™, (19)

is feasible €41y € Rg1) and J(z(,41)) < J(2n))-

Proof: The decrease directiop, is the component of the (negative) gradfetitat points inside the feasible
cone. Thus, given(,) > 0, for anya > 0, 2,41y = z@) +apy is such that;,, 1y € Ry;, and hence it is a feasible
solution of (3). For the quadratic functiof(z), (18a) selects the optimal step length [10] for directiof)(1 O

The update iteration in Lemma 5 selects the decrease direati the subspace spanned by the non-negative
components of the anti-gradient. Thus, for any step lengghvlue of each variable cannot decrease, and, since
it was nonnegative at stelp, it is nonnegative at step + 1, hence guaranteeing recursive feasibility. In general,
J(2(h+1)) < J((n)) wheneverp;, # 0 anda(z(,)) # 0. Whena(z,) = 0, (18) does not have any effect.

By using (18) in combination with Algorithm 1, the accel@@tPQP algorithm is obtained, as described in
Algorithm 2. The following theorem guarantees convergeoifcthe accelerated PQP algorithm.

3This is obtained by applying to the gradient the operdtyr, which changes the sign to the negative components and esgositive
components td).
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Algorithm 2 Line Search-accelerated PQP
1. seth =0, Zh) = 2> 0.

2: repeat
3: if LS conditionthen
4: compute decrease direction and step length

prn = (VaJ(zm))”

alzp) = _vzgé(lghijh),/ph it pHpn >0

(R) 0 otherwise

5: compute update
Z(h+1) = 2(n) T a(2(n))Pn
6: €se
7 for i=1:n, do
8: compute update
(H + )z + F
[Z(h-‘rl)]l - [(H+ + ¢)Z(h) + F+]Z [z(h)]l

9: end for
10:  endif
11: h=h+1

12: until (termination condition)

Theorem 2:Let z;,) for h = 0 be a feasible solution for the NNLS (3), and ¢ebe chosen such that Theorem 1
holds. Then, Algorithm 2 where the acceleration activatiaticy in Line 9 is any policy such that at least one
PQP iteration is executed between any two acceleratioatibers converges asymptotically to the optimuim

Proof: The proof is obtained in a similar manner to the stabilitygisoof switched systems, while noting
that z* is an equilibrium for (9) and for (18) and th&t(z) = J(z) — J* > 0, with equality only at (an) optimal
solution, thus making’ similar to a Lyapunov function [37].

Algorithm 2 switches between PQP iteration and projecfiers-acceleration. Consider the sequence of iteration
indices{h}xez,, , and the subsequence of indices where the accelerationfesiped, { A }ccz,, - Let || zq) — 2% >
0, possibly infinitesimally. Due to Theorem 1, for alle Zoy, J(h + 1) < J(h), for all h € Zy, 11 4_,,)- Also,
due to the properties of the projection-free acceleratioh. + 1) < J(h), for all ¢ € Zy,.. Due to the properties
guaranteed by the linear search activation condition (I3hefor all ¢ € Zyy+ we haveJ(hcy1) < J(he), and
J(het1 + 1) < J(hey1). Thus, whenever entering any of the two modes, the value fteemprevious time that
mode was entered has decreased. Convergendézofto J* (i.e., to V(z) = 0) independently of the line search
activation policy used is thus straightforwardly obtaireedin [38] for the stability of switched systems. O

Theorem 2 guarantees convergence of Algorithm 2, for maycel of activation of line search (18). A simple
yet effective strategy is to perform a line search iteragweryns € Z; oy PQP iterations. If the problem is only
weekly convex, the line search iteration should not be peréal excessively often, because it may be expensive to
compute compared to the resulting speedup. In experimegttin,s € Z o 50 Seems to provide the best results.
An alternative approach is based on comparing consecutadient directions while guaranteeing the condition in
Theorem 2. If these directions are almost aligned, the lewrch should be executed, since it may increase the
step size with respect to what the PQP iteration would pevid

I[Il. CONSTRAINED LINEAR MPC

Model predictive control [1] is an advanced technique fotiropl control of constrained dynamical systems
that has found several applications in different domaimmfrprocess control [2] to automotive [3], [17], from
aerospace [5], [6] to mechatronic systems [39], [40]. MP@&as the control input by computing the optimal
control sequence along a finite future horizon for the predisystem dynamics with respect to a user-defined
performance (cost) function and subject to constraintsystesn state, input, and output. Different classes of model
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predictive control have been developed, differentiatedti®y properties of the system model, cost function and
constraints. In this paper we focus on linear-quadratic eh@dedictive control for regulation and tracking, also
known simply as linear model predictive control.

Linear model predictive control is based on the linear prgoih model

z(k+1) = Axz(k)+ Bu(k) (21a)
y(k) = Cux(k)+ Du(k), (21b)
wherez € R", u € R™, y € RP are the state, input, and output vectors subject to congdrai
Lmin S w(k) S Lmax > (223)
Umin S u(k) S Umax » (22b)
Ymin < y(k) < Ymax » (220)

wherezmin, Tmax € R™, Umin, Umax € R™, andymin, ymax € RP are the lower and upper bounds on the state, input,
and output vectors, respectively. At every control cycle Zy.., model predictive control solves the finite horizon
optimal control problem

N-1
gl(lkr)l lz(N[&)|[E, + ZZ; (iR 1By, + llulil®)][F, (23a)
st.  x(i+ 1|k) = Ax(i|k) + Bu(i|k) (23b)
y(ilk) = Cz(ilk) + Du(i|k) (23c¢)

Tmin < 2(i|k) < Zmax, @ € Zp N, (23d)

Umin < w(i|k) < Umax, @ € Zjo N, ,—1] (23e)

Ymin < Y(ilk) < Ymax, 1 € Zpy N, (23f)

u(ilk) = Kyx(ilk), i € Zin, n-1) (239)

z(0[k) = z(k), (23h)

where@Qy > 0, Py, Ry > 0 are symmetric weight matrices of appropriate dimensiong the prediction horizon,
N, < N is the control horizon (the number of free control moves), < N, N. < N are the input and output
constraint horizons along which constraints are enforeed, U (k) = [u'(0|k)...u (N — 1]k)]" € RN™ is the
vector to be optimized. The performance criterion is defibgd(23a), and (23d)—(23f) enforce the constraints.
Equation (23g) defines the pre-assigned terminal contralleere K, € R™*", so that the optimization vector
effectively isU (k) = [u/(0k) ... v/ (N, — 1|k)]" € RN.™,

Remark 6: Although the optimal control problem (23) does not explcimention a reference, tracking is
achieved by including in the state update equation (21lajdfexence prediction dynamics

rr(k+1) = A (k),
and an additional output in (21b) representing the traclamgr
Ye(k) = Cx(k) — Crrp(k),

which is then accounted for in the cost function (23a) as shiater in the case studies, see also [6], [17] for
practical cases.

At time k, the MPC problem (23) is initialized with the current stasue z(k) by (23h) and solved to obtain
the optimal sequenc&* (k). Then, the inputu(k) = unpc(k) = w*(0|k) = [I,, 0 ... 0]JU(k) is applied to the
system.

Given the current state(k), problem (23) can be formulated as the quadratic program

1 1
mUin Jp(U) = §U'QpU + F,U + §Mp (24a)
st GU <K, (24b)



DI CAIRANO, BRAND, BORTOFF 10

whereU = U(k), Q, € R™*" n, = N,m, Q, > 0, andG, € R"*" [F, ¢ R", and M,, are computed as
explained, for instance, in [41].

For numerical algorithms, termination conditions yielglappropriate approximations of the solution of (24) have
to be defined.

Definition 1: Consider problem (24). Given the non-negative 4-tuple R0+, = (% €9 e} €2), we call an
e-solution for problem (24) a vectdr such that

G,U < K, + max{e’|K,|,c*} (25a)

J(U) — J(U*) < max{e|J(U*)|,e%} . (25b)

According to Definition 1 are-solution is a vectoi/ such that the constraint violation and the duality gap are
e-bounded in either relatives], ;) or absolute {7,<%) errors

A. PQP-based solution of MPC quadratic programs

The NNLS problem (3) is a subclass of the general (convex) ZI that needs to be solved to compute the
MPC command. While Algorithm 1 cannot be directly applied24), it can still be exploited to obtain a solution
of (24) through duality [9]. The dual problem of (24) is

1 1
min - Jo(Y) = 2Y'QaY + FyY + 5 M, (26a)
st. Y >0, (26b)

whereQq = G,Q,'G,, F; = (K, + G,Q,'F,) andY € R™, i.e., the number of variables in (26) is equal to the
number of constraints in (24). In (26)/,; = F;Q;IFP — M,, does not affect the optimal solution, but it affects the
value of the optimum, and it is included for the subsequestidision. Let™* be the (bounded) optimal solution
of (26). Then, the optimal solution of the primal QP (26) is

U* = azp(Y") = =Q, ' (Fp + GLY ™). (27)

The approach for solving the MPC finite-time optimal contppbblem through Algorithm 1 consists of the

following steps. At stegk, given the current state(k):
(1) formulate (24);

(#) construct (26);

(7it) solve (26) by Algorithm 2;

(7v) compute the solution of (24) by (27);

(v) apply the MPC command(k) = uypc (k).

Solving the QP problem (24) via its dual (26) has the drawlthek if in (24) there are more constraints than
variables ¢, < n,), (26) has more variables than (24), afdd > 0 (while @, > 0). On the other hand, solving
the dual allows us to enforce termination conditions gu@ing ans-solution according to Definition 1 by using
the duality gap.

Let Y5, h € Zo4 be a candidate solution of (26), a “candidate” primal solut/; is found by (27). Assume
Uy andY(;, are primal and dual feasible, respectively, and let

Jp(Uny) + Ja(Yiy) < €5 (28)

By duality, —Jq(Y{n)) < Jp(Up), where equality holds at optimum if strong duality holdsy.eby Slater’s
conditions, see [9]. Indeed,

—Ja(Yiny) < =Ja(Y") < Jp(U") < Jp(Uy), (29)

and hence (28) implied, (Uy,)) — J,(U*) < 9.

Similarly, if the condition

Jp(Ugny) + Ja(Yiny)
—Ja(Yi)
(
n)

if —Jd(Y(h)) > 0, (303)
J, (U(h )+ Ja(Yiny)

Jp(Y(

if Jp(U(h)) <0, (30b)
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Fig. 1. Cost value throughout the iterations of Algorithm 2. Upp&atpPrimal cost (solid), and dual cost (dash). Lower plotality gap.

holds, (29) guarantees thadf(U(y)) — J,(U*) < &%|J,(U7)].

Remark 7:Condition (30) does not account for the case whése/,)) > 0 and J4(Y(;)) < 0, which may
occur. However, for this to occur close to the optimufpU*) ~ 0, and hence, due to theax operator in (25b),
the termination condition to be considered is the absoluter.e

An example of the primal and dual cost throughout the iteregtiof Algorithm 1 is shown in Figure 1. Termination
conditions (28), (30) are valid only for solutions that arienal and dual feasible. While dual feasibility is guarate
by the PQP properties, primal feasibility 6, has to be verified before checking (28), (30). By checkingifekity
according to (25) an error is induced in (25b), because e+i@asibility is verified. However, for reasonably small
values ofe?, </ such error will be small, and it can be also accounted for indd@ns (28), (30). Alternatively,
€2, e can be set t@.

IV. PQPMPC MNTROLLER DESIGN

As described in Section IlI-A, the application of PQP to the®problem (23) requires at every step the formu-
lation of the dual QP, its solution, and the calculation @& grimal solution. The first step may be computationally
demanding due to the need to generate and perform 1/O opesatin possibly large matrices (hundreds of bytes).

However, the special structure of the QP problem formul&teich MPC can be exploited to perform part of the
calculations offline. From (23), the MPC controller is a ist@honlinear) state feedback. Thus, a control algorithm
implementing MPC needs only the state to generate the ddnpat. In fact, the MPC problem (23) where the
current stater(k) = = is considered a parameter, can be written in parametric {&6}) [42] as

. 1 1
min §U'QPU + :L"'CI')U + §$/pr (31a)
s.t. G,U < Spx + W, . (31b)
The dual problem of (31) is the parametric QP
mUin %Y’QdY +2'SjY + WY + %x'Qdm (32a)
st. Y >0, (32b)

whereQq = G,Qp' G, Sa = (GpQ,'Cp + Sp), Wy = W), Qq = ChQ,1Cp — Q.
Furthermore, the primal optimal solution can be computedifthe dual optimal solution via

U(Y*) = Waop (2, Y*) = Tgz + ZgV™, (33)
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whereZ; = —Q,'G), Tq = —Q, 'C).

Thus, the matrices of the dual parametric problem (32) aedpérametric expression (33) can be computed
beforehand. Giver, the dual problem (26) is instantiated by substitutingnto (32). In order to account for the
termination conditions, by substituting (33) into (31b)yectorY > 0 results in a primal feasible solution when

—Sqx — Wq—QqY <0. (34)
Thus, (25a) can be expressed as
—Sar — Wy — QqY < max{el(|Spx + Wyl),ec1}. (35)
Similarly, by substituting (33) into (31a), the primal stiin cost is
Jp(Vaop(x,Y)) = %Y/QdY - %x/Qdm. (36)

Since J,(U) > 0 due to the MPC cost (23a), the termination condition (25txgressed as
Y'QaY + (2'Sq+ W)Y < max {%’(Y’QdY +2(2' Sl + W)Y + 2’ Qqx), 53} :

where obviously the maximizations on the right hand sidegisa¢ to €%, when J;(Y(;,)) < 0. Thus, the relative
duality gap is ignored when,(Y;)) < 0, because eithes,(U;)) < 0 and hence, due to (23a)j,) cannot be
feasible, or it is the case whetkg(Y(;,)) <0, J,(U()) > 0 and the relative duality gap should not be used.

Based on the above considerations, an MPC controller basedlgorithm 2 is synthesized and executed as
described in Algorithm 3.

Remark 8:Pre-computing and pre-storing in memory the matrices optmametric primal and dual QP as done
in Algorithm 3 is fundamental for allowing the execution bktalgorithm in low complexity embedded controllers
for at least three reasons. First, it reduces the numberropatations during the controller execution, especially fo
the cases when the dual problem matrices are used. Secordudes significantly the amount of 1/0O operations
(from several matrices to a single vector), which are slafvan computations, and the amounts of operating system
calls, which are also time consuming. Third, it avoids efhfidynamic memory allocation, which is recommended
in real-time embedded controllers due to the non-detesmindf the operating system calls and the consequent
complexity in guaranteeing real-time task execution [48].fact, thanks to the simplicity of the operations in
Algorithm 3, the reduced I/O operations, and the absenceyo&mic memory allocation, an operating system is
basically not needed to execute the controller proposeel. her

V. CASE STUDIES

In this section we discuss the results in applying the Alboni 2 and 3 to three benchmark case studies:
stabilization of a double integrator, control of pitch anthke of attack of a jet aircraft, and position control of a
DC-motor. The case studies are available in the free toojddk All the case studies results in small-to-medium
scale optimization problems, with less thaf0 (primal) variables, and less that®0 constraints. While large
scale problems may arise in process control applicationMBC, in applications with fast dynamics and low
computational platform such values are reasonable. I iiagiractical applications the sampling period is chosen
approximately one order of magnitude smaller than the systeminant time constant, and the MPC prediction
horizon is chosen to cover the system response time, anc la@proximatelyt-25 sampling steps (i.e40%-250%
the dominant time constant). Thus, fbtto 4 control inputs, this results in up tt0 optimization variables. Some
extremal cases where longer prediction horizons are neewsdarise when the system modes have large time
scale separation (due to the need of oversampling to ensum®raint satisfaction for the faster modes), which
however is not common in the applications that are the fodukise paper, namely, automotive, aerospace, and
factory automation [7].

A. QP solvers used in the case studies

In the case studies we simulate the system model in closgddth the model predictive controllers. The
simulations are executed in a MacBook-Pro with Intel i7 @peare) processor 2.8GHz, and 8GB RAM, in Matlab
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Algorithm 3 PQP-based Model Predictive Controller (PQPMPC)

1. OFFLINE:
2: Compute
Qp7 Cpa Qpa Gpa Wp
3: Compute and store in memory
S;lh Qda Cda Qda Wd> Sd> Ed> Fd> Q(—; + Qb, Q(; + ¢
4: ONLINE:
k=20
5. loop
6: seth = Spw(k) + defd = de(k) + Wy, My = w(k)’de(k), Yd = Fdw(k)
7. initialize h =0, Y3y =Y > 0.
8.  repeat
9: if LS conditionthen
10:
pn = (VyJa(Yn))~
Vv Ja(Yn))'pr . ’
() = { e
otherwise
Yiery = Yy +aYan)ps
11: else
12: for i =1:n4 do
13: _ _
Vo] = [(Qq +9)Yw) + Fy ]z‘[ ol
1)]e — 79
PR QE + o) + 7T
14: end for
15: end if
16: h=h+1
17:  until (35) and (37)
18 setu(k)=[In 0 ... 0](va+Eq)
190 k=k+1
20: end loop

R2010b, executed in a single core of the processor by digahbtiultithreading. In order to assess the behavior of

the

algorithms introduced in this paper, in the simulatisesuse all the following QP solvers.

PQP-M: Algorithm 2 for solving QP (24) implemented in Matldcode.

PQPMEX: Algorithm 2 for solving QP (24) implemented in a Gded mex function.

PQPMPC: Algorithm 3 that synthesizes the MPC controlleplamented in a C-coded mex function.
QPROG:QUADPROG routine of the Matlab Optimization Toolbox ver. 5.1 [45] ilepented mainly in C-coded
mex functions and partly in M-code. Due to the problem sizehia case studies, which is consistent with
standard size of the MPC optimization problems in mechatsoapplications such as automotive, aerospace
and factory automation, the medium scale algorithm is uadif;h is an active set method.

DANTZ: Dantzig’s active set algorithm [46] implemented byCacoded mex function. This method has also
been used in the Matlab MPC Toolbox [47] for several ykars

NAG: Inertia-controlling active set method using Cholegagtorization in the commercial NAG toolbox for
Matlab [48] implemented in a C-coded mex function.

“In recent versions of the toolbox, the QP algorithm is chdngeainly due to a different toolbox architecture.
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o GPAD-M: Accelerated dual projected gradient method [23plemented in M-code GPAD is based on the
fast gradient method originally proposed in [19]. Simyatd PQP, and differently from [18], GPAD allows
for any type of primal QP constraints, because it solves tre groblem. Thus, it appears the best candidate
among the fast gradient methods to be compared with PQP.€eFh@gntation conditions from [23] have been
relaxed to include also the relative errors on cost funcéind constraints, according to Definition 1.

o QPOAS:qpQOASES solver [14], which implements an active set method tailae®PC problems.

Note that PQP-M and GPAD-M are implemented in M-code and @esignificantly slower than the other
solvers. However, including these results allows to as#essbehavior of PQP with respect to a type of fast
gradient algorithm. Also, from the relative performanceP@P with respect to GPAD, additional conclusions can
be drawn as regards its behavior, by exploiting the comparig C-coded implementation of GPAD-M with many
other solvers reported in [49].

All the algorithms receive the data of the primal QP problé@#)( and the inverse of the Hessian matr@gl.
PQP, PQPMEX, PQPMPC, and GPAD construct and solve the dwdlgm, and compute the solution of the
primal problem. When possible, the solvers have been sét thi¢ same numerical precision?(e% = 1079,
el e = 1071), and warm-starting techniques are not used in any algoritve report the time taken to execute
the main function of each solver as called from Matlab and sora serial (single-core) processor, averaged for
each test on five runs. Note that a parallel implementatioRQ@P would offer a speed-up approximately linear in
the number of cores/processors, especially when there-c®@monunication delay such as in GPU, multiprocessors,
and multicore architectures. In fact such a speed up is dlresible for the M-coded implementation of PQP
when executed in Matlab with enabled multithreading, duthéoautomated parallelization of core functions such
as vector sums and matrix-vector products.

Remark 9:By the results in the following test cases, we do not aim aiimitey the superiority in terms of
execution speed of the approach proposed here. In face trer always problem instances where an algorithm
is outperformed by another one. By the following results vy aim at showing that the approaches proposed
here are capable of operating at rates with the same ordaraghitude as other well established and currently
proposed methods. This, together with the code simpliaiigtkes the algorithm proposed here very attractive for
several applications domains.

B. Stabilization of a constrained double integrator

In the first case study we consider a system modeling a donkdgrator with stater. € R?, input u,. € R,
outputy. € R, and for which the dynamics are expressed in continuous &isne

2 = | gy o] ] ] (38a)
ye(t) = [ 1 0 ]ac(t). (38b)
The double integrator (38) is subject to constraints on tipaitis and on the “velocity” state
~1<u(t) <1, (39a)
—1 < [ze(t)]- (39b)

The double integrator model (38) is sampled with peridd= 1s to obtain the discrete-time model (21). The
objective is to drive the system state to the origin.

We design an MPC controller with prediction, constraintd aontrol horizonsN = N. = N, = N, = 4,
resulting in a parametric QP with, = 12 constraints, anch,, = 4 variables. The MPC cost function (23a) is

implemented with

10

5This algorithm was implemented by the authors of this palpet,it was shown to and discussed with the authors of [23] tifyvés
correct implementation.
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Fig. 2: Trajectories for the double integrator case study. Uppet: [gtates (solid), constraint (dash). Lower plot: conimguts (solid),
constraints (dash).

and the matrixP,; and the terminal controlleK’; in (23) are obtained by solving the discrete-time Riccatiatmpn
Py = A'PyA— APyB(B'PyB+ Ry) 'B'PyA+ Qu, (40a)
Ky = —(B'PyB+ Ry) 'B'PyA. (40b)

We consider the initial state(0) = [10 0" and we simulate the system in closed-loop with the MPC cdiatro
for 40s. The state trajectory and the input profile are reportedgurg 2.

The average, minimum, and maximum computation time forisglthe QP problem along 40s simulation are
reported in Table I. The solution time of the M-coded PQP Iasdame order of magnitude of QPROG, which

TABLE |: Computation time results for the double integrator casdystu

\ Solver | Avg[ms] | Min[ms] | Max[ms] |
PQP-M: 1.086 0.323 5.097
GPAD-M: 1.750 0.207 9.440
QPROG: 1.597 1.349 2.380
QPACT: 0.450 0.356 0.629
QPOAS: 0.146 0.116 0.227
NAG: 0.614 0.355 0.839
PQPMEX: 0.065 0.038 0.135
PQPMPC: 0.031 0.013 0.104

exploits C-mex routines. The computation time of PQPMEX ah8@QPMPC are well belowms, and outperform
the other solvers.

Figure 3 shows the distribution of the computation time fQFMEX (in red) and NAG (in blue). Note that the
largest computation time of PQPMEX is smaller than the sssaltomputation time of NAG.
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Fig. 3: Distribution of the computation time for the double integracase study for PQPMEX (red) and NAG (blue).

C. Control of pitch and angle of attack of an unstable jet &ft

The second case study is the control of pitch and angle dflatiha jet aircraft [50]. The linearized continuous
time dynamics results in a model with. € R?, u, € R?, y. € R?, and

[ —0.015 —60.6 0 —32.2 —251 —13.1

. —0.0001 —1.34 0992 0 ~0.169 —0.251

Te(t) = 00002 432 —0860 o |TOT] 479 155 | Ue®: (41a)
0 0 1.0 0 0 0
[0 1 0 0

e = |54 0 0 e, (41b)

wherey,. models the angle of attack and the pitch angle, @hohodels the elevator and flaperon angles. Model (41)
has one real stable pole, one real unstable pole and twdyligamped stable complex poles. The aircraft is subject
to the constraints

ESECH L (422)
U L (42b)

where all the angles are measured in degrees.
The objective of the controller is to track references fdcipiand angle of attack. Thus model (41) is sampled
with period 75 = 0.05s, and augmented with a reference prediction model thahessa constant reference,

rr(k+1) =r.(k),
wherer, € R?, and with an incremental formulation of the control input
vk +1) =v(k) + Av(k) = v(k) + u(k),

wherev € R? is the vector of the elevator and flaperon angle commands:and? is the vector of step-to-step
variation of such angles, thus resulting in prediction mdé@#), subject to constraints (22) that enforce (42).
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Fig. 4: Trajectories for the jet aircraft control case study. Upplet: outputs (solid), references (dash), constraints)(d@wer plot: control
inputs (solid), constraints (dash).

We design an MPC controller where the cost function is

N
Jnpe =Y ly(ilk) — o (ilk) 13, + [ Av(ilk)(1F,
1=1

where@, = [ {] andR, = [°§' (9, ], which is then formulated as (23a). The prediction, coirssaand control
horizons are set equal 8 = N. = N, = N,, = 6, resulting in a parametric QP (31) with, = 48 constraints,

andn, = 12 variables.

TABLE I1: Computation time results for the jet aircraft control caselg.

| Solver | Avg[ms] | Min[ms] | Max[ms] |
PQP-M: 19.168 0.297 51.778
GPAD-M: | 174.898 0.230 | 398.593
QPROG: 4,146 1.545 8.591
DANTZ: 0.661 0.483 1.063
QPOAS: 0.663 0.496 1.033
NAG: 0.791 0.388 1.584
PQPMEX: 0.890 0.103 1.593
PQPMPC: 0.452 0.049 0.986

The output and reference trajectories and the input profiteaf2s simulation wherec(0) = [0 0 0 0] and
r. = [10 0] are shown in Figure 4, where one can see that during most oSithelation, several constraints
are active. The average, minimum, and maximum computaiioe for solving the QPs along the simulation are
reported in Table II.

The PQPMEX solver is slightly slower than other algorithimst, the PQPMPC controller is faster, due to moving
offline several matrix calculations thus reducing the datesland avoiding dynamic memory allocation. Still it is
worth noting that the PQP algorithms are much simpler th@&ahes they are compared with, even though the
PQP code is not optimized. The variability between minimurnd enaximum computation time is due to the cases
where the constraints are not active, versus the ones whany oonstraints are active. In the former ones, PQP
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Fig. 5: Distribution of the computation time for the jet aircraftntml case study for PQPMPC (red) and DANTZ (blue).

converges extremely fast to the solution. The distributbithe computation time of the PQPMPC controller (red)
and DANTZ (blue) is shown in Figure 5, where one can see tlttmputation time for PQPMPC is distributed
in two areas. The one with smaller time value is due to few omative constraints, and the one at larger time

value is due to many active constraints. In any case, thesagpmputation time of PQPMPC is slightly smaller
than the largest computation time of the other solvers.

D. DC-motor position control

The third case study is the angular position control of a loainected by a flexible shaft to a voltage actuated
DC motor [51]. The states are the load angle and angular aat the motor angle and angular rate, the control
input is the motor voltage, and the outputs are the load aangiiethe torque acting on the flexible shaft. The model

for the system is

e(t) =

yc(t) =

0 1
_k _B
Ji Ji
0 0
ki
s U
1 0 0
ki 0 — ky

(43a)

(43b)

wherez, € R? is the state vectorn,. € R is the input vector, ang. € R? is the output vector. In (43R4[]

is the armature resistanca,,,[Nm/A] is the motor constant7;[kgm?], 5 [Nms/rad], k,[Nm/rad], are the inertia,
friction and stiffness of load and flexible shaff,,[kgm?], 3,,[Nms/rad], are the inertia and friction of the motor,
and g is the gear ratio between motor and load. The numerical salised in the simulations ag, = 1012,
K,, = 10Nm/A, J, = 25kgn?, 3; = 25Nms/rad,k; = 1.28 - 103Nm/rad, 7,,, = 0.5kgm?, /3,, = 0.INms/rad. The
system is subject to constraints on motor voltage and sbaftie

785 < [ye(t)]2 < T8.5,

—220 < u(t) < 220.

(44a)

(44b)

The control objective is to track a time varying load anglesipon reference signat;(¢), and the prediction
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Fig. 6: Trajectories in the DC-motor control simulation for refece witha,, = 2.5. Upper plot: load angle (solid), reference (dash). Middle
plot: shaft torque (solid), constraints (dash). Lower ptmintrol inputs (solid), constraints (dash).

model is obtained by sampling (43) with peri@d = 0.1s, and augmenting the model with a constant reference
prediction model and with an incremental input formulatamfor the case study in Section V-C. The cost function
is N
Jaec = Y |[y(lk) = riilR)[B, + [Av(ilk)|F,
i=1

whereQ, = 10® and R, = 0.05, prediction, constraints, and control horizons afe= 20, N. = N, = N, = 4,
andKy = 0 in (23g), resulting in a parametric QP witly = 16 constraints, and,, = 4 variables. In the subsequent
simulations, we consider initial statg0) = [0 0 0 0]" and reference;(t) = a, sin(0.5t), wherea, > 0 changes in
the different simulations.

The trajectories for reference and output and the inputlprédir a simulation of20s from initial state where
a, = 2.5 are reported in Figure 6 that shows that only voltage coimiraare active. The computation time is

TABLE I11: Computation time results for the DC-motor case study foenexice witha, = 2.5.

| Solver | Avg[ms] | Min[ms] | Max[ms] |
PQP-M: 0.588 0.304 2.264
GPAD-M: 3.450 0.252 18.733
QPROG: 1.545 1.348 2.557
QPACT: 0.454 0.321 0.920
QPOAS: 0.210 0.155 0.376
NAG: 0.610 0.410 1.115
PQPMEX: 0.068 0.041 0.154
PQPMPC: 0.022 0.018 0.049

reported in Table III.
Next, we simulate the trajectory obtained for an aggreseaference signal where, = 4.0. The obtained
trajectory and control input profile are reported in Figurewhere one can see that both voltage and torque
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Fig. 7: Trajectories in the DC-motor control simulation for refece witha,. = 4.0. Upper plot: load angle (solid), reference (dash). Middle
plot: shaft torque (solid), constraints (dash). Lower ptmintrol inputs (solid), constraints (dash).

constraints are active. The system response is dominatetthebyactive constraints, so that the position is not
achieving the reference profile. The computation time fags tase is reported in Table 1V, and the comparison
between the PQPMPC computation time distribution for theesawherez, = 2.5 (blue) anda, = 4.0 (red) is

reported in Figure 8. The results show that PQP usually neeste time when (many) constraints are active in

TABLE IV: Computation time results for the DC-motor case study foenexice witha, = 4.0.

| Solver | Avg[ms] | Min[ms] | Max[ms] |
PQP-M: 2.037 0.305 5.819
GPAD-M: 20.596 0.246 38.820
QPROG: 2.139 1.344 11.121
QPACT: 0.534 0.364 0.721
QPOAS: 0.190 0.114 0.371
NAG: 0.516 0.267 0.955
PQPMEX: 0.113 0.042 0.242
PQPMPC: 0.062 0.028 0.107

the QP (24), that is when many dual variables in (26) are reyp-ZThis is the opposite of solvers such as NAG,
which are most effective when many constraints are actig¢ [Bhe behavior of PQP can certainly be influenced
by appropriate initialization, but such warm-startinghteicjues are not used here.

The impact of the acceleration technique described in @ediiB executed once every0 PQP iterations is
shown in Figure 9 in terms of number of iterations executedhim algorithm. The acceleration is particularly
effective in reducing the high peaks in number of iteratjared hence the optimization of the acceleration strategy,
which is currently being studied, may lead to an effectivdurion of the variance in the computation time.

For this case study we evaluate how the computation time gdsmvhile increasing the problem size. We
select the “aggressive” reference signal € 4), and we compare the computation time results of PQPMPC and
NAG, for the case in Table IV, and for the cases whé&fe= 30, N. = N., = N, = 10, where N = 40,



DI CAIRANO, BRAND, BORTOFF 21

140

120 g

100f N

80 §

0
-5 -48 -46 -44 -42 -4 -38 -36 -34 -3.2 -3
10g10(t)

Fig. 8 Distribution of the computation time of PQPMPC in DC-motantrol simulations for references with. = 2.5 (blue) anda, = 4.0
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Fig. 9: Effect of the acceleration technique on the DC-motor cdrtase study for reference with. = 4.0. Number of iterations without
acceleration (dash) and with acceleration (solid) e@r\PQP iterations.

N. = N, = N, = 20, whereN = 80, N. = N., = N, = 40, and whereN = 160, N, = N, = N, = 80.
Due to the many active constraints, the inertia-contrgllaigorithm in the NAG solver is particularly effective
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TABLE V: Computation time results for different problem sizes forFA@C and NAG solver for the DC motor case study.

| Solver | Avg[ms] | Min[ms] | Max[ms] |

NAG-04:| 0.516 0.267 1.153
NAG-10: | 0.693 0.328 2.023
NAG-20: | 1.306 0.520 4.840
NAG-40: | 6.237 1.538 20.233
NAG-80: | 28.847 | 3.318 | 348.110
PQPMPC-04; 0.062 0.028 1.933
PQPMPC-10; 0.302 0.044 1.063
PQPMPC-20; 1.019 0.117 3.190
PQPMPC-40; 3.494 0.384 7.917
PQPMPC-80; 7.301 5.478 12.237

for this case, and in fact its computation time varies lessuphout the different cases. However, the PQPMPC
algorithm tends to always execute slightly faster, parthg dlo computing offline part of the QP matrices. It shall
also be remarked that PQPMPC is significantly simpler thanNAG algorithm and it can obtain clear benefits
from (massive) parallelization.

E. Memory occupancy and code complexity

For the three case studies presented so far we have maiolysdiesd the computing time of PQP algorithms when
compared to other established and developing algorithines@ comparisons have to be considered as indicative,
because in many cases small optimizations in the code argkinftions may drastically change the performance.
However, those are known only to the developers or to extyeexperienced users of the algorithm. We suggest that
these results are to be read as indicating that the alg@ifitoposed here can execute at the same time scales of the
algorithms used for comparison. In fact, for applicationthwast dynamics and limited computational resources,
such as automotive, aerospace, and factory automatiomaisé appealing qualities of the PQP algorithms are the
simplicity and the memory occupancy. The simplicity of P@Rjch is evident from Algorithms 1-3, results in a
code that has very small memory occupancy, and that is sitoplalidate and certify. Code certification before
its application to real products is a complex and time corisgrstep. An algorithm with few lines of code may
be certified in some weeks, while complex algorithms may ireqyears of testing and validation before being
certified. The simplicity of the code is an element shared hjsother iterative algorithms, such as the fast gradient
algorithm in [18], [23], and in fact the importance of codmplicity for solver certification was highlighted in [23].

As regards memory, too often memory occupancy is ignorechveigcussing numerical control algorithms. In
applications such as automotive [7], [8], [52], the memayguirements are actually several orders of magnitude
more stringent than the chronometrics requirements. Fiamte, automotive control units running several tens of
control loops and significant amount of control logics mayehanly in the order of a megabyte of memory for
code and data, for all the controllers and logics. Due to theplicity of the code, the PQPMEX function code
requires less thaBOkB memory, including the Matlab interfaces, as opposed ¢ontiore thar800kB of gpOASES.
Also, for the PQPMPC controller, the memory occupancy ofecadd data can be precisely evaluated, since all
the matrices are pre-allocated. For all the PQPMPC coetsolbut the last three cases in Table V, the memory
occupancy for code and data was less th@kB. For the largest case in Table V with dense matrices, theong
occupancy of the PQPMPC controller reached almd4B, with only less than30kB due to the code. In fact,
memory occupancy is one of the reasons that limit the numbeariables and constraints of MPC problems for
the application domains mentioned above.

V1. CONCLUSIONS

In this paper we have introduced an algorithm for the sotutibnon-negative least squares problems and we have
shown how the base algorithm can be accelerated using acpoojdree line search. The algorithm is extremely
simple, offers a linear convergence rate, does not requpesteriori projection, and is easily parallelizable. We
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have discussed how the algorithm can be applied to the quagragram formulated for linear MPC, and how

it can be equipped with termination conditions that guaranthe desired degree of suboptimality. Finally, we
have shown how the online computations can be reduced byeto@nputing and pre-allocating most of the data,
thus reducing the computation time. The algorithm has besnpared with some available free and commercial
solvers in three classical case studies for linear MPC, Bitpimteresting performance in terms of computation
time and memory occupancy. Future work will involve optimg the acceleration strategy, defining warm-start
and termination strategies that are specific MPC, and deyigi bound on the number of iterations.
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